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Abstrakt

Fenomén termálnej fronty vznikajúci v koronálnych slučkách je jedným z mnohých
súčasných problémov slnečnej astrofyziky. Práca sa zameriava na simulácie termálnej
fronty použitı́m Particle-In-Cell metódy aplikovanom na prechod medzi horúcou a chlad-
nou plazmou. V práci je stručne objasnený fyzikálny podklad slnečnej fyziky, ktorý uvádza
do problematiky koronálneho ohrevu, prechodovej oblasti a termálnej fronty. Ďalej je
vysvetlený potrebný aparát fyziky plazmy a simulovaných javov, nutný pre pochopenie
nastavenia a interpretácie simuláciı́. Nasleduje vysvetlenie princı́pu fungovania a konfig-
urácie fyzikálnych parametrov simulačnej metódy Particle-In-Cell použitı́m upraveného
kódu TRISTAN. Posledná čast’ práce zohl’adňuje doterajšı́ výskum termálnej fronty, jej
simulácie a predstavuje výsledky simuláciı́ s odlišnými konfiguráciami rozhrania medzi
horúcou a chladnou plazmou a rozdielneho nastavenia tlakovej rovnováhy.

Abstract

The phenomenon of the thermal front that forms in the coronal loops is one of many
modern problems of solar astrophysics. The aim of this work is the simulations of the
thermal front using the Particle-In-Cell method applied on the hot-cold plasma transition.
The work briefly illustrates the physical background of solar physics, which introduces
into the problematics of coronal heating, transition region and thermal front. Moreover,
the necessary fundamentals of plasma physics and simulated phenomena are explained
to understand the configuration and interpretation of the simulations. This is followed
by an explanation of the principles and physical properties configuration of the Particle-
In-Cell simulation method. A modified TRISTAN code is used. The last part of the
work addresses the present research of thermal front, its simulations, and discusses the
simulation results for different configurations of the initial hot-cold plasma interface and
the initial configuration of pressure equilibrium.
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Vyhlasujem, že som svoju bakalársku prácu vypracoval samostatne pod vedenı́m
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Introduction

The Sun as a star is a focal point of modern astrophysical research. We currently possess a
lot of information about phenomena on the Sun. We understand their formation, evolution,
and ongoing processes. However, there is a plethora of questions left to be answered that
are needed to correctly describe the solar phenomena. This work will be devoted to the
one of these questions – the problem of interaction of plasmas with different temperature
on the kinetic level and the impact of pressure equilibrium on its stability. These problems
directly relate to the problem of the thermal front that is not yet sufficiently described. We
will simulate the region using Particle-In-Cell code TRISTAN for various initial conditions
and try to interpret the data into various evolution graphs.

The solar atmosphere is in the state of plasma. We will devote one of the upcoming
chapters do describe plasma, its characteristics, ongoing processes, and phenomena needed
to understand solar atmosphere accordingly. Furthermore, we will address the structure of
the Sun and its vital elements such as solar activity, eruptions, ongoing and past research,
and their respective consequences and outcomes.

We are severely limited in the information we can gather from solar atmospheres,
as they are only provided via electromagnetic waves and particle beams. Therefore we
are unable to gather sufficient data from the corona. We choose a different approach,
which is conducting Particle-In-Cell (PIC) simulations that are set to meet the conditions
of given solar plasma. Using PIC, we can calculate the evolution of the studied hot-cold
plasma transition region. To achieve accurate results, we have to correctly assume initial
conditions and run the simulation on a sufficient amount of processors. We will discuss
the matter in the later part of the work.

In the last part of the paper, we will interpret the data in various time evolution figures.
By the means of data analysis, we will comment on the occurring physical effects. Last
but not least, we will discuss the consequences and future possibilities of using the PIC
method.

– 1 –



Chapter 1

The Sun

1.1 The Sun and its Internal Structure

1.1.1 The Sun as a Star
The Sun is a star of the main sequence. It is a G2V star based on its spectral class. However,
it is the distance, with Sun being the closest star to the Earth, that makes it extraordinary
and vitally important for the existence of life on the Earth. Furthermore, it is a prime
candidate for the research and understanding of physical plasma and behavior of other
stellar objects in space. The base characteristics of the Sun are concluded in the Table 1.1.
The Sun, the same as the other stars, has a coherent shape of a sphere because it satisfies the
condition of hydrostatic equilibrium – the force caused by the gas pressure and radiation
pressure directed out of star is equal to the gravitational force directed to the center of
the star. From the chemical point of view, the Sun consists mainly of hydrogen (90 %),
hydrogen (8 %), and other elements (2 %) [6], such as oxygen, carbonium, potassium,
silicon, and others. The Sun consists of several layers (Figure 1.1), which we will discuss
further.

Age 4.5 ·109 years
Mass 2.0 ·1030 kg

Diameter 1.4 ·106 km
Gravitational acceleration 274 m · s−2

Escape velocity 618 m · s−1

Equatorial rotation period ≈ 26 days
Mean density 1.4 ·103 kg ·m−3

Radiant flux 3.8 ·1026 W
Effective surface temperature 5785 K

Table 1.1: Fundamental physical parameters of the Sun [7].
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1.1.2 The Core of the Sun
The core of the Sun is the source of thermonuclear reactions that release the vast majority
of Sun’s energy. Light cores of Hydrogen are being fused into the heavier core of Helium,
releasing energy (≈ 26.8 MeV) that is eventually radiated from the solar surface. The core
of the Sun takes up to a quarter of the star’s radius. Temperature of the core is ≈ 1.5 ·107

K. The estimated core pressure is 2.5 ·105 Pa, the mean density is 1.5 ·105 kg ·m−3.

1.1.3 Radiative Zone
In the distance up to around 0.68 of the solar radius, the region is called the radiative zone.
This zone is in radiative equilibrium, therefore the energy in this region is transferred by
thermal radiation. Equation of heat transfer is expressed as change of temperature T with
distance from core r

dT
dr

=− 3κρL
16T34σπr2

(1.1)

where κ denotes the absorption coefficient (also called opacity) of star’s material, σ is
the Stefan-Boltzmann constant, ρ is the density and L is luminosity. The temperature in
the radiative zone is expected to be in the range of 7 ·105 – 2 ·106 K. It is apparent from
Equation 1.1 that with increasing distance, the temperature is decreasing.

1.1.4 Tachocline
Tachocline, which existence was derived by the data provided via the SOHO probe, is layer
following the radiative zone in distance 0.68 – 0.72 of solar radius from the core. Most of
the information about this region are yet to be discovered. However, we do know that it is
the borderline zone between the radiative zone and the following convective zone. What
makes the role of the region significant, is that it is located in between two zones with
varying rotational velocities. Under the tachocline, the Sun rotates more-less as a solid

Figure 1.1: Structure of the Sun [40].
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object, the rotation over the tachocline is of differential character (Figure 1.2), therefore
the angular velocity is dependent on the distance from Sun’s core. It is also commonly
accepted that due to differential rotation, the region of tachocline generates magnetic fields
through so-called magnetohydrodynamic dynamo (we will discuss the matter in further
chapters).

1.1.5 Convective Zone
The convective zone follows the tachocline and ends nearly at the surface of the Sun. The
solar plasma in this region is no longer hot enough to support transferring energy through
radiation, consequently, the energy is transferred by convection, as the term for this region
suggests. The temperature at the top of most parts of the region decreases up to around
6000 K. We can describe the transfer of energy using the following equation:

dT
dr

=

(
1− 1

γ

)
T
p

dp
dr

. (1.2)

The left side of Equation 1.2 describes the temperature gradient, the right side stands for
the adiabatic gradient, therefore the decrease of gas temperature and pressure due to its
expansion. The pressure gradient on the right side is given by

dp
dr

=−G
M
r2 ρ, (1.3)

which is the equation for hydrodynamic stability of star where G is gravitational constant,
M is the mass of the star, r its radius and ρ is the mass density dependent on the radius.
We see, that the Equation 1.2 defines the same physical quantity as the Equation 1.1.
If the absolute value of temperature gradient of the Equation 1.1 exceeds one of the
Equation 1.2, the energy is transferred by convection. This inequality is commonly known

Figure 1.2: Dependency of angular velocity on the distance from core [41].
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as Schwarzchild’s criterion. It is worth mentioning that a small part of the energy is
transferred by conduction, but the impact is negligible, therefore we do not take it into
account.

1.2 Atmosphere of Sun

1.2.1 Photosphere
The photosphere is the lowest region of the solar atmosphere and also the directly ob-
servable surface of the Sun. Its temperature of ≈ 5800 K corresponds with the spectral
classification of the white color. The photosphere is also the source of many phenomena,
such as sunspots, granulation, and supergranulation. The granulation is the effect of en-
ergy transfer from lower layers of the Sun – the peaks of thermal streams coming from the
convective zone are the cause of the visible solar granulation. The newest, most detailed
view of solar granulation (Daniel K. Inouye Solar Telescope) is depicted in Figure 1.3.

1.2.2 Chromosphere
The chromosphere is the region of Sun’s atmosphere that follows the photosphere. It is not
observable directly by the human eye, however, it can be seen during the eclipse of Sun as
a red glow around the solar disc. The chromosphere consists of the so-called low chromo-
sphere, filled by neutral gas with a temperature of≈ 4200 K and high chromosphere filled
with fully ionized plasma with a temperature of ≈ 20000 K. It is estimated to be between
2000 up to 2500 km high. The dynamics of the chromosphere are therefore governed
by kinetic pressure. The most distinctive phenomena occurring in the chromosphere are
flocula fields and spicules, which are dynamic jets of hot plasma material that erupted
from lower regions. Spicules can be usually found around the edges of supergranulation

Figure 1.3: Solar granulation of the photosphere (2020) [42].
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formations, as seen in Figure 1.3, with a strong magnetic field. The process of spicule
formation is not satisfactorily described at this moment, however, they are suspected to be
the manifestation of magnetic flux tubes that transfer the plasma above the Sun’s surface
(Figure 1.4). At this time, it is essential to mention the plasma-β parameter that will be
explained in later Chapter 2.3.5. The plasma-β parameter of the chromosphere goes from
high to low values and subsequently, a plasma with kinetic collisions becomes nearly fully
collisionless plasma.

1.2.3 Transition Region
The very thin region dividing the chromosphere and solar corona is called transition region.
This region is where the relatively cold plasma of the upper chromosphere comes to contact
with the hot plasma of solar corona. Since we do not possess enough information about
this region, the simulations that we will discuss in further chapters aim to replicate the
environment to keep track of ongoing physical processes. The thing that strikes us most
about the transition region is the sudden increase in temperature. It has proven to be
difficult to correctly measure the layer’s thickness – it is estimated to be thick in order of
hundreds of kilometers. The process of steep temperature increase happens fully in this
region with temperature going from above stated ≈ 20000 K up to 1 – 2 MK.

The Transition Region and Coronal Explorer (TRACE) probe, launched in 1998,
provided a unique view of the solar outer atmosphere. TRACE observations point towards
a corona comprised of thin loops that are dynamic and continually evolve. These very thin
strings are heated for a certain time (ranging from some minutes to tens of minutes), after
which the heating ceases. Heating appears to occur mainly in the distance of 10 000 to 20
000 kilometers from the solar core [31].

Figure 1.4: Picture of chromosphere captured by the Hinode solar observatory. The image
reveals the filamentary nature of the plasma connecting regions of different magnetic
polarity. (2007) [43].
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The term loop is commonly used to describe bright coronal structures that are very long
and thin. These loops outline the coronal magnetic field, primarily due to heat conduction
and mass transport across the field being strongly suppressed. The loops contain flare-
related heat flows, in which the so-called thermal fronts are generated.

1.2.4 Corona
The solar corona is the topmost layer of the solar atmosphere. It is not delimited by a fixed
border as it extends into the solar wind. Its shape has a dynamic character as it is dependent
on solar activity. Corona is not observable during typical daytime, as it is outshined by
the core sunlight, though it can be observed during a solar eclipse (Figure 1.6). Eclipse
observations provided us with first attempts to estimate density models of corona and also
discovered the below stated coronal holes. In August 2018, the Parker Solar Probe was
launched by NASA. The goal of the probe is to come as close as 10 solar diameters and
trace how energy and heat move through the solar corona.

The average temperature of the corona is around 2 MK. However, the temperature is
not distributed homogeneously. The cold spots, so-called coronal holes that are dominated
by open magnetic field configurations, have a temperature lower than 1 MK. On the other
side of the temperature spectrum are the so-called active regions, where the temperature
gets as high as 6 MK.

The evolution of the plasma-β parameter is shown in Figure 1.5. In the graph, we see
that the transition region and inner corona region have plasma-β parameter < 1, followed
by outer corona, where the plasma-β parameter is > 1. This means that the local magnetic
field is very weak. This happens in the case of so-called magnetic cusps where thanks to the
high temperature the dynamics are governed by thermal kinetic pressure. As a result, the
flowing plasma can carry the plasma with its motion being perpendicular to the magnetic
field lines. If the plasma-β parameter is < 1, it is the magnetic pressure that governs the
coronal plasma dynamics – the plasma can only flow along the magnetic field lines.

