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Abstrakt

Radiová emise pulsarů je úzce spjata s procesy v jejich magnetosféře.
Rotujícímagnetické pole vytváří konvektivní elektrická pole, které jsou
kompenzovány Goldreich-Julianovými proudy všude kromě oblastí
v polárních čepičkách, které mají nízkou hustotu plazmatu. V těchto
oblastech dochází k řadě plasmových nestabilit během takzvaných
jiskrových událostí, které jsou zdrojem rádiové emise.

Konvektivní elektrické pole urychluje částice na ultrarelativistické
rychlosti a ty poté emitují γ fotony, které se rozpadají na elektron-
pozitronové páry. Cílem práce je analyzovat časový vývoj jiskrové
události pomocí particle-in-cell kódu TRISTAN s nezbytnými imple-
mentacemi vzniku nových částic v gyrokinetické aproximaci v ex-
trémně silných magnetických polí.

Abstract

The radio emission of pulsars is closely connected with processes
in their magnetospheres. The rotating magnetic field creates a con-
vective electric field that is compensated by Goldreich-Julian currents
everywhere except the polar caps regions with low plasma density.
In these regions, a number of instabilities occur during so-called spark-
ing events which are the sources of radio emission.

The convective electric field accelerates the particles to ultrarel-
ativistic velocities and the particles then emit γ-ray photons which
decay in electron–positron pairs. The goal of the thesis is to analyse the
time evolution of the sparking event using TRISTAN particle-in-cell
codewith necessary implementations of pair creationwith gyrokinetic
approximation in strong magnetic fields.
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Introduction

Neutron stars are the second densest objects in the universe after black
holes. With their high density, small radius and possible strong mag-
netic field, they are a unique space laboratories for extreme conditions.
Despite their not-so-recent discovery, there is still a lot we do not know
about them.

Pulsars as one type of neutron stars have short rotating periods in
the order of seconds andmagnetic field up to 1012 G. Both high-energy
and radio emission originates in their magnetosphere. Themechanism
of pulsar radio emission is still quantitatively unknown. There are
several theories and possible explanations but nonewas yet completely
able to explain the observations.

In the last years with the advancement in numerical simulations,
closer study of the radio emission processes was possible. The impor-
tant work simulating the first self-consistent spark event and the pair
creation with all necessary physical processes was done by Timokhin
(2010, 2013) andArendt and Eilek (2002). Some numerical studies and
particle-in-cell simulations of pair cascademodels were also presented
recently by F. Cruz et al. (2022).

In the first chapter of this thesis, the main properties of pulsars
as well as neutron stars are described with the general description
of the sparking event. In the second chapter, the basic principles of
the particle-in-cell method are presented with the specification of the
TRISTAN code. In the third chapter, the implementations of the condi-
tions of the pulsar magnetosphere with a simplified pair production
model are presented. They are followed by analyses of two simula-
tions of the spark event, one with periodic boundaries and one with
absorbing boundary conditions.
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1 Neutron stars

The existence of a neutron star was predicted by Baade and Zwicky
(1934) long before its observation and just two years after the discovery
of a neutron. Shortly after them Oppenheimer and Volkoff (1939)
presented a simple equation of state to describe the internal structure
of the neutron stars and to predict their mass, radius and density.

The general idea was that neutron stars were created after a super-
nova explosion and were composed primarily of neutrons. As such,
they would have a very small radius and very high density. Pacini
(1967) presumed that as magnetized rotating stars they were observ-
able in X-rays. Nobody expected them to be a source of radio emission
(Lyne and Graham-Smith 2012).

The first observation and confirmation of their existence came
in 1967 by Jocelyn Bell Burnell and Antony Hewish. At first, the signal
was considered as background noise from the Earth but the signal was
repeating at regular intervals and they concluded it was connected
to an oscillation of a neutron star (Hewish et al. 1968).

