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Abstrakt

Tato bakalářská práce se věnuje základním vlastnostem kulových hvězdokup a promě-
nných hvězd, které se v nich nacházejí. Z dat jsme zjistili, že kulové hvězdokupy mají
bimodální rozdělení s ohledem na metalicitu. Středy dvou populací odpovídají hodnotám
metalicit −1,48 a −0,49. Závislost věku na metalicitě nám ukázala lineární závislost
pro hvězdokupy v galaktickém halo, a také v galaktické výduti. Metalicita hala a výdutě
se liší o 0,86 dex, při stejném stáří, s tím, že kulové hvězdokupy v halo mají nižší met-
alicitu. U proměnných hvězd jsme se zaměřili na jejich typy, počty hvězd jednotlivých
typů ve hvězdokupách, na metalicitu a věk kulových hvězdokup jež obsahují dané typy.
Proměnné hvězdy v kulových hvězdokupách se nachází u všech hodnot metalicit. Nejvíce
RR Lyrae se nachází poblíž metalicity−1,4. U SX Phe je náznak, že jejich množství stoupá
k nižším metalicitám, zatímco u pomalých nepravidelných proměnných hvězd (L typ) tomu
je naopak. U hvězd typu RR Lyrae a SX Phoenicis se ukázaly lineární závislostí průměrné
periody na metalicitě, a také věku na metalicitě. U ostatních typů nebyly závislosti vždy
patrné.

Abstract

In this thesis, we study the basic properties of globular clusters and variable stars inside
them. We noticed, that the metallicity of clusters have bimodal distribution. The centers of
the two populations correspond to metallicity value of −1.48 a −0.49. The age-metallicity
relation shows linear dependencies for the globular clusters located in galactic halo and
for the galactic bulge. The globular clusters located in halo are more metal deficient of
0.86 dex than in the bulge at the same age. For variable stars, we focused on the occurence
rate of the variable types, the metallicity and age of the globular clusters. It was found
out that the variable stars in globular clusters are located in a whole range of metallicities.
The most variable stars of RR Lyrae type are located close to metallicity −1.4. There is
an indication for SX Phe (SXPHE) variables that their number increases to metal-deficient
clusters, while for slow irregular variable stars (L type) it is the other way around. RR Lyrae
and SX Phoenicis variables show linear dependencies for period-metallicity relation and
age-metallicity relation. The dependencies were not always apparent for the other types of
variable stars.
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Introduction

The first observed variable star was captured during the explosion of supernovae in the
constellation of Taurus. It was thought that this explosion was an atmospheric phenomenon
but Tycho Brahe (the 16th century) had a different opinion. Tycho Brahe recorded the
light curve of supernovae in the constellation of Cassiopeia and he thought that it was
astronomical phenomena occuring far in the sphere of stars. It was the first step to the
search for variable stars and it was found that there are more types of variable stars (e.g.,
pulsating, rotating, etc). Variable stars are a rich source of information, such as information
about radius, inner composition, mass, luminosity, and distances in the universe (Cepheids).
Some types of variable stars are also located in globular clusters.

The term “globular cluster” first appeared in the 18th century. Charles Messier and
Herschel were the first to mark an object as a globular cluster and thus, the research of
globular clusters began. Currently, 157 globular clusters are known in the Galaxy. Globular
clusters are often studied in astronomy because the stars inside them are of the same age
(they are very old), have the same chemical composition and are gravitationally bound.
Consequently, we can estimate the minimum age of the universe (from the oldest clusters),
the evolution of stars, and what the universe looked like at the time of its formation.

This thesis aims to compare and show correlations and dependences of variable stars
inside globular clusters but it does not replace detailed articles focused exclusively on a
few types of variable stars or several globular clusters. Rather, it opens the possibility for
further and deeper analysis of both globular clusters and variable stars.

The chapter Variable stars deals with variable stars in terms of methods of their
research or their classification and types. The second chapter focuses on globular cluster
(Globular clusters) and the variable stars inside them. The chapter Methodology and data
processing deals with sources of data and data processing, and the process of database
creation. Analysis was the next part of the thesis, where the correlations were investigated.
The last part sums up the thesis in Discussion and summary part.
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Variable stars

1.2 Definition
Variable stars are stars that change their brightness in time. Their brightness variations
range from micromagnitude to more than 10 magnitudes (Harrison & Campbell, 2018).
We can also observe a wide range of time variability, whose values are in the range from
10−4 seconds (Hessels et al., 2006) to millions or billions of years (the nuclear evolution
of stars).

Each star can be variable and depends only on the accuracy of the measurements,
technique, and the time scale, which we measured it with. As technology improves, we
can measure more accurately and discover more variable stars. The slowest changes in
variability are caused by nuclear evolution at the center of star and take about 106–109 years.
Astronomers who are interested in variable stars usually work with star variability, which
changes faster. It is not usual to deal with changes in the order of millions or billions of
years.

1.3 Brief history of the search for variable stars
One of the first observed variable stars was κ Cas by Tycho Brahe (1572). He constructed
the first light curve of a variable star ever. David Fabricius observed Omicron Ceti in 1596.
Fabricius noticed that the brightness of the observed star is changing and named it Mira
(strange). His discovery was followed by Ismael Boulliau who found out the periodicity
of Mira. He measured a period of 333 days. Now we know that he was very close to our
accepted value which corresponds to 332 days. In the 18th century, Edward Pigott and John
Goodricke assembled the first catalogue of variable stars that contained 12 items. These
included Nova Cas, Algol, Mira, β Lyrae, δ Cephei, χ Cygni, R Leo, Nova Vul, P Cygni,
Nova Oph, R Hya and η Aquilae. In 19th century, Friedrich Argelander devised a way
to estimate the brightness of variable star. He used relative comparison of a variable star
with star featuring comparable brightness, which were located in the immediate vicinity.
Some of the amateur astronomers still use this technique.

In the 19th and the 20th century, there was a breakthrough in astronomy. Photographic
plates and later CCD cameras (charged coupled device) were brought to the fore because
the human eye had become insufficient for observation and research. At the end of the
20th century, satellite observations, came forward. Thanks to satellite Hiparcos, 8000
(e3) , new variable stars were discovered. In the 21th century, mainly measurements from
satellites GAIA (e4), MOST (e5), Kepler (e6) are used for the photometric research of

– 2 –



variable stars. Variable stars are also examined by ground-based observatories, which
include ASAS, ROTSE, OGLE, and others (e30). The known variable stars including the
basic information of the stars are listed in the VSX database website aavso.org, where the
information is up-to-date (Watson et al., 2007).

1.4 Methods for variable stars research
We can ask ourselves, why we are interested in variable stars actually and why it is useful
to study them. First, something is going on inside them and/or around them. They are not
static objects. We can observe changes of brightness which have a wide range depending
on type of variable star.

