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Abstrakt

Malá tělesa Sluneční soustavy a jejich studium jsou zásadním tématem
moderního astronomického výzkumu. Díky moderní fotometrii mů-
žeme přesně měřit světelný tok v závislosti na čase a získat světelné
křivky planetek. Pomocí analýzy světelných křivek planetek můžeme
studovat jejich rotaci a tvar. Většina planetek rotuje kolem nejkratší
osy s nejnižší rotační energií. Planetky s vyšší rotační energií se na-
zývají tumbleři. Tumbleři mají dvouperiodické světelné křivky. Jedna
perioda představuje rotaci a druhá precesi.

V této práci jsme implementovali genetický algoritmus. Gene-
tické algoritmy jsou vyhledávací a optimalizační techniky inspirované
přirozenou evolucí. Využívají pojmy jako mutace, křížení a selekce
k iterativnímu zlepšování řešení složitých problémů. Tento algorit-
mus jsme testovali na syntetických datech a zjistili jsme, že genetický
algoritmus je užitečná metoda. Při použití této metody jsme našli po-
měrně dobrý fit dat. Jednoznačné určení precesní a rotační periody by
vyžadovalo další data a podrobnější analýzu.





Abstract

Small Solar System Bodies and their study is a crucial topic of modern
astronomical research. Thanks tomodern photometry,we canprecisely
measure light flux as a function of time, and produce asteroid light
curves. By analyzing asteroid light curves we can study the rotation
and shape of asteroids. Most asteroids rotate around the shortest axis
with the lowest rotation energy. Asteroids with higher rotation energy
are called tumblers. Tumblers have two-periodic light curves. One
period represents rotation and the second represents precession.

In this thesis, we have implemented a genetic algorithm. Genetic
algorithms are search and optimization techniques inspired by natural
evolution. They use concepts such as mutation, crossover, and selec-
tion to improve solutions to complex problems iteratively. We have
tested this algorithm on synthetic data and we found that the genetic
algorithm was a useful method. Using this method, we found fairly
good fits to the data. An unambiguous determination of the precession
and rotation periods would require additional data and more detailed
analysis.
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Introduction

The study of the Small Solar System Bodies is relevant to modern
astronomical research. Asteroids are the remnants of the early time
of the Solar System, and their research can improve our knowledge
of the origin and the evolution of the Solar system. All asteroids orbit
the Sun and rotate around their axis. Some of them also show free
precession. We call them Tumblers. Tumblers are in amore complex
rotational state, and have a two-periodic light curve.

In computer science, a powerful method for solving optimiza-
tion problems is a genetic algorithm. The genetic algorithm is a strong
heuristic optimization method inspired by natural selection and ge-
netic theory. The genetic algorithm can be applied to themodeling of
the light curves of the tumbling asteroids. Thismethodhas the potential
to improve the accuracy, and efficiency of asteroid data analysis.
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1 Asteroids

1.1 Asteroid characteristics

According to the resolution of the IAU in 2006 in Prague, we divide
the Solar System bodies into planets, dwarf planets, moons, and all
other bodies orbiting the Sun, collectively called "Small Solar-System
Bodies"("SSSB") (IAU, 2006). The "SSSB" category includes asteroids,
comets, and meteoroids. Asteroids and comets are the only known
residual planetesimals from the earliest era of the Solar System. Dur-
ing the formation of the Sun and the Solar System, the planetesimals
formed in adisk of gas and dust surrounding the Sun. Due to a large
number of collisions, not all of them were able to form into planets;
this, however, enables us to research the history of the Solar System
(Chapman et al., 1978).

An asteroid or a minor planet is a small rocky Solar System body
orbiting the Sun. Asteroids mainly orbit the Sun in the asteroid belt 1
and comets mainly in theKuiper belt2. We estimate the number of
asteroids larger than 1 km to be around 1.3 ¨ 106 (Bottke et al., 2005)
but the total mass is negligible (5 ¨ 10´4MC) to the mass of the Solar
System (Carroll andOstlie, 2007). Themean diameter range is between
1 meter and more than 500 km (the largest asteroids are 2 Pallas and
4Vesta (Figure 1.2)). Asteroids have various orbital elements and orbit
the Sun anywhere in the Solar System. However, most of the known
asteroids orbit the Sun in the asteroid belt.

1. The Asteroid belt (or the main asteroid belt, or the main belt) is a part of the Solar
System between 2.1 and 3.3 au (usually we say "between Mars and Jupiter") with
the high number of the "Small Solar-System Bodies" (Figure 1.1). Most of the known
asteroids orbit the Sun there (around 95 %), and the rest is a group of asteroids in
Lagrange points of planets or Trans-Neptunian bodies. The real number of asteroids
is likely much different (Brož, 2013).
2. The Kuiper belt is a part of the Solar System beyond Neptune’s orbit (from 30 to
50 au from the Sun), (Stern and Colwell, 1997).
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1. Asteroids

Figure 1.1: Scheme of the asteroid belt in the Solar System. Credit:
NASA/McREL, 2007

Figure 1.2: Image of the asteroid 4 Vesta. Image made by NASA space-
craft Dawn. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA, 2011.
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1. Asteroids
Smaller asteroids are not rigid bodies - they are called rubble piles.

As the title suggests, an asteroid is usually not a one-piece rigid body,
but rather a collection of smaller rock pieces held together by low
gravitational force and geometric interlocking, as well as void space in
between. There is a possibility of destroying or changing their motion
via collision with another body 3.

1.2 A brief history of asteroid research

One of the first initiatives for asteroid discovery and research was
the observation from Johann Daniel Titius in 1766. Titius stated his
observation in the equation, which is nowadays known as the Titius-
Bode law:

Rn = 0.4 + 0.3 ¨ 2n, (1.1)

where Rn is the radius of planetary orbits in astronomical units and
n is (´8, 0, 1, 2 . . . ) for Mercury, Venus, Earth, Mars, . . . (Nieto, 1970)
The actual distances and those predicted by equation 1.1 are compared
in theTable 1.1 for the known planets at the time of Titius (Uranus
was discovered in 1781, a few years after publishing Titius-Bode law).