The huge temperature gradient between the solar chromosphere and corona (in the
transition region) has not yet been satisfactorily described. Current theories apply the
means of the magnetic reconnection processes or heating by waves in the solar plasma.

– 7 –



Figure 1.5: Plasma-β parameter in the solar atmosphere assumed for two magnetic field
strengths of 100 and 2500 G. (Gary [14]).

Figure 1.6: Image taken by the ESA–CESAR team at the total solar eclipse, La Silla
Observatory, 2 July 2019. It was made by combining multiple polarised images of the
solar corona during totality to bring out the details in its structure [44].
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1.3 Historical Observations of the Solar Corona
Most of the solar optical radiation is emitted by the photosphere. The optical emission
produced by Thomson scattering of the atmospherical regions above is in many orders
of magnitude less intense and subsequently visible only during the solar eclipse. The
first observations of solar corona date back to sources of ancient civilizations such as
Indians, Babylonians, and Chinese. Regular observations of solar eclipses started in 1842
when corona was observed by the likes of Airy, Arago, Baily, Littrow, and Struve. The
first photographs were taken in 1851 during the solar eclipse in Norway and Sweden by
Berkowski. The fact that solar corona contains helium was discovered by Janssen in 1868.
The very first coronograph was built at the Pic-du-Midi Observatory in 1930 which is an
instrument that covers the solar disc and thus allows the observation without the need for
a solar eclipse.

If we observe the Sun in wavelengths other than optical, such as soft of hard X-rays
or radio wavelengths, the photosphere becomes invisible and corona produces the most
intense emission. A breakthrough in coronal observations, therefore, came with the start
of the space era in the 1950s. This enabled the observations in the above-mentioned
wavelength regimes. As the details of the observations exceed the idea of this work,
we will not discuss them further. The timeline of observing instruments is displayed in
Figure 1.7.

Figure 1.7: Timeline of the operational periods of instruments and space missions that
provided unique observations of solar corona distinguished by different wavelength obser-
vations [5].

1.4 Coronal Heating Phenomena
As we stated many times, the process of coronal heating is one of many unsolved phe-
nomena occurring in the solar atmosphere. In principle, it is suspected to be caused by
two mechanisms: the energy release caused by the reconnection of the magnetic field and
heating via magnetoacoustic waves.
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1.4.1 Magnetic Field Reconnection
The boundary conditions of solar corona have a dynamic character. The solar dynamo in
the internal regions of Sun generates magnetic flux at the bottom of the tachocline, which
rises by buoyancy and emerges through the photosphere into the corona. The dynamic
conditions are further supported by differential rotation of the star (this wraps up the
coronal field with every rotation) and the fact that the connectivity to the interplanetary
field is constantly broken up to avoid excessive magnetic stress. These conditions are the
fundamental reason behind the adjustments made by the coronal field, which are called the
magnetic reconnection processes. As this phenomenon is not trivial and its full explanation
is beyond the objectives of this work, we will not address it in detail.

The reconnection process may occur in areas where two separate magnetic fields with
antiparallel field lines get near each other. The value of the magnetic field is low in
this region. In the location of their closest contact, the diffusion region is created. The
field configuration is changed in the diffusion region (the process of reconnection) into
a field configuration that is energetically more efficient. During the process, enormous
electric currents can flow through the region. This heats the surrounding plasma which
subsequently transfers the heat further into the solar corona. The magnetic reconnection
not only operates locally in flares, but it also organizes the global corona by restructuring
its field. However, only steady 2D reconnection models can be formulated analytically,
which provide basic relations for inflow speed, outflow speed, and reconnection rate, but
they only represent oversimplifications for observed solar flares. There are 2 commonly
used models of magnetic field reconnection – Sweet – Parker and Petschek model (Figure
1.8). The Sweet–Parker model (Sweet [2]) considers the diffusion region as a long thin
sheet. The field equations (fully included in [1]) result in half of the inflowing magnetic
energy being converted to kinetic energy, while the remaining half is converted to thermal
energy. This means that the reconnection generates hot fast streams of plasma. In the
Petschek model (Petschek [3]), most of the energy conversion is situated into the standing
slow-mode shocks. These shocks accelerate and heat the surrounding plasma, resulting in
2/5 of inflowing magnetic energy being converted to thermal energy and the remaining 3/5
being converted to kinetic energy. Consequently, these shocks could be the way of heating
the corona by transforming the energy of a strong electromagnetic field below the corona
region into the thermal and kinetic energy of the particles in the corona.

1.4.2 Magnetoacoustic Waves
Another very influential process that contributes to the heating of solar corona is due to
magnetoacoustic waves. However, the wave propagation is not as trivial, as the plasma
environment has anisotropic character thanks to the present magnetic field. The magnetoa-
coustic wave in the plasma is not propagated in a single spherical equiphase wave surface
(the case of waves spread in air environment), instead they are propagated in 3 equiphase
surfaces: fast magnetoacoustic waves, slow magnetoacoustic waves, and Alfvén waves.
Recent studies show that it could be the Alfvén waves process that mainly contributes to
the phenomena of coronal heating (De Pontieu [8], Tomczyk [9]). These waves are capable
of transferring energy to upper regions of the solar atmosphere along the magnetic field
lines. These waves transfer the energy from lower solar regions into higher regions, where
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Figure 1.8: The geometry of the Sweet – Parker (top) and Petschek (bottom) reconnection
model. The shape of the diffusion region is a long thin sheet (∆ >> δ ) in the case of
Sweet – Parker model, it is much more compact (∆ ≈ δ ) in Petschek model, which also
considers slow mode MHD shocks in the outflow region [5].

they collapse and transfer their energy to the surrounding plasma environment. Alfvén
waves were observed for the first time in 2008 by the SOT instrument on the HINODE
probe.
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Chapter 2

Physics of Plasma

2.1 Concept of Plasma
Only 4 % of the mass in the universe consists of observable baryonic mass. However, it is
commonly stated in the literature that 99 % of the universe is in the state of plasma [10].
The most common objects consisting of plasma are stars, nebulae and comet tails, but also
the solar and stellar winds, interplanetary and intergalactic space. The state of plasma is
naturally found on the Earth only in rare cases, such as lightning or flames.

In order to achieve the physical state of plasma, several conditions have to be met. A
plasma is a partially or fully ionized gas with macroscopic electrical neutrality, consisting
only of electrons, ions and neutral atoms. The aspect of plasma can be expressed by the
following conditions (for the electron-proton plasma) [1]:

a) The mean force of near interactions is very low compared to distant collective
interaction of particles

〈Fnear〉 � 〈Fdistant〉,

b) the number of particles in the so-called Debye sphere is large

1
nλ3

D
� 1,

where n denotes the particle density and λD is the Debye length,

c) the thermal kinetic energy is KE is much greater than potential energy PE

KE� PE,
3
2

kBT � e2

4πε0λD
,

where kB is the Boltzmann constant, T is the plasma temperature, e is the elementary
charge and ε0 is permittivity of vacuum.

The combination of the above-mentioned conditions means that plasma is a sufficiently
diluted and hot gas with a characteristic length of the plasma system being much greater
than the Debye length.
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2.2 Classification and Attributes of Plasma

2.2.1 Types of Plasmas
There are various types of plasmas in the universe, ranging from very high density inside
a white dwarf stars (n ∼ 1036 m−3) to a very low density plasma in interstellar space
(n ∼ 106 m−3). The various types of plasmas are displayed in Figure 2.1 as a function
of temperature and density. In the very high temperature state (relativistic plasma), the
plasma must be treated relativistically, whereas high-density plasma must be treated as a
quantum-mechanical degenerate Fermi gas (degenarate plasma). The rest of the plasmas
are divided into either classical plasma or neutral gas depending on whether the b) plasma
condition is satisfied. The various parameters of certain types of plasma are shown in
Table 2.1.

Figure 2.1: Types of plasmas in a logarithmic temperature-density parameter space [10].

n [m−1] Te [eV] λD [m] nλ3
D description

106 1 7.4 4 ·108 Interstellar gas
1012 102 7.4 ·10−2 4 ·108 Solar corona
1018 102 7.4 ·10−5 4 ·105 Hot plasma
1019 103 7.4 ·10−5 4 ·106 Hot plasma
1020 104 7.4 ·10−5 4 ·107 Thermonuclear plasma
1026 104 7.4 ·10−8 4 ·104 Laser plasma

Table 2.1: Density, temperature, Debye length, and plasma parameter of selected plasma
types [10].
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2.2.2 Debye Shielding
It is well known that Coulomb potential is of long-range character in the sense that it
extends over an infinite distance in vacuum or unpolarized medium. However, in plasma,
the charge of any charged particle induces an electric polarization because it attracts/repels
the opposite/same sign charge. This polarization change tends to cancel the charge of the
particle and subsequently restricts the effect of its electric potential to the finite range. This
range is characterized by the above mentioned Debye length of λD. The restriction of the
effective range of the electric potential is called Debye shielding [10]. Debye length is
defined as

λD ≡

√(
ε0kBT
nee2

)
, (2.1)

where ne denotes the electron density. As we see from the Equation 2.1, Debye length has
the dimension of length [m].

2.2.3 Plasma Oscillations
Let us consider a spatially uniform plasma that is free from magnetic fields. We also assume
that an electron density perturbation is produced and it is dependant only on coordinate x
and time t. Such a perturbation is therefore made by a displacement in the x-the direction
of the electron flow relative to the ion flow. As a result, the electric field is produced and
acts to bring the electron fluid back to its original position. Because of the electron inertia,
the electron fluid passes the original position and must reverse itself once again. These
oscillations are called the electron plasma frequency and are a function of the electron
mass.

The only force that is applied to the electron fluid is electrostatic force F which can be
written as

F =−eE =−ne2

ε0
x (2.2)

where E the intensity of the electric field. By substituting the relation for force F = me
d2x
dt2

into the equation, we get the equation of harmonic oscillator

me
d2x
dt2 +

ne2

ε0
x = 0. (2.3)

Knowing the solution of this equation, analogically the plasma frequency ωpe is

ωpe =

√
ne2

meε0
. (2.4)

It is one of the most important parameters of plasma widely used in plasma diagnostics.
Important outcome is that in a scenario, in which we let wave with a certain frequency pass
through plasma environment, in order to pass through it, its frequency must higher than
the plasma frequency ω > ωpe otherwise it would be blocked. This fact lets us measure
the plasma density n.
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From equation (2.4) we can see, that plasma frequency depends solely on the concen-
tration of electrons n, therefore by using the mass of the proton mi instead of the electron
mass, we get the ion plasma frequency (frequency of the ion acoustic wave)

ωpi =

√
ne2

miε0
. (2.5)

2.2.4 Cyclotron Motion
Let us consider a charged particle in the case of no eletric field, therefore E = 0. The only
force acting on particle is perpendicular to the electric field, the Lorentz force, therefore it
does no work on the particle. This means that the perpendicular component of the kinetic
energy is conserved,

1
2

mv2
‖ = const., (2.6)

where v = |v|. If the magnetic field is uniform (∇B =
←→
0 ), then the acceleration parallel to

the magnetic field vanishes,
v‖ = const., (2.7)

where v‖ = b ·v with b is the unit vector along B; b = B/B. Along the magnetic field, the
particle moves at constant speed. Combining the Equations 2.6 and 2.7, we get that the
perpendicular particle motion is also conserved:

1
2

v2
⊥ = const., (2.8)

where v⊥ =
√

v2− v2
‖. Subsequently, the particle undergoes a circular motion at a constant

speed v⊥ around the magnetic field lines. This motion is called the cyclotron motion, or
gyration. Its angular frequency denoted as ωc is given as

ωc =
|q|B
m

(2.9)

and is called the cyclotron, gyrocyclotron or Larmor frequency. The radius of the cyclotron
motion is called the Larmor radius ρL and is given by

ρL =
v⊥
ωc

. (2.10)

The direction of the cyclotron motion depends on the charge of the particle, as shown on
Figure 2.2.

2.3 Equations Describing Plasma Phenomena
Descriptions above were focused on the individual behavior of a particle in plasma.
However, we cannot describe whole plasma with this approach, as plasma is a system
of an enormous amount of particles that cannot be tracked individually, therefore the
statistical approach is used for its description.
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Figure 2.2: Direction of cyclotron motion for an electron and ion [10].