For the research of variable stars, the light curve is very important. Light curve is the
dependence of the brightness on time. During one observation, we are not always able
to measure the whole brightness change cycle, therefore, we have to merge more parts
of light curves into phase-folded light curve. From these curves it is possible to estimate
physical properties of the stars such as the type of variable star, parameters of variability,
confirm or refute the period we have specified and get suspicion of another object. Thanks
to novae, supernovae, eclipsing binaries, pulsating variable stars, and others, it is possible
to determine distances in space.

The brightness of a variable star is usually measured by photometer, which is a device
able to detect light (photons). Photometers may contain several photometric system filters.
Using photometric filters, we can detect distribution of energy in spectrum that depends
on the surface temperature of the star. The most extended photometric system is Johnsons
photometric system (Johnson & Morgan, 1953), with filters defining the brightness in
colors: U (365 nm), V (550 nm), B (440 nm). Johnson photometric system was extended
by Cousins (Cousins, 1976). Cousin added filteres in color R (634.9 nm) and I (879.7 nm).
Many system exist such as Stromgren’s (Strömgren, 1956) and Sloan’s (Fukugita et al.,
1996).

Another method for variable star research is the spectroscopic method. It is one of the
oldest, most valuable and most important methods for examining an object. This method
can be used to determine whether a star is single or binary, what kind of star it is (dwarf,
giant, etc), whether it contains a strong magnetic field, etc. Three main types of spectra
are: continuous, absorption and emission, see Fig. 1.4.1. The continuous spectrum is
formed by all wavelengths from a certain range and arise in hot and dense substances.
The absorption spectrum arises when the continuous passing light is absorbed by colder
gasseous substance (atmosphere of stars, nebulae). The substance absorbs the light, due
to electrons move to higher energy levels. Electrons do not stay at this level for long
time. They are stransfered to a lower level and emit a photon of appropriate energy. This
is called emission and corresponding spectrum is called emission spectrum. The stellar
spectra are created in stellar photospheres and they are connected with absorption, emission
and continuous spectra. Absorption lines are formed when light arrives through the colder
photosphere and emission spectra dominates in chromosphere (e9) (e10).

The last observation technique I want to mention is polarimetry. This field is built on the
fact that the light is polarized. Light is electromagnetic wave described by electric intensity
~E and magnetic induction ~B. These vectors are perpendicular to the direction in which the
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waves are spread, while at the same time ~B is perpendicular to the ~E and vice versa. If
we limit the oscillation direction of vector ~E or ~B, we get polarized light. Polarized light
carries information about the nature of glowing object and arise in many cases by dispersion
(from the Sun or the Moon), reflection or refraction (interstellar medium). Polarimetric
measurements are useful for tight binary stars (determining inclinations towards Earth) or
chemically peculiar stars (Zeeman effect – splitting spectral line because of static magnetic
field). Polarimetric measurements are time-demanding. The reason is, that we need a long
exposure time (polarization is weak, thus it is necessary to have an efficient apparatus with
high transmittance) and the background can be contaminated by polluted light, zodiacal
light etc.

Figure 1.4.1: Continuous, absorption and emission spectra (e20).

1.5 Basic classification
Variable stars may be either intrinsic or extrinsic. Intrinsic variable stars are called
real/physical variable stars. Their variability of physical properties is caused by the stars
themselves. Luminosity of a star varies. There are three basic subgroups of intrinsic
variable stars: eruptive, pulsating and cataclysmic or explosive variables. Extrinsic variable
stars are stars whose luminosity does not change, only their brightness does. There are
two subgroups of extrinsic variable stars: rotating and eclipsing binaries. More detail
classification you can see in Fig. 1.5.1. In the next chapter we will describe the individual
types of variable stars in more detail.
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Figure 1.5.1: Variable star classification (e21).

1.5.1 Extrinsic variable stars
Rotating variable stars

As the stars rotate, we observe brightness variations. The radiation must deviate from
strictly axial symmetry. Rotating variable stars change their brightness because of surface
spots or/and fast rotation. Reason of fast rotation is, that the star is at the beginning of
its evolution (it is shrinking, trying to maintain its momentum). Another explanation is,
that the star is part of binary system. As a result of fast rotation, the star has a shape
of an ellipsoid (star is deformed) and that causes brightness variation. The size of the
surface, which is oriented towards the Earth, changes. Spots can be caused by strong
magnetic field. Stars of solar type and cooler stars contain cold spots in stellar parts with
strong local magnetic field. Chemical peculiar stars contain spots in areas with different
representation of elements. Spots have the same temperature as the surroundings but
different spectral composition. We have basic types of rotating variable stars. These are
Solar-type stars (main-sequence stars), FK Comae Berenices (cold giant stars), RS Canum
Venaticorum (binary stars), BY Draconis (main-sequence stars), Pulsars (collapsed stellar
cores of supergiants) and Chemically peculiar stars (main sequence stars).

Eclipsing binaries

Binary system represents two objects, orbiting the common center of mass. We observe
decreases in brightness on the light curve of binary system if the system is oriented
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properly. These decreases are caused by transition or occultation. Transition occurs when
the smaller star(object) passes in front of a larger star(object). The occultation is the
opposite phenomen.

If components of binary system are close enough, we can talk about close binary stars.
All points on an equipotential surface have the same potential. The result is that the work
done between two points on an equipotential surface is zero (e11). These surfaces we call
the Hill sphere for each component of close binary stars. If the object is homogeneous
these spheres are ball-shaped, otherwise the sphere is deformed. Hill sphere, which is
common for both stars is called a Roche lobe. A Roche lobe forms around binaries, which
determines the behavior of matter and objects inside. An object located in the Roche lobe
of a star is subject to and orbiting its gravitational field. The shape of Roche lobe depends
only on the ratio of masses. In the case where the star fills the Roche lobe, the material
begins to overflow to the second component through lagrangian point 1 (L1), Fig. 1.5.2.
If both lobes are filled, the material also escapes through L2and L3. We have Kopal´s
classification (Kopal, 1955) which divides binary stars according to the relation to the
Roche lobe. These are: detached, semi-detached and contact system. We have several
types of eclipsing binary variable stars divided by the shape of the light curve. These
are EA Algol (detached), EB beta Lyrae (semi-detached) and EW Ursae Majoris (contact)
1.5.3.

Figure 1.5.2: Roche Lobes and Langragian point L1 (Illingworth, Valerie. The Facts on
File Dictionary of Astronomy, Third Edition, 1994, pg. 146)
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Figure 1.5.3: Kopal’s classification, a = detached system, b = semi-detached system, c =
contact system (e22).

1.5.2 Intrinsic variable stars
Cataclysmic or explosive variables

These types of intrinsic variable stars can be called tight interacting binaries. Sudden
brightening is primarily the result of explosions, e.g., supernovae. Another reason of
uneven radiation is caused by deformation of components or by the reflection effect. The
reflection effect is based on the mutual illumination of the stars. It causes partial absorption
of radiation which leads to the heating of the outer layer and partial scattering radiation
into space. Brightness facing each other part of the stars is greater than the opposite parts
of the surfaces. Deformation of components occurs during the rotation of the stars around
a common center of mass.