3. Catastrophic collisions are not so frequent. Their likelihood and frequency de-
pend on the orbit and the size of the asteroid.
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1. Asteroids

Table 1.1: Comparison of the predicted and the real distances of
the planets from the Sun (semi-major axis) by Titius-Bode law. There is
a relatively good correlation with a potentially missing body between
Mars and Jupiter. Real distances are taken from: Carroll and Ostlie,
2007.

n Predicted distance [au] Real distance [au] Planet
´8 0.4 0.39 Mercury
0 0.7 0.72 Venus
1 1.0 1.00 Earth
2 1.6 1.52 Mars
3 2.8 - -
4 5.2 5.20 Jupiter
5 10.0 9.58 Saturn
6 19.6 19.20 Uranus

Table 1.1 shows the high correlations between thepredicted and
the actual distances, as well as the gap between Mars and Jupiter
in Titius-Bode law’s predictions. Hungarian astronomer F. X. Zach
believed the Titius-Bode law to be true. His suspicion rose due to
thediscovery was increased by the discovery of Uranus by William
Herschel. Zach started the research and two years after meeting Her-
schel, he predicted the trajectory elements of themissing body (Cun-
ningham, 2016).

On 1 January 1801, Italian astronomer G. Piazzi discovered the first
asteroid, 1 Ceres at Palermo Observatory. He found an object which
was not in the catalog, in the constellation Taurus. The next night,
he saw the four arc minutes shift. He followed the object until 11
February. Astronomers were unsuccessful in finding Ceres during
the following months (Cunningham, 2016). C. F. Gauss developed
adifferent method to compute the trajectory elements from a few
positions of the body. More importantly, he could predict the posi-
tion in the future (Forbes, 1971). Finally, at the end of the year 1801
(on the night from 31 December 1801 to 1 January 1802), F. X. Zach
observed 1 Ceres again near the Gauss’s predicted position (Cunning-
ham, 2016).

6



1. Asteroids
In the following years, astronomers started discovering more aster-

oids between the orbits of Mars and Jupiter. Their efforts revealed that
there was no planet to be found, merely a large number of asteroids.
We call this area the asteroid belt. Currently (11 April 2023) we know
about 1 264 544 asteroids in the whole Solar System, 31 640 of which
are Near-Earth asteroids (“Minor Planet Center”, 2023).

1.3 Methods of research

We use plenty of methods for asteroid research, such as astrometry,
photometry, spectroscopy, and research by radars or spacecrafts.

Astrometry measures the exact positions of sky objects. Astrome-
try is a common method in research of the Solar System. Measuring
positions and their changes yields orbital parameters of the planets
and other objects.

Photometry measures light intensity and counts the number of
photons coming from celestial objects. From time-resolved photome-
try, we obtain the light curves. Analysis of the light curves is a strong
method by which one can calculate the rotational period of the as-
teroid and some other characteristics, such as the rotational state or
the overall shape of the asteroid. More details about asteroid light
curves are in Chapter 2.

Spectroscopy measures and analyzes the spectrum of light com-
ing from space objects. Using spectroscopy, we can mainly estimate
the chemical properties of the celestial body or the medium between
the body and the observer.

1.4 Classes of asteroids

With the help of spectroscopy, we can categorize asteroids into spectral
classes based on the chemical properties of their surface (Carroll and
Ostlie, 2007):

• S-type asteroids are dominated by iron or magnesium silicates
and pure metallic iron-nickel. These asteroids have an albedo (or
surface reflectance) between 0.1 and 0.2 and are located mainly
in the inner asteroid belt,

7



1. Asteroids
• M-type are metal-rich asteroids. Locations and albedos are very

similar to the S-type,

• C-type are rich in carbonaceousmaterial and are very dark (small
albedo in the range of 0.03 to 0.07). We can find them throughout
the asteroid belt and they comprise some 3/4 of all asteroids in
the belt,

• P-type are located in the outer asteroid belt and they are as
dark as the C-type. They have a high percentage of organic com-
pounds,

• D-type are similar to P-type but they orbit the Sun with a higher
semi-major axis, they form the majority of Jupiter Trojans (or-
biting the Sun in the Lagrange point 4 and 5 in the system Sun –
Jupiter).

1.5 The rotational motion

The fundamental characteristic of all celestial objects is rotation which
means spinning around its axis. The rotation is determined by ini-
tial conditions and conservation of the angular momentum. Rotation
is studied by light curve analysis, thanks to the irregular shapes of
the asteroids. We observe the maxima and minima of the light flux
depending on the cross-sectional area facing the observer.

This equation describes the rotational motion of an asteroid:

L⃗ = Îω⃗, (1.2)

where L⃗ is the angular momentum of the asteroid, Î is the inertia
tensor, and ω is the angular velocity column vector (Pravec et al.,
2005). Any inertia tensor can be rewritten into a diagonal matrix ( ˆID):

ÎD = Q̂T ÎQ̂, (1.3)

where Q̂, Q̂T are both orthogonalmatrices (Henych, 2013). If the inertia
tensor is a diagonal matrix (non-zero values are only on the diago-
nal) then the body rotates around a principal axis of that coordinate
system. For bodies rotating around their principal axis, the following

8



1. Asteroids
holds true: I1 ď I2 ď I3 (equality is for the perfectly symmetric and
homogeneous spherical or cubic body) (Pravec et al., 2005).

