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Abstrakt

Neznámá materie, označovaná jako temná hmota, by podle současných kosmologických modelů
měla tvořit valnou část veškeré hmoty ve vesmíru. Tento druh hmoty však nejsme schopni přímo
pozorovat, nebot’ se předpokládá, že nepodléhá elektromagnetické interakci, a tedy nemůže ani
zářit. Případný výskyt temné hmoty je možné odhalit pouze u velkoškálových objektů jako jsou
galaxie a galaktické kupy, a to pouze nepřímo pomocí gravitačního působení na hmotu svítivou.
V této bakalářské práci se věnujeme vytváření počítačových modelů hal temné hmoty právě kolem
galaktických kup. Tyto modely porovnáváme s reálnými měřeními svítivé hmoty v kupách galaxií.

Abstract

According to the current cosmological model, unknown kind of matter called dark matter should
form most of all the matter in the Universe. However, we are unable to directly observe this kind
of matter because it is expected that it is not subject to electromagnetic interaction, and therefore
cannot emit light. An eventual occurrence of dark matter can be revealed only in large-scale objects
such as galaxies and galaxy clusters, and only indirectly due to their gravitational interaction with
visible matter. In this thesis, we create computer models of dark matter halo’s around galaxy
clusters and compare those models to real measurements of visible matter in galaxy clusters.
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které jsou v práci citovány.
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Introduction

The observable part of the Universe is made out of known atomic and subatomic particles. These
particles may form objects like planets, asteroids, stars and hot or cold gas clouds. Solar systems or
other hierarchical structures are composed of these planets, stars and clouds. When there is a lot of
stars, they may group into star clusters – open clusters or globular clusters. Galaxies consist of star
clusters, single stars, nebulas, gas clouds and galactic halos and merge into galaxy clusters. Galaxy
clusters group into superclusters and superclusters form filaments and so-called walls which seem
to be the biggest structures in the Universe. On bigger scales, the Universe resembles a foam – it is
made out of these walls and voids which are technically only vast empty spaces. On such scales, the
Universe seems to be homogeneous (same at every point – translational symmetry) and isotropic
(same in every direction – rotational symmetry) although the homogeneity and isotropy are not
exact and some perturbation (density fluctuations) occures.

In the Universe, there are three fundamental interactions: strong nuclear force, electroweak
force and gravity. Most of the objects mentioned in the previous paragraph are mainly subject
to the gravitational force. Their formation and dynamics depend on how much matter the object
has or how big it is. The larger the objects are the more applies at first the dark matter (galaxies,
galaxy clusters) a then also the dark energy (galaxy clusters, superclusters). Dark matter (DM)
is a hypothetical form of matter that interacts with classical matter only gravitationally. It could
probably also weakly interact with itself (self-interacting dark matter SIDM). It was implemented
due to discrepancy of the velocity profile of visible matter in galaxies. In general, if the galaxies
would consist only of visible matter, they could not rotate at such velocities. If there was not some
extra matter in the form of DM, the galaxies would fall apart. The dark energy (DE) plays a similar
role as dark matter. It was introduced to describe the accelerating expansion of the Universe – for
distant objects we observe considerable redshift which signifies they are moving away from us at
high speeds. On large scales, dark energy defeats the gravitational pull of matter (baryonic matter
and DM) which means there is a limit for objects to be gravitationally bound – the biggest objects
held together by their own gravity are the galaxy clusters. Galaxy clusters and their evolution and
dynamics are therefore the best topics for further exploration and opportune confirmation of both
dark matter and dark energy existence.

In a galaxy cluster, we can directly observe only visible classical matter (stars, hot gas clouds
or other light sources). But the visible matter is just a part of the total amount of baryonic matter
(6−24%; Laganá et al. 2008) which is only a fraction of all matter (7−15%; Laganá et al. 2008)
in the cluster. The rest of the material particles are supposed to be in the form of dark matter. If
we would convert all the matter to the energy it would still make only less than about a third of
the total energy in the cluster. The remaining two-thirds belong to dark energy. It is clear that the
evolution of a galaxy cluster is mainly managed by dark matter and dark energy. Unfortunately, we
are currently not able to directly observe neither of them.

To understand the evolution of the Universe or a galaxy cluster, we need to make a general cos-
mological model and then compare the model to real data. The model can be verified by making a
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Introduction 2

computer numerical simulation, with corresponding parameters, that will compute the evolution of
a chosen system. Then we can compare for instance density or temperature profiles of such systems
to real measurements of clusters (the measuring methods and measurable quantities are listed in
Chapter 2). Presently, the widely accepted model is the Lambda Cold Dark Matter (ΛCDM) model
which is in detail described in Chapter 1. This model, as its name suggests, applies both dark
matter and dark energy. The Λ stands for cosmological constant from Einstein’s field equations.
In his equations it was introduced to keep the Universe static; in the ΛCDM model it has quite the
opposite meaning.

Nowadays, thanks to highly developed computer technology and also very good algorithms,
we are able to make really good simulations that are in very strong agreement with observed data.
There is plenty of codes for N-body cosmological simulations that use the ΛCDM model. In this
thesis, we use code Gadget-2 by Springel (2005a), further described in Chapter 3. The code uses
approximative techniques to reduce the computational time and Peano-Hilbert curve and domain
decomposing techniques to make the code executable using multiple CPU’s.



1. Cosmological Model

There are several models, that try to describe the Universe on the cosmological scale and provide
quite good predictions about its early phases. They mostly expect that our Universe began with a
"Big Bang" and then rapidly (10−36− 10−32 s) inflated1 into huge size. It was enormously dense
and hot at this period of time. After the inflationary epoch, when all four interactions separated
(at about 10−12 s), the baryogenesis started and the Universe was filled with quark-gluon plasma.
Classical hadrons (protons, antiprotons, neutrons, antineutrons) came to exist when the Universe
was only about a microsecond old. At the end of this hadron era, most of hadrons and anti-hadrons
annihilated2. The hadron era is followed by the lepton era. Such Universe was still pretty hot
and dense. It was filled with protons, electrons and also photons, but due to its high density and
temperature, photons were scattered on free electrons and the Universe was opaque. (edited from
Zejda 2017)

At about 400 thousand years after the Big Bang, the "last" free electrons recombined on pro-
tons, photons were no more scattered on free electrons and the Universe has become transparent.
This is the era when the Cosmic Microwave Background (CMB) came to exist. As the temperature
map of CMB (fig 1.1) shows, the matter was distributed almost homogeneously and isotropically
with relatively small fluctuations. The CMB has spectrum very similar to spectrum of a black-body
at temperature 2.72548±0.00057 K (Fixsen 2009). The period of time between the emergence of
CMB and formation of first stars is called "dark ages", because there was no source of light at this
time. During the dark ages, the formation of galaxy clusters and galaxies began and this is the
phase of the Universe when dark matter and dark energy came to the scene.

Figure 1.1: Temperature map of Cosmic Microwave Background obtained by Planck (ESA 2013).

1It was the space itself, what inflated. The Universe can not expand anywhere, because it contains all the space.
2The fact, that we now live in the universe made solely of matter and not antimatter, is now one of the biggest

problems of the ΛCDM model. Inflationary phase of the Universe could be an explanation.