Cataclysmic variables contain a star from the main sequence and a white dwarf. Their
orbital periods are within hours. The star from the main sequence loses mass and passes
it by accretion to the white dwarf. Hydrogen predominates during accretion, star warms
up to the temperature at which the thermonuclear reaction is triggered. Then the nova
explosion occurs. Symbiotic variables contain red giant and white dwarf. The red giant
transfers matter to the white dwarf by a stellar wind. The white dwarf ionizes stellar wind
and a symbiotic nebula is formed around the system. The change in brightness has periods
about hundreds of days.

Pulsating variables

They make up the majority of all variable stars (e1). Pulsations can be radial and non-radial.
Radial pulsations occur where the entire star expands and shrinks (the radius changes).

– 7 –



Non-radial pulsations are pulsations where one part of the star expands while another
part shrinks (the shape changes). Due to pulsations, the effective temperature of the stars
changes. During pulsations their hydrostatic balance is disturbed. In the contracted state,
a pressure gradient predominates, otherwise gravity prevails. The pulsations correspond
to longitudinal wave (the displacement of the particles is in the same/opposite direction
as, the direction of propagation of the wave) which interferes with themselves and create
standing waves. There are nodes in the center of star and antinodes on its surface. Stars
pulsate in modes that have different frequencies. These modes are fundamental-frequency
mode which determines the period of the fundamental mode and a higher-frequency mode
(harmonic/overtone).

Schwarzschild (1940) found out a connection between modes of pulsation and the
shape of light curve. It means that for the fundamental mode we have a higher amplitude
and period. The light curve is asymmetric. For the first harmonic mode there is lower
amplitude and period, but the light curve is sinusoidal there. We also know the pulsation
equation, which tells us that the period of the star’s fundamental oscillation is directly
proportional to the inverse of the square root of the mean density of the star e.q. 1.1.

P =

√
1
ρ

(1.1)

Pulsations are damped by viscosity and friction.
Pulsations are oscillations around the equilibrium position. Normally, a star is in the

hydrostatic balance (i.e., gravitation and pressure gradients are in balance). Each star has
a layer of once and twice ionized helium (He I and He II). This layer must be placed at the
correct depth for the radial pulsations to begin, otherwise the pulsations will be damped.
If the layer is close enough to the surface, the first harmonic modes appear. In contrast, if
the layer is deeper than the one in which the first harmonic mode arises, the fundamental
modes appear there. Otherwise, it is not the only condition. The radial pulsation mode
is described by parameter n. The fundamental mode corresponds to n = 0, for the first
harmonic we have n = 1. Radiation and convection (movement of matter) are the sources
of pulsation.

If the layer is not composed of He I and He II, then opacity (κ) decreases with
compression as temperature (T ) increases (Kramer opacity, e.q. 1.2). The ρ means density.

κ = ρT−3.5 (1.2)

Layers of ionized helium work differently. Radiant flux through the layer causes some
of the radiation to be spent on ionizing helium atoms rather than heating. Density and
opacity rise. The layer does not transmit so much radiation and it accumulates under the
layer. Pressure rise, the layer absorbs more energy, and the layer expands. Density and
opacity decreases. Helium atoms recombine. Considering the surrounding layers, the layer
transmits more radiation and lacks energy for further expansion. This leads to shrinkage
of the layer and, therefore, of the whole star.

In non-radial pulsation, the wave does not penetrate into the center of the star, but
only into the inner parts of star. Towards the inner parts of the star, the temperature
of the star material increases, wave speed increases and a refractive index decreases,
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therefore, the wave can refract back to the surface. If the wave get there, it can reflect on
the photosphere, see Fig. 1.5.4. Wave interference creates standing waves, which cause
non-radial pulsations.

Stars pulsate both with sound waves in pressure modes and/or in gravity modes. Gravity
modes are in the inner parts of a star and they have long periods. Restoring force is gravity
in the case of gravity modes. Pressure modes occur in the whole star and have a short
periods (the Sun has a 5 minute oscillations). In the case of pressure modes, the restoring
force is pressure. Non-radial pulsations are described by parameters n, l, m. Parameter
l is equivalent to the number of node circles on the surface of the star. Parameter m
is an azimutal number, which represents waves travelling around the star. Parameter n
characterizes the number of nodes in the radial part, from the center to the surface. These
quantum numbers concerns the inside of the star in the case of parameter n, and the surface
of the star in the case of parameters l, m.

Figure 1.5.4: Mode penetration through the stellar interior. Waves behave according to the
Snell’s law. The angle at which the wave reflects determines how far it will penetrates:
The lower the angle, the shallower the penetration. The density, temperature and the speed
of sound increases, thus the refractive index decreases. It causes that the wave goes back
to the surface (e23).

Pulsating stars include Cepheids, W Virginis, RR Lyrae, Mirids, etc. Some of the types
that can be found in globular clusters are described in section 2.1.
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Globular clusters

2.1 Definition
Globular clusters from the Latin word globulus (a small ball) are tightly packed, spherical
collection of stars as you can see in Fig. 2.1.1. Due to being tightly bound by gravity,
density of stars increases towards their centers. Most stars in globular clusters are at the
same stage of stellar evolution. However, some stars show different ages as a consequence
of meeting a molecular cloud, which is necessary for star formation or a fusion of more
clusters. As a result, the next generation of stars was formed. This has led to some globular
clusters have a bimodal or multimodal population (bimodal color distribution) of clusters.

Figure 2.1.1: Globular Cluster of Omega Centauri (e24).

Globular clusters were formed at the same time as their maternal galaxies, so they
are one of the oldest objects in the universe, dating back billions of years. Their age can
be established from an Hertzsprung-Russel diagram (HR diagram), which represents the
relation between the absolute magnitude of stars on the vertical axes and the color index
on the horizontal axes. The temperature of a star determines the color index. The smaller
the color index, the hotter and bluer the star is. The mostly used color index is (B-V)
connecting the colors in blue and visual Johnson filters. In short, a color index measures
the difference of two brightnesses in an interval of wavelengths.

On the HR diagram of stars from a globular cluster, we can observe a main sequence
without the stars of spectral type OBA and a huge parts of giants and white dwarfs. Due
to a short main sequence, we estimate, that stars in globular clusters are very old. In
Fig. 2.1.2, we can see a short main sequence with a turn-off point at around (BV) = 0.3
which corresponds to a temperature of approx. 6000 K (spectral type G). That means that
spectral type OBA are already gone from the main sequence and we can estimate the age
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of these stars based on the knowledge of the time of star evolution of a different spectral
type.

Old stars contained in globular clusters are from population II. These stars are metal-
poor, because the iron-peak elements were very rare in the time globular clusters were
formed. Inside clusters, molecular dust and gas have not been observed, so we can expect
that new star will not arise there. Clusters are located in the Galactic halo and the Galactic
bulge. The reason is that Galactic halo and bulge were formed by the collapse of primordial
clouds at the beginning of galaxy formation, thus the first stars appear there. The halo
contains less metals compared to the Galactic bulge. This may mean that Galactic halo is
younger than Galactic bulge. Between stars in a globular cluster, there is a gravitational
interaction. It means, they are gravitationally bound. Thanks to that, the globular clusters
have been stable for billions of years.