There are different types of neutron stars. The first ones are pulsars,
neutron stars with periodical pulses of radio emission. Their rotational
axis is not parallel with their magnetic axis (along which can be ob-
served radio emission). As the star rotates the beam can be periodically
observed from the Earth, a principle similar to a lighthouse (Lorimer
and Kramer 2004).

The second type of neutron stars are magnetars, which are named
for their strong magnetic field around 1015 G and complex magneto-
sphere. Next are millisecond pulsars with periods in the order of mil-
liseconds. They are created in binary systems as a result of interaction
between two stars (Lyne and Graham-Smith 2012).

1.1 Physical properties

When stars with an initial mass between 8 to 20 M⊙ run out of nu-
clear fuel, their iron core collapse under its own gravitational force.
If the mass of the core is greater than 1.4 M⊙, the process results
in a neutron star. The potential energy is released as a Type II super-
nova. The collapsed core, now a neutron star, has a mass between
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1. Neutron stars

1.4 to 2 M⊙, with the upper limit still not precisely determined (Lyne
and Graham-Smith 2012).

The exact equation of state for the neutron star is unknown and
so is the radius for a given mass. Based on various theories and equa-
tions of state the expected radius is around 10 km. The limitation
of the radius comes with the fast rotation and necessary balance be-
tween gravity and centrifugal force

Ω2R =
GM
R2 , (1.1)

where Ω is the angular velocity, M is the mass, G is the gravitational
constant and R is the radius. For period P = 2π/Ω we get

Rmax =

(
GMP2

4π2

)1/3

= 1.5 × 103
(

M
M⊙

)1/3

P2/3 km. (1.2)

For the fastest millisecond pulsar PSR J1748–2446ad (Hessels et al.
2006)with period 1.4milliseconds the upper limit of the radius is 21 km
for mass 1.4 M⊙.

The internal structure and composition are different from the clas-
sical matter in other stars. The neutron stars consist of degenerate
neutron gas with a very high density similar to the density of nuclear
matter 1014 g cm−3. Observations of young pulsars point to a solid
crust and liquid interior with growing density towards the centre.
However, the precise nature of the inner core is still debated and
generally unknown. Above the core are superfluid neutrons which
compose the largest part of the neutron star. The solid crust contains
mostly free electrons (Lorimer and Kramer 2004).

1.2 Magnetars

Magnetars can be considered as a specific type of neutron stars or
they can represent an extreme case of pulsars. Also, they are known
as soft gamma-ray repeaters or anomalous X-ray pulsars. The main
difference is in the magnetic field which is 1013 − 1015 G, much higher
than a normal neutron star. They have a longer rotational period of up
to 10 s. Emitted electromagnetic radiation is primarily in X-rays and
gamma rays (Lyne and Graham-Smith 2012).
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1. Neutron stars

1.3 Milliseconds pulsars

The millisecond pulsars are named after their rotational period in the
order of milliseconds. They are created in a binary system as a result of
mass transfer onto the already created neutron star. Together with the
mass the angular momentum is also transferred and causes a higher
rotation speed. Before the interaction, the neutron star was in the
process of decay and may have stopped emitting electromagnetic
radiation but with the new material and faster rotation, it becomes
a radio emitter once again which is why they are also called ‘recycled’
pulsars (Lyne and Graham-Smith 2012).

1.4 Pulsars

Pulsars are very highly magnetized neutron stars with the magnetic
field 1010 − 1012 G. As mentioned before, the pulses are created when
the beam of radiation emitted from the magnetic poles is in the line of
sight of the observer, like a lighthouse effect. With time the rotation
of the star, which is the same as the period of pulses, slows down be-
cause the rotational energy is transformed into high-energy radiation
(Lorimer and Kramer 2004).