– 3 –



Cosmological model 4

1.1 ΛCDM cosmology

Currently, the widely accepted cosmological model is the Lambda Cold Dark Matter (ΛCDM)
model. As said in the introduction both dark matter and dark energy, as well as primordial fluc-
tuations, play a crucial role in ΛCDM cosmology. Dark matter and dark energy determine the
evolution of the system and primordial fluctuations can be imagined as a set of initial conditions
(density, temperature and velocity distributions). The effect of dark components can be described
by Friedmann equations (Friedman’s solutions to Einstein’s field equations).

The position of a point in space is classically being described by its physical coordinates r. In
a homogeneous expanding space, we can implement a scale factor a(t) which is the dimensionless
time-dependent quantity and describes the expansion of space. At present-day Universe the value
of scale factor is a(t0) = 1. Applying that, we can change to the different coordinate system:
so-called comoving coordinates x. The relationship between physical and comoving coordinates is
expressed by the scale factor

r = a(t)x. (1.1)

The scale factor causes that, although the physical coordinates of an object in an expanding Uni-
verse do change, comoving coordinates do not (as Figure 1.2 illustrates).

The expansion can be also described from the view of the observer and that by the Hubble’s law
which describes how fast are distant objects moving away from us. The radial velocity of an object
is due to expansion of space directly proportional to its distance and the proportionality factor is
the Hubble parameter

v = H r. (1.2)

For the Hubble parameter it is expected, that it actually varied in time. Using (1.1) and (1.2) we
can express the Hubble parameter as a function of the scale factor

H(t) =
ṙ
r
=

ȧ(t)
a(t)

. (1.3)

Hubble parameter is often mistakenly called Hubble constant. Hubble constant is the value we
measure today and the measurements move around 70 kms−1 Mpc−1.

The exact value of the Hubble constant depends on the measuring method. For the early
phases of the Universe was measured the value H0 = 67.78 kms−1 Mpc−1(for flat ΛCDM model;
Ryan et al. 2019)3. The measurements of the relatively near objects give us slightly higher value
H0 = 74.03±1.42 kms−1 Mpc−1 (Riess et al. 2019)4. The difference between the values is con-
siderable (more than 6 kms−1 Mpc−1) and has not been explained yet.

1.1.1 Friedmann equations

The Friedmann equations were derived from the equations of general relativity, by introducing the
scale factor of the Universe a(t). Solutions of Friedmann equations well describe the formation and
dynamics of a static or constantly expanding Universe. Friedmann equations allow us to formulate
the Hubble parameter H(t) as a function of total energy density ρ and space curvature k

H2 =

(
ȧ
a

)2

=
8πG

3
ρ− kc2

a2 , (1.4)

3The value was obtained from measurements of Baryon Acoustic Oscillations (BAO).
4The value was estimated by combining measurements of the detached eclipsing binaries in the LMC and masers in

NGC 4258
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Figure 1.2: The relation between physical and comoving coordinates in homogeneously and
isotropically expanding space (Pandey 2016).

where G is the gravitational constant and c is the speed of light. Density is related to scale factor
and pressure via the fluid equation

ρ̇ +3
ȧ
a

(
ρ +

p
c2

)
= 0. (1.5)

The speed of light is often set to c = 1 which makes time and space units and also matter and
energy densities interchangeable: t ∼ a, ρ ∼ ε . The equation (1.4) is not able to describe the
earliest phases of the Universe. For an accelerate expanding Universe the cosmological constant Λ

must be implemented

H2 =

(
ȧ
a

)2

=
8πG

3
ρ− k

a2 +
Λ

3
. (1.6)

If we put cosmological constant equal to zero and assume that the Universe is now flat (k = 0),
we get the relationship for the critical density

ρcrit =
3H2

8πG
. (1.7)

The critical density does not have to be the exact value of the mean density of the Universe, but
it is a good estimation. The actual value of mean density should be within an order of magnitude
from the critical density. The critical density is in standard units (kilograms and meters) and in
cosmological units (solar masses and megaparsecs) equal to

ρcrit = 1.88h2 10−26 kgm−3 = 2.78h−1 1011 M� /(h−1 Mpc)3 (1.8)

where h is the dimensionless Hubble parameter (h = H0 /100 kms−1 Mpc−1). Using the critical
density we can now define the density parameter Ω = ρ/ρcrit. The density parameter can be used
for all densities: dark energy (Λ), dark matter (DM), baryonic matter (bar), radiation (rad) and
space curvature (k). Using (1.4) and (1.6) we can define the curvature density parameter and the
dark energy density parameter

Ωk =−
k

a2 H2 , ΩΛ =
Λ

3H2 . (1.9)

Although the cosmological constant Λ or space curvature k might be constants, their density pa-
rameters may vary in time due to time-dependency of the Hubble parameter (equations taken from
Liddle 2003).



Cosmological model 6

1.1.2 Equation of state

If we define the dark energy density as ρΛ = Λ/(8πG), we can rewrite (1.6) to

H2 =
8πG

3
(ρ +ρΛ)−

k
a2 . (1.10)

Using (1.5) and the fact that ρΛ is constant we get the relationship between dark energy density
and pressure pΛ = −ρΛc2 which means dark energy has a negative pressure. If we assume that
cosmological constant is not perfectly constant and exhibits slow linear variation and if we set
c = 1, we get

pΛ = w(a)ρΛ, w(a) = w0 +wa(1−a), (1.11)

where w represents the equation of state of a perfect fluid. This principle is called quintessence.
Currently, the value of the equation of state seems to be really near or exactly −1 . (edited from
Liddle 2003)

1.2 Geometry of the Universe

Now we can express the Hubble parameter using density parameters and get the well known equa-
tion

H(a) =
ȧ
a
= H0

√
Ωrada−4 +(ΩDM +Ωbar)a−3 +ΩΛa−3(1+w)+Ωka−2. (1.12)

When the scale factor a(t0) = 1, then w(a) is equal to w0. Currently, the curvature of space k is zero
and the radiation density parameter can be neglected. For the Hubble parameter therefore applies

H(a) = H0

√
(ΩDM +Ωbar)a−3 +ΩΛ +Ωka−2. (1.13)

In the present Universe (t0), classical matter, dark matter, dark energy and space curvature density
parameters are bound by relationship

Ω = Ωbar +ΩDM +ΩΛ = 1−Ωk, (1.14)

where Ω is the total energy density parameter.

Ω k geometry Universe angles of triangle
< 1 > 0 spherical closed > 180◦

= 1 = 0 flat flat 180◦

> 1 < 0 hyperbolic open < 180◦

Table 1.1: The space curvatures, geometries, types of the Universe and sums of angles of a triangle
for different values of total energy density parameter.