Figure 2.1.2: Globular cluster - HR diagram. On the left diagram we can notice, there
are no stars of OBA type. On the right-hand panel, there is as an example HR digram of
M55 with distinct areas of red giant branch, extreme horizontal branch and main sequence
(e25).
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2.1.1 Comparison with open clusters
Globular clusters were formed in a halo around the galactic core with distances from the
Sun larger than 2000 pc (e2). Most of them can be found in the Sagittarius, Scorpio and
Ophiunchus constellations (in the Galaxy). The mass of a globular cluster can be up to
1x106 M� (D’Souza & Rix, 2013) and globular clusters are very old, their age corresponds
a billions of years. On the other hand, open clusters were formed in the spiral arms. Their
masses are lower: below 50 000 M Sun (e2). Open clusters are younger than globular
cluster, their age is up to 5 billion years, however, the age of some open clusters can reach
up to 10 billion years (Salaris et al., 2004). Their young age guarantees a higher metal
abundance compared to globular clusters.

Figure 2.1.3: Galaxy and location of globular and open clusters (e26).

2.1.2 Brief history of globular cluster observation
The first globular cluster was noticed by Ptolemy (150 AD) who, however, was not aware
that it was a cluster. He named it “a star on the horseback”. James Dunlop (1826)
rediscovered this object and described it as a cluster. Now this cluster is known as Omega
Centauri. Globular cluster M22 was discovered by Abraham Ihle (1665), who also labeled
this object incorrectly, as a nebula. William Herschel and Charles Messier, were one of the
first to designate these objects as globular clusters. They also observed and identified new
globular clusters and catalogued them. To date (31.1.2021), 157 Galactic globular clusters
are known (e7).
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2.2 Variable stars in globular clusters
Variable stars in globular clusters can help us to determine the distances to the globular
clusters because they can be used as standard candles (Cepheids, RR Lyrae). They are also
necessary for the understanding of the age, structure, and formation of the Galaxy. The
globular clusters are very old, thus the variable stars inside them are at an advanced stage
of their lives or they are the small-mass stars of the main sequence.

Since 2001, 3000 variable stars were known inside the Galactic globular clusters
(Clement et al., 2001). Most of variable stars are of the RR Lyrae type with 1842
members. Slow variables (L, SR, M) contain 117 members, the same goes for the SX
Phoenicis. Eclipsing binaries have 90 members and W Virginis, RV Tauri just have 60
members. The values were taken for the year 2001 from (Clement, 2017) . This article
also conducted a research on the properties (such as period) of variable stars in globular
clusters. Most variable star contain Omega Centauri cluster shown in Fig. 2.1.1.

2.2.1 RR Lyrae
Willemina Fleming noticed a change in the brightness of a star in the Lyra constellation.
This star was named RR Lyr. Some stars in globular clusters had a similar light curve and
period, hence they were denoted as variable stars of the RR Lyrae type. RR Lyrae stars are
radially pulsating variable stars, which can also pulsate non-radially. They belong to the
group of horizontal-branch giants and lie in the instability strip corresponding to spectral
type A-F. These stars can be divided into three groups according to the mode in which they
pulsate.

The majority of variable stars consist of RR Lyrae stars. Data estimate RR Lyrae account
for approximately 17% (Dolinsky, J., 2017) (Variable Star Index Catalogue, Watson 2006),
of all types of variable stars.

The three basic groups are RRa, RRb, RRc. Theoretical calculations proved that the
RRa and RRb pulsate in the fundamental mode, so in the modern catalogues we can find
only one RRab group (Bailey, 1902). RRc pulsate in the first overtone mode. There are
also RRd and RRe groups. RRd pulsate in the fundamental and the first overtone modes,
while RRe pulsate in the second overtone mode. The light curves of RRab and RRc are
quite different, see Fig. 2.2.1. The RRab type has an asymmetric light curve which can be
identified by rapid ascension and slow descension from the maximum light. The RRc has
a symmetric light curve with a sinus-like shape.

The light curve of many of RR Lyrae stars is modulated in such a way that its amplitude
or period changes periodically, or there are changes in both parameters at the same time.
It takes several pulsation cycles for the light curve to achieve the same shape. This effect
is called the Blazhko effect (Blažko, 1907) and so far, there is no satisfactory explanation
for it (Kolláth, 2018).
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Figure 2.2.1: Typical light curves of RR Lyrae type stars.The left panel shows the RRab
type, while the right-hand panel shows the RRc type. (e1), page 186

2.2.2 Long-periodic variable stars
They are intrinsically variable cool giants or supergiants. Long periodic variable stars con-
tain Mira variables, Semiregular variables, type RV Tauri and irregular variables (Sipahi,
2012). Semiregular variables can be divided into SRa, SRb, SRc and SRb type. All these
types have diverse shape of light curves but all of them show a noticeable periodicity
sometimes interrupted by some irregularity. RV Tauri are radially pulsating super/giants.
The light curve has 2 minima, and the depths of minima may vary. Irregular variables are
slow variable stars of late spectral type whose light changes do not show any periodicity.
Irregular variables are Lb and Lc type. Lb type are giants whereas Lc type are supergiants.

Mirids

Omicron Ceti from the Cetus constellation was the first systematically observed variable
star. These are long-period pulsating cold stars from the asymptotic giant branch with
large luminosity. There are two main sources of pulsations. These are processes in the
hydrogen/helium layers and 3-alpha process (Kilston, 1975). The 3-alpha process fuses
three helium nuclei to form carbon and oxygen nuclei. The reactions are very fast and
huge, which causes a shock wave as a result of reaching the flash point of nuclear reactions.
The shock wave rises to the surface and heats up all the layers which causes a dissociation
of molecules, decreases the opacity, and increases the brightness of the star. After some
time, the opacity increases again and the brightness decreases. The pulsations are quite
periodic. To illustrate periodic changes in brightness I use light curve of R Cas Fig. 2.2.2.
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Figure 2.2.2: Light curve of Mirids and the variable star R Cas (e27).

2.2.3 W Virginis
These stars are old giants with less distinct luminosity-period relation than Cephei stars.
This means that we can use them for measuring the distances, although with less precision
than using classical Cepheids. Their pulsation periods are 10-20 days (Wallerstein, 2002)
with an amplitude of up to 2 mag (e8). W Virginis have low masses and metallicities and
lie in the instability strip of the HR diagram. The light curve is quite periodic, however,
there are humbs between two minima Fig.. 2.2.3 .

Figure 2.2.3: Light curve of W Virginis with period 17.3 days (e1), page 185.