The kinetic energy of the rotational motion is given by the equation:

T =
1
2

ω⃗T Îω⃗. (1.4)

For the principal axis rotation, where the inertia tensor is symmetric
with only three components, we can rewrite kinetic energy as (Pravec
et al., 2005):

T =
1
2

3
ÿ

i=1

Iiω
2
i , (1.5)

or by the angular momentum (Henych, 2013):

T =
L2

x
2I1

+
L2

y

2I2
+

L2
z

2I3
. (1.6)

The rotational energy of the asteroid has its minimum when the as-
teroid rotates around the shortest principal axis with the maximum
moment of inertia (I3) for angular momentum (Lz), (Henych, 2013).
Minimum energy is given by the equation:

Emin =
I3ω2

3
2

=
L2

2I3
. (1.7)

In the excited state of rotation, energy is given by the equation:

Emin ă E ď
L2

2I1
. (1.8)

In the excited state, the asteroid has the complex rotational state. If
the energy is maximum, the asteroid rotates around the principal axis
with the lowest moment of inertia (Pravec et al., 2005).

1.6 Tumbling asteroids

Our knowledge about asteroid rotation normally comes from photo-
metric measurements (light curves) (more in chapter 2). Almost all

9



1. Asteroids
asteroids have principal axis rotation (around an axis with the low-
est energy, shortest axis), but some asteroids do not. These asteroids
which have excited rotation (and sometimes more complex rotational
states) are called tumblers or tumbling asteroids. The light curve
of this asteroid is quasi-periodic with two fundamental frequencies
which are not exactly constant (Harris, 1994).

Due to energy dissipation, the tumbler with excited rotation damps
to constant period rotation (principal axis rotation). This timescale τ
(damping scale) is given by the equation:

τ „
µQ

ρK2
3r2ω3

, (1.9)

where µ is the rigidity of the material, Q is the quality factor (ratio
of lost energy per cycle to the total rotational energy), ρ is the bulk
density, K3

2 is the numerical description of the irregularity (0.01 for
the spherical shape to 0.1 for the irregular shape), r is the mean radius
and ω is the angular rotational frequency. The standard damping scale
is in the range 105 to 108 years. Factor r2ω3 in the denominator means
that small slowly-rotating asteroids can have long damping scales.
This equation can be rewritten into another form supposing that one
knows certain parameters:

P « 17D2/3τ1/3. (1.10)
Uncertainty of the constant in the equation 1.10 is factor 2.5 (Harris,
1994).

While observing and measuring a tumbling asteroid, it exhibits
a two-periodic light curve instead of a single periodic (another case of
a two-periodic light curve is a binary asteroid 4). One period repre-
sents rotational motion, while the other represents precession motion
(Kaasalainen, 2001).

There are various possible causes of tumbling asteroids. One of
the events that might cause the free precession is a collision with an-
other asteroid. These collisions change the inertia tensor of the asteroid

4. A binary asteroid is a system of two asteroids orbiting one barycenter (Margot et
al., 2015). Usually, we see one body, but its light curve is a superposition of the single-
periodic light curve of the larger asteroid and the orbital motion of the smaller one,
whereas, in tumblers, one body is the source of the two periods.

10



1. Asteroids
and its angular momentum. Another possible cause is the "YORP" ef-
fect (Yarkovsky-O’Keefe-Radzievskii-Paddack effect), the rotational
equivalent of the Yarkovsky effect5, though the "YORP" effect affects
the rotational motion (Vokrouhlický et al., 2015).

1.6.1 Examples

The best-known and the first discovered tumbler is 4179 Toutatis.
Tab.1.2 shows a few examples with relatively well-determined periods.

The asteroid 4179 Toutatis is a Near-Earth asteroid in orbital res-
onance 4:1 with Earth. It was discovered in 1989. Toutatis has been
observed intensively and there was a flyby of Toutatis. The main rea-
son for its research was the close approach to Earth (0.0104 au) in
the year 2004. Toutatis has dimensions of 4.6 ˆ 2.3 ˆ 1.9 km. Its rota-
tional period is 5.41 days, while its precession period is longer (7.35
days), (Busch et al., 2011).

Table 1.2: A few examples of tumbling asteroids (Pravec et al., 2005)
P1 and P2 are precession and rotational periods, PAR is the charac-
terization of the quality of description of the rotation state, and A is
the amplitude of the light curve of the asteroid

Object PAR P1[hod] P2[hod] A [mag]
4179 Toutatis ´4 176 130 1.2
2002 TD60 ´3/ ´ 4 2.851 6.783 1.4
2000 WL107 ´3 0.1609 0.2188 1.1
253 Mathilde ´2/ ´ 3 418 250 0.5

5. The Yarkovsky effect is the process of the absorption and thermal emission of sun-
light, which has a long-term effect on the orbital motion of the body (Vokrouhlický
et al., 2015).
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2 Light curves of asteroids

A light curve is a graph showing the brightness of a celestial object as
a function of time. On the y-axis we plot brightness, flux, ormagnitude,
and on the x-axis we plot time, usually in Julian (or Modified Julian)
days. Light curves are used in all areas of astronomy, especially in
the study of variable stars, double stars, nova research, asteroids and
comets, etc.

Analysis of the shape, periodicity, and amplitude of a light curve
can tell us a great deal about the physical properties of a celestial
body. Only a small number of light curves are non-periodic; these are
the light curves of novae or other cataclysmic events. An interesting
area of research is the analysis of periodic light curves, for example
for rotating asteroids.

2.1 Light curves of asteroids and tumblers

Our knowledge of asteroid shapes, rotational periods, and rotation
states comes mainly from their light curves. Light flux coming from
asteroids changes periodically because of changes in the cross-section
or because of the variation in the albedo6. The typical variation is a few
tenths of a magnitude, and in extreme cases over one magnitude. By
the asteroid’s rotational period, we understand the time between two
minima and maxima for geometrical reasons (Chapman et al., 1978).