1.5 Magnetosphere

The surrounding of the pulsar is filled with plasma and dominated
by the magnetic field. Plasma co-rotates with the pulsar up to the
imaginary boundary called light cylinder where the velocity of plasma
reaches the speed of light c. The distance of the light cylinder can be
easily calculated as

RLC =
c
Ω

=
cP
2π

, (1.3)

with angular velocity Ω and period P (Hessels et al. 2006).
The existence of a light cylinder divides the magnetosphere into

an equatorial and a polar region. The equatorial region is defined by
closed magnetic field lines and the particles are trapped in this region.
Whereas the particles in the open magnetic field lines in the polar
region can flow out along those lines.
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1. Neutron stars

The simplestmodel of themagnetospherewith themagnetic dipole
moment aligned with the rotational axis was described by Goldreich
and Julian (1969). The rotating magnetic field induces a convective
electric field which is balanced by a charge distribution creating elec-
tric field E. If there is enough plasma, it results in a force-free state
at position r with magnetic field B

E +
1
c
(Ω × r)× B = 0. (1.4)

The force-free state can be found primarily in the closed magnetic field
lines.

Figure 1.1: Model of the pulsar magnetosphere. The illustration is not
to scale (Lorimer and Kramer 2004).

In Figure 1.1 are shown two acceleration gaps located in the po-
lar region. In these gaps depleted of plasma the convective electric

6



1. Neutron stars

field is no longer shielded and can then accelerate particles along
the magnetic field lines to relativistic energies. Accelerated particles
in the inner polar gap may be responsible for radio emission that we
observe and the outer gap acceleration is the source of high energy
radiation (Hessels et al. 2006).

1.5.1 Radio emission

The mechanism of radio emission is still not precisely understood.
Normal radio emission, emission observed in older pulsars, is created
in a smaller region within the polar cap in a spark event. The source
of energy is the electric field induced by the rotating magnetic field.
The electron-positron plasma accelerated by this electric field is as-
sumed to originate in a pair cascade.

The basic principle of a pair cascade is shown in Figure 1.2. Electron
or positron is accelerated along the magnetic field line and produces
γ-ray photonwhich then can decay and create a new electron–positron
pair. The energy of the photon must be at least twice the rest energy
of an electron

Eγ ≥ 2mec2. (1.5)
These secondary particles can too produce photons and thus creating
an avalanche of secondary pair plasma. This secondary plasma is re-
sponsible for radio emission by coherent curvature radiation process
(Eilek and Hankins 2016).

Figure 1.2: Goldreich-Julian model of pulsar magnetosphere with a
scheme of electron-positron pair cascades at the polar gap region
(Lorimer and Kramer 2004).
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2 Particle-in-cell simulation

There are two different approaches to simulate a plasma – kinetic
and fluid descriptions. Each one is used for different time and space
scales. In a pulsar magnetosphere with collisionless plasma and a de-
scription of instabilities causing the radio emission on a microscopic
level, the kinetic model is more relevant. In this thesis, we analyse
a model of a pulsar polar cap sparking event using kinetic simulations
of plasma.

In magnetohydrodynamic (MHD) simulation the plasma is de-
scribed as a fluid and generally averaged quantities, for example,
density or pressure are calculated. Particle-in-cell (PIC) simulation
is based on the kinetic description of plasma and the position and
velocity of each macroparticle are calculated.

2.1 Kinetic equations

The kinetic model describes plasma with a velocity distribution func-
tion f (x, v, t). The time evolution is calculated by the Vlasov equation,
collisionless Boltzmann equation, where particles feel only the Lorentz
force [

∂

∂t
+ v · ∂

∂x
+

qα

mα
(E + v × B)

∂

∂v

]
fα = 0, (2.1)

where α represents the particle species present in the plasma, q is the
charge and m is the mass of the particle.

The equation is solved indirectly by applying Liouville’s theorem
where in a collisionless plasma the distribution function f is invariant
along the trajectories in the 6D phase space. It can be solved in a set of
ordinary differential equations

dv
dt

=
q
m

[E + v × B] ,
dr
dt

= v. (2.2)
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2. Particle-in-cell simulation

Maxwell equations describe the electric and magnetic field

∇ · E =
ρ

ϵ0
,

∇ · B = 0,

∇× E = −∂B
∂t

,

∇×B = µ0 J + µ0ϵ0
∂E
∂t

,

(2.3)

where ρ is the charge density and J is the electric current density,
which can be calculated as

ρ = ∑
α

qα

∫
dv3 fα,

J = ∑
α

qα

∫
dv3v fα.