2.2.4 SX Phoenicis
SX Phe are short-period variable subdwarfs with low metallicities. Period and metallicity
are correlated in SX Phe stars. Stars with shortest period are found in the metal-poor
clusters (McNamara, 1995). SX Phoenicis stars show period-luminosity relations and all
of them are located in the blue straggler region (Jeon et al., 2004). They are more luminous
and hotter (bluer) than the other stars from cluster. The possible explanations are, that the
stars were formed later than the others, the stars are not actually part of the cluster or it is
the effect of collisions of stars (Leonard, 1989).
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2.2.5 Eclipsing binaries
There are 3 main group of eclipsing binaries. These are EA – Algol type, EB – Betta Lyrae
type and the last one EW – W Ursae Majoris type. Decreases in brightness are caused by
eclipses of components.

EA = Algol type is semidetached system where the components are a main-sequence
star and a cooler, larger subgiant. Except the occultation, the brightness of the system does
not change or very slightly as you can see in the top panel of Fig. 2.2.4.

EB = Stars of β Lyr type are contact systems, which means, that there is mutual overflow
of the matter between the components. Components are deformed and a reflection effect
may be observed (Vaz, 1985). Reflection effect occurs as a result of close systems in which
the components irradiate each other. Primary and secondary minima on the light curve are
similar and quite smooth Fig. 2.2.4. It is not easy to find exact moment when an eclipse
begins and ends.

EW = This type of contact system has primary and secondary minima equally deep.
We are not always able to determine beginning and the end of the eclipse as you can see in
Fig. 2.2.4. W Ursae Majoris have common atmosphere and the components are in touch.

Figure 2.2.4: Light curve of eclipsing binaries. There we can see different light curves for
each type of eclipse binary stars (e28).
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Methodology and data processing

3.1 Data sources
The main goal of this thesis was to reveal a possible connection between different types
of variable stars in globular clusters and metallicity, age of globular clusters and other
parameters whose belonging to variables such as period. I used data available from the
databases (e14) and (e29). The Fig. 3.1.1 shows the database from (e29). These databases
contain data on 149 Milky Way Galaxy globular clusters and over 8000 variable stars.
Some globular clusters in the databases include more than 200 variable stars (g.e., Omega
Cen); on the other hand, some globular clusters do not contain information about variable
stars at all (g.e., the data were missing for Palomar 1, Palomar 2, AM 1, Eridanus and
some others). These clusters may contain variables but have not been detected yet. Each
globular cluster has a list of variable stars containing their basic properties such as periods,
types of variability, magnitude, see Fig. 3.1.2. The website (e14) includes important data
on globular clusters e.g., metallicity, core radius, or half-light radius.

Figure 3.1.1: List of globular clusters was taken and modified from database (e29).
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Figure 3.1.2: Part of the list with variable stars from a globular cluster 47 Tuc (e29).

3.1.1 Age of globular clusters
The age of clusters is also important for the thesis because as we mentioned, we were
looking for a possible connection between many parameters, including age of clusters.
The age of globular clusters was obtained from the several articles shown in attachment of
this thesis. Some data concerning the age of the clusters could not be found or their age
was estimated to be more than the age of the universe (13.7 Gyr). It is supposed that the
universe is 13.7 Gyr old; for that reason I decided not consider data older than 13 Gyr.
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3.1.2 Variable stars in globular clusters
Data from (e14) and (e29) mostly contain variable stars of RR, RR0, RR1, SR, M, E, EA,
EB, EC, EW, SXPHE, L and LB type. The other types of variables do not have enough
stars for the analysis (they contain units of the order of the stars). The notation of the
variable star was acquired from (e31). RR, RR0, and RR1 are the RR Lyrae-star type.
They differ in pulsation mode; RR0 pulsate in the fundamental mode, RR1 in the first
harmonic mode, and the RR type is not defined. We adopted notation that the RRab type
is RR0 and RRc type is RR1. The SR type is a semi-regular variable type with subtypes
SRA and SRB. Type M indicates mirids. E, EA, EB, EC, and EW are eclipsing variables.
EA denotes Algol type, EB Beta Lyrae and EW W UMA (Ursae Majoris) type. Types E
and EC are not specified closer. SXPHE are pulsating variables of SX Phe type. L and LB
indicates slow irregular pulsating variables, whereas LB indicates a giant stars.

3.2 Methodology
Data processing for each globular cluster and stars inside clusters was done in Excel,
using the Pivot table. The Pivot table is a table of statistics in Microsoft Excel. It helps to
summarize the bulk data and group them together in a meaningful way, allowing calculation
of averages, sums, and many other statistical functions (e17). I calculated how many and
what types of variable stars exist inside each cluster. The Pivot table was also used to
calculate the average period (in days) for each variable star type in globular clusters. As a
result, one average period for each type of variable stars inside cluster was acquired.

During data processing we found out that the data as period and type of variability
were not available for each variable star inside cluster (they were missing/unknown). Some
variable stars have two types of variability (e.g., a star have been classified as uncertain
type - E/CW variable) or were marked by a question mark, see the line 14 in Fig. 3.1.2. In
the case that the type is not further classified, such as RR type, we have decided to omit
these data. Thus, 263 variable stars were omitted. Several types of variable stars have very
few members, hence, the data could not give us relevant information about the behavior
and properties of a particular group. In such cases, the data were not taken into account,
thus, we did not make a research with these stars.

After I took all the data about the variable stars inside globular clusters from online
databases, I could merge them into one large table, which is shown in the attachment.
These data are used in the Analysis, in which I looked for correlations.

3.3 Reliability of the data
The globular clusters are mostly a very dense objects and often the stars inside them can
not be well resolved. To be sure that our data are not biased regarding apparent stellar
density, tests investigating the number of variable stars with respect to half-light radius and
core radius were performed. In other words, the stellar density is affected by the fact that
the cluster is closer to us, or it is affected by the real physical properties of cluster (i.e., the
cluster has a really high density of stars).
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Half-light radius (rh), also referred to as effective radius, is the area at which half the
brightness of the whole cluster is emitted (Binney & Tremaine, 2008). The calculation of
rh is performed from the center of a globular cluster and can be used for the measurement
of size of a globular cluster (Madrid et al., 2009). Some sources differ on whether half-light
radius depends on the sensitivity of the measuring device. Schneider (2006) argues that
rh is affected by the measuring device because the outer region of a cluster may be below
the limit of resolving power. Another source states that this value is independent of the
sensitivity of the device and that is the reason why the rh was introduced e12.

Core radius (rc) is also defined properly. Madrid et al. (2012) claims that it is a radius
at which the apparent surface brightness drops by half. Janes (2000) claims that rc is a
radius at which the brightness drops to half the central value. The last frequently cited
definition states, that the core radius measures the degree of concentration of stars in the
center of a cluster (e13). Globular clusters usually have small core radii (van den Bergh,
2008). It means that the degree of concentration is quite large. The calculation of rc is
usually in arcmin as well as half-light radius, nonetheless some sources state core radius
in pc (Bahcall, 1999; e14).