Most asteroids have a quasi-periodic light curve. The strict periodic
function is disrupted by the changing of the solar phase and distances
from the Earth and from the Sun.Most asteroids have a single-periodic
light curve. Such an asteroid rotates around the axis of maximum mo-
ment of inertia. There are two categories of exceptions: binary asteroids
and tumblers. Tumblers are asteroids in a complex rotational state
(more details are in Section 1.5) and their light curves contain a linear
combination of two periods. Binary asteroids are a pair of gravita-
tionally bound asteroids where usually one dominates gravitationally
and also in the light curves. The light curve is two-periodic but it

6. Albedo measures the reflectivity of the celestial body. It is the ratio of reflected
radiation and incoming radiation. The standard albedo for asteroids is in the range
of 0.02 and 0.50.

13



2. Light curves of asteroids
is composed of two single-periodic components (Pravec and Hahn,
1997).

By analyzing light curve data we can categorize them into PAR
categories. The PAR category is connected with the principal axis (PA)
and non-principal axis (NPA) rotation and the quality of its detection.
We use categories from -4 to +4. Negative categories indicate NPA
rotation (-4 for constructed NPA model), positive ones indicate PA
rotation (+4 for certain PA rotation), and 0 is for not enough data to
categorize (Pravec et al., 2005).

2.2 Modeling asteroid light curves

The light curve of the asteroid is by default a periodic function, which
means, that we can model it by the Fourier series. The Fourier series
for an asteroid in the principal-axis rotation is used in the form:

R(t) = C0 +
m

ÿ

n=1

Cn cos
2πn

P
(t ´ t0) +

m
ÿ

n=1

Sn sin
2πn

P
(t ´ t0), (2.1)

where R(t) is the computed magnitude in the time t, C0 is the mean
magnitude, Cn and Sn are the Fourier coefficients, P is the rotational
period, t0 is the shift in the time axis (epoch) and m is the order
of the Fourier series. From the Fourier coefficients we can compute
the amplitudes (An) and arguments (Φ), which is done by equations:

An =
b

C2
n + S2

n (2.2)

cos Φ =
Cn

An
, sin Φ =

Sn

An
. (2.3)

Usually, the accuracy of a model is higher with the higher order of
the Fourier series. On the other hand, with higher order, we have
a higher number of free parameters, which makes computation much
more difficult and longer. Usually, we use the Fourier serieswith m = 5
or lower (Pravec et al., 1996).

Finding the free parameters (period, epoch, Fourier coefficients,
and mean magnitude) is usually done by minimizing the sum of
the squares of residuals of the computed andmeasured function value
(Pravec et al., 1996).
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2. Light curves of asteroids
Sometimes, instead of the simple sum of the squared residuals we

use χ2 fitting:

χ2 =
N

ÿ

i=1

(
yi ´ y(xi)

σyi

)2

, (2.4)

where yi is the measured value, y(xi) is the computed (fitted) value, σi
is the uncertainty of the measurements and N is the size of the dataset
(Press et al., 1986). It is the simple sumof the squared residuals divided
by an uncertainty. It means that the points with higher uncertainty
have a smaller influence on the resulting model.

2.2.1 Modeling tumbler light curves

Tumbler light curves are more complex than those of an asteroid in
principal-axis rotation. The model function for the tumbler is also
a Fourier series but two-dimensional:

F(ψ(t), ϕ(t)) .
= Fm(t) = C0 +

m
ÿ

j=1

[
Cj0 cos

2π j
Pψ

t + Sj0 sin
2π j
Pϕ

t
]

+
m

ÿ

k=1

m
ÿ

j=´m

[
Cjk cos

(
2π j
Pψ

+
2πk
Pϕ

)
t

+Sjk sin
(

2π j
Pψ

+
2πk
Pϕ

)
t
]

,

(2.5)

where C0 is the mean value of the flux, C, S are matrices of the Fourier
coefficients and Pϕ, Pψ are the periods. Cjk or Sjk are the Fourier coeffi-
cients for the linear combination of the frequencies (frequencies are
defined as the fψ = P´1

ψ and fϕ = P´1
ϕ . Usually, we can’t say which

period corresponds to rotation or precession so we use the notation
(1, 2) rather than (ψ, ϕ) (Pravec et al., 2005).

Similarly to the principal-axis rotating asteroids light curves (Sec-
tion 2.2), we can calculate an average normalized amplitude, defined
as:

Anorm
jk =

b

C2
jk + S2

jk

C0
. (2.6)
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2. Light curves of asteroids
This is the amplitude of the light curve that contains the linear combi-
nation of frequencies (j f1 + k f2). This normalization can be used only
with light flux or similar linear units (not magnitudes) (Pravec et al.,
2005).
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3 Genetic algorithm

Optimization is one of the most frequent types of problems in physics.
We search for the extreme (maximum or minimum) of the function. It
is possible to do so analytically or numerically. Well-known functions
can be solved by analytical methods. For most problems in physics,
we use some sort of numerical method.

One numerical method is a genetic algorithm (GA). The genetic
algorithm is a heuristic method for solving an optimization problem.
It is inspired by natural selection and reproduction in nature. It is
mainly used for the numerical solution of problems with a higher
number of free parameters.

3.1 A brief history

The history of the genetic algorithm starts in the 1950s and 1960s,
when computer scientists thought about the usage of evolutionary
systems in optimization problems (Mitchell, 1996).

The first real genetic algorithm was invented and developed by
John Holland and his students and colleagues at the University of
Michigan in 1967. Independently in Berlin, Germany, three students
(Bienert, Rechenberg, and Schwefel) developed evolutional strate-
gies too (De Jong et al., 1997). It was first developed primarily for
the research of evolution in nature. Holland’s algorithm is amethod
used for moving from one generation to another by some kind of
natural selection. He used the encoding of chromosomes by zeros and
ones (today we also use encoding by real numbers) (Mitchell, 1996).