(2.4)

2.2 PIC method

Particle-in-cellmethodwas first developed in the 1950s (Dawson 1983).
To get the best result in the approximation in equations 2.2, a large
number of particles is required. The solution can be challenging and
instead of real particles, a fixed number of macroparticles is used.
One macroparticle may represent a number of real particles which
have similar trajectories in the phase space with the charge/mass ratio
conserved. The simulation can support around 1012 macroparticles.

The shape of the macroparticle is not point-like but is described
by a shape function which can be, for example, the Gaussian function.
The velocity distribution function is then a superposition of individual
macroparticles p with distribution fp

f (x, v, t) = ∑
p

fp (x, v, t) . (2.5)

The collective behaviour of plasma and interaction between each
particle is also modified. Particles interact only with the grid points
as is shown in Figure 2.1. The movement of particles causes a change
in the current density J deposited on the grid, which in turn causes

10



2. Particle-in-cell simulation

a change in the electric and magnetic field also calculated on the grid.
The number of interactions N is reduced from ∼ N2 to N and the cal-
culations are more efficient.

Figure 2.1: The main principle of the PIC method. Interactions between
individual particles are replaced by interactions between the particle
and the grid. The number of calculations then scales only linearly
on the number of particles N (Cerutti 2015).

2.3 TRISTAN code

TRISTAN stands for TRI-dimensional STANford code. It is three di-
mensional, fully electromagnetic, relativistic code first introduced by
O. Buneman and Storey (1985) for planet magnetosphere simulation.
The code is also used in this thesis with somemodifications to describe
the conditions in the pulsar magnetosphere near the polar cap.

The basic computational scheme is shown in Figure 2.2. The code
is fully self-consistent after the initial deposition of particles and fields
on the mesh. First, the particles move and equations 2.2 are solved
by a so-called particle push. Then, the particle current is interpo-
lated to the grid where, lastly, the Maxwell equations 2.3 are solved
by the field solver algorithm. With the interpolation of the fields from
the grid to the positions of the particles, the loop starts again.

11



2. Particle-in-cell simulation

Figure 2.2: Computational scheme in PIC model (Benáček 2019).

TRISTAN code calculates with relative scales where ϵ0 = 1 and
µ0 = 1/c2. The symmetry between electric E = (ex, ey, ez) and mag-
netic B = (bx, by, bz) field is expressed with components of the mag-
netic field multiplied by the speed of light cB.

The Lorentz force from equations 2.2 and Maxwell equations 2.3
are solved with a leapfrog integration method. The position and veloc-
ity are staggered by half a time step, similarly the electric andmagnetic
field. The advantage is stability for oscillatory motion with a better
conservation of energy.

Figure 2.3: Representation of the leapfrog method. The position r and
velocity v are staggered in time by a half-step (Cerutti 2015).

12



2. Particle-in-cell simulation

2.3.1 Particle push

The discretized differential equations 2.2 with a time step ∆t are

vnew = vold +
q∆t
m

[
E +

1
2

(
vnew + vold

)
× B

]
,

rnext = rpresent + ∆t vnew.
(2.6)

The code uses the Boris push that is based on an idea to calculate
the particlemotion in three steps (Birdsall andLangdon 1991;Hockney
and Eastwood 1981): the first half of the electric force

v0 = vold +
qE∆t
2m

, (2.7)

then the full magnetic rotation

v1 = v0 + 2
v0 × v0 × b0

1 + b2
0

× b0 (2.8)

and the second half of the electric force

vnew = v1 +
qE∆t
2m

. (2.9)

2.3.2 Current deposition

The direct current deposition scheme is applied in TRISTAN without
using or calculating the charge density array. With the algorithm
proposed by Villasenor andOscar Buneman (1992), the charge density
is conserved without any additional steps.