Although the definition of rc and rh are not entirely clear, it is the only way to test
the observational bias. I took rc and rh from database (e29) and we analysed rc and
rh depending on the number of variable stars in each cluster (Fig. 3.3.1 and 3.3.2). It
is expected, that larger and spatially well resolved globular clusters would contain more
known variable stars. That may mean a correlation between number of known variable
stars and rc and/or rh. The dependences in Fig. 3.3.1 and Fig. 3.3.2 show, that the number
of known variable stars is not affected by the (angular) resolution of a telescope (ability
to divide two point sources into divided images) and the data are not biased regarding the
apparent stellar density. Thus, our statistics are not affected much by the angular size and
concentration of the globular cluster.

Data may be also biased by the observation length. The short observation time may
give us inaccurate information about the object. In the case of long periodic variables, they
can not be detected if we will observe them for a short time. We have no idea whether our
data are affected by the time bias, because the length of observation is different for each
article, and the databases contain data from many articles.
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Figure 3.3.1: Dependence of the number of variable stars in globular clusters on the core
radius. The variable stars are located in globular clusters with all rc (g.e., variables are
detected in various dense fields.
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Figure 3.3.2: Dependence of the number of variable stars in globular clusters on the
half-light radius. The variable stars are located at all angular distances.
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Analysis

Data were processed in Python and used for the analysis. When analysing data, the we
focused on the relation between the bimodality of the metallicity distribution of the globular
clusters, the age and metallicity of the globular clusters (age-metallicity dependence), the
relation between the absolute number of variables of particular type and metallicity of
globular clusters, the relation between metallicity of the globular clusters and mean period
of particular variability type stars (period-metallicity dependence) and the age dependence
of the mean periods. Using graphs and histograms enable detection of correlations of the
variable stars in globular clusters.

4.1 Bimodality of the metallicity distribution of the glob-
ular clusters

The globular clusters show bimodal metallicity distribution. Zinn (1985) claims that there
are two peaks for metallicities −1.6 and −0.5. Smith (2000) also found two peaks but
they belongs to metallicities −1.5 and −0.5. Our data in Fig. 4.1.1 tends to the values of
metallicites −1.48(88) and −0.49(41) and they are consistent with (Smith, 2000; Zinn,
1985) results. The reason of bimodal metallicity is the diverse time formation of clusters
(Muratov & Gnedin, 2010). The later creation of clusters caused that the material was
enriched with heavier elements and new stars inside clusters contain more heavier elements.
On the other hand, an earlier creation of clusters resulted in metal-poor clusters because
the heavier elements were not available. Metal-poor clusters are older than metal-rich
clusters and they mainly occur in the halo (e15). Time of the origin reaches back to the
formation of the Galaxy. Metal-rich clusters are mostly found in the Galaxy bulge. A
possible explanation that the halo is more metal-poor than bulge is that the gas from the
halo was expelled before the supernovae could enrich the gas (gas is necessary for the
formation of new stars) (e16). This gas was captured in the bulge. This explanation is
related to the formation of the Galaxy.
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Figure 4.1.1: The graph shows a bimodal metallicity relation. The red line is the fit
using Gaussian model corresponds to the bimodal histogram. There are two peaks for
metallicities −1.48 and −0.49.

4.2 Ages and metallicities of globular clusters
As we saw in Sect. 4.1, the age and metallicity of a globular cluster is somehow linked. The
age-metallicity relation is shown in Fig. 4.2.1. We can see two linear dependencies; one
for globular clusters located in the Galactic bulge and one for those located in the Galactic
halo. Linear fit for the bulge satisfies the equation 4.3 and for halo we have equation 4.4.
The linear dependencies give us some idea of the distribution of halo and bulge clusters for
the age-metallicity relation. The both linear functions are decreasing and the functions are
almost parallel to each other. The same correlation is mentioned in the article (Carretta et
al., 2010), but they did not use any fit to search for dependencies.

[Fe/H] =−0.25(9)Age+2.0(1.1) (4.3)

[Fe/H] =−0.232(32)Age+1.14(37) (4.4)

The membership of clusters in the Galaxy was taken from (Bica et al., 2016). This
source shows the globular clusters located in the galactic bulge, so I adopted this list
under consideration, that the other globular clusters belong to the halo. It is obvious
that metallicity decreases with age (younger cluster – more metal-abundant). Metallicity
increases faster in the bulge than in the halo (a halo is younger than a bulge with the same
metallicity). In other words, if we have a cluster from bulge and halo with the same age,
the bulge has higher metal abundance. In the graph we can see four points featuring young
age and high metallicities (Whitting 1 Pal 1, Ter 7, and BH 176). Data shows that the
youngest cluster (Whitting 1) is 6.5 Gyr old and it is located in the halo. Models suggest
that it was a dwarf galaxy disrupted by the Milky Way (Carraro et al., 2007). Pal 1 and
Ter 7 were dwarf galaxies too (Niederste-Ostholt et al., 2010; e19). The origin of BH 176
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is unclear; some sources claim that it is an open cluster, not a globular cluster (Davoust et
al., 2011).
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Figure 4.2.1: Age-metallicity relation for globular clusters in Galaxy. Red symbols indicate
globular clusters located in the bulge and the blue circles show the globular clusters located
in the halo. The circles marked with numbers from one to four are for the globular clusters
Whitting 1 (number 4), Pal 1 (3), Ter 7 (2), and BH 176 (1). The continous lines characterize
linear regressions and their equations are shown at the bottom left of the graph.

4.3 Occurence rate of the variable types with respect to
metallicity

The second topic for discussion is the Occurence rate of the variable types-with respect
to metallicity (Occurance-metallicity relation). Our data suggest that the globular clusters
are mostly occupied by RR Lyrae stars (52 %), Eclipsing binaries (8 %), SX Phoenicis
stars (6 %), Slow irregular variables variables (5 %) and Semi-regular (4 %).

The graphs for the RR0 in Fig. 4.3.1 and the RR1 type in Fig. 4.3.2 are quite similar.
The RR0 type is evenly distributed over all metallicity values, but the peak is for metallicity
−1.4 (there are the most stars of RR0 type). Metallicity of the stars and clusters depends
on the age as we already mention in section 4.2, thus for metallicity value −1.4, the age
corresponds to 11 Gyr (the globular clusters located in halo). RR Lyrae are located in the
horizontal giant branch so it is clear that these stars are very old and it causes that the
most stars of RR0 type in the metal-poor clusters are of the value −1.4. The same peak
is for RR1 type. Otherwise the metal-rich globular clusters containing RR1 type stars do
not have as many stars as RR0 type. We can estimate, that the possible reason is, that the
metal-rich bulge contain more RR0 type stars than RR1 type.
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Figure 4.3.1: Occurence rate-metallicity relation for total number of RR0 type stars. The
vertical axis shows numbers of RR0 type stars inside each cluster.
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Figure 4.3.2: Occurence rate-metallicity relation for RR1 type stars. The vertical axis
shows numbers of RR1 type stars inside each cluster. It is obvious that majority of RR1
type stars are located in metal poor clusters.