3.2 Basic terminology

Before further analyzing the genetic algorithm, some important terms
need to be explained. A gene is a functional block of DNA, and in
the context of the genetic algorithm, it is the string that encodes a free
parameter. Agenome is a complete set of genes.

A crossover (or recombination in some papers) is the changing
of a part of the genome between two parents to create two new off-
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3. Genetic algorithm

spring. Amutation is an operation performed on the offspring, which
changes some elementary bit of the genome (Mitchell, 1996). Selec-
tion is a phase that determines which genomes are chosen for mating
(reproduction). The probability of selection directly corresponds to
a fitness function (Shukla et al., 2015). The fitness function takes
the whole genome and returns the real number (typically positive),
which defines its probability to live to reproduce. A generation is each
iteration of the genetic algorithm when the population is changed
(Grefenstette, 1986).

3.3 How does the genetic algorithm work

Genetic algorithms use methods inspired by natural selection and
reproduction. The genetic algorithm works with a string. It can be
a string of numbers (physical problems), or a string of letters (typically
in biology or chemistry). The genetic algorithm consists of these steps
(Charbonneau, 2002):

1. creating the initial population and calculating the fitness of each
individual,

2. selection of parents for crossover and mutation,
3. crossover and mutation,
4. replacing parents with offspring,
5. repeat steps 2 – 5 again until we stop the algorithm.

Each iteration is called a generation. All of the generations are called
a run. In a standard case, there are at least a couple of tens to a couple
of thousands of generations. The GA employs pseudo-random num-
bers, therefore each run might finish with slightly different results. To
achieve better outcomes it is good to evaluate the results of several
runs statistically (Mitchell, 1996).

3.3.1 Initial population and encoding of solutions

Genetic algorithms can only work with strings, which is to say that
we put all genes (free parameters) into one string (genome). First,
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3. Genetic algorithm

we need to remove the decimal point. When using real numbers, we
simply divide the real numbers by a constant to remove the decimal
point (the same constant for the same gene). Conversely, when we
translate a gene to a real number, we just add a decimal point and
prepend a zero and multiply it by the scale factor. For example, we
are fitting a linear function (we are searching for a and b), and for
simplicity, we have only four candidates, see Tab. 3.1.

Table 3.1: Example of encoding in the genetic algorithm used in fitting
linear functions. Searching solutions in the interval (0, s).

Genome Gene a Gene b Scaling factors a b

5879414572 58794 14572 1, 10 0.58794 1.4572
1278504569 12785 04569 1, 10 0.12785 0.4569
9873251478 98732 51478 1, 10 0.98732 5.1478
6548338564 65483 38564 1, 10 0.65483 3.8564

This works only if we search for positive numbers. If we search for
numbers in interval (´s, s), we simply use the equation:

G = ´s + 2 ¨ s ¨ g, (3.1)
where g is the gene (in the interval (0, 1)), s is the scaling factor, and
G is the gene translated into a real number in the interval (´s, s).
An example is in Tab. 3.2

Table 3.2: Example of encoding in the genetic algorithm used in fit-
ting linear functions. Searching solutions in the interval (´s, s) using
the equation 3.1.

Genome Gene a Gene b s a b

5879414572 58794 14572 1, 10 0.17588 -7.0856
1278504569 12785 04569 1, 10 -0.7443 -9.0862
9873251478 98732 51478 1, 10 0.97464 0.2956
6548338564 65483 38564 1, 10 0.30966 -2.2872

The initial population is the first set of solution candidates. It is
generated randomly in the defined intervals of the chromosomes.
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3. Genetic algorithm

The important parameters of the zeroth population are l, the length
of the string (depends on the required accuracy of each gene), and n,
the size of the population (number of solution candidates).

3.3.2 Fitness function

The fitness function is an important part of every problem solved by
genetic algorithms. It is the function that defines the problem and
defines which solution is more probable than the other. In general,
the fitness function is composed of two functions:

u(x) = g( f (x)), (3.2)

where f is the objective function and g transforms the value of f to
positive numbers and for a better candidate for a solution, it increases.
The function g is necessary if the value of f could be negative or if
you search for the minimum of the function (the genetic algorithm
usually finds the maximum of the function) (Grefenstette and Baker,
1989). The function g can only add some constant to make f positive
or it can be an inverse function. The inverse function in some cases can
change a decreasing function to an increasing function which turns
aminimum to a maximum.

3.3.3 Operators

Three main processes in the GA are selection, crossover, and mutation,
which we call operators. These operators change the whole population
and try to randomly change the genomes, in a similar manner to
natural selection, which means that better individuals are mating with
a higher probability.

Selection is the operator that selects the genomes from the pop-
ulation for mating. The probability of being selected for the con-
crete candidate depends exactly on its fitness value (Mitchell, 1996).
From thepopulation of size n, we select n parents (one can be se-
lected more than one time). There exist plenty of selection meth-
ods, e.g. tournament selection, proportional roulette wheel selection,
and rank-based roulette wheel selection (Razali and Geraghty, 2011).
Away to improve the selection algorithm is elitism. Elitism keeps few
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3. Genetic algorithm

candidates from previous generations. It causes the fitness function to
never decrease with proceeding evolution.

Roulette wheel selection is the method that assigns the probability
of selection to every genome. This probability is simply solved by this
equation:

pi =
fi

řn
j=1 f j

, (3.3)

where fi is the fitness function of the i-th individual in the population
and j iterates over whole population. In equation 3.3 pi is also normal-
ized fitness function. Another variant of Roulette wheel selection is
Roulette wheel selection using cumulative normalized fitness. In this
case, every genome is calculated with cumulative normalized fitness
value, which is a sum of the fitness of the previous genome (including
the actual) (Wiangtong et al., 2002).