The geometries and types of the Universe for three different values of Ω are listed in Table 1.1.
Figure 1.3 shows the dependency of the expansion rate on total matter Ωm (Ωbar +ΩDM) and dark
energy ΩΛ density parameters. The expansion rate (or collapse rate) determines the possible type
of "death" of the Universe. Accelerate expanding open Universe may end up by so-called "Big
Rip" – if the expansion accelerates forever, one day it can be so strong, it might beat the gravity
and other forces and it might rip the Universe apart. For flat Universe, there is the "heat death"
which should occur in around 1014 and more years. After so long time all the stars and even the
black holes will vaporize and the Universe will be in very high entropy state. For closed Universe
with no dark energy and overcritical density of matter, the most probable type of death is the "Big
Crunch" which is sort of opposite event to the "Big Bang".
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Figure 1.3: The shape of the Universe for different values of dark matter and dark energy density
parameters (Physicsoftheuniverse 2009). The Universe with dark matter (Ωm = 0.3) and dark
energy (ΩΛ = 0.7) is an accelerate expanding open Universe. Universes with no dark matter and
Ωm < 1 are decelerate expanding open Universes. For Universe with Ωm = 1 the expansion ends
in an infinite amount of time and such Universe is flat. When the density parameter of matter is
higher than 1, the Universe is closed and recollapses.

1.3 Cosmological constraints

The density parameters and the Hubble constant are the main cosmological quantities. Some of
them may be estimated from studying the clusters of galaxies and comparing the observations to
computer simulations. Currently we are not able to estimate the values precisely, but we can lay
down the constraints to certain cosmological parameters. Some of the parameters and their values
are listed in the Table 1.2. The values were obtained by combining several methods and searching
the intersection as shown in the Figure 1.4.

Parameter Value
ΩΛ 0.725 ± 0.016

ΩDM 0.229 ± 0.015
Ωbar 0.0458 ± 0.0016
Ω 1.000 ± 0.022

H0 [km s−1 Mpc−1] 70.2 ± 1.4
t0 [Gyr] 13.76 ± 0.11

Table 1.2: Average values of cosmological parameters from WMAP+BAO+H0 for flat ΛCDM
cosmology (Komatsu et al. 2011).
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Figure 1.4: Constraints to cosmological parameters obtained by composition of different methods
of measurements: gas fraction ( fgas), Baryon Accoustic Oscilations (BAO), Cosmic Microwave
Background (CMB), X-ray Luminosity Function (XLF), Five-Year WMAP results (WMAP5) and
SuperNovae type Ia (SNIa) (Allen et al. 2011).



2. Galaxy Clusters

Galaxy clusters, as the name suggests, are large groups of galaxies. They might consist of up to
thousands of galaxies (mostly faint dwarf galaxies). In distant clusters, only about hundreds of
galaxies are luminous enough to be seen optically. The rest of the clusters matter can be observed
in the X-ray part of the spectrum or detected indirectly by the gravitational lensing or the inverse
Compton scattering of the CMB photons (further described in Section 2.2). The biggest clusters
have a few megaparsecs across and the typical mass of such cluster is 1014− 1015 solar masses.
The closest and best known clusters are the Coma cluster, Virgo cluster, Perseus cluster, Bullet
cluster (shown in Figure 2.1) and Abell 1689.

Galaxy clusters are composed of the classical baryonic matter (stars, hot intracluster medium,
active galactic nuclei etc.), dark matter and dark energy. The optically visible (stellar) matter ac-
counts from 6% up to 24% (Laganá et al. 2008) of all the baryonic matter in the cluster. The
stellar-to-gas mass ratio depends on temperature and decreases for higher temperatures. The re-
maining baryonic matter can be either visible in X-rays (intracluster medium) or not visible at all
(cold gas). Baryonic matter makes up only less than about one-sixth (7−15%; Laganá et al. 2008)
of all the matter in the cluster, the rest of matter is in the form of dark matter.

Figure 2.1: Image of the Bullet cluster composed from X-ray (Markevitch 2006) and optical (Clowe
et al. 2006) images and the gravitational lensing map (Clowe et al. 2006). The pink regions cor-
respond to the hot intracluster medium, the violet regions to halos of dark matter and each yellow
object is the single galaxy.

– 9 –
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Intracluster medium (ICM) is basically a hot intergalactic plasma, that accounts for most of
the baryonic matter in the cluster. It is mostly ionized hydrogen heated to temperatures up to
hundreds of megakelvins due to thermal bremsstrahlung. Classical galaxy cluster’s ICM is heated
to temperatures around 108 K. For smaller clusters, the temperature is lower (107 K). At such high
temperatures, the plasma emits electromagnetic radiation at X-ray energies.

The X-ray emission of the ICM gave an explanation of part of the missing mass of clusters
and allows the detection of clusters out to z > 1. Measurements of ICM temperatures also gave
an independent confirmation of dark matter existence. It proofed that the gravitational potential of
clusters should have an additional dark matter component. Free electrons in ICM are responsible
for inverse Compton scattering of the cosmic microwave background (CMB) photons. So also
the distortions of the CMB spectrum is a result of dark matter existence (edited from Kravtsov &
Borgani 2012).

2.1 Properties of galaxy clusters

Primary cluster properties are the total mass, total size and temperature of the intracluster medium.
The secondary parameters are: star-to-gas and gas-to-total mass fractions, density profiles of both
components, radial velocity profiles and profile of metalicity. Other parameters as pressure, elec-
tron density or entropy can be derived from them.

Instead of the total mass which is in substance impossible to determine since clusters are not ex-
actly bounded, is often used the so-called virial mass. It is defined as the mass of the central region
of the cluster, where the mean density reaches the critical density multiplied by the overdensity
parameter:

Mvir =
4π

3
r3

vir ∆c ρcrit, (2.1)

where ∆c is the overdensity parameter and rvir is the virial radius. The value of the overdensity
parameter can be obtained from the formula by Bryan & Norman (1998)

∆c = 18π
2 +82[Ω(z)−1]−39[Ω(z)−1]2, (2.2)

where Ω(z) is the total energy density parameter at redshift z. The overdensity parameter in flat
Universe is equal to ≈ 177.65, however typically is adopted the value 200 and parameters M200
and r200 are referred to as the virial mass and the virial radius.

The gravitational interaction from the cluster can be expressed by the virial velocity

V 2
vir =

GMvir

rvir
, (2.3)

where G is the gravitational constant. The virial velocity decreases the radial velocity of the cluster
from the value calculated for corresponding distance d by Hubble’s law:

vr(d,z,Mvir) = H(z)d−0.8Vvir

(rvir

d

)nvir
, (2.4)

where nvir is the power-law index which determines the slope of the density profile, and vr is the
measured radial velocity of the cluster. The power-law index should in general depend on the mass
of the cluster Mvir and redshift z, but often it is approximated by constant value valid within a
certain range (equations taken from Lee et al. 2015).

The density distribution of dark matter is most often described by the Navarro, Frenk & White
(NFW) profile (Navarro et al. 1995)

ρDM(r) = ρcrit
δc

r/rs (1+ r/rs)
2 , (2.5)
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where rs = r200/c is the characteristic radius and δc and c are dimensionless parameters describing
the concentration of the halo. The δc parameter is conditioned by the requirement that within radius
r200 the mean density of the halo is 200×ρcrit and therefore for δc applies the formula

δc =
200
3

c3

ln(1+ c)− c/(1+ c)
. (2.6)

The NFW profile well describes the dark matter density distribution in cluster halos, but the
profile of the ideal gas is better expressed by the empirical beta model (Jones & Forman 1984)
which has higher value of the exponent than the NFW profile and therefore is shallower in the
central parts. For the beta profile of the isothermal gas applies the formula

ρgas(r) = ρ0

[
1+
(

r
rc

)2
]−3β/2

, (2.7)

where ρ0 is the density in the center, rc is the core radius and β is the isothermal exponent. The
value of the β parameter lies near ≈ 2/3 for most clusters (Jones & Forman 1984).