The increasing number of SR (semi-regular) variable stars for some metallicity values
in the globular clusters is not clear for majority of metallicities, but few metallicities
containing more cluster than others. These metallicities are: −1.5, −1.25, and −0.5,
see Fig. 4.3.3. Nevertheless, these peaks may be just a coincidence depending on the
selection (random) effect and the correlation does not exist. One point (cluster) stands out
and belongs to cluster NGC 6715 (point 1 in Fig. 4.3.3 ). This cluster is located in the
Sagittarius dwarf spheroidal galaxy and contains over 40 semi-regular variable stars.
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Figure 4.3.3: Occurence rate-metallicity relation for SR type stars. These globular clusters
containing SR variables lie in the whole range of metallicities; from −2.2 to −0.2.

SX Phe variable stars are mostly located in globular cluster with whole range of
metallicities, see Fig. 4.3.4. The possible explanation why some metal-rich globular
clusters containing SX Phe stars and why they are not only distributed in metal-poor
clusters is in the article (Nemec et al., 2017). The research of metal-rich SX Phe stars
claims, that rotation of SX Phe variables is connected to metallicity (if SX Phe are fast
rotators, 2/3 of them are metal-rich stars), however, this does not explain the lack of SX
Phe in metal-rich globular clusters. Figure 4.3.4 also shows that five points are outlying.
These clusters belong to clusters containing over one hundred variable stars up to 460 stars,
in the case of Omega Cen. If these clusters had less stars they may would have similar
number of SX Phe stars as the other clusters. But there is one exception, the cluster NGC
6809 contain 37 SX Phe stars and together it has 71 variable stars. We do not have a good
explanation why some clusters contain mainly one type of variable stars.
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Figure 4.3.4: Occurence rate-metallicity relation for SXPHE stars. Label 1 (NGC 5139)
contains 73 variable stars of SXPHE type, this cluster has the most SXPHE variables of
all. The five outlying points belong to clusters NGC 6809 (2), ngc 6656 (5), NGC 5139
(1), NGC 5024 (3) and NGC 3201 (4).

The L variables, see Fig. 4.3.5, have the most stars inside clusters in the range of
metallicities from −2 to −0.5. The majority of globular clusters contain up to 10 variables
of the L type, but five points are outlying. They belong to clusters with many members.
Each of these clusters contain from 120 to 350 variable stars.
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Figure 4.3.5: Occurence rate-metallicity relation of L type. It is obvious that L type is not
as metal-poor as SXPHE type. Data in graph contain five outlying clusters, these are NGC
104 (2), NGC 6266 (4), NGC 6388 (3), NGC 6441 (1) and NGC 6715 (5).
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4.4 Metallicity dependence of the mean periods
The period-metallicity relation (PMR) for RR0 type is shown in Fig. 4.4.1. The linear fit
shows, that the period decreases with increasing metallicity and the period for [Fe/H]=0
is 0.54 days, see the equation 4.5. The same relation they found out in Sandage (1993),
although they use LogP. The linear fits works well for RR0 and RR1 variables. The both
fits have decreasing character and the fit for RR0 is more steep than for RR1 type.

Period =−0.048(15)[Fe/H]+0.542(23) (4.5)

RR0 type has three outlying points. They belong to NGC 6388, Terzan 5, NGC 6441
clusters. NGC 6388 and 6441 are metal-rich globular clusters with long period RR Lyrae
stars. Terzan 5 is a cluster located in the bulge, thus we can expect metal-abundance, and
we can expect the same behavior as NGC 6388 and NGC 6441.

The PMR for RR1 stars is shown in Fig. 4.4.2. The linear regression shows one
strong group whose period decreases with metal abundance and the period for [Fe/H]=0 is
corresponds to the value 0.28 days, see equation 4.6.

Period =−0.034(8)[Fe/H]+0.281(12) (4.6)
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Figure 4.4.1: RR0 period-metallicity relation. The three points are outstanding. Number
1 belongs to NGC 6388, number 2 is NGC 6441 and number 3 belongs to Ter 5.
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Figure 4.4.2: RR1 period-metallicity relation. The red line is linear fit and has the
decreasing character as the linear fit for RR0 type.

The Fig. 4.4.3 shows period-metallicity relation for SXPHE variables. The majority
of points (clusters) lie in the metal-poor part of the graph, but a few points lie in the
metal-rich part. Thanks to linear regression we could estimate that period increases with
metal abundance, see equation 4.7. There are two outlying points with longer periods
than the others and belong to NGC 4147 and NGC 6838. The majority of articles studied
period-luminosity relation, but one of them were interested in period-metallicity relation
and obtained the same results (McNamara, 1995). They also noticed, that the most metal-
poor clusters contain SXPHE variables with shorter periods and the metal-rich clusters
contain SXPHE with longer periods. They also suggested an explanation; the metal poor
clusters evolved from low-mass zero age main sequence.

Period =−0.021(7)[Fe/H]+0.096(12) (4.7)
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Figure 4.4.3: SXPHE period-metallicity relation. Two outstanding points belong to NGC
4147 (number 1) and NGC 6838 (number 2).

The eclipsing binaries (E) are evenly distributed along all metallicities Fig. 4.4.5. The
periods lie between the values of 0.23 days and 3.9 days. However, one point stands out
(period = 16.69 days, metallicity = −1.03). This point with a large period belongs to
Terzan 1 and can be explained by the fact that the star of E type does not belong to Terzan
1. It is worth mentioning that the EA type is mostly more metal-poor than the EB type, see
Fig. 4.4.4. The EA type has metallicity mainly between the values of −2.25 and −1.25,
while the EB type has metallicity between the values of −1.5 and −0.5. EA types are
detached systems and they do not affected each other. EB types are semi-detached near
systems and the mass may transfer to the second component. Thanks to this, the system
is evolving faster and the metal-poor systems are already evolved while the metal-poor EA
types are still evolving. The EW type is distributed along the whole range of metallicities.
EW types are mostly small-mass contact systems so they exist for long time.
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Figure 4.4.4: Period-metallicity relation for EA, EB and EW type. EA type displays a red
circles, the EB type has a blue circles and EW type has black symbols.

2.25 2.00 1.75 1.50 1.25 1.00 0.75 0.50
[Fe/H]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Pe
rio

d 
[d

ay
s]

                                                                           1

Figure 4.4.5: Period-metallicity relation for E type. This graph displays all types of
eclipsing binaries. We took the mean period of E types for each cluster. One point stands
out and belongs to Terzan 1 (number 1).
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The M type (Mirids) and their PMR is shown in Fig. 4.4.6. There are two groups
forming the letter U. The first group has a decreasing character. The period decreases as
the metallicity increases. Most points (clusters) belong to the Galactic halo and go from:
period = 322 days, metallicity = −2.23; to: period = 180.85 days, metallicity = -1.26. The
second group has an increasing character. Period and metallicity increase. The most of
these clusters, and the stars of the Mira type inside them, lie in the Galactic bulge. The
physical properties of Mira variables are complicated and affected by many parameters.
Physical properties are complicated because it is hard to detect high amplitudes in long
periodic systems (g.e., Mira variables) which shows no cycles in one night. The radial
velocities of Mira are a function of period (e.g., (Feast, 1963)), and period of Mira variables
might be a function of metallicity (Feast & Whitelock, 2000). The (Lloyd Evans, 1983)
also noticed, that the H-emission spectra are typical for metal-deficient clusters and Mira
variables with short periods. The variation of the period versus metallicity apparent from
Fig. 4.4.6 might point towards such relations.