The integer grid points (i, j, k) represents the rounded positional
value

i = round(x), j = round(y), z = round(z),

with the volume weighted distances

δx = x − i, δy = y − j, δz = z − k.

13



2. Particle-in-cell simulation

The electric field at a point (i, j, k) is modified by the current density
J = (jx, jy, jz)

ex(i, j, k) = ex(i, j, k)− jx · cy · cz,
ex(i, j + 1, k) = ex(i, j + 1, k)− jx · δy · cz,
ex(i, j, k + 1) = ex(i, j, k + 1)− jx · cy · δz,

ex(i, j + 1, k + 1) = ex(i, j + 1, k + 1)− jx · δy · δz,

ey(i, j, k) = ey(i, j, k)− jy · cx · cz,
ey(i, j + 1, k) = ey(i, j + 1, k)− jy · δx · cz,
ey(i, j, k + 1) = ey(i, j, k + 1)− jy · cx · δz,

ey(i, j + 1, k + 1) = ey(i, j + 1, k + 1)− jy · δx · δz,

ez(i, j, k) = ez(i, j, k)− jz · cy · cx,
ez(i, j + 1, k) = ez(i, j + 1, k)− jz · δy · cx,
ez(i, j, k + 1) = ez(i, j, k + 1)− jz · cy · δx,

ez(i, j + 1, k + 1) = ez(i, j + 1, k + 1)− jz · δy · δx,

where

cx = 1 − δx, cy = 1 − δy, cz = 1 − δz.

2.3.3 Field solver

The electric and magnetic fields are calculated from two time depen-
dent Maxwell equations 2.3. As mentioned before they are staggered
in time in the Yee algorithm (Yee 1966), used in TRISTAN as a field
solver, and also in space. This intrinsically enforces the two divergence
Maxwell equations.
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2. Particle-in-cell simulation

The time change of B in one time step is

bnewx (i, j, k) = boldx (i, j, k)

+ c∆t
[

ey(i, j, k + 1)− ey(i, j, k)
∆z

− ez(i, j + 1, k) + ez(i, j, k)
∆y

]
,

bnewy (i, j, k) = boldy (i, j, k)

+ c∆t
[

ez(i + 1, j, k)− ez(i, j, k)
∆x

− ex(i, j, k + 1) + ex(i, j, k)
∆z

]
,

bnewz (i, j, k) = boldz (i, j, k)

+ c∆t
[

ex(i, j + 1, k)− ex(i, j, k)
∆y

− ey(i + 1, j, k) + ey(i, j, k)
∆x

]
.

For the numerical stability of the code, the change of the magnetic
field is calculated in two half-advance time steps ∆t = 0.5. This way,
B is available for the particle push at the same time as E. The advance
of the electric field is computed after the magnetic field half-advance
in a similar way

enewx (i, j, k) = eoldx (i, j, k)

+ c∆t
[

by(i, j, k − 1)− by(i, j, k)
∆z

− bz(i, j − 1, k) + bz(i, j, k)
∆y

]
,

enewy (i, j, k) = eoldy (i, j, k)

+ c∆t
[

bz(i − 1, j, k)− bz(i, j, k)
∆x

− bx(i, j, k − 1) + bx(i, j, k)
∆z

]
,

enewz (i, j, k) = eoldz (i, j, k)

+ c∆t
[

bx(i, j − 1, k)− bx(i, j, k)
∆y

− by(i − 1, j, k) + by(i, j, k)
∆x

]
.

The stability of the algorithm is given by a Courant-Friedrichs-
Lewy (CFL) condition in 3D (Courant, Friedrichs, and Lewy 1928)

c∆t <
∆x√

3
, (2.10)
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2. Particle-in-cell simulation

where ∆t is the time step, ∆x is a cell dimension and c is the speed
of light in the simulation. The interpretation is that the time necessary
for the signal to travel the distance of one cell cannot be less than one
time step. In TRISTAN the values are normalized to c = 0.5, ∆t = 1
and ∆x = 1.