There is plenty of similar profiles which tend to describe the gas distributions in halos of galax-
ies and clusters. In the practical part we used the Dehnen’s (Dehnen 1993) and Hernquist’s (Hern-
quist 1990) profiles (further described in Chapter 3), when generating the initial conditions, and
then we used the NFW and beta profiles, when comparing the results.

Since the gas density is not the directly measurable quantity, we have to find another quantity,
that we can compare the profile with. Such quantity is the electron density ne(r) which can be
derived from the spectral analysis of X-ray measurements of the ICM. Electron density can be
expressed from the density of gas by the relationship

ne(r) =
ρgas(r)
µmp

, (2.8)

where mp is the mass of a proton and µ is the mean molecular weight which is, in general, function
of metallicity. For simplicity we use the constant value of µ and therefore the electron density is
only directly proportional to the density of gas.

Next relevant property of the ICM is its temperature profile. Temperature is a directly mea-
surable quantity and can be derived from the spectroscopy of the cluster. With knowledge of
temperature profile and electron density profile we can now compute other important parameters
of the cluster: pressure profile P(r) and specific entropy profile s(r) (entropy per particle). For
pressure of the ideal gas in the hydrostatic equilibrium applies

P(r) = ne(r)k T (r), (2.9)

where k is the Boltzman’s constant. From the pressure profile, some interesting properties of the
ICM, such as shock and cold fronts, can be discovered. Even better quantity for observation of the
features in the ICM is the specific entropy which also records the history of changes. The specific
entropy s is as well as pressure proportional to both temperature and electron density

s =
1

γ−1
k ln
(

P
ργ

)
=

1
γ−1

k ln
(

T
ργ−1

)
, (2.10)

where γ is the adiabatic coefficient and for ideal gas is equal to 5/3. Instead of the specific entropy
is often used the entropy parameter A (notation from Springel 2005b) which is only a function of
specific entropy

A(s) =
k T

n2/3
e

. (2.11)

The entropy function is rather used mainly because of the non-logarithmic slope.
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2.2 Observation of galaxy clusters

As said before, in the galaxy cluster we can visually (with classical optical detectors and tele-
scopes) observe only big and bright galaxies. The remaining part of the matter must be observed
on other parts of spectra or indirectly. The observations are done mostly with huge and most mod-
ern telescopes and probes provided by European Space Agency (ESA) and American National
Aeronautics and Space Administration (NASA). Using these observations and measurements we
can determine important cluster properties and estimate some of the cosmological constraints.

Optical observations

The major part of the visible light (mainly starlight) from a cluster comes from the largest galaxies.
These galaxies have mostly elliptical or lenticular shape and are located in central regions of the
cluster. Such observations can be used for estimation of the minimal mass of the cluster. Other
properties that can be determined are the profiles of electron density, luminosity or radial velocity.
We can also use the spectral information (redshift) to estimate the distance of the cluster.

The optical observations might also have some disadvantages. Undesirable projection effects
might occur. Or some optically luminous and rich clusters may not have especially high mass and
vice versa – clusters, that are not very optically active may be quite heavy.

The basic optical observations of galaxy clusters, or more accurately of big galaxies in their
center, can be obtained even by amateur astronomers (Figure 2.2). Such measurements can be used
for estimations of the brightness profile and total luminosity. More information can be derived
from the optical spectroscopy, from which we can determine the radial velocity, distance or velocity
dispersion of the cluster. For high resolution and high signal-to-noise spectra are needed the biggest
telescopes and most modern spectroscopes such as Gemini, VLT or LAMOST.

X-ray observations

Cluster halos are filled with DM and baryonic particles. Classical baryonic particles are there
in the form of diffuse gas (intracluster medium). This gas is heated to very high temperatures
(107−108 K) due to the high gravitational potential of a cluster . When such particles collide, they
emit high energy photons such as X-rays. The X-ray emission is mostly caused by bremsstrahlung
(free-free emission) and is proportional to the square of electron density and to the square root of
temperature. The electron density varies from 10−5 cm−3 at cluster’s edges to 10−1 cm−3 at its
center. For such low densities, the plasma is optically thin (Allen et al. 2011).

X-ray observations are less prone to projection effects. But the detection of clusters using
X-ray is still not based on mass measurements. Using high resolution spatially resolved spectra
of a cluster the density, temperature or metalicity profiles of the ICM can be determined. The
observations of clusters at X-ray energies are provided by special spacecrafts by NASA and ESA
and one of the best known are ROSAT, Chandra or XMM-Newton.

Gravitational lensing

Another method for observation of clusters of galaxies is the weak and strong gravitational lensing.
The gravitational lensing uses the fact that the enormous mass of the cluster bends the light of
galaxies from behind the cluster. The more massive the cluster is the more it bends the light. Such
measurements are mass-based and give us the information about total mass of the cluster.

The observations of clusters using the strong gravitational lensing is very observably demand-
ing. Some galaxies might be projected twice or even more times and we mostly can not even see
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the original appearance of the galaxy. For this reason is rather used the weak gravitational lensing
which examines if the appearance of background galaxies is stretched in some preferred directions.
Using this method was determined the lensing map from Figure 2.1.

2.3 Virgo cluster

The Virgo cluster is one of the nearest and one of the biggest known galaxy clusters. In the night
sky it is projected in the Virgo constellation. The Virgo cluster and the Local Group1, are both
part of a larger structure called the Virgo supercluster. The Virgo cluster consists of more than
2000 galaxies, most of which are dwarf and not very bright galaxies. The center of the cluster
consists of large elliptical galaxies, the most massive are M87, M86 and M84 which can be seen in
the Figure 2.2. The size of the Virgo cluster is in the order of a magnitude as the size of the Local
group, but contains about 50 times more galaxies.

Figure 2.2: The optical image (mosaic) of the Virgo cluster obtained by astrophotographer Rogelio
B. Andreo (2011) showing the central regions with biggest and brightest galaxies. The field of
view is 5×3 ◦.

The Virgo cluster is so massive, the Local group actually experiences its gravitational pull in
the form of a Virgocentric flow. The Virgocentric flow is an excess of the radial velocity of galaxies
in the Virgo cluster from the value computed for corresponding distance by Hubble’s law. The
center of the Virgo cluster is moving away from us at speed of around 200 kms−1 lower than it is
expected (Chernin et al. 2010).