Figure 4.4.6: Period-metallicity relation for M type. Mirids can be found in metal-poor
and also in metal-rich clusters.
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4.5 Age dependence of the mean periods
As we already discussed in section 4.2, there is a linear dependence between the age of
cluster and metallicity. We can expect that there is also age-period relationship. The
dependence was obvious for RR0 type, RR1 type and SXPHE type of variable stars. The
other types do not show any correlation between age of cluster and mean period of type of
the variable stars.

The Fig. 4.5.1 for RR0 type has increasing character; the period increases with the
age. The linear regression confirms our statement, see equation 4.8. This conclusion is
expected because the Fig. 4.4.1 claims that the period increases with decreasing metallicity,
the Fig. 4.2.1 claims, that metallicity decreases with the age. Wherefore, increasing period
– older age. On the other, the linear dependence is very weak and it is not as obvious
as for RR1 type. RR1 type, see Fig. 4.5.2 and the linear fit satisfies the equation 4.9.
This correlation is not mentioned in articles, because this dependence is based on the age-
metallicity relationship and period-metallicity relationship, which were studied in many
articles.

Period = 0.0238(93)Age+0.337(108) (4.8)

Period = 0.0093(49)Age+0.2226(58) (4.9)
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Figure 4.5.1: Age-period relation for RR0 type. The red line shows the linear regression.
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Figure 4.5.2: Age-period relation for RR1 type. The linear regression is similar to RR0
type.

SXPHE type works in the opposite diretion, see Fig. 4.5.3. There we can see that the
period decreases with age and the linear fit satisfies the equation 4.10. The article (e18)
studies the same relationship, although they use LogP instead of period. They get different
relationship because they fit the cubic polynomial, but we use the linear fit/polynomial. We
have no reason to fit a polynomial, because the data shows no other than linear dependence.
It may be caused by the fact, that they took data for SXPHE and Delta Scuti variables. Our
data contain only SXPHE variables.

Period =−0.0033(44)Age+0.097(51) (4.10)
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Figure 4.5.3: Age-period relation for SXPHE type. The red line shows the linear regression
and has the decreasing character.
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Discussion and summary

The aim of the thesis was to reveal the dependences between types of variable stars inside
globular clusters and between individual properties of globular clusters such as metallicity
and age. We took a list of globular clusters and variable stars from (e14), (e29) and
processed them in Python and in Excel, using a pivot table. The age of clusters was taken
from many articles, see the electronic table attached to this thesis, and the location of
clusters was taken from (Bica et al., 2016). We also investigated whether our data are
biased regarding apparent stellar density using half-light radius and core radius. It was
found that the data are not affected much by the angular size and by the concentration of
the globular cluster.

First, we analyzed bimodality of the metallicity distribution of the globular clusters.
The bimodality is known for the globular clusters, so we did not expect a different result.
We fit the data by using two Gaussian models and there are two peaks for metallicities
−1.48(88) and −0.49(41). Globular clusters contain old stars which correspond to low
metallicities. Metal-rich clusters (i.e., the stars inside them) may have been formed later
during a later merging of Galaxy.

The metallicity of a cluster is affected by its location in the Galaxy. We also found the
age-metallicity relation which shows two linear dependences. It is obvious that metallicity
decreases with age (the younger the cluster – the higher the metal abundance) in case of
galactic halo and bulge. The clusters inside the Galactic bulge are of about 0.86 dex more
metal-rich than the clusters inside the halo of the same age. Halo was formed during
the formation of the Galaxy from unenriched gas and from absorbing dwarf galaxies by
our Galaxy. Metal-rich halo clusters may have arisen by supernovae explosion, where the
explosion could have caused gas enrichment.

The research of occurrence rate of the variable types with respect to metallicity shows
a rough idea of the distribution of the variable types in globular clusters. Data confirm
that globular clusters are mostly occupied by RR Lyrae stars (52 %), Eclipsing binaries
(8 %), SX Phoenicis stars (6 %), Slow irregular variables (5 %) and Semi-regular (4 %).
The majority of them are formed by RR Lyrae stars which contain the whole range of
metallicities.

The research of metallicity dependence of the mean periods shows in some cases linear
dependence. For the RR Lyrae stars, the period of pulsations decreases in metal-rich
stars/clusters. This dependence applies to both RR0 and RR1 variables with the difference
that the RR1 type have shorter periods than the RR0 type.

The variables of SXPHE stars show linear dependence similar to the RR Lyrae variables
but the period increases with increasing metallicity. The explanation of this dependence is
not clear, however, this result is supported by the article (McNamara, 1995).
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If we do not distinguish between different types of eclipsing binaries, then they are
distributed across all values of metallicity with a mean periods up to 8 days. There is one
exception, Terzan 1, the globular cluster located in the Galactic bulge. The stars inside
Terzan 1 have mean periods 16.7 days long. These E variables may not be the members of
cluster and they harm the data. If we plot data of EA, EB, and EW types separately, we can
notice that the EA type is located in the metal-poor part of the graph while the EB type is
in the metal-rich part of the graph. The EB types are a semi-detached systems, where the
mass may transferred between the components, and as a result, the system evolves faster.
Consequently, the first-born metal-poor EB type variables complete their evolution, while
the detached EA types are still evolving. The EW type is located in the whole range of
metallicities because the small masses of EW type components allow the existence of their
stars for a long time.

Mirids are long-period variable stars. Up to the metallicity value of −1.3, the period
decreases with increasing metal abundance. Above the value of −1.3, the period increases
with rising metal abundance. These stars are not well explored because their long periods
need long observation time, thus we do not have enough information about them. The
large number of Mira variables are located in the metal diverse bulge (Feast & Whitelock,
2014). We can expect than the metal-poor Mira variables can be found primarily in the
Galactic halo.

The last topic of my thesis is the age dependence of the mean periods. This investiga-
tion clearly showed and connected the age-metallicity dependence and period-metallicity
dependence. The age dependence of the mean period research was performed on the
RR Lyrae and SX Phoenicis variables. These variables show linear dependence in the
period-metallicity relation and the age-metallicity relation shows the linear dependence for
clusters too; therefore, we expect the same correlation for the age-period dependence. The
period increases with the age for RR Lyrae variables. This correlation is not mentioned in
articles, because this dependence is based on the already mentioned age-metallicity rela-
tionship and period-metallicity relationship. SXPHE variables show that period decreases
with age. It is the opposite phenomenon to the one exhibited RR Lyrae. This dependence
is also in correlation with age-metallicity dependence and period-metallicity dependence.

It will be worth extending this thesis to a mass-metallicity relation and to compare
properties of variable stars inside globular cluster with variable stars in the whole Galaxy.
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