2.3.4 Boundary conditions

The outer boundaries of the computing domain are implemented
based on the studied environment. In our simulations we use two
types of boundaries. For the y and z axis we use periodic boundary
conditions. In the x axis we use periodic or absorbing boundary con-
ditions for both particles and fields.
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3 Implementations and results

3.1 Implementations in the code

It was necessary to implement some modifications into the TRISTAN
code to simulate conditions in the pulsar magnetosphere. Specifically,
the gyrokinetic approximation for particles in a strong magnetic field,
the addition of a convective electric field created by the rotation of
the pulsar and a pair production model.

3.1.1 Gyrokinetic approximation

A gyromotion is a circular motion of charged particles perpendicular
to the magnetic field lines. Stronger magnetic field B imply smaller
radius of the gyromotion ρ

ρ =
v⊥m
|q|B , (3.1)

where v⊥ is the perpendicular velocity,m is themass and q is the charge
of the particle.

The perpendicular component of the momentum is promptly radi-
ated as synchrotron photons and the particles have only the parallel
velocity (Timokhin 2010). Because of the rapid radiation of the per-
pendicular momentum in a strong magnetic field, we can calculate
only with the parallel component throughout the simulation.

The velocity of particles at the beginning of the simulation is given
by a velocity distribution function in a general direction with both par-
allel and perpendicular components. In the first time step, a projection
into the direction of the magnetic field is calculated

v∥ =
v · B
|B|2 B (3.2)

and the perpendicular velocity is set to zero. The demonstration
of the implementation is in Figure 3.1. At the beginning, the veloc-
ity of the particles is distributed in both axis and in the next time
step the particles have only the velocity parallel to the magnetic field
in the x axis.
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3. Implementations and results
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Figure 3.1: Test of the gyrokinetic approximation. Distribution of veloc-
ity in x and z axis in the beginning is on the left. In the next time step af-
ter the projection into the direction of themagnetic field is on the right.

3.1.2 Convective electric field

The numerical implementation of theMaxwell equations 2.3 calculates
only the local change in the electric and magnetic field but the rotation
of the pulsar creates a convective electric field that we have to take
into account. The value of the convective electric field is established
in the configuration of the simulation and is added up in every time
step to the local electric field.

3.1.3 Pair creation

The fundamental process of pair creation is described in section 1.5.1.
The pairs are created by the absorption of photons in the magnetic
field in quantum electrodynamics (QED) processes. In this thesis, we
use a simplified model of pair production.

The new pair is created when an electron or a positron is acceler-
ated and its Lorentz factor reaches a threshold value γth. Secondary
particles are created in the same place as the primary particle (photons
have a zero mean free path) and the energy of the photon is equally
split between them (Fábio Cruz, Grismayer, and Silva 2021).

3.2 Numerical Cerenkov radiation

In simulations with relativistic plasma and high energy particles, a nu-
merical Cerenkov radiation can be created. The problem is in the Yee
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3. Implementations and results

method used as a field solver, where high frequency waves propagate
slower than the speed of light. Relativistic particles near the speed
of light are therefore faster than their radiation. The problem can be
solved by using a Friedman filter as described in Greenwood et al.
(2004).

The normalized intensity of the electric field in 2D simulation
is shown in Figure 3.2. The dimensions were 100∆ × 8∆ × 100∆ and
the parameters of the simulation were e = 0.003125, me = 0.0625,
c = 0.5, vtb = 1c and ωp∆t = 0.0125. On the left is the intensity
without the Friedman filter. We can see sharp changes from one cell
to the next with a regular pattern. On the right graph was a simu-
lation with the same conditions and parameters with the addition
of the Friedman filter θ = 0.1. The oscillations are reduced and the de-
velopment is more smooth without any sudden changes between two
grid cells.
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Figure 3.2: Comparison of the normalized intensity of the electric field
without the Friedman filter (left) and with the Friedman filter θ = 0.1
(right).

3.3 Simulations

We