According to the Tolman-Bondi model (Bondi 1947) the distance of the Virgo cluster is more
than 15 megaparsecs (15.4±0.4 Mpc; Fouqué et al. 2001). The value obtained by the Tully-Fisher
method (Tully & Fisher 1977) is slightly higher 18.0±1.2 Mpc (Fouqué et al. 2001). First estima-
tions of mass of the cluster (around 1014 M�) have already been done in the 1930s by Sinclair Smith
(1936). Current estimations lie within an order of a magnitude to that value (depending on the used
method). The value obtained from the Tolman-Bondi model is 1.2× 1015 M� within 8 degrees

1Local Group is the group of galaxies consisting of our Galaxy, the Andromeda galaxy, both Magellanic clouds and
hundreds of nearest dwarf galaxies.
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(2.2 Mpc for distance 15.4 Mpc) from the center of the cluster (Fouqué et al. 2001) which is 1.7 of
the virial mass computed from the radial velocity recession by the relation given by Tully & Shaya
(1984). The newest estimations of the Virgo cluster’s mass were acquired from radial velocity
profiles of filament galaxies and are very close to value from the Tolman-Bondi model. Lee et al.
(2015) calculated the dynamical mass of the cluster and found the value 0.84+2.75

−0.51×1015 h−1M�.
The mass of the M87 sub-cluster estimated from the X-ray emission measured by ROSAT probe

is ∼ 1−6×1014 M� within 5 degree radius from the cluster’s center (Böhringer et al. 1994). The
masses of M49 and M86 sub-clusters (∼ 1013) can be neglected. Urban et al. (2011) analyzed the
data of the Virgo cluster’s ICM from the XMM-Newton and from the mass-temperature relation ob-
tained the value 1.4×1014 M�. The discrepancy between estimations obtained from radial velocity
and the X-ray emission of the ICM has not been explained yet. The image of the Virgo cluster’s
intracluster medium taken by ROSAT is shown in the Figure 2.3. The mean temperature of the
ICM is 2.7×107 K (Urban et al. 2011). The profiles of temperature and other quantities are shown
in the practical part (Chapter 4).

Figure 2.3: X-ray image of the Virgo cluster from the ROSAT telescope (the bandwidth is
0.5−2.0 keV). The black circles are the regions, where the cluster was observed by the
XMM-Newton. The measurements were latter used for the spectroscopy of the cluster by Ur-
ban et al. (2011). The white dashed line corresponds to the virial radius r200 determined from the
mass-to-temperature scaling relations to 1.08 Mpc (3.9 degrees).



3. Gadget-2

Gadget-2 (GAlaxies with Dark matter and Gas intEracT) is a free available N-body cosmological
code for numerical computer simulations written by Volker Springel (Springel 2005b). It is ba-
sically an improved version of Gadget (Springel et al. 2001). Both versions of the Gadget code
are widely used by the professional community for simulating clusters of galaxies or making the
Millennium simulations. Currently, a new version called Gadget-3 is being developed.

Gadget-2 is a cosmological TreeSPH code. It can be used for collisionless fluid N-body simu-
lations or even for ideal gas simulations (smoothed particle hydrodynamics). Gravitational forces
as well as hydrodynamical equations are computed approximatively. Long-range forces are com-
puted using Fourier techniques and for short-range forces the tree particle mesh (TreePM) method
is used. For faster course of the simulation, the system is decomposed into parts and every part is
computed by single processor. The decomposition is realized by the Peano-Hilbert curve (further
described in Section 3.3) which is afterwards cut into domains (Springel 2005b).

The code is written in C language and is fully portable across all UNIX systems. The code uses
the following open-source libraries: GNU Scientific Library (GSL), Fastest Fourier Transform
in the West (FFTW) and, if needed, also the Hierarchical Data Format (HDF5) which should be
compiled with parameters recommended by the User guide (Springel 2005c). The code itself also
has to be compiled using the makefile, where the parameters for an appropriate simulation must be
chosen. The Gadget-2 code also uses an explicit communication model that is implemented with
the standardized Message Passing communication Interface (MPI), so the code can be run on both
huge clusters of workstations or on individual PC’s.

3.1 Simplified dynamics

If we would want to compute precisely the dynamics of a system with millions and more particles,
it would be very time-consuming. If we include only gravitational forces, we would have to calcu-
late gravitational pull from all particles to every other particle. Such a sum would have N(N−1)
members. The Gadget-2 code, therefore, uses simplified dynamic and hydrodynamic equations in
its numerical simulations. When simulating halo’s made purely of dark matter, only the collision-
less dynamics is used. For ideal gas simulations, there is the smoothed particle hydrodynamics
(SPH). For a mixture of DM and ideal gas, the code uses both collisionless dynamics and SPH.

These simplifications cause the force computations to be slightly inaccurate. But fortunately
errors up to 1 %, when they are randomly distributed, cause only a minimal precision loss in the
resulting dynamics of the system. They also tend to slightly increase the numerical relaxation rate
(Hernquist et al. 1993).

– 15 –
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Collisionless dynamics

The dynamics of halo’s of dark matter particles is described by the Friedman-Lamaître model
(described in Chapter 1). For N tracer particles the Hamiltonian is

H = ∑
i

p2
i

2mi a(t)2 +
1
2 ∑

i j

mi m j ϕ(xi−x j)

a(t)
, (3.1)

where a(t) is a time dependent scale factor, xi are comoving coordinates, pi = mi ẋi a2(t) are cor-
responding momenta and ϕ(xi−x j) is the gravitational potential. Due to time dependence of the
scale factor the Hamiltonian also varies in time.

For periodic boundary conditions of L3 cube the potential is described by the Poisson equation

∇
2
ϕ(x) = 4πG

(
∑
n

δ̃ (x−nL)− 1
L3

)
, (3.2)

where δ̃ is Dirac δ -function. Using peculiar potential φ(x) = ∑miϕ(x− xi) we can rewrite (3.2)
into the form where matter density occurs

∇
2
φ(x) = 4π G (ρ(x)− ρ̄) , (3.3)

where ρ̄ is a mean matter density.
In Gadget-2 simulations the Dirac δ -function is convolved with a gravitational softening kernel

δ̃ (x) ≈W (|x|,2.8ε) – the spline kernel of comoving scale ε by Monaghan & Lattanzio (1985) is
used:

W (r, h) =
8

πh3
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h
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(3.4)

where h is the gravitational softening length. So according to (3.4) the gravity only effects on
distances up to h, more distant objects do not gravitationally interact (equation taken from Springel
2005b).

Smoothed particles hydrodynamics

The Gadget-2 code uses discrete tracer particles in its SPH equations to describe the state of a fluid.
The particles are characterized by their position ri, velocity vi and mass mi. The density estimate
for such particles is described by the SPH softening kernel (3.4):

ρi =
N

∑
j=1

m jW (|ri− r j|,hi), (3.5)

where hi is the adaptive softening length – the value of the softening length changes so the volume
with radius hi contains constant mass and obeys the equation

4π

3
h3

i ρi = Nsph m̄, (3.6)

where Nsph is the typical number of neighbours and m̄ is the average mass. The typical number of
SPH neighbours is 35.



Gadget-2 17

The thermodynamic properties of particles may be described by its thermal energy per unit
mass ui or by entropy per unit mass si. For reasons discussed in Springel & Hernquist (2002)
the Gadget-2 (mainly because of entropy conservation) rather uses the entropy per unit mass si as
the independent variable. And rather than the specific entropy (entropy per unit mass) is used the
entropy function A(s) = P/ργ . For equations of motion applies

dvi

dt
=−

N

∑
j=1

m j

[
fi

Pi

ρ2
i

∇iWi j(hi)+ f j
Pj

ρ2
j
∇iWi j(h j)

]
, (3.7)

where Pi is pressure and fi is defined as

fi =

(
1+

hi

3ρi

∂ρi

∂hi

)−1

. (3.8)

For entropy discontinuities generated by microphysics the artificial viscosity is introduced and is
further described in Springel & Hernquist (2002).