Crossover takes two genomes, randomly chooses a position (lo-
cus), and exchanges parts before and after the position between the
genomes and creates two new individuals (Mitchell, 1996). The prob-
ability of the crossover, pc, is usually a parameter of the algorithm. If
the crossover does not occur, the results of the crossover are the exact
copies of the parents. In a standard case, pc is 0.7 or higher. There are
more ways how to crossover strings. The most common is a single-
point crossover. The less common is a two-point crossover, where one
randomly chooses two positions to cut the strings.

Mutation randomly changes some numbers in a string (Mitchell,
1996). In binary encoding, the number is changed to another (0 to 1 or
1 to 0). In number encoding, (described in Section 3.3.1) we can simply
change the number to another random number. The mutation is done
with probability pm, which is usually 0.01 and sometimes much lower.
The mutation is used only for small changes, the main impact should
still produce a crossover. A useful technique is an adaptive mutation,
which increases the probability of mutation when the algorithm is
stuck in a local extreme of the fitness function. We simply increase pm
to some higher value.
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3. Genetic algorithm

3.3.4 Stopping genetic algorithm run

Adifficult question in genetic algorithm theory is when shouldwe stop
the genetic algorithm run. The simplest way to stop the run is after
reaching a defined number of generations, but we do not know when
the solution is good enough. In some problems, we know the expected
value of the fitness function, so we can stop the run when the fitness
of the solutions reaches some defined fitness threshold.

There are many other sophisticated ways of stopping the GA run.
One of them is the number of generations when the fitness of the best
candidate does not change. Another one is comparing progress in
thefirst and second halves of the run. Progress in the second half
should be significantly lower than in the first half. It means that we
can stop the run if the ratio of the second and first half is smaller than
some small number:

f (n) ´ f (n/2)
f (n/2) ´ f (0)

ă 10´r, (3.4)

where f (n)means the fitness of the best candidate in generation num-
ber n and r is some positive number (the higher r means the longer
calculation but the higher precision (Eiben and Smith, 2015).
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4 Implementation and tests

4.1 Implementation

I have implemented the genetic algorithm project in the programming
language Python 7 to be used for modeling light curves of asteroids.
(Appendix A) The project has several separate layers.

The structure of the project follows:
1. basics implements the basic structures and functions needed in

our implementation of the genetic algorithm:
• scaling.py scales the gene into the suitable interval. For pos-

itive intervals (0, s) it just multiplies the gene by s. For
interval (´s, s) it uses equation 3.1.

• solution_to_tuple.py takes a string genome andmakes the list
of scaled chromosomes.

• initial_population.py returns the zeroth (initial) population.
For a better start of the run in our implementation we have
set the initial population to be twenty times bigger than
the populations in the run.

2. processes processes implement the three genetic algorithm pro-
cesses (described in Section 3.3.2):

• selection.py selects the genomes for mating (crossover and
mutation). We use the Roulette wheel selection with cumu-
lative normalized fitness (described in Section 3.3.3).

• crossover.py makes crossover operator. It takes two strings
and a probability of crossover.With this probability, itmakes
a crossover of the two strings.

• mutation.py make mutation on one string. It takes a string
and changes every digit to any other digit with a probability
of mutation.

7. Python is amodern programming language highly used in science. It is especially
useful in science because of the various libraries such as numpy, pandas, or scipy
for science calculations and working with data.

23



4. Implementation and tests

3. one_cycle implements one generation of the genetic algorithm
run:

• one_cycle.py combines operators. It takes the previous gen-
eration and returns the next after executing the selection,
crossover, and mutation.

4. genetic_algorithm implements the whole genetic algorithm as it
is theoretically described in this section:

• genetic_algorithm.py makes the whole genetic algorithm run
in a cycle. It includes adaptive mutation (if the best solution
does not change for many generations, the probability of
themutation is rising) and stopping function as it is de-
scribed in Section 3.3.3.

4.1.1 Usage

For the usage of the genetic algorithm in this project the user should
create an empty Python file. One should create a fitness function for
a specific problem. Next, the user runs the function genetic_algorithm
from genetic_algorithm.py.

The user should fill in these mandatory parameters to run the code:
• number_of_solutions is the number of individuals in each gener-

ation. The optimal number of individuals depends on the specific
problem. A higher number of individuals means a more accurate
final solution but on the other hand, it means a long processing
time,

• number_of_genes is the number of free parameterswhich the user
searches,

• number_of_digits is the number of digits in every free parameter.
Number of digits has a similar effect on the run as the number of
solutions. Higher values increase the accuracy of each parameter
but also the time of the calculation.

• fitness_function is the function that takes the set of the free pa-
rameters (solution) and returns a positive number. (detail in
Section 3.3.2).
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4. Implementation and tests

The user can experiment with these non-binding parameters to
find better solutions:

• r_crossover (= 0.95) is the probability of the two selected indi-
viduals producing new offspring by crossover. The probability
of crossover affects the rate of convergence to the maximum of
the fitness function,

• r_mutation (= 0.01) is the probability of changing the concrete
bit of a string. The probability of themutation affects the escaping
from the local extreme. High probability causes the total random-
ization of the genome during the run. But a slightly higher proba-
bility helps to escape a local extreme when amajority of genomes
are stuck in there,

• scales (=None) are the factors that set free parameters to another
range than (0, 1),

• maximal_generations (= 10 000) is the maximum number of
the calculated generations,

• elitism (= 0) is the number of the best individuals that are just
copied to the next generation. Elitism is by default set to zero, but
it is good to set it to at least two. These settings cause the fitness
function not to decrease,

• stop (= 10) is the parameter r from the equation 3.4,
• threshold (= None) is the threshold of the fitness function when

the run is stopped. If it is None, it is not used. Useful parameter
when the user expects fitness function and its values in the run.