2.3.1 Kinetic Description
The kinetic description treats the plasma as a phase space continuum. In general, the
plasma can be described as N-particle distribution function fN(z1,z2,z3, ...,zN , t), where
z1 = (r1,p1), z2 = (r2,p2), ..., and where r and p are the mean values of corresponding
particle position and velocity. Due to Liouville theorem, the function fN fulfills the
continuity equation in the 6N dimensional space

∂ fN

∂ t
+

N

∑
l=1

∂

∂ zl
(żl fN) = 0, (2.11)

where żl is the time derivative of zl . Using the Hamiltonian equations

ṙl =
∂H
∂pl

, (2.12)

ṗl =−
∂H
∂rl

, (2.13)

where H is the Hamiltonian of the plasma, we can write

∂ fN

∂ t
+[ fN ,H] = 0, (2.14)

where [ fN ,H] is the Poisson bracket. Furthermore, the Equation 2.14 can be transformed
into a chain of equations by integration over part of the variables. This process is quite
difficult and can be found in the book of Achiezer et al. (1974). Subsequently, the plasma
can be described by distribution function f (r,v, t). The distribution gives the number of
particles that are present in a unit volume of the 6-dimensional phase space defined by
spatial coordinate r and velocity coordinate v = p/m (non-relativistic case). This means
that the distribution function is the solution of the so called Boltzmann equation

∂ f (r,v, t)
∂ t

+v · ∂ f (r,v, t)
∂r

+
F
m
· ∂ f (r,v, t)

∂v
=

(
∂ f (r,v, t)

∂ t

)
coll

(2.15)

where m is the mass of particle, F is the general Lorentz force in the form of

F≡ m
dv
dt

= q(E+v×B) (2.16)

where q is the charge of particle and E and B are the electric field and magnetic induction.
The term on the right side of the Equation 2.15 stands for the effects of particle collisions.
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Because plasma contains many types of particles (such as electrons, protons, ions, or
neutrons), the Boltzmann equation requires individual solution for every component of
the plasma system that will correctly adress the collisions between these components.
However, in order to perform many tasks in our simulations in effective time, some
approximations are made and we only solve the Boltzmann equation for electrons and
ions. Furthermore, when the collisional term is very low (example being if the plasma
frequency ωpe is much greater than the collision frequency νc), such plasma is called
collisionless and for its description the Vlasov equation is used

∂ f (r,v, t)
∂ t

+v · ∂ f (r,v, t)
∂r

+
F
m
· ∂ f (r,v, t)

∂v
= 0. (2.17)

Finally, for a full set of equations describing a plasma behavior we need the Maxwell
equations

∇×E =−∂B
∂ t

, ∇ ·E =
ρe

ε0
, (2.18)

∇×B = µ0

(
j+ε0

∂E
∂ t

)
, ∇ ·B = 0 (2.19)

where j is the electric current density and ρe is the charge density. These can be expressed
as

j = ∑
α

eα

∫
v fαd3v, (2.20)

ρe = ∑
α

eα

∫
fαd3v, (2.21)

where the index α corresponds to individual plasma components [1].

2.3.2 Magnetohydrodynamic Description
Many tasks in astronomical plasma are way too complex for the effective usage of the
kinetic model. In order to correctly describe the plasma, we do not really need to know the
distribution functions of plasma particles – in these cases, the knowledge of macroscopic
quantities, such as the mean plasma velocity or pressure, is sufficient. This allows us
to integrate the kinetic equations. Thus the equations with the macroscopic quantities
(called the magnetohydrodynamic equations, abbreviated as MHD) can be obtained as the
moments of the Boltzmann equation D f

Dt : ∫ [D f
Dt

]
d3v, (2.22)∫

mv
[

D f
Dt

]
d3v, (2.23)∫ 1

2
mv2
[

D f
Dt

]
d3v. (2.24)
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Integrating the first moment 2.22 yields us the mass conservation equation

Dρ

Dt
≡ ∂ρ

∂ t
+v ·∇ρ = 0, (2.25)

where the density is taken as ρ =
∫

f d3v. By integrating the second monent 2.23, we get
the momentum conservation equation

ρ
Dv
Dt

=−∇p+ j×B+∇ ·S+Fg, (2.26)

where p is the plasma pressure, j is the current density, B is the magnetic induction, S
is the viscous stress tensor and Fg is the gravitational force density. Integrating the third
moment 2.24 describes the internal energy conservation

ρ
dU
dt

+ p∇ ·v = ∇ · (κ ·∇T )+(ηe · j) · j+Qν −QT , (2.27)

where
U =

p
(γ−1)ρ

(2.28)

is the internal energy per unit mass, κ is the thermal conductivity tensor, T is the tem-
perature, Qν is the heating by viscous dissipation, κ is the polytropic coefficient and
QT = ρ2Q(T ) is the radiative energy loss, Q(T ) is a function describing the temperature
variation due to radiative loss in the optically thin approximation [1].

2.3.3 Collisional and Anomalous Resistivity
The electric conductivity of a plasma depends on the collisional resistivity ηe. More
frequent the collisions are, the higher the electric resistivity is. This can be expressed as

ηe =
meνei

nee2 , (2.29)

where νei is the electron-ion collision frequency and ne is the electron plasma density.
However, in many astrophysical cases the plasma is very hot and diluted, therefore the
collisions tend to be rare, which makes the value of collisional resistivity nearly zero.
Various types of plasma waves are generated due to occuring plasma instabilities of
collisionless plasma – some of these possess an electric field and can interact with electrons.
These electron-wave interactions are the cause of so called anomalous resistivity, which is
an analogy of the Equation 2.29 written as

ηe =
meνeff

nee2 , (2.30)

where νeff is the effective collision frequency. This value can be severely exceed the value
collisional resistivity [1].
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2.3.4 Induction Equation
By combining the Maxwell equations and using the vector formulas, the induction equation
is formulated:

∂B
∂ t

= ∇× (v×B)+η∇
2B (2.31)

where η = ηe/µ0 is the magnetic diffusivity. In order to get an appropriate approximation
of the equation, we define the so called Reynolds number that compares terms on the right
side of Equation 2.31

Rm =
∇× (v×B)

η∇2B
≈

v0B0
L0

ηB0
L2

0

=
L0v0

η
(2.32)

where v0 is the characteristic plasma velocity and L0 is the characteristic length scale. We
consider 2 extreme regimes of the induction equation. If the processes are characterized
by small plasma velocities (v0→ 0 =⇒ Rm→ 0), the induction equation has the form of
diffusion equation

∂B
∂ t

= η∇
2B. (2.33)

The other possibility is the case of colissionless plasma with η ≈ 0, i.e. for Rm� 1, then
the equation becomes

∂B
∂ t

= ∇× (v×B). (2.34)

This equation leads to the conservation of magnetic field flux as it moves with plasma – it
is widely called as the concept of frozen flux [1].

2.3.5 Plasma-β Parameter
It is defined as a ratio between t’he kinetic and magnetic pressure, written as [7]

β =
pkin

pmag
=

nkBT
B2

2µ0

=
2
γ

(
cs

cA

)2

(2.35)

where γ is adiabatic coefficient, cs is the sound speed and cA denotes the Alfvén’s speed
defined as

cA =
B
√

µ0ρ
. (2.36)

Another formulation of the plasma-β parameter is [5]

β =
2ξ nekBT

B2/8π
≈ 0.07ξ n9T6/B2

1, (2.37)

where ξ = 1 is the ionization fraction for the corona (it is 0.5 for the photosphere),
B1 = B/10 G is the magnetic field strength, n = ne/109 cm−3 is the electron density, and
T6 = T/106 K is the temperature. If the value of β > 1, the plasma dynamics of the chosen
environment are governed by thermal kinetic pressure, if β < 1, it is governed by magnetic
pressure.
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2.4 Double Layer Phenomena
Double layers were discovered by Langmuir (who called them ”double sheaths”) in the
1920s in his experiments with low-pressure discharges. Eventually, they were observed by
Tonks (1931), Schönhuber (1958), Crawdord and Freeston (1963). The double layer can be
described as two thin and close regions of opposite charge excess that give rise to a potential
drop, and therefore an electric field, across the layer. They were theoretically predicted
to exist in the cosmic environment by Alfvén [12], however, their proof of existence in
Earth’s Magnetosphere did not come until the devices on satellites made measurements
two decades later [13]. Understanding of the phenomena is a vital part in the case of our
later mentioned simulations, as we simulate two plasma regions divided by thin region.

2.4.1 General Description of Double Layers
Electrons and ions in plasma counterflow with velocities ve0 and vi0, respectively. As a
result of this counterflow, instabilities are set up within the current. The classic double
layer (further noted as DL) is therefore an electrostatic structure that is created within
the current with the ability to sustain a significant net potential difference. Its thickness
can be described in the Debye length scale and tends to be very small. The DL is not
neutrally charged as it must contain at least two layers of opposite net charge associated
with an internal electric field. The structure is displayed on Figure 2.3. Four populations
of particles are required to produce the space-charge distribution that is needed to sustain
the double layer potential. These are

• the current-carrying streaming electrons

• the current-carrying streaming ions

• trapped electrons on the downstream side of streaming electrons

• trapped ions on the downstream side of streaming ions.

Figure 2.3: Top: condition for the formation of a double layer. Bottom: A double
layer [13].

For a better understanding, Figure 2.4 displays the potential profile and the contribution of
the four-particle populations to the space-charge distribution to support the double layer
potential. Because of the acceleration of the streaming particles by the DL potential,
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Figure 2.4: A sketch of the double layer potential φ , the streaming and trapped particles,
the space charge due to each of the four particle populations, and the net space charge
required to support the double layer potential [13].

the density of streaming particles decreases on the downstream side – therefore, trapped
particles must be produced to maintain the overall charge neutrality.

In an astrophysical environment, electric currents tend to be aligned along the magnetic
fields, the internal electric field has a component that is parallel to the one of the magnetic
field. This means that the DL is the region where ideal magnetohydrodynamics break
down. This is because DL as a whole has no net charge and the surrounding plasma may
be perturbed by extended presheats matching the conditions at the edges of the DL to
those of undisturbed plasma. A fundamental property is that particles traversing the DL
are directly accelerated by the net potential difference φDL. Subsequently, the DL acts as
an electrical load that dissipates the energy at a rate IφDL (I is the total current passing
through the DL), which is transformed to the kinetic energy of accelerated particles.

2.4.2 One-Dimensional DL Model
For a sense of better understanding of the phenomena, it is important to first consider a
one-dimensional time-independent model with a high potential drop (Carlqvist [15]). The
setup of model is following: the layer is situated between the cathode boundary at x = 0
and the anode boundary at x = d; the potential is set to φ = 0 at x = 0 and φ = φDL at
x = d (shown on Figure 2.5). Electrons and ions are emitted with zero velocity from both
boundaries. Electrons and ions inside the DL are accelerated in opposite directions along
the magnetic field by the electric field. The equations describing the phenomena can be
found in [13]. The ratio of the current densities in DL is defined as

ji
je
=

(
φDL +2φe

φDL +2φi

)1/2

(2.38)
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Figure 2.5: Schematic of a one-dimensional DL model [13].

where ji and je are the respective current densities of ions and electrons with φi and φe being
their respective potentials. For the nonrelativistic DL (φDL� φe ≤ φi), the Equation 2.38
is reduced to (Carlqvist [16])

ji
je
≈ Z1/2

(
me

mi

)1/2

(2.39)

where Z denotes the ion charge and mi, me are the particle masses for ions and electrons
respectively. This equation is referred to as the Langmuir condition. For the relativistic
DL case (φDL� φi ≥ φe), the Equation 2.38 reduces to

ji
je
= 1− φi

φDL
+

φe

φDL
= 1. (2.40)

Figure 2.6: Potential drop φDL as a function of jd2 for double layers constisting of electrons
and protons, electrons and singly ionized iron ions, and electrons and dust grains of mass
mg = 10−20 kg and positive charge 102 e. The graph also shows the maximum potential
drop φDLm as a function of the current I0 for relativistic double layers [13].

The potential drop of the double layer is defined a function of the total current density
j = ji + je and the thickness of the layer d. For nonrelativistic double layers, numeric
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integration by Langmuir 1929 yields

φDL =

{
9

4ε0C2

(
me

2e

)1/2[
1+
(

Z
me

mi

)]−1

jd2
}2/3

(2.41)

where C2 is a constant having the value 1.865 (Raadu [17]). For relativistic double layers
the potential drop is defined as

φDL =

(
φ

4ε0c
jd2
)1/2

(2.42)

where c is the light velocity. As we see, the product of both the nonrelativistic and
relativistic double layers depends on the jd2. The potential drop φDL is shown as function
of jd2 on Figure 2.6.
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Chapter 3

Particle-In-Cell Code

There are two primary approaches to simulate a plasma system. The first approach
is represented by MHD models that describe the plasma as a fluid with its parameters
described by statistical properties. The second approach is focused around the kinetic
properties of plasma, this also includes our particle-in-cell (PIC) model. Plasma has been
studied using PIC codes since the 1950s [22]. The code we will use is one of the most
advanced PIC codes nowadays. It is called TRISTAN (TRI-dimensional STANford code).
As the name suggests, it is three-dimensional, but also fully electromagnetic and relativistic
code. It was developed by Buneman & Storey [23] for planet magnetosphere simulations
and eventually was published by Matsumoto & Omura [25].

3.1 Fundamentals of the PIC Method
The kinetic description of a plasma describes the system via electromagnetic fields and
particle distribution functions, as we described in the chapter before. The Equation 2.17
(Boltzmann equation) or Equation 2.26 (Vlasov equation) for the case of collisionless
plasma, they are the starting point of a plasma simulation model, in which the fields are
calculated using the Maxwell Equations 2.18 and 2.19. Kinetic effects on particles are
calculated using Equation 2.16. The fields interpolated on the grid and the particles are the
bottom line of the method – their solution is made as plasma superparticles in a four-part
established loop (Figure 3.1).

3.1.1 Mathematical Formulation of PIC
The PIC method can be understood as a representation of the distribution function of each
particle type by a superposition of moving elements that represent a cloud of physical par-
ticles. We refer to this cloud of particles as a superparticle. The mathematical formulation
of the PIC method is obtained by assuming that the distribution function of each types of
particle is given by superposition of superparticles:

fs(x,v, t) = ∑
p

fp(x,v, t). (3.1)

As we stated above, each element represents a large number of physical particles that
are near each other in the phase space. Therefore the choice of superparticles is made
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Figure 3.1: The computational steps of the general particle-cell-cell method [20].

to be physically meaningful (i.e. to represent a group of particles that are condensed
near each other) and also mathematically convenient (i.e. to allow the derivation of a
manageable set of equations) [18]. This is achieved by assigning a specific functional
form to each computational particle for its distribution. This functional form consists of
several free parameters whose time evolution will determine the numerical solution of the
Vlasov equation 2.26. In the standard PIC methods, the choice is made to have two free
parameters in the functional space for each spatial dimension.

3.1.2 Implementation of the Equations Using the Leap-Frog Algo-
rithm

The PIC method uses the so-called leap-frog algorithm. This algorithm is based on
staggering the time levels of the velocity and spatial position by half time step and cal-
culating the physical properties by the finite difference method: xp (t = n∆t) ≡ xn

p and

vp (t = [n+ 1/2]∆t) ≡ vn+1/2
p (index p denotes that we are adressing the respective

velocity and position of a particle). This describes the update of position from time level n
to time level n+1 using the velocity at the mid-point vn+1/2

p . Similarly, the update of the
velocity from time level n−1/2 to time level n+1/2 uses the mid-point position xn

p. The
leap-frog process is displayed on Figure 3.2. The electric field E and magnetic field B must
also be leap-frogged in time. For each spatial coordinate, this is given by the interpolation
of the adjacent cells for the electric field E with indexes (i′, j′,k′) in the same position as
the magnetic field B with the indexes (i, j,k) in Yee lattice [21]

ex(i, j,k) =
ex(i′−1, j′,k′)+ ex(i′, j′,k′)

2
, (3.2)

ey(i, j,k) =
ey(i′, j′−1,k′)+ ey(i′, j′,k′)

2
, (3.3)

ez(i, j,k) =
ez(i′, j′,k′−1)+ ez(i′, j′,k′)

2
. (3.4)

The same process applies to the calculation of the magnetic field B. We will discuss the
field and particle updates specifically in the TRISTAN section.
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Figure 3.2: Visual representation of the leap-frog algorithm [18].

3.1.3 Stability of the Simulation
Explicit PIC is subject to stability conditions. In case they are exceeded, the energy of the
simulation diverges, rendering the results meaningless.

• Stability of the particle mover; ωpe∆t < 2; This is derived from the leap-frog solu-
tion of the velocity of the particle. Exceeding this condition leads to exponentially
growing numerical frequency, which has no physical equivalence. The solution,
therefore, becomes unstable with the particles heating unboundedly and quickly.
Simulation usually fails within a few time steps.

• Stability due to explicit time differencing of the field equations; ∆t < ∆x/c; This
condition is called the Courant-Friedrich-Levy (CFL) condition [24]. The CFL
condition states that the time step must not exceed the time taken by the signal to
travel one cell. In the case of the Maxwell equations, the characteristic speed of the
signal is the speed of light c.

However, these are not the only conditions that ensure the stability of the simulation, i.e.
the finite grid instability. Addressing all of the conditions would exceed the idea of this
paper. They are explained in full detail in Hockney & Eastwood (1988).

3.2 TRISTAN

3.2.1 Field Update
In order to preserve the space-time symmetries, all finite-difference implementations of
differential operators in Equations 2.18 and 2.19 must be space- and time-centered [21].
Therefore, as mentioned in Chapter 3.1.2, B data must be leap-frogged over E data in time.
At this moment, the data is staggered in space. These calculations of averages are made
using the Equations 3.2, 3.3 and 3.4. TRISTAN uses model relative scales, in which ε0 = 1
and hence µ0 = 1/c2. This means that the model records E with components ex,ey,ez and
components bx,by,bz of cB. This makes the fundamental symmetry e←→ b of Maxwell
Equations. TRISTAN uses a rectangular cubic grid with coordinate units ∆x=∆y=∆z= 1
and time discretization ∆t = 1. The simulation value of c is usually 0.5.
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For a better sense of understanding the TRISTAN code solutions of Equations 2.18 and
2.19, the time change of magnetic field in one time step is [26]

bnew
x (i, j,k) = bold

x (i, j,k)

+ c∆t
[

ey(i, j,k+1)− ey(i, j,k)
∆z

− ez(i, j+1,k)+ ez(i, j,k)
∆y

]
, (3.5)

bnew
y (i, j,k) = bold

y (i, j,k)

+ c∆t
[

ez(i+1, j,k)− ez(i, j,k)
∆x

− ex(i, j,k+1)+ ex(i, j,k)
∆z

]
, (3.6)

bnew
z (i, j,k) = bold

z (i, j,k)

+ c∆t
[

ex(i, j+1,k)− ex(i, j,k)
∆y

−
ey(i+1, j,k)+ ey(i, j,k)

∆x

]
. (3.7)

For a better numerical stability of the code, the advance of the magnetic field is computed
in two sub-time steps ∆t = 1

2 . This is because B must be updated in two half steps so that
it is available at the same times as E for the particle update. The advance of the electric
field follows the half advances of the magnetic field in the form of

enew
x (i, j,k) = eold

x (i, j,k)

+ c∆t
[

by(i, j,k−1)−by(i, j,k)
∆z

− bz(i, j+−,k)+bz(i, j,k)
∆y

]
, (3.8)

enew
y (i, j,k) = eold

y (i, j,k)

+ c∆t
[

bz(i−1, j,k)−bz(i, j,k)
∆x

− bx(i, j,k−1)+bx(i, j,k)
∆z

]
, (3.9)

enew
z (i, j,k) = eold

z (i, j,k)

+ c∆t
[

bx(i, j−1,k)−bx(i, j,k)
∆y

−
by(i−1, j,k)+by(i, j,k)

∆x

]
. (3.10)

3.2.2 Particle Update
The time-centered, finite difference modified version of the Lorentz particle update is [19]

vnew−vold =
q∆t
m

[
E+

1
2
(vnew +vold)×B

]
(3.11)

rnext− rpresent = ∆tvnew. (3.12)

This way, the positions r are leap-frogged over velocities v. A three step procedure (Hock-
ney & Eastwood [27]), (Birdsall & Langdon [28]) is used for the calculation of the advance
of a particle:

1. The first half of an electric acceleration

v0 = vold +
qE∆t
2m

, (3.13)
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2. The magnetic rotation

v1 = v0 +2
v0×v0×b0

1+b2
0
×b0 (3.14)

3. The second half of the electric acceleration

vnew = v1 +
qE∆t
2m

. (3.15)

3.2.3 Current Decomposition
Throughout the code, linear interpolation is applied, so the fields interacting with the
particle at the position r are linearly weighted in a dependance on their distance δx,δy,δ z
from the closest grid point i, j,k, where

i = round(x), j = round(y), k = round(z),

are the rounded values and

δx = x− i, δy = y− j, ,δ z = z− k,

denote the volume weighted values that can be used in the expression of Fx,y,z. TRISTAN
does not employ a charge density array. Instead of that, it uses a direct particle current
decomposition into the electric field – this removes the cohesion between the particles and
enables the parallelization of the simulation. A charge conservation scheme was proposed
by Villasenor & Buneman [29]. The electric field is modified by the current J = ( jx, jy, jz)
of each particle

ex(i, j,k) = ex(i, j,k)− jx · cy · cz, (3.16)
ex(i, j+1,k) = ex(i, j+1,k)− jx ·δy · cz, (3.17)
ex(i, j,k+1) = ex(i, j,k+1)− jx · cy ·δ z, (3.18)

ex(i, j+1,k+1) = ex(i, j+1,k+1)− jx ·δy ·δ z, (3.19)

ey(i, j,k) = ey(i, j,k)− jy · cx · cz, (3.20)
ey(i, j+1,k) = ey(i, j+1,k)− jy ·δx · cz, (3.21)
ey(i, j,k+1) = ey(i, j,k+1)− jy · cx ·δ z, (3.22)

ey(i, j+1,k+1) = ey(i, j+1,k+1)− jy ·δx ·δ z, (3.23)

ez(i, j,k) = ez(i, j,k)− jz · cy · cx, (3.24)
ez(i, j+1,k) = ez(i, j+1,k)− jz ·δy · cx, (3.25)
ez(i, j,k+1) = ez(i, j,k+1)− jz · cy ·δx, (3.26)

ez(i, j+1,k+1) = ez(i, j+1,k+1)− jz ·δy ·δx, (3.27)

where
cx = 1−δx, cy = 1−δy, cz = 1−δ z. (3.28)
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3.2.4 Speed Limits
As we stated in Chapter 3.1.3, speed limits must be applied to maintain the stability of
the simulation. If a particle were to move through several cells in one time step, it would
miss available field information for each of these cells. With c set to 0.5, we ensure that
particles will not go through more than half a mesh cell per time step, so the particles do
not outrun the fields.

Discretizing the Maxwell equations leads to the imposition o the Courant-Friedrich-
Levy (CFL) condition. This condition has to be met whenever a hyperbolic equation is
discretized explicitly. It states that the time step cannot exceed the time taken by the
characteristic signal to travel through one grid cell.

3.2.5 Boundary Conditions
For the code to function properly, several boundary conditions for cells must be applied,
such as particle absorption at the boundary, periodicity, or reflection. Boundary conditions
have to be applied for particles, but also fields. We differentiate the boundaries between
the computing grids into two categories:

• Boundaries between the subgrids that belong to unique processors. These boundaries
are set in such a way that they effectively sew the neighboring subgrids together in
all three dimensions. For the sake of the continuity of the physical quantities, these
boundaries cannot be changed throughout the process of simulation.

• Outer boundaries of the whole computing domain – the code uses a periodic boundary
condition. These are implemented in a way that they match the studied physical
situation.

The boundary data must be sent between the processors. Each processor determines where
the data are sent. This is easier for the case of fields, as the data amount always stays the
same. In the case of particles, the size of the sending buffers of the particle is prone to
change.

Our model uses periodic boundary conditions in the y and z axis and mirror boundary
conditions it the x axis. To maintain the stability, all particles in the hot plasma region of
our model are removed if they exceed thermal velocity 5 times higher than that of cold
plasma.

3.2.6 Parallelization
The Tristan model code we used is parallelized in both the particles and the fields (imple-
mented by Benáček [20]). This allows the direct communication of multiple processors
throughout the process of simulation, subsequently greatly increasing the potential of using
the computational possibilities that are available. This was done using the MPI (Message
Passing Interference) communication. This technique is based on the principle that each
processor has its data memory domain right where it computes. The advantage is that
it can run on supercomputers or computer clusters and use an existing Ethernet network
special independent Infiniband.
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3.2.7 Model Workflow
The simulation model is implemented in the programming language Fortran 90/95. It
is divided into several files, from which the main part of model in the file model.f90,
file savedata.f90 resolves the calculation of various physical data we want to extract
and save on the disk, boundptl.f90 and boundfield.f90 adress the boundary condi-
tions, init.f90 is for the initial conditions and size.inc is for the computing array
configuration.

How the code functions is visually described in Figure 3.3. Firstly, the parameters

Figure 3.3: Visual representation of computational steps of the TRISTAN particle-in-cell
model [20].
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connected with the allocation of the particle and the field arrays are loaded in the processors.
Each processor allocates some subgrid of the corresponding fields and particles. The
number of processors in each of the simulated dimensions is specified in the configuration.
All of the processors maintain the grid size for the full computing duration. The number
of particles per processor is also given by configuration. The density is usually set to be
constant, however, due to the flow of the particles from one processor, it does change.

Right after the array loading, the MPI interface is initialized. MPI automatically assigns
the position in the grid of the model. This is determined by dependence on the MPI library
and the server MPI configuration. It is common for the processors to be assigned in a way
that the close subgrids are assigned to close processors to minimalize the communication
overhead between them.