3.2 Running Gadget using several CPU’s

Some of most modern supercomputers so-called vector machines are able to provide simultaneous
computations on whole arrays of numbers which would the best for computing the evolution of a
N-body system. Unfortunately most of algorithms are not able to fully use the capabilities of such
machines and they are better used on scalar architectures. On scalar architectures there is mostly
the problem with high computing time and memory, because most software’s and codes can run
only on a single processor.

To make the algorithm effective we need to decompose the problem into parts and let each
processor do computations for each part. The Symmetric MultiProcessing (SMP) computers are
really good for that. The SMP’s consists of several classical scalar processors, but they share
the main memory, so the computations are distributed much more easily. For classical computers
without shared memory the more radical parallelization is used – each scalar processor is treated
as an independent computer and runs a separate instance of code.

There are many methods for decomposing a 3D problem – often used was the hierarchical
orthogonal bisection, but this method has many disadvantages. Main disadvantage is that particles
will experience different force error with different number of processors used. The Gadget-2 code
rather uses the Peano-Hilbert curve and then cuts this curve into domains (as Figure 3.1 shows).
Each domain is then computed a by single scalar processor. The Peano-Hilbert curve is an one
dimensional curve that entirely fills higher dimensional spaces. This method brings particles after
each domain decomposition into the Peano-Hilbert order which improves cache utilization and
performance of the code (Springel 2005c).

Thanks to the Multi Passing Interface (MPI) we are able to start the Gadget-2 code using
multiple processors on the same computer or even on multiple computers. The code can therefore
be run on a single notebook (small collisionless simulation) or on massively parallel computers
with distributed memory (huge SPH simulations) (edited from Springel 2005b).
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Figure 3.1: Domain decomposition of the Peano-Hilbert curve. Each domain is computed by single
processor (picture taken from Springel 2005b)

.

3.3 Initial conditions

One of the most important things when simulating a cluster (or when making any other simulation)
are the initial conditions – density, temperature and velocity distributions of particles. If we have
totally wrong initial conditions we can change the simulation parameters in any possible way but
we will never get a model that has similar properties as our cluster. For generating the initial
conditions for a Virgo cluster simulation we used the initial conditions generator called Clustep
(Ruggiero 2013).

3.3.1 Clustep

Clustep is a Python script that generates initial conditions compatible with Gadget-2, although the
produced snapshots are in Gadget-2’s non-default binary format (the ICFormat parameter has the
value of 2). The script is compatible with both Python-2.7 and Python-3.5 and has to be compiled
via the make command. The required libraries are Numpy, Scipy, Matplotlib, Cython and Argparse.
The script was also used in work by Ruggiero & Lima Neto (2017).

The Clustep script generates a snapshot with initial conditions of a galaxy cluster in the dy-
namic equilibrium. The sphere of radius R is filled with mixture of gas and dark matter particles.
The density profile for both ideal gas and dark matter particles is the Dehnen’s density profile
(Dehnen 1993)

ρ(r) =
(3− γ)M

4π

a
rγ(r+a)4−γ

, (3.9)

where a is the scaling radius and M is the total mass and γ which is an exponent, that determines
the shape of the profile especially in the central parts.

If γ = 1 the profile corresponds to the well known Hernquist’s (Hernquist 1990) profile for
galactic and cluster halo’s. If assigned to the gas component, for γ = 0 the profile corresponds to
non cool-core profile and for γ = 1 to cool-core profile. When generating the initial conditions
with Clustep, there are four free parameters: total mass M, total radius R, scale radius a, gamma γ

and optionally there is also the metalicity parameter for gas.



4. Cluster Simulations

In this chapter, we describe the usage of Gadget-2 for galaxy cluster time evolution simulations.
In Section 4.1 we show the simulation of galaxy cluster with default initial conditions (ICs) by
Springel (2005a). The simulation contains only collisionless particles of dark matter and conse-
quently does not provide any information about temperature, entropy nor internal energy of par-
ticles. In Section 4.2 we tried to simulate the well known Virgo cluster (properties discussed in
Chapter 2). The simulation was done using a mixture of ideal gas (smoothed particle hydrody-
namics) and dark matter particles (collisionless dynamics). This simulation gives the information
about density, internal energy and also change of entropy of particles, so we are able to produce
profiles of directly measurable quantities. The initial conditions for the Virgo cluster simulations
were generated using Python script Clustep written by Ruggiero (2013) (described in Subs. 3.3.1).

The libraries that are required by the Gadget-2 code (listed in Chapter 3) were compiled
using parameters recommended by the User guide (Springel 2005c) and installed into personal
directory on our university "supercomputer" called Crab (crab.physics.muni.cz). Before com-
piling the Gadget-2 code or running the simulation the library paths must been added to the
LD_LIBRARY_PATH variable. The Gadget-2 code was compiled using the different makefile for
each simulation (links to both can be found in the Appendix). In the first simulation we used the
almost original Makefile – only with higher grid parameter. In the Virgo cluster simulation we
made some more changes in the makefile. For the data storing we used the non-default Gadget-2
data format – the Hierarchical Data Format (HDF5).

All the simulations were ran using the Multi Passing Interface (MPI) on multiple CPUs on
Crab, on which we connected remotely via the ssh1 protocol. The operating system on this com-
puter is the classical GNU/Debian version 9.4, the processor is type Intel Xeon Processor
E5-2630 v4 and the total number of available CPUs is 40. The usual number of CPUs used was
24 or 36 (the number of processors should be a power of two – because of the most efficient
communication schemes; Springel 2005c) and the simulations were ran by the command

$ mpirun -np 24 ./Gadget-2 parameterfile.param

where parameterfile.param is a parameter-file for a specific problem (cluster simulation, millen-
nium simulation etc.). We only used the cluster.param for spherically symmetrical simulations of
clusters with vacuum boundaries.

The total CPU time varied from a few minutes for collisionless simulations to couple of hours
for ideal gas SPH and dark matter simulations. The total amount of data from a single simulation
depended on the number of used particles and the frequency of snapshots and varied from hundreds
of megabytes (643 particles) to tens of gigabytes (2563 particles) of computer memory. All the
visualizations, as well as profile computations, were done in Python 3.5 (links to scripts can be
found in the Appendix).

1SSH (Secure Shell) is a secure communication protocol for computer networks.

– 19 –
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4.1 Default Gadget-2 cluster simulation

To demonstrate how the Gadget-2 code works, we ran a galaxy cluster simulation with default ini-
tial conditions (IC). The IC file, we used, is named cluster_littleendian.dat2 (Springel 2005a) and
corresponds to the classical binary IC format – the ICFormat parameter has value of 1. Although
the IC file is default, some changes in the parameter-file (cluster.param) were done – mainly mem-
ory allocation parameters and dynamics, SPH and time integration accuracy parameters. The link
to the parameter-file can be found in the Appendix.

The simulation counts with almost 300,000 of collisionless particles and was ran using 24 pro-
cessors on the Crab computer. The total CPU time of the simulation was 14 hours (35 minutes per
CPU) and total amount of data with 200 snapshots (for good time resolution of the simulation) was
2 gigabytes.

4.1.1 Initial conditions

There are three different types of particles (bulge, disk and halo particles) with different masses
and softening lengths – this technique is called multi-mass technique (Springel 2005c). More
detailed numbers of particles and other parameters can be found in Table 4.1. The file with initial
conditions was generated with Zoomed Initial Conditions (ZIC) generator by Giuseppe Tormen
(not a free available software).