4.2 Application and tests

First, I tried our implementation of a genetic algorithm for model-
ing something simple and familiar; linear functions (lines_test.py).
An example of the run and the evolution of the fitness can be seen
in Figure 4.1 and 4.2. We can see a good fit of data produced by
the genetic algorithm model (model from scipy too). We can also see
the raising (or non-decreasing) fitness function over the generations.
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Figure 4.1: Plot of the linear function model by the genetic algorithm.
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Figure 4.2: Evolution of the fitness function over a generation in
the fitting fitness function.
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5 Results

Finally, we applied the implemented genetic algorithm to the tum-
bling asteroid. The data 8 is in three columns (Julian day, Normalized
light flux, and Uncertainty of the light flux). The data is synthetic for
better control of the data analysis method. A Python script that calls
the genetic algorithm and contains the fitness function is in the file
tumbler.py. During testing, we observed difficulties in using light
flux errors. Therefore, we did not use the errors in modeling (we set
them equal to one for all the data points).

As the model function, we use the two-dimensional Fourier series
from the equation 2.5. The model is represented by the set of free
parameters which are the periods of the rotational and precessional
motion (Pψ, Pϕ), Fourier coefficients of the two-dimensional Fourier
series for cosine (Cjk) and for sine (Sjk) and the constant term C0.

First, we modeled the light curve using the Fourier series for the
PA asteroid. We got a rough estimate of 1.5 days for one of the periods.
This meant that we could use the specific scales in Tab. 5.1. We set
the hyperparameters in Tab 5.1, and the light flux errors were all set
to one.

Table 5.1: Table of the hyperparameters for the genetic algorithm
modeling tumbler light curve. The first part of the scales stands for
the Fourier coefficients, and the last three for C0, and two periods.

Parameter Value
number_of_solutions 500
number_of_digits 5
r_crossover 0.95
r_mutation 0.01
elitism 2
scales (´1, . . . , ´1, 1.5, 5, 10)
stop 30
maximal_generations 15 000

8. Data is synthetic for better comparison of the result and the actual values of
periods. Data was generated by the supervisor of this thesis.
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5. Results

5.1 The Fourier series (order m = 1)

In this Section,we compare twomodels by the first-order Fourier series.
The first one contained the free parameter t0 (a shift on the x-axis) and
the second did not. More models with Fourier series of the first order
are in Appendix B.
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Figure 5.1: Tumbling asteroid light curve model by the genetic algo-
rithm. Modeled with the genetic algorithm, by Fourier series with
m = 1 and with a free parameter t0.

Table 5.2: Table of the Results for the genetic algorithm run for model-
ing the tumbler light curve. Modeled by the Fourier series with m = 1
and with a free parameter t0.

Parameter Value
Number of generations 1380
χ2 24.72
P1 [days] 1.484
P2 [days] 3.281
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5. Results
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Figure 5.2: Evolution of the fitness function over generations in
themodeling of the non-principal axis rotating asteroid light curve.
Modeled by Fourier series with m = 1 and with a free parameter t0.
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Figure 5.3: Tumbler asteroid light curvemodel by the genetic algorithm.
Modeled by Fourier series with m = 1.

Table 5.3: Table of the Results for the genetic algorithm run for model-
ing the tumbler light curve. Modeled by the Fourier series with m = 1.

Parameter Value
Number of generations 8890
χ2 24.64
P1 [days] 1.487
P2 [days] 3.266
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Figure 5.4: Evolution of the fitness function over generations in
themodeling of the non-principal axis rotating asteroid light curve.
Modeled by Fourier series with m = 1.

31



5. Results

5.2 The Fourier series (order m ą 1)

In this Section, we model the light curve by the Fourier series of
the higher order. More models are in Appendix B.

5.2.1 m = 2
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Figure 5.5: Tumbler asteroid light curvemodel by the genetic algorithm.
Modeled by Fourier series with m = 2.

Table 5.4: Table of the Results for the genetic algorithm run for model-
ing the tumbler light curve. Modeled by the Fourier series with m = 2.

Parameter Value
Number of generations 4 400
χ2 13.90
P1 [days] 3.004
P2 [days] 2.995
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Figure 5.6: Evolution of the fitness function over generations in
themodeling non-principal axis rotating asteroid light curve. Modeled
by Fourier series with m = 2.
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5. Results

5.2.2 m = 3
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Figure 5.7: Tumbler asteroid light curvemodel by the genetic algorithm.
Modeled by Fourier series with m = 3.

Table 5.5: Table of the Results for the genetic algorithm run for model-
ing the tumbler light curve. Modeled by the Fourier series with m = 3.

Parameter Value
Number of generations 15 000
χ2 20.45
P1 [days] 2.88
P2 [days] 2.86
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Figure 5.8: Evolution of the fitness function over generations in
themodeling of the non-principal axis rotating asteroid light curve.
Modeled by Fourier series with m = 3.

5.3 Summary of the results

Table 5.6: Summary of the results of all models.

m P1 [days] P2 [days] χ2

1 1.484 3.281 24.72
1 1.487 3.266 24.64
1 1.486 3.250 25.58
1 1.200 6.536 39.96
2 3.004 2.995 13.90
2 2.989 3.000 12.07
3 2.880 2.858 20.45
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6 Discussion

We ran the genetic algorithm with 500 individuals in each generation
and 5digits for all free parameters in the encoded string. The probability
of the crossover we set high, 95 %, and the probability of mutation was
low, 1 %. The range for Fourier coefficients was (-1, 1), the range for
the constant term C0 was (0, 1.5), for the first period it was (0, 5) and
for the second period it was (0, 10). For the non-decreasing fitness
function, we set elitism to two and the parameter r was 30 for a long
enough calculation.

In Section 5.1 we see the twomodels of the same data of the Fourier
sequence of the first order. The first one contains the free parameter t0
and it fits the synthetic data reasonably well. We used the free param-
eter t0 as the test despite the fact that the model Fourier series does
not contain it. The second model also fits the data well, even without
the t0 parameter. We can conclude that the free parameter t0 does not
influence the result.