When this is done, the physical parameters are loaded. From the independent parame-
ters (that are set as initial parameters), the other dependant parameters are computed. Then,
the fields are initialized. Usually, the initial electric field is set to be 0 and the magnetic
field is configured according to the physical situation of studied phenomena.

The model includes subroutines for saving fields and particles. These are saved using
the high-performance parallelized library Hierarchical Data Format in version 5 (HDF5),
which internally uses the MPI interface. The initial field and particle information are stored
before the start of the computation process.

The computing is a looped cycle that is incrementing the time until it equals the defined
amount of time steps. Each step consists of the computation itself and if defined the storing
of data on the disk. We can define the interval of data saving in the savedata.f90 file.

The computing algorithm is displayed in Figure 3.4. The first half advance of the
magnetic field is computed simultaneously with the magnetic field boundary conditions.
After that, the particles advance, the code computes the remaining part of the magnetic field
half advance and the boundary conditions for the particles. Following this, the particles are
being exchanged between the processors and the current decomposition into the electric
field is computed (this takes the longest in the computational step). Then, the electric field
boundary conditions are computed. This marks the completion of a single computational
step.

3.2.8 Improvements implemented in the Code
Several calculations of moments of distribution function for ions and electrons (s indicating
the respective particle) were implemented into the savedata.f90 file. This includes:

• implementation of computation for general vector and tensor fields

• implementation of computation of energy flux density, defined as

Qs(r, t) =
∫ 1

2
msv2v fs(r,v, t)d3v (3.29)

• implementation of computation of stress tensor, defined as

ss(r, t) =
∫

msvv fs(r,v, t)d3v (3.30)
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• implementation of computation of pressure tensor, defined as

ps(r, t) =
∫

mswsws fs(r,v, t)d3v, (3.31)

where ws is the relative velocity

ws ≡ v−Vs, (3.32)

with Vs being the flow velocity of respective particles. Equations are taken from [30].

Figure 3.4: Visual representation of a detailed computational step of the model [20].
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Chapter 4

Hot-Cold Plasma Transition

The problem of hot-cold plasma interaction is one of the most important problems. We
will focus on the physical phenomena occurring in the hot-cold region, the so-called
thermal fronts. The thermal front is described as an interface between the hot and cold
plasmas. The temperature transition of the thermal front is usually accompanied by density
transition. We will discuss its past research and compare it to our results. Its simulation
is the direct aim of this thesis. We conducted two simulation cycles: at first, we focused
on three simulations with different length of initial transition and observed its impact on
the development of physical quantities. Then, we conducted two simulations, one with
unequilibrated and one with equilibrated pressure conditions, and observed the differences
between these two models.

4.1 Thermal Fronts
It is commonly accepted that electrons are impulsively heated in certain regions of solar
flares due to magnetic field reconnection. The flares start mainly in the low corona region.
The expansion of erupting hot plasma into surrounding cold plasma leads to formation of
thermal fronts. This occurs along the magnetic field lines of the eruptive coronal loops.
Due to the narrowness and highly dynamic state of the hot-cold plasma transition, the
processes that lead to its formation are not well understood. There is also a question
whether the solar transition region is not some kind of thermal front or cascade of thermal
fronts [33].

4.2 Previous Theoretical Research
Paper Thermal Fronts in Solar Flares [32] is the focal point of our work, as we used a
similar TRISTAN code with some improvements. The paper studied the formation of a
thermal front during the expansion of hot plasma into a colder plasma that occurs in some
localized regions of the flare loop.

The numerical model used for this research is configured with the grid size of Lx = 8∆,
Ly = 8∆, Lz = 19000∆ (∆ indicates the grid size). It assumes a sufficiently strong magnetic
field, therefore the energy transfer is considered only in the loop direction. The model
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initiates a spatially homogeneous electron-proton plasma with proton-electron mass ratio
of mp/me = 100. The value is chosen to accelerate the generation process of the ion-sound
waves. The initial number density for the particles is set 60 per grid cube for both electrons
and protons. The thermal velocity of electrons in the cold region is set to be vTec = 0.025c
(with c being the speed of light). This corresponds with temperature T = 1.85 MK. In
the hot plasma region (z = 0-3500∆), the thermal velocity is increased 10 times to a value
vTeh = 0.25c, corresponding with temperature of Th = 185 MK. The plasma frequency is
ωpe = 2π/tp = 0.05, where tp is configured plasma period. The time step of the simulation
is set to ∆t = 1. The magnetic field is oriented in the z-direction and its value corresponds
to the electron cyclotron frequency, ωce = 0.1ωpe. The electron Debye length in the hot
plasma region is λD = 2.5 ∆, in the cold plasma region, it is λD = 0.25 ∆. All of the above-
mentioned input parameters are set to close approximations of real physical circumstances
occurring in the thermal front. The length of the numerical system in the z-direction is 319
meters.

The temperature evolution of the simulation (Karlický [32]) is shown on Figure 4.1.
The thermal front with the largest temperature difference (the main thermal front) was
formed at ≈ 4400∆ within a time interval of ωpe = 1000 - 3500 (corresponding with 398
plasma periods). The detailed look at the front is shown in Figure 4.2. We see, that the
thermal front is spatially shifting towards the cold plasma region. The calculated velocity
in the numerical model is slightly smaller than the estimated ion-sound velocity. After
ωpet = 3500, the largest thermal front disappears due to the limited amount of thermal
energy in the region with the hot plasma. At this point, most of the energetic electrons
escaped from this region and they are further in front of the thermal front.

The results (further followed by [34–39] can be more-less generalized in the following
points:

• There are strong ion-sound waves and therefore also anomalous resistivity. They
are considered to be the cause of the anomalous resistivity.

• At the location of the thermal front plasma double-layer forms, which limits the
expansion of the hot plasma into the cold plasma region.

• Thermal fronts are located on the edge of plasma density depressions that are con-
nected with ion-sound waves propagating with a velocity comparable to the ion-
sound velocity.

• The thermal front in the simulation disappeared due to the limited number of particles
on the left side of the front. To observe further evolution of the thermal front, a more
extended numerical system is required.
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Figure 4.1: Ratio of the electron temperature T to that of the hot plasma Th along the
z-coordinate at three different states: ωpet = 0 (black solid line), ωpet = 2250 (red dashed
line), and the ωpet = 3500 (blue dashed line). The main thermal front is formed at
4400 ∆ [32].

Figure 4.2: Ratio of the electron thermal energy T to that of the hot plasma Th (upper
part) and plasma density (bottom part) along the z-coordinate at three different states:
ωpet = 1000 (black solid line), ωpet = 1500 (red dashed line), and the ωpet = 2000 (blue
dashed line). The main thermal front is formed at 4400 ∆ [32].
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4.3 Thermal Front Formation Simulations
As a core part of our work, we conducted 5 different simulations with different configuration
setups. We used modified TRISTAN code [20] including our implementations. The first
3 simulations were aimed to observe the thermal front formation with different transition
region setups, the latter two aimed to show the evolution for such systems with equilibrated
and unequilibrated pressure conditions. For our simulations, we used the computing
power of the department computer Crab and its 24 processors. The scale of our model is
Lx = 9216∆, Ly = Lz = 8∆.

The thermal velocity of cold electrons is set to vcold = 0.01297c, therefore we can
determine its temperature Tcold = v2

coldme/kB ≈ 1 MK. The corresponding Debye length
of cold electrons can also be determined as λD = vcold/ωpe ≈ 0.26∆. As the hot electrons
are set to have 10 times higher temperature, their temperature is Thot ≈ 10 MK, with
corresponding thermal velocity vhot = 0.041c and Debye length λD = 0.82∆. Using the
Equation 2.1 with characteristic density n = 1016 m−3, the estimate of Debye length for
cold plasma is λD = 0.07 cm. Consequently the grid length is ∆ = 0.27 cm long. The
simulated region of 9216∆ is estimated to be approximately 25 metres. Using the Equation
2.4, we estimate the plasma frequency of the system to be ωpe ≈ 5.65 ·109 s−1. The time
step of the simulation is configured to cover 0.025 of plasma period in each time step,
therefore the time step of our simulation is approximately ∆t = 0.028 ns. The simulation
of the system throughout 60 000 time steps, which is equivalent to 1500 plasma periods
covers approximately 1.67 µs. The simulations were configured in a way that the left
half of the grid consists of hot plasma and the right part consists of cold plasma with
temperature ratio Thot/Tcold = 10, divided by the initial transition (IT) of specified grid
length. We computed three separate simulations with the IT set up to be 0 ∆, 50 ∆, and
200 ∆ long respectively. Simulations were set up to simulate 80 000 time steps. The IT
was configured to be in an approximate middle of the grid, therefore it starts at x = 4600∆.
Independent parameters of the computed simulations are shown in Table 4.1.

The results of the simulations are shown in Figure 4.3. We interpreted the values as
ratios to hot electron temperature Th, hot electron kinetic energy EK,h and initial particle
density n0. We see that the thermal front forms in all of our simulations. The temperature
transition formed instantly in the simulation with IT = 0 ∆, in the simulation with the
IT length being 200∆, it started forming after around 500 plasma periods. The wider
the region is set up, the longer it takes for the temperature transitions to form (4.3a,b,c).
Similarities in the evolution of the temperature, electric field, and electron density are
apparent. A steep relative difference is created in the electric field (4.3d,e,f) and electron
density (4.3g,h,i) propagation that is spread into multiple thermal fronts the longer the IT
is. A very important result is that with a wider IT, fluctuations in temperature, electric field,
and electron density are increasing in number and decreasing in intensity. This suggests
that real physical phenomena consist of many thermal fronts instead of a single major
one. Our results correspond with previously done research by Karlický [32]. For more
precise results, one would need a system with more processors, allowing the configuration
of lower value ωpe and also enlarging the computational grid.
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parameter value

c 0.5
ε0 1

mi/me 1836
ωpe 0.025

ωce/ωpe 0.19
vcold 0.01297c

vhot/vcold
√

10
n 100

nhot/ncold 1
plasma-β parameter (cold) 3.03 ·10−2

Initial transition [∆] 0, 50, 200

Table 4.1: Independent parameters of thermal front formation model with three different
lengths of transition region.

Model 1 Model 2
parameter value

c 0.5 0.5
ε0 1 1

mi/me 100 100
ωpe 0.025 0.025

ωce/ωpe 0.10 0.10
vcold 0.01297c 0.01297c

vhot/vcold
√

10
√

10
n 10 100

nhot/ncold 1 0.1
plasma-β parameter (cold) 8.41 ·10−3 8.41 ·10−3

Initial transition [∆] 20 20

Table 4.2: Independent parameters of computed models with unequilibrated pressure
(Model 1) and equilibrated pressure (Model 2).
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Figure 4.3: Time development of models with different initial transition length. Graphs
show the development in the region of x = 4500 - 4900 ∆ with the start of IT located at
x = 4600 ∆. Left column: Simulation with IT = 0 ∆. Middle column: Simulation with
IT = 50 ∆. Right column: Simulation with IT = 200 ∆. a)-b)-c) Time evolution of electron
temperature as ratio to hot electron temperature T/Th. d)-e)-f) Time evolution of electric
field energy as a ratio to hot electron thermal energy EE/EK,h. g)-h)-i) Time development
of electron density as a ratio to the initial grid density ne/n0.
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4.4 Unequilibrated and Equilibrated Pressure Models
We simulated two separate simulations marked as Model 1 and Model 2. Model 1 was
configured in a way that resembles plasma with unequilibrated pressure. Model 2 was
configured to demonstrate plasma with equilibrated pressure. This was achieved by setting
the hot plasma region to have lower particle density than the cold plasma region. The
differences in initial configuration are shown in Table 4.2. They differ in particle density
per grid n, where we chose a smaller number for Model 1 to make the simulation run
faster. What mattered the most and what ensured the difference in pressure equilibrium
was the setting of density ratios for hot and cold particles nhot/ncold. The ratio is set to
1 in Model 1 and 0.1 in Model 2. The mass ratio of ions and electrons mi/me is set to
100 to accelerate the effects. This also results in lower ion velocities. The temperature
of hot/cold ions is the same as the temperature of hot/cold electrons. We interpreted the
results of both simulations in time evolution graphs with Model 1 and Model 2 side by
side. Graphs are interpreted in a way, that the initial transition is located at x = 0∆.

The time evolution of the electron temperature is shown on Figure 4.4a,b. Thermal
front formed in the near of the initial transition in Model 1. The temperature gradient in
Model 2 is much sharper with hot plasma getting colder due to having 10 times lower
density than that of cold plasma. The equilibrated pressure state supports the formation of
multiple temperature transitions in the hot plasma region.

The time evolution of electric field is shown on Figure 4.4c,d. The locations of electric
field fluctuations are identical with the locations of formed thermal fronts, as can be also
seen in the results of previous simulation 4.3a,b,c. The evolution of the electric field in
Model 1 had its fluctuations centered mainly around the border of hot and cold plasma. On
the other hand, electric field fluctuations of Model 2 are located in the hot plasma region
with their intensity being higher than that of Model 1.

The time development of electron density is displayed in Figure 4.4e,f. This mainly
shows the difference in the initial configuration of the models. In Model 1, density
decreases are maintained throughout the course of simulation in the thermal front regions.
In Model 2 a sharp border between low and high density is kept.

A better view can be provided by looking at the profiles of temperature and particle
density of both models at ωpet = 1000 shown on Figure 4.5. The temperature profile of
temperature and density of Model 1 corresponds with the results of Karlický [32] displayed
in Figure 4.2. We see that in Model 2, a higher difference is kept between the temperature
and density of the hot and cold plasma region, maintaining a notable border. There is no
sharp density transition in Model 2, therefore we assume that the temparature transitions
seen in Figure 4.4b are caused by double layers.

Figure 4.6 provides a look at the time evolution of chosen components of moments
of distribution function discussed in Chapter 3.2.8. The computed tensors se (4.6a,b)
and pe have similar development in their diagonal components. For this reason, we will
only show the development in the x axis, the major axis of our simulations. The time
development of tensor components in Model 1 is more coherent than its counterparts in
Model 2. A better look is provided in Figure 4.6c,d that shows the difference of the xx-
component between the stress se tensor and pressure tensor pe. We can see that it is similar
to the temperature evolution of electrons, which corresponds with its physical description.
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Figure 4.6e,f shows the time evolution of the x-component of the energy flux density Qe.
We can see that a lot of energy flows at the beginning of the simulation in both models.
The general energy flow is higher in Model 1. Due to the equilibrated pressure of Model 2,
there is a notable energy flow at the beginning of simulation from the hot plasma region
traversing to the cold plasma region.
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Figure 4.4: Left column: Simulation with unequilibrated pressure (Model 1). Right
column: Simulation with equilibrated pressure (Model 2). a)-b): Time evolution of
electron temperature as ratio to hot electron temperature T/Th. c)-d) Time evolution
of electric field energy as a ratio to hot electron thermal energy EE/EK,h. e)-f) Time
development of electron density as a ratio to the initial grid density ne/n0.
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Figure 4.5: Solid lines: profile of electron temperature Te/Th in Model 1 and Model 2
at ωpet = 1000. Dashed lines: profile of the electron density ne/n0 in Model 1 and
Model 2 at ωpet = 1000. We can see that the thermal front forms at x≈−20∆ in Model 1
(unequilibrated pressure).
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Figure 4.6: Left column: Model 1. Right column: Model 2. a)-b) Time evolution of
the xx-component of the electron stress tensor normalized as a ratio to hot electron kinetic
energy se,xx/EK,h. c)-d) Time evolution of the difference between the xx-components of the
ion stress and pressure tensor normalized to hot electron kinetic energy (se,xx−pe,xx)/EK,h.
e)-f) Time evolution of x-component of energy flux density as a ratio to hot electron kinetic
energy Qe,x/EK,h.
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In a similar fashion to the case of electrons, we also created graphs showing the time
development of ion physical quantities. Figure 4.7a,b shows the time evolution of the ion
temperature. We can see that the pressure equilibrium of Model 2 supports a less sharp
temperature border between hot and cold plasma. In Model 1, the temperature transition
is moved towards the hot plasma due to the lower ion density of this region. Even though
the field is the same for both electrons and ions, we included its time evolution in Figure
4.7c,d to compare the symmetries and fluctuations with temperature and density time
development. The time evolution of ion density (4.7e,f) is the same as the case of electrons
in both Model 1 and Model 2. A more detailed view at temperature and particle density
is provided in Figure 4.8. The graph shows the profile of ion temperature and density for
both Model 1 and Model 2 at ωpet = 1000. We can see that the temperature profile of
both Model 1 and Model 2 differs at distribution towards the hot plasma region without
a transparent border between hot and cold plasma, more like a smooth transition towards
temperature equilibrium.

Figure 4.9 shows the time evolution of chosen components of moments of the distribu-
tion function for ions (discussed in Chapter 3.2.8). Time development of the xx-component
of stress si tensor is shown on 4.9a,b. There is a notable difference between both models.
In the case of Model 2, the higher tensor value is transitioning towards the cold plasma. A
better look is provided in Figure 4.9c,d, that displays the difference of the xx-component
between the stress si tensor and pressure tensor pi. We see that the equilibrated pressure
leads to development along the edges of the double layer. There is an interesting devel-
opmnent at ωpet = 200 that shows connection to the development of the below discussed
electric potential (Figure 4.10).

Figure 4.9e,f shows the time evolution of the x-component of the energy flux density Qi.
We see that the energy flux of ions is a lot lower than that of the electrons. The energy flux
density of Model 1 is much larger than that of Model 2, but also more symmetrical in its
spatial distribution due to not being in the state of pressure equilibrium.

Figure 4.10 shows the time development of electric potential as a ratio of electric
energy eΦ to the kinetic energy of hot electrons EK,h of both models. In Model 1, there
is a potential increase in the hot plasma region bordering the cold plasma region. This
behavior is mirrored in Model 2, where we can see a sharp potential fall at the location of the
hot-cold plasma border, forming a double layer potential. Better view at this phenomena
is provided with Figures 4.11 and 4.12 that show the spatial distribution of the electron
velocity overlaid with profile of electric potential at ωpet = 1000 for Model 1 and Model 2
respectively. The overlay of electric potential profile through these graphs yields us a
major result: At the location of the steep fall of electric potential, we see that the electrons
have higher density in the right of the potential fall in both models. We see that the velocity
is distributed more homogeneously in the unequilibrated pressure model with the potential
fall forming at the location of the formed thermal front. In the case of the equilibrated
pressure model, the decrease in electric potential is larger followed by very low potential
values in the cold plasma region. However, the profile of electric potential shows that the
location of its drop occurs at the location of distinct border in particle distribution. The
relative potential difference is similar for both models.

– 43 –



−200 −150 −100 −50 0 50 100 150 200
x [Δ]

0

200

400

600

800

1000

1200

1400
ω

pe
t

aΔ

−200 −150 −100 −50 0 50 100 150 200
x [Δ]

bΔ

0.0

0.2

0.4

0.6

0.8

1.0

T i
/T

h
−200 −150 −100 −50 0 50 100 150 200

x [Δ]

0

200

400

600

800

1000

1200

1400

ω
pe
t

cΔ

−200 −150 −100 −50 0 50 100 150 200
x [Δ]

dΔ

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

E E
/E

K,
h

−200 −150 −100 −50 0 50 100 150 200
x [Δ]

0

200

400

600

800

1000

1200

1400

ω
pe
t

eΔ

−200 −150 −100 −50 0 50 100 150 200
x [Δ]

fΔ

0.0

0.2

0.4

0.6

0.8

1.0

1.2

n i
/n

0

Figure 4.7: Left column: Simulation with unequilibrated pressure (Model 1). Right
column: Simulation with equilibrated pressure (Model 2). a)-b) Time evolution of ion
temperature as ratio to hot electron temperature T/Th. c)-d) Time evolution of electric
field energy as a ratio to hot electron thermal energy EE/EK,h. e)-f) Time development of
ion density as a ratio to the initial grid density ne/n0.
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Figure 4.9: Left column: Model 1. Right column: Model 2. a)-b) Time evolution of
the xx-component of the ion stress tensor normalized as a ratio to hot ion kinetic energy
si,xx/EK,h. c)-d) Time evolution of the difference between the xx-components of the ion
stress and pressure tensor normalized to hot ion kinetic energy (si,xx−pi,xx)/EK,h. e)-f)
Time evolution of x-component of energy flux density vector as a ratio to hot ion kinetic
energy Qi,x/EK,h (positive value indicates flow along the x axis, negative the opposite).
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Figure 4.10: Left: evolution of the electric potential Φ in Model 1. Right: evolution of
the electric potential Φ in the Model 2.
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Figure 4.11: Spatial distribution of electron velocity overlaid with profile of the electric
potential Φ at ωpet = 1000 in Model 1.
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Figure 4.12: Spatial distribution of electron velocity overlaid with profile of the electric
potential Φ at ωpet = 1000 in Model 2.
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Discussion and Future Insights

In our work, we aimed to simulate the hot-cold plasma transition with accurate physical
parameters as an application on the thermal front problem. We used a 1D approximation
that accurately simulates the effects along the magnetic field lines because the plasma-β
parameter ≈ 10−3 is low. We did not take the effects perpendicular to the magnetic field
lines and heating processes into account. We also approximated the simulation region to
consist only of electron-proton plasma.

We simulated the simulations in two cycles. First, we computed three simulations and
observed the impact on the time development of the simulation with different configurations
of initial transition length. By interpreting the computed data (Figure 4.3), we observed
that the wider this region is, the longer it takes to form a notable temperature transition,
which is a sign of a thermal front. We also noticed that with increasing initial transition
length, stand-alone major fronts that formed with no initial transition tend to divide into
multiple, less intense ones. In the case of the electric field and density fluctuations, they
are fairly similar to the temperature development with their intensity being spread into
several, less intense fluctuations.

In the second simulation cycle, we conducted two simulations aiming to demonstrate
the impact of having unequilibrated and equilibrated pressure at the time of the simulation.
We noticed different temperature evolution of electrons and ions, affected by different mass
between them. The equilibrated pressure allows more turbulent electric field fluctuations
and creates a distinct particle border (double layer) between the plasmas with different
particle densities. However, the thermal fronts do not form in the equilibrated model,
as opposed in the unequilibrated model, which can be seen in Figures 4.5, 4.8 for both
the electrons and protons respectively. The stress and pressure tensors shown different
time development between the two models – in the unequilibrated model, most of its high
relative values are centered in the hot plasma, in the equilibrated one they were centered
in the cold plasma region due to higher density. Electron tensor difference development
(Figure 4.6c,d) shows similarities to the development of the electron temperature (Fig-
ure 4.4), matching its physical description. We then demonstrated the impact of the sharp
fall of electric potential at the hot-cold plasma border resulting in an increased number of
hot electrons at the cold plasma region, which yielded interesting results for the case of
equilibrated pressure (Figure 4.12). In the case of ions, we see a interesting tensor differ-
ence transition at ωpet ≈ 200 in the equilibrated model. At this time of the simulation, we
see that the double layer potential starts to form (Figure 4.10), which may be worthy of
further research by conducting larger scale simulations.
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During the time of this work, we implemented several improvements to code. They
include the storage for vector and tensor quantities, which allowed us to compute the
moments of the distribution function, namely stress tensor, pressure tensor, and energy
flux density vector.

Our simulations of the unequilibrated pressure model yielded similar results to the work
of Karlický [32], even though it is worth mentioning that our model was much less precise
in its size and time step as the mentioned work. To generate more accurate results, one
would need a lot more computing power and data storage, which we did not possess at the
moment of simulations computing. Future simulations could focus more on the pressure
instability aspect of the phenomena. Observed transition in the ion stress and pressure
tensor difference (Figure 4.9d) accompanied by the creation of double layer potential and
simulation with no electric field to measure the free electron expansion are also worth
further simulations. As our model simulated a very small region in a very small time frame
(25 meters and 1,67 µs), having more allocated resources can lead to a simulation of a
much larger size and time frame.
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Appendix

A showcase of the implementations made in TRISTAN code modified by Benáček [20].
Please note that full code is not enclosed, only examples of modified implementations,
namely the subroutines for writing computed parameters into datasets and computation of
parameters described in Chapter 3.2.8.
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SUBROUTINE WriteDataSetParallelVec(idrank,dimsfi,dims,plist_id,file_id,&
    dataname,offset,count,stride,block,data, mxx,myy,mzz)
    use hdf5
    INCLUDE 'mpif.h'
    integer :: mxx,myy,mzz
    integer error
    INTEGER :: idrank ! Dataset rank 
    INTEGER(HID_T) :: filespace, memspace
    INTEGER(HID_T) :: dset_id       ! Dataset identifier
    character(len=*) :: dataname

    INTEGER(HSIZE_T), DIMENSION(4) :: count, dimsfi ! All grid dimensions
    INTEGER(HSIZE_T), DIMENSION(4) :: offset, stride, block, dims
    INTEGER(HID_T) :: file_id, plist_id       ! File and plist identifier for HDF5

    REAL(4) :: data(3,mxx‐5,myy‐5,mzz‐5)

    ! Create the data space for the  dataset. 

    CALL h5screate_simple_f(idrank, dimsfi, filespace, error)
    CALL h5screate_simple_f(idrank, dims, memspace, error)

    ! Create chunked dataset.

    CALL h5pcreate_f(H5P_DATASET_CREATE_F, plist_id, error)

    ! For more stable
    CALL h5pset_chunk_f(plist_id, idrank, dimsfi, error) 

    ! Recommended by tutorial
    CALL h5pset_chunk_f(plist_id, idrank, dims, error)

    CALL h5dcreate_f(file_id, dataname, H5T_NATIVE_REAL, filespace, &
       dset_id, error, plist_id)

    CALL h5sclose_f(filespace, error)

    ! Each process defines dataset in memory and writes it to the hyperslab
    ! in the file. 

    ! Select hyperslab in the file.

    CALL h5dget_space_f(dset_id, filespace, error)
    CALL h5sselect_hyperslab_f (filespace, H5S_SELECT_SET_F, offset, count, error, 

      stride, block)

    ! Create property list for collective dataset write

    CALL h5pcreate_f(H5P_DATASET_XFER_F, plist_id, error) 
    CALL h5pset_dxpl_mpio_f(plist_id, H5FD_MPIO_COLLECTIVE_F, error)

    ! Write the dataset collectively. 

    CALL h5dwrite_f(dset_id, H5T_NATIVE_REAL, data, dimsfi, error, &
    file_space_id = filespace, mem_space_id = memspace, xfer_prp = plist_id)

    ! Close dataspaces.
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    CALL h5sclose_f(filespace, error)
    CALL h5sclose_f(memspace, error)

    ! Close the dataset.

    CALL h5dclose_f(dset_id, error)

END

SUBROUTINE WriteDataSetParallelTen(idrank,dimsfi,dims,plist_id,file_id,&
dataname,offset,count,stride,block,data, mxx,myy,mzz)
use hdf5
INCLUDE 'mpif.h'
integer :: mxx,myy,mzz
integer error
INTEGER :: idrank ! Dataset rank 
INTEGER(HID_T) :: filespace, memspace
INTEGER(HID_T) :: dset_id       ! Dataset identifier
character(len=*) :: dataname

INTEGER(HSIZE_T), DIMENSION(5) :: count, dimsfi ! All grid dimensions
INTEGER(HSIZE_T), DIMENSION(5) :: offset, stride, block, dims
INTEGER(HID_T) :: file_id, plist_id  ! File and plist identifier for HDF5
REAL(4) :: data(3,3,mxx‐5,myy‐5,mzz‐5)

! Create the data space for the  dataset. 

CALL h5screate_simple_f(idrank, dimsfi, filespace, error)
CALL h5screate_simple_f(idrank, dims, memspace, error)

! Create chunked dataset.

CALL h5pcreate_f(H5P_DATASET_CREATE_F, plist_id, error)

! For more stable

CALL h5pset_chunk_f(plist_id, idrank, dimsfi, error) 
CALL h5pset_chunk_f(plist_id, idrank, dims, error)

CALL h5dcreate_f(file_id, dataname, H5T_NATIVE_REAL, filespace, &
dset_id, error, plist_id)
CALL h5sclose_f(filespace, error)

! Each process defines dataset in memory and writes it to the hyperslab
! in the file. 

! Select hyperslab in the file.

CALL h5dget_space_f(dset_id, filespace, error)
CALL h5sselect_hyperslab_f (filespace, H5S_SELECT_SET_F, offset, count,&
error, stride, block)

! Create property list for collective dataset write

CALL h5pcreate_f(H5P_DATASET_XFER_F, plist_id, error) 
CALL h5pset_dxpl_mpio_f(plist_id, H5FD_MPIO_COLLECTIVE_F, error)
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! Write the dataset collectively. 

CALL h5dwrite_f(dset_id, H5T_NATIVE_REAL, data, dimsfi, error, &
file_space_id = filespace, mem_space_id = memspace, xfer_prp = plist_id)

! Close dataspaces.

CALL h5sclose_f(filespace, error)
CALL h5sclose_f(memspace, error)

! Close the dataset.

CALL h5dclose_f(dset_id, error)

END

subroutine write_parameters(x,y,z,u,v,w,ions,lecs,maxhalf, &
  cartd, rank, MPIposition, MPIdims, mxx, myy, mzz, nstep)

    ! Saves selected parameters along line in x direction into file "dataline".
    ! The direction is strictly along x.
    ! Saved paramters:
    ! ‐ particle density
    ! ‐ mean velocity
    ! ‐ temperature ‐ two types

    use hdf5
    use config, only: me,mi
    implicit none
    INCLUDE 'mpif.h'
    real(8), dimension(:) :: x,y,z, u,v,w
    integer :: ions, lecs, maxhalf
    integer :: MPIposition(3), MPIdims(3), mxx,myy,mzz, rank, cartd, nstep

    real(4), dimension(mxx‐5,myy‐5,mzz‐5) :: vele_x, vele_y, vele_z
    real(4), dimension(mxx‐5,myy‐5,mzz‐5) :: veli_x, veli_y, veli_z
    real(4), dimension(mxx‐5,myy‐5,mzz‐5) :: tempe, tempi
    integer, dimension(mxx‐5,myy‐5,mzz‐5) :: vele_num, veli_num, tempe_num, tempi_num
    real(4), dimension(3, mxx‐5,myy‐5,mzz‐5) :: vele, veli
    ! energy flux density, vector quadrates
    real(4), dimension(3, mxx‐5,myy‐5,mzz‐5) :: efe, efi 
    real(4) :: v2e, v2i
    real(4), dimension(3) :: we, wi
    real(8) :: v2
    integer :: x0,y0,z0, n, error
    integer :: count_rate, count_t1, count_t2
    real(4) :: count_delta
    ! stress and pressure tensor
    real(4), dimension(3,3,mxx‐5,myy‐5,mzz‐5) :: stresse, stressi, presse, pressi 

    INTEGER(HID_T) :: file_id, plist_id       ! File and plist identifier for HDF5
    INTEGER(HID_T) :: dspace_id     ! Dataspace identifier for HDF5
    INTEGER(HID_T) :: dset_id       ! Dataset identifier
    INTEGER(HSIZE_T), DIMENSION(3) :: dims ! Dataset dimensions (chunck dimension)
    INTEGER(HSIZE_T), DIMENSION(4) :: dimvec
    INTEGER(HSIZE_T), DIMENSION(5) :: dimten
    INTEGER(HSIZE_T), DIMENSION(3) :: count, dimsfi ! All grid dimensions
    INTEGER(HSIZE_T), DIMENSION(4) :: countvec, dimsfivec
    INTEGER(HSIZE_T), DIMENSION(5) :: countten, dimsfiten
    INTEGER(HSIZE_T), DIMENSION(3) :: offset, stride, block
    INTEGER(HSIZE_T), DIMENSION(4) :: offsetvec, stridevec, blockvec
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    INTEGER(HSIZE_T), DIMENSION(5) :: offsetten, strideten, blockten
    character(len=50) :: name
    INTEGER :: idrank = 3 ! Dataset rank 
    INTEGER :: idrankvec = 4
    INTEGER :: idrankten = 5

    CALL SYSTEM_CLOCK(count_rate=count_rate)
    CALL SYSTEM_CLOCK(count_t1)

    dims(1) = mxx‐5
    dims(2) = myy‐5
    dims(3) = mzz‐5

    dimvec(1) = 3
    dimvec(2) = mxx‐5
    dimvec(3) = myy‐5
    dimvec(4) = mzz‐5

    dimten(1) = 3
    dimten(2) = 3
    dimten(3) = mxx‐5
    dimten(4) = myy‐5
    dimten(5) = mzz‐5

    ! Ions
    veli_x = 0
    veli_y = 0
    veli_z = 0
    veli_num = 0
    do n=1,ions

x0 = int(x(n)‐2.) 
y0 = int(y(n)‐2.) 
z0 = int(z(n)‐2.) 
veli_x(x0,y0,z0) = veli_x(x0,y0,z0) + real(u(n),4)
veli_y(x0,y0,z0) = veli_y(x0,y0,z0) + real(v(n),4)
veli_z(x0,y0,z0) = veli_z(x0,y0,z0) + real(w(n),4)
veli(:,x0,y0,z0) = veli(:,x0,y0,z0) + real((/u(n),v(n),w(n)/),4)
veli_num(x0,y0,z0) = veli_num(x0,y0,z0) + 1

v2i = real(0.5*mi*(u(n)*u(n) + v(n)*v(n) + w(n)*w(n)),4)
efi(:,x0,y0,z0) = efi(:,x0,y0,z0) + real((/v2i*u(n),v2i*v(n),v2i*w(n)/),4)

stressi(1,1,x0,y0,z0) = stressi(1,1,x0,y0,z0) + mi*real(u(n)*u(n),4)
stressi(1,2,x0,y0,z0) = stressi(1,2,x0,y0,z0) + mi*real(u(n)*v(n),4) 
stressi(1,3,x0,y0,z0) = stressi(1,3,x0,y0,z0) + mi*real(u(n)*w(n),4)
stressi(2,1,x0,y0,z0) = stressi(2,1,x0,y0,z0) + mi*real(v(n)*u(n),4)
stressi(2,2,x0,y0,z0) = stressi(2,2,x0,y0,z0) + mi*real(v(n)*v(n),4)
stressi(2,3,x0,y0,z0) = stressi(2,3,x0,y0,z0) + mi*real(v(n)*w(n),4)
stressi(3,1,x0,y0,z0) = stressi(3,1,x0,y0,z0) + mi*real(w(n)*u(n),4)
stressi(3,2,x0,y0,z0) = stressi(3,2,x0,y0,z0) + mi*real(w(n)*v(n),4)
stressi(3,3,x0,y0,z0) = stressi(3,3,x0,y0,z0) + mi*real(w(n)*w(n),4) 

    end do
    where (veli_num.eq.0) veli_num = 1
    veli_x = veli_x / veli_num
    veli_y = veli_y / veli_num
    veli_z = veli_z / veli_num
    veli(1,:,:,:) = veli(1,:,:,:) / veli_num
    veli(2,:,:,:) = veli(2,:,:,:) / veli_num
    veli(3,:,:,:) = veli(3,:,:,:) / veli_num
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    ! Electrons
    vele_x = 0
    vele_y = 0
    vele_z = 0
    vele_num = 0
    do n=(maxhalf+1),(maxhalf+lecs)

x0 = int(x(n)‐2.) 
y0 = int(y(n)‐2.) 
z0 = int(z(n)‐2.) 
vele_x(x0,y0,z0) = vele_x(x0,y0,z0) + real(u(n),4)
vele_y(x0,y0,z0) = vele_y(x0,y0,z0) + real(v(n),4)
vele_z(x0,y0,z0) = vele_z(x0,y0,z0) + real(w(n),4)
vele(:,x0,y0,z0) = vele(:,x0,y0,z0) + real((/u(n),v(n),w(n)/),4)
vele_num(x0,y0,z0) = vele_num(x0,y0,z0) + 1
v2e = real(0.5*mi*(u(n)*u(n) + v(n)*v(n) + w(n)*w(n)),4)
efe(:,x0,y0,z0) = efe(:,x0,y0,z0) + real((/v2e*u(n),v2e*v(n),v2e*w(n)/),4)
stresse(1,1,x0,y0,z0) = stresse(1,1,x0,y0,z0) + me*real(u(n)*u(n),4)
stresse(1,2,x0,y0,z0) = stresse(1,2,x0,y0,z0) + me*real(u(n)*v(n),4) 
stresse(1,3,x0,y0,z0) = stresse(1,3,x0,y0,z0) + me*real(u(n)*w(n),4)
stresse(2,1,x0,y0,z0) = stresse(2,1,x0,y0,z0) + me*real(v(n)*u(n),4)
stresse(2,2,x0,y0,z0) = stresse(2,2,x0,y0,z0) + me*real(v(n)*v(n),4)
stresse(2,3,x0,y0,z0) = stresse(2,3,x0,y0,z0) + me*real(v(n)*w(n),4)
stresse(3,1,x0,y0,z0) = stresse(3,1,x0,y0,z0) + me*real(w(n)*u(n),4)
stresse(3,2,x0,y0,z0) = stresse(3,2,x0,y0,z0) + me*real(w(n)*v(n),4)
stresse(3,3,x0,y0,z0) = stresse(3,3,x0,y0,z0) + me*real(w(n)*w(n),4)

    end do
    where (vele_num.eq.0) vele_num = 1
    vele_x = vele_x / vele_num
    vele_y = vele_y / vele_num
    vele_z = vele_z / vele_num
    vele(1,:,:,:) = vele(1,:,:,:) / vele_num
    vele(2,:,:,:) = vele(2,:,:,:) / vele_num
    vele(3,:,:,:) = vele(3,:,:,:) / vele_num

    ! Ion temperature and pressure tensor
    tempi = 0
    tempi_num = 0
    do n=1,ions

x0 = int(x(n)‐2.) 
y0 = int(y(n)‐2.) 
z0 = int(z(n)‐2.) 
v2 = (u(n)‐veli_x(x0,y0,z0))**2 + (v(n)‐veli_y(x0,y0,z0))**2 + &