Part type Part name Number of particles Softening length
1 Halo 96877 500 kpc
2 Disk 39616 180 kpc
3 Bulge 140005 72 kpc

Table 4.1: Number of particles and softening lengths for used particle types.

The simulation was started at redshift z = 23 (a = 0.0416) in the box of 140 Mpc3 of comoving
coordinates with vacuum boundaries. The Figure 4.1 shows the initial particle distribution.

Figure 4.1: The initial density map at a = 0.0416 and z = 23. (a) The whole region with bulge,
disk and halo particles. (b) The central region containing mainly the bulge particles.

2Endianness describes the order in which multi-byte numbers are stored in computer memory. Crab is the little-
endian architecture.
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4.1.2 Simulation

For the above showed initial conditions we ran a classical cluster simulation starting at redshift
z = 23 up to now (z = 0). We used the default flat ΛCDM cosmology (Ω = Ωm +ΩΛ = 1) and
also other principal cosmological parameters (listed in table 4.2) re; unchanged. The result of the
simulation is shown in the Figure 4.2.

Parameter Value
Ωm 0.3
ΩΛ 0.7
Ωbar 0.0

h 0.7

Table 4.2: Cosmological parameters used in the default IC simulation.

Figure 4.2: The density map of the default IC simulation at redshift z = 0 (a = 1). (a) The whole
cluster’s halo with its inner structure. (b) Zoom into the central regions of the cluster where the
cluster core is located.

4.1.3 Discussion

The initial density map (Figure 4.1) shows the initial layout of all three types of used particles. The
distribution is spherically symmetrical and increases in the central parts. The distribution is not
exactly homogeneous and isotropic; small perturbations (density fluctuations) occur.

After few crashes, mainly because of problems with tree domain decomposition, we finally
found the optimal settings and the simulation ran successfully. With 24 used CPU’s the simulation
lasted just over 30 minutes. The result of the simulation was visualized, the final density layout
is shown in Figure 4.2 and the link to full visualization (gif) of the simulation can be found in
the Appendix. The visualization shows the formation of the cluster core and also of its satellite
galaxies surrounding the core. The density maps were generated using 2D histogram in Python 3.5
(matplotlib package).
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4.2 Virgo cluster simulation

To test the functionality of the cosmological code Gadget-2, and also to prove our knowledge of
cosmology, we attempted to produce a cosmological simulation of the Virgo cluster. Using the
Clustep script we created own initial conditions with mixture of ideal gas and dark matter particles
and ran couple of simulations. We then compared the simulations to real observations (X-ray
measurements) of the Virgo cluster’s intracluster medium (ICM).

The Gadget-2 code was compiled with parameters listed in the makefile which can be found in
the Appendix. The makefile is very similar to the default one which was used in the Section 4.1.
Moreover we used the additional gravitational softening for gas, higher value of the grid parameter,
higher resolution in the central parts and also the output of change of entropy in the snapshots.

We ran huge amount of simulations with different initial conditions (R, M, a) and cosmological
parameters (ΩΛ, Ω0, zi) and found the optimal ones. The fitted parameters were: the overdensity
parameters R200, M200 and the temperature profile T (r). Other parameters, that we also compared,
were the electron density profile ne(r), entropy parameter profile A(r) and pressure profile P(r).
All measured profiles were taken from the XMM Newton’s data analysis by Urban (2011) and
the virial mass is from Fouqué et al. (2001) and Lee et al. (2015). The virial radius has been
computed from the virial mass using the same value of Hubble constant as used in the simulation
(H0 = 74.02 km s−1 Mpc−3; Riess et al. 2019).

For the acquired initial conditions we ran a galaxy cluster simulation with 2× 1283 particles
in the box of 503 Mpc−3 and therefore with high mass resolution: 4.7× 108 M� per gas particle
and 2.3× 109 M� per dark matter particle. The simulation was ran using 36 CPU’s on the Crab
computer. The total amount of computing time was 143 hours (nearly 4 hours per CPU) and took
up around 65 gigabytes of computer memory (with 300 snapshots).

4.2.1 Initial conditions

The initial conditions were generated by the Clustep script, the radius of the initial sphere was set
R = 25 Mpc and the total mass M = 5.8× 1015 M�. For dark matter particles we set the cool-
core profile (γ = 1) and for ideal gas we chose the non cool-core option (γ = 0). Exact values of
numbers of particles, total masses and scale factors for both types of particles are listed in Table
4.3. The mean initial temperature of ideal gas was set to 4× 106 K. The simulation was started
from redshift z = 3 (a = 0.25). The initial density profile can be found in the Graph 4.3 and the
initial temperature profile in the Graph 4.4. The radius scales of both graphs are logarithmic with
the radii resolution 5 kpc.

Particle type Number of particles Total mass [M�] Scale factor [Mpc] Gamma γ

Dark matter 1283 4.93×1015 12 1
Ideal gas 1283 0.87×1015 12 0

Table 4.3: Initial parameters for both types of particles.

The values of softening length parameters were set to the mean particle spacing (for uniform
particle distribution) divided by the factor 35 as in Springel (2005b). For both types of particles the
values were set to 8 kpc. For gas was also included the adaptive gravitational softening which was
chosen in the makefile.
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Figure 4.3: Initial density profiles of both gas and dark matter particles compared to their analytic
represenations – Dehnen’s profile (γ = 1) and Hernquist’s profile (γ = 0).

Figure 4.4: Initial temperature profile of gas in a non cool-core cluster. Mean temperature at
redshift z = 3 is 4×106 K.
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4.2.2 Simulation

The simulation of the Virgo cluster was ran with the initial conditions showed in the Subs. 4.2.1 and
cosmological parameters listed in Table 4.4. We tried also different parameters and cosmologies,
but for the flat ΛCDM cosmology (Ω = ΩΛ +Ωm = 1) with these parameters we got the best match
with the cluster’s measurements. The values of main cosmological parameters were taken from
NASA/IPAC Extragalactic Database (NED 2017) for the Virgo cluster and the value of Hubble
constant was taken from the analysis (Riess et al. 2019) of the latest measurements of Cepheids by
Hubble Space Telescope (HST). The link to the whole parameter-file can be found in the Appendix.
The final density map can be found in the Figure 4.5 and the final density profile in the Figure 4.6.
Profiles of other quantities compared with the measured profiles by Urban (2011) are shown in
Figures 4.7, 4.8, 4.9 and 4.10.

Parameter Value
Ωm 0.308
ΩΛ 0.692
Ωbar 0.045

h 0.740

Table 4.4: Values of main cosmological quantities used in the Virgo cluster simulation.

Figure 4.5: Density map of central parts of the cluster. Shells surrounding the cluster core are
formed mostly from dark matter. Link to full visualization can be found in the Appendix.
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Figure 4.6: Final density profile of dark matter and ideal gas out to the virial radius r200 = 2.15Mpc
fitted with the NFW and beta-profiles. The concentration parameter of the dark matter density
profile was fitted to c = 16.2 and the beta parameter of the gas profile to β = 0.73.