In Section 5.2 we modeled the same data with the Fourier series of
the higher order. Visually we see a much better fit of the data. Using
the higher order, we reach a higher value of the fitness functions,
and lower χ2, respectively. It is caused by a closer correspondence of
themodel and the data.

It is important to know that our results do not have to be direct
periods of the asteroid. It is possible that some results are the multi-
ples of the original periods or others can be linear combinations of
the original periods (Kaasalainen, 2001).

Uncertainties of our results can be estimated as statistics over
several runs. It is possible to make statistics only from runs with
similar χ2 and similar results. For example from the first three runs
with m = 1 we get the values P1 = (1.486 ˘ 0.001) days and P2 =
(3.27 ˘ 0.01) days.

The actual rotation period was P1 = 34.417 h (1.434 days) and
the precession period was P2 = 80.559 h (3.357 days). Comparing that
to our results we see a relatively good agreement between the actual
periods and the periods from the first order of the Fourier series. In
the last first-order fit, we see that the second period is the double
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6. Discussion

precession period. In the third order fit the second period is double
the rotation period.

6.1 Critical points

The correct fitness function is the most important thing when using ge-
netic algorithms. It should be non-negative andmonotonically increase
for better solutions. From a technical point of view, the calculation of
the fitness takes the longest time to compute. Therefore, it is important
to write the fitness function optimally.

Another problem is stopping the genetic algorithm run. Various
methods proved to be imperfect. Stopping by the number of genera-
tions was almost useless because it depends on the randomness and
the size of the problem. The combination of a threshold and the ratio
between changes in the second and the first part were the most useful.
The threshold is the minimum fitness function value the run has to
reach.

The next point, which can make the run even faster and more
precise, is the accurate range of each free parameter. The large range
causes long computation time and lesser precision or sometimes in-
correct results.
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7 Conclusions

In summary, free precession is an interesting physical phenomenon
of asteroid rotation. Most asteroids rotate around theprincipal axis,
which is the shortest axis with the lowest rotation energy. Asteroids
with higher rotation energy show a free precession. Rotational motion
is usually studied by analyzing light curves. The asteroid spinning
around the shortest principal axis shows a single-periodic light curve
while the freely precessing asteroid shows a two-periodic light curve.
One period represents rotation and the other period represents pre-
cession.

Asteroid light curves are modeled using the Fourier series. For
modeling the asteroid light curve we use a simple Fourier series, but
for the tumbling asteroid, we use a two-dimensional one. To model
the light curves, we minimize the sum of the squared residuals.

In this thesis, we focused on using a genetic algorithm to model
tumbler light curves. Genetic algorithms offer a powerful approach to
optimization tasks inspired by natural evolution. Through iterative
processes involving mutation, crossover, and selection, these algo-
rithms excel in improving solutions for complex problems with a high
number of free parameters.

In the practical part of the thesis, we implemented the genetic
algorithm and applied it to the tumbling asteroid light curve. For
themodeling of the synthetic data, we used the two-dimensional
Fourier series. Firstly, we found that the shift on the x-axis does not
affect the result. Finally, we found genetic algorithm modeling to be
a useful method for light curve analysis. The method works with
pseudo-random numbers and for better results, it is necessary to run
it several times with more generations due to every run generating
a slightly different result. However, if the fit is reasonable for a few of
those runs, it enables us to derive uncertainties of the results. Some-
times we do not get the direct periods but the multiples of the actual
periods or their linear combination. The way to solve this is to get
more data.
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7. Conclusions

7.1 Future plans

Testing in this thesis was done on synthetic data without the usage
of uncertainties with a high sampling rate. Normally, the data has
a lower sampling frequency and breaks between datasets. The first
plan is to test and potentially optimize the algorithm for more realistic
data.

Another possible improvement is automation. We would like to
automate running multiple runs and obtain statistics of all results.
That would also enable us to estimate the uncertainties of the results.
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A Appendix

The genetic algorithm Python project with all tests is in bachelor_
thesis.zip. It is available on the internet address:
https://is.muni.cz/auth/th/dwrj3/bachelor_thesis.zip
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Figure B.1:Tumbler asteroid light curvemodel by the genetic algorithm.
Modeled by Fourier series with m = 1.

Table B.1: Table of the Results for the genetic algorithm run for model-
ing the tumbler light curve. Modeled by the Fourier series with m = 2.

Parameter Value
Number of generations 1810
χ2 25.58
P1 [days] 1.486
P2 [days] 3.250
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Figure B.2: Evolution of the fitness function over generations in
themodeling non-principal axis rotating asteroid light curve. Modeled
by Fourier series with m = 1.
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Figure B.3:Tumbler asteroid light curvemodel by the genetic algorithm.
Modeled by Fourier series with m = 1.

Table B.2: Table of the Results for the genetic algorithm run for model-
ing the tumbler light curve. Modeled by the Fourier series with m = 2.

Parameter Value
Number of generations 3720
χ2 39.96
P1 [days] 1.200
P2 [days] 6.536

49



B. Appendix

0 500 1000 1500 2000 2500 3000 3500
Number of generation

0.005

0.010

0.015

0.020

0.025

Fi
tn

es
s o

f t
he

 b
es

t s
ol

ut
io

n

Figure B.4: Evolution of the fitness function over generations in
themodeling non-principal axis rotating asteroid light curve. Modeled
by Fourier series with m = 1.
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B.2 m = 2
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Figure B.5:Tumbler asteroid light curvemodel by the genetic algorithm.
Modeled by Fourier series with m = 2.

Table B.3: Table of the Results for the genetic algorithm run for model-
ing the tumbler light curve. Modeled by the Fourier series with m = 2.

Parameter Value
Number of generations 15 000
χ2 12.07
P1 [days] 3.00
P2 [days] 3.00
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Figure B.6: Evolution of the fitness function over generations in
themodeling non-principal axis rotating asteroid light curve. Modeled
by Fourier series with m = 2.
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