(w(n)‐veli_z(x0,y0,z0))**2
tempi(x0,y0,z0) = tempi(x0,y0,z0) + real(v2,4)
tempi_num(x0,y0,z0) = tempi_num(x0,y0,z0) + 1
wi(:) = real((/u(n),v(n),w(n)/) ‐ veli(:,x0,y0,z0),4)  
pressi(1,1,x0,y0,z0) = pressi(1,1,x0,y0,z0) + mi*real(wi(1)*wi(1),4)
pressi(1,2,x0,y0,z0) = pressi(1,2,x0,y0,z0) + mi*real(wi(1)*wi(2),4) 
pressi(1,3,x0,y0,z0) = pressi(1,3,x0,y0,z0) + mi*real(wi(1)*wi(3),4)
pressi(2,1,x0,y0,z0) = pressi(2,1,x0,y0,z0) + mi*real(wi(2)*wi(1),4)
pressi(2,2,x0,y0,z0) = pressi(2,2,x0,y0,z0) + mi*real(wi(2)*wi(2),4)
pressi(2,3,x0,y0,z0) = pressi(2,3,x0,y0,z0) + mi*real(wi(2)*wi(3),4)
pressi(3,1,x0,y0,z0) = pressi(3,1,x0,y0,z0) + mi*real(wi(3)*wi(1),4)
pressi(3,2,x0,y0,z0) = pressi(3,2,x0,y0,z0) + mi*real(wi(3)*wi(2),4)
pressi(3,3,x0,y0,z0) = pressi(3,3,x0,y0,z0) + mi*real(wi(3)*wi(3),4)

    end do
    where (tempi_num.eq.0) tempi_num = 1
    tempi = tempi / tempi_num * mi
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    ! Electron temperature and pressure tensor
    tempe = 0
    tempe_num = 0
    do n=(maxhalf+1),(maxhalf+lecs)

x0 = int(x(n)‐2.) 
y0 = int(y(n)‐2.) 
z0 = int(z(n)‐2.) 
v2 = (u(n)‐vele_x(x0,y0,z0))**2 + (v(n)‐vele_y(x0,y0,z0))**2 + &

(w(n)‐vele_z(x0,y0,z0))**2
tempe(x0,y0,z0) = tempe(x0,y0,z0) + real(v2,4)
tempe_num(x0,y0,z0) = tempe_num(x0,y0,z0) + 1
we(:) = real((/u(n),v(n),w(n)/) ‐ vele(:,x0,y0,z0),4)  
presse(1,1,x0,y0,z0) = presse(1,1,x0,y0,z0) + me*real(we(1)*we(1),4)
presse(1,2,x0,y0,z0) = presse(1,2,x0,y0,z0) + me*real(we(1)*we(2),4) 
presse(1,3,x0,y0,z0) = presse(1,3,x0,y0,z0) + me*real(we(1)*we(3),4)
presse(2,1,x0,y0,z0) = presse(2,1,x0,y0,z0) + me*real(we(2)*we(1),4)
presse(2,2,x0,y0,z0) = presse(2,2,x0,y0,z0) + me*real(we(2)*we(2),4)
presse(2,3,x0,y0,z0) = presse(2,3,x0,y0,z0) + me*real(we(2)*we(3),4)
presse(3,1,x0,y0,z0) = presse(3,1,x0,y0,z0) + me*real(we(3)*we(1),4)
presse(3,2,x0,y0,z0) = presse(3,2,x0,y0,z0) + me*real(we(3)*we(2),4)
presse(3,3,x0,y0,z0) = presse(3,3,x0,y0,z0) + me*real(we(3)*we(3),4)

    end do

dimsfi(1) = MPIdims(1) * dims(1)
dimsfi(2) = MPIdims(2) * dims(2)
dimsfi(3) = MPIdims(3) * dims(3)

dimsfivec(1) = 3
dimsfivec(2) = MPIdims(1) * dims(1)
dimsfivec(3) = MPIdims(2) * dims(2)
dimsfivec(4) = MPIdims(3) * dims(3)

dimsfiten(1) = 3
dimsfiten(2) = 3
dimsfiten(3) = MPIdims(1) * dims(1)
dimsfiten(4) = MPIdims(2) * dims(2)
dimsfiten(5) = MPIdims(3) * dims(3)

offset(1) = MPIposition(1) * dims(1)
offset(2) = MPIposition(2) * dims(2)
offset(3) = MPIposition(3) * dims(3)

offsetvec(1) = 0 
offsetvec(2) = MPIposition(1) * dims(1)
offsetvec(3) = MPIposition(2) * dims(2)
offsetvec(4) = MPIposition(3) * dims(3)

offsetten(1) = 0 
offsetten(2) = 0
offsetten(3) = MPIposition(1) * dims(1)
offsetten(4) = MPIposition(2) * dims(2)
offsetten(5) = MPIposition(3) * dims(3)

stride(1) = 1 
stride(2) = 1 
stride(3) = 1
stridevec(:) = 1
strideten(:) = 1
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count(1) =  1 
count(2) =  1 
count(3) =  1 
countvec(1) = 1
countvec(2) = 1
countvec(3) = 1
countvec(4) = 1
countten(:) = 1 

block(1) = dims(1)
block(2) = dims(2)
block(3) = dims(3)

blockvec(1) = dimvec(1)
blockvec(2) = dimvec(2)
blockvec(3) = dimvec(3)
blockvec(4) = dimvec(4)

blockten(1) = dimten(1)
blockten(2) = dimten(2)
blockten(3) = dimten(3)
blockten(4) = dimten(4)
blockten(5) = dimten(5)

CALL h5pcreate_f(H5P_FILE_ACCESS_F, plist_id, error)
CALL h5pset_fapl_mpio_f(plist_id, MPI_COMM_WORLD, MPI_INFO_NULL, error)

CALL h5fcreate_f(name, H5F_ACC_TRUNC_F, file_id, error,&
access_prp = plist_id)
CALL h5pclose_f(plist_id, error)

call WriteDataSetParallel(idrank,dimsfi,dims,plist_id,file_id,"dense",&
offset,count,stride,block,real(vele_num,4),mxx,myy,mzz)

call WriteDataSetParallel(idrank,dimsfi,dims,plist_id,file_id,"densi",&
offset,count,stride,block,real(veli_num,4),mxx,myy,mzz)

call WriteDataSetParallel(idrank,dimsfi,dims,plist_id,file_id,"velex",&
offset,count,stride,block,vele_x,mxx,myy,mzz)

call WriteDataSetParallel(idrank,dimsfi,dims,plist_id,file_id,"veley",&
offset,count,stride,block,vele_y,mxx,myy,mzz)

call WriteDataSetParallel(idrank,dimsfi,dims,plist_id,file_id,"velez",&
offset,count,stride,block,vele_z,mxx,myy,mzz)

call WriteDataSetParallelVec(idrankvec,dimsfivec,dimvec,plist_id,file_id,&
"vele",offsetvec,countvec,stridevec,blockvec,vele,mxx,myy,mzz)

call WriteDataSetParallelVec(idrankvec,dimsfivec,dimvec,plist_id,file_id,&
"efe",offsetvec,countvec,stridevec,blockvec,efe,mxx,myy,mzz)

call WriteDataSetParallelTen(idrankten,dimsfiten,dimten,plist_id,file_id,&
"stresse",offsetten,countten,strideten,blockten,stresse,mxx,myy,mzz)

call WriteDataSetParallelTen(idrankten,dimsfiten,dimten,plist_id,file_id,&
"presse",offsetten,countten,strideten,blockten,presse,mxx,myy,mzz)

call WriteDataSetParallelVec(idrankvec,dimsfivec,dimvec,plist_id,file_id,&
"veli",offsetvec,countvec,stridevec,blockvec,veli,mxx,myy,mzz)
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call WriteDataSetParallelVec(idrankvec,dimsfivec,dimvec,plist_id,file_id,&
"efi",offsetvec,countvec,stridevec,blockvec,efi,mxx,myy,mzz)

call WriteDataSetParallelTen(idrankten,dimsfiten,dimten,plist_id,file_id,&
"stressi",offsetten,countten,strideten,blockten,stressi,mxx,myy,mzz)

call WriteDataSetParallelTen(idrankten,dimsfiten,dimten,plist_id,file_id,&
"pressi",offsetten,countten,strideten,blockten,pressi,mxx,myy,mzz)

call WriteDataSetParallel(idrank,dimsfi,dims,plist_id,file_id,"tempe",&
offset,count,stride,block,tempe,mxx,myy,mzz)

call WriteDataSetParallel(idrank,dimsfi,dims,plist_id,file_id,"tempi",&
offset,count,stride,block,tempi,mxx,myy,mzz)

CALL h5pclose_f(plist_id, error)
CALL h5fclose_f(file_id, error)

if(rank.eq.0) then
call AddAttribute(name, (/"dense","densi","tempe","tempi","velex",&
"veley","velez","velix","veliy","veliz"/),MPIposition, time_step=nstep, 

rank=rank)
end if

     end if

    CALL SYSTEM_CLOCK(count_t2)
    count_delta = real(count_t2‐count_t1)
    WRITE(*,*) "Wall time for saving parameters:", count_delta/count_rate

end subroutine
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[33] M. Karlický, František Karlický, Hot-cold plasma transition region: collisionless
case, arXiv, September 2017.

[34] T. C. Li, J. F. Drake, M. Swisdak, Supression of energetic electron transport in flares
by double layers, Astrophysical Journal, 757, p. 20, 2012.

[35] T. C. Li, J. F. Drake, M. Swisdak, Coronal electron confinement by double layers,
Astrophysical Journal, 778, p. 144, 2013.

[36] T. C. Li, J. F. Drake, M. Swisdak, Dynamics of double layers, ion acceleration, and
heat flux suppression during solar flares, Astrophysical Journal, 793, p. 7, 2014.

[37] G. T. Roberg-Clark, J. F. Drake, M. Swisdak, C. S. Reynolds, Wave Generation and
Heat Flux Suppression in Astrophysical Plasma Systems, Astrophysical Journal, 867,
p. 154, 2018.

[38] J. Guo, The role of electrostatic waves in the formation of thermal front in solar
flares: 1-D PIC simulation, Physics of Plasmas, 26, 2019.

[39] J. Sun, X. Gao, Y. Ke, Q. Lu, X. Wang, S. Wang, Expansion of Solar Coronal Hot
Electrons in an Inhomogeneous Magnetic Field: 1D PIC Simulation, Astrophysical
Journal, 887, p. 96, 2019.

[40] ESA, ”Anatomy of our Sun”, ESA.int, ESA, October 2019 .

[41] NSF’s National Solar Observatory, ”Rotation Profiles”, Stanford.edu, Stanford,
March 2000.

[42] National Solar Observatory (NSO), AURA, NSF, ”NSF’s newest solar telescope
produces first images”, NSO.edu, NSO, January 2020.

[43] Hinode Solar Observatory, ”Another view of the Sun’s ’chromosphere’”, ESA.int,
ESA, March 2007.

[44] ESA–CESAR, ”Polarised solar corona during 2019 La Silla Total Solar Eclipse”,
ESO.org, ESO, July 2019.

[45] I. Tresman, Double Layer Formation Summary, based on: Singh, Nagendra; Thie-
mann, H.; Schunk, R. W., Electric Fields and Double Layers in Plasmas (1987),
NASA Conference Publication, 2006.

– 62 –




	Desky
	Titulní strana
	Bibliografický záznam
	Bibliographic Entry
	Abstrakt
	Abstract
	Oficiální zadání
	Poděkování
	Prohlášení
	Introduction
	The Sun
	The Sun and its Internal Structure
	The Sun as a Star
	The Core of the Sun
	Radiative Zone
	Tachocline
	Convective Zone

	Atmosphere of Sun
	Photosphere
	Chromosphere
	Transition Region
	Corona

	Historical Observations of the Solar Corona
	Coronal Heating Phenomena
	Magnetic Field Reconnection
	Magnetoacoustic Waves


	Physics of Plasma
	Concept of Plasma
	Classification and Attributes of Plasma
	Types of Plasmas
	Debye Shielding
	Plasma Oscillations
	Cyclotron Motion

	Equations Describing Plasma Phenomena
	Kinetic Description
	Magnetohydrodynamic Description
	Collisional and Anomalous Resistivity
	Induction Equation
	Plasma-Parameter

	Double Layer Phenomena
	General Description of Double Layers
	One-Dimensional DL Model


	Particle-In-Cell Code
	Fundamentals of the PIC Method
	Mathematical Formulation of PIC
	Implementation of the Equations Using the Leap-Frog Algorithm
	Stability of the Simulation

	TRISTAN
	Field Update
	Particle Update
	Current Decomposition
	Speed Limits
	Boundary Conditions
	Parallelization
	Model Workflow
	Improvements implemented in the Code


	Hot-Cold Plasma Transition
	Thermal Fronts
	Previous Theoretical Research
	Thermal Front Formation Simulations
	Unequilibrated and Equilibrated Pressure Models

	Discussion and Future Insights
	Appendix
	Bibliography