Figure 4.7: Temperature profile of ideal gas from the model compared to the measured profile of
the Virgo cluster.
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Figure 4.8: Electron density profile of ideal gas from the model compared to the computed profile
of the Virgo cluster and the power-law fit (1.21±0.12).

Figure 4.9: Entropy parameter A(s) profile of ideal gas from the model compared to the computed
profile of the Virgo cluster and the power-law fit (β = 1.1).
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Figure 4.10: Pressure profile of ideal gas from the model compared to the deprojected measured
profile of the Virgo cluster.

4.2.3 Discussion

The initial density profiles of particles from the generated IC file (Figure 4.3) fit well with their
analityc profiles (Dehnen’s and Hernquist’s profile) and differ only due to fluctuations. The tem-
perature profile (Figure 4.4) corresponds to the profile of a non-cool core cluster and the mean
temperature is nearly 4×106 kelvins.

The density map in the Figure 4.5 shows the final density layout of both dark matter and ideal
gas particles. The density map is zoomed into central parts of the cluster to show the density shells
surrounding the cluster’s core. The presence of density shells is not pretty clear. Similar shells
appear at so-called shell galaxies, but their expected mechanism of creation is quite different from
simple spherical collapse as in our simulation. The full visualization of the Virgo cluster simulation
containing the time evolution of the density map, density profile and temperature profile is enclosed
in the Appendix. As can be seen in the visualization it is mostly dark matter what forms the shells.
The density profile of gas is much smoother, but shells are also included.

The final density profiles of dark matter and ideal gas were compared with NFW a beta profiles.
The concentration parameters (slopes of profiles) of both components lie within an expected range.
The virial mass extracted from the NFW profile M200 = 1.22M� (virial radius 2.12Mpc) well
corresponds to the masses measured by Fouqué et al. (2001) and Lee et al. (2015). The beta
parameter for gas fitted from the model (β = 0.73) lies within the standard error from the value
β = 0.81±0.08 obtained by Urban (2011).

The temperature profile correlates with the measurements mainly in the outskirts of the cluster;
in the central parts the measured temperature is slightly lower. The mean temperature of the model
out to the virial radius is 1.9 keV and the measured is 2.3 keV (Urban et al. 2011). Profiles
of electron density and entropy parameter correspond in the order to measured profiles but their
slopes differ. On the other hand the pressure profile fits quite well.



Conclusion

In this thesis, we focused on cosmology, specifically on computer numerical simulations of galaxy
clusters. The purposes of the thesis were to get elementary knowledge of cosmology, clusters of
galaxies and their properties and to learn how to run basic cosmological simulations and compare
the results with measurements of clusters.

In the theoretical part, we discussed the most important cosmological quantities and their re-
lations. We briefly showed the use of Friedman equations in a homogeneously and isotropically
expanding Universe. We then discussed the effect of density parameters on the geometry of the
space. In Chapter 2, we focused on galaxy clusters. We showed how clusters can be observed and
how some of the main cosmological quantities can be determined. We also took a further look at
one of the best known and nearest cluster – the Virgo cluster. In the third Chapter, we revealed
the cosmological code Gadget-2 that we used for all our simulations. We mentioned its major
dynamical and hydrodynamical equations and some of approximate and decomposition methods.

In the first section of the practical part (Section 4.1), we provided a galaxy cluster simulation
with default Gadget-2 initial conditions to show how this code works. We visualized the initial
(Figure 4.1) and final (Figure 4.2) density map with all types of particles (halo, disk and bulge). In
the final density map, we can see the densest central region which corresponds to the core of the
cluster. It is often a large elliptical galaxy, as in the case of the Virgo cluster. The clumps of matter
around the central parts of the cluster may correspond to satellite galaxies.

The second section of the practical part (Section 4.2) was focused on producing own initial
conditions using the Clustep script and applying those on the Virgo cluster simulation. After huge
amount of simulations, we found the optimal initial conditions (Subs. 4.2.1). The initial density
profiles (Figure 4.3) of both types of particles were compared with their ideal profile. We also
produced the initial temperature profile (Figure 4.4) to show that the generated cluster has a non-
cool core.

With acquired initial conditions, we ran a classical galaxy cluster simulation from the cosmo-
logical redshift z = 3 up to now (z = 0.0047 for the case of Virgo cluster; NED 2017) and tried
to obtain a model with properties similar to the Virgo cluster (Section 2.3). In the simulation,
we used the flat ΛCDM cosmology with parameters listed in Table 4.4. The final density map
showing central parts of the cluster can be found in the Figure 4.5 – the Figure shows the cluster
core surrounded by shells of gas and dark matter. Similar shells can be found in halos of special
types of elliptical galaxies so-called shell galaxies. In the shell galaxies the shells are though to
develop after the collision with smaller galaxy (Glos 2015, Petrovská 2018). In our simulation the
shells developed from spherically symmetrical collapse as the density waves of dark matter and
gas particles.

The final density profiles were compared to the NFW (2.5) and beta (2.7) profiles (Figure 4.6).
We also compared the profiles of main quantities that describe the intracluster medium (listed in
Chapter 2) to X-ray measurements of the Virgo cluster (Urban et al. 2011). The Figures 4.7, 4.8,
4.9 and 4.10 show the temperature, electron density, entropy and pressure profiles of the ideal gas
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compared to measured profiles and their power-law fits. The temperature and pressure profiles well
correspond to the measured profiles. Profiles of electron density and entropy have quite different
slopes than the measured ones, but they at least correspond in the order of the magnitude. However,
the fits of measured profiles, especially of the entropy function profile, may look quite different for
higher resolution measurements.

The constructed model is not very complex and deserves some improvements – in the first
place, it could also include metalicity. For different initial conditions with more fitted parameters
the conformity with measured profiles could be even better.

The main purpose of this thesis was not to acquire new estimations to some crucial cosmologi-
cal parameters or properties of the Virgo cluster but to learn the basic systematics of cosmological
simulations and to get the elementary knowledge of cosmology. The thesis may also be used as a
guide for other students interested in cosmological simulations.



Appendix

Links

Makefiles

Default ICs – https://is.muni.cz/auth/th/i3yrm/appendix/makefiles/Makefile_default

Virgo cluster – https://is.muni.cz/auth/th/i3yrm/appendix/makefiles/Makefile_Virgo

Parameter files

Default ICs – https://is.muni.cz/auth/th/i3yrm/appendix/params/parameters_default

Virgo cluster – https://is.muni.cz/auth/th/i3yrm/appendix/params/parameters_virgo

Simulation gifs

Default ICs – https://is.muni.cz/auth/th/i3yrm/appendix/gifs/cluster_default.gif

Virgo cluster - https://is.muni.cz/auth/th/i3yrm/appendix/gifs/cluster_virgo.gif

Python scripts

2D density map - https://is.muni.cz/auth/th/i3yrm/appendix/scripts/map.py

Density profile - https://is.muni.cz/auth/th/i3yrm/appendix/scripts/density.py

Temperature profile - https://is.muni.cz/auth/th/i3yrm/appendix/scripts/temp.py

Electron density profile - https://is.muni.cz/auth/th/i3yrm/appendix/scripts/electron_density.py

Entropy profile - https://is.muni.cz/auth/th/i3yrm/appendix/scripts/entropy.py

Pressure profile - https://is.muni.cz/auth/th/i3yrm/appendix/scripts/pressure.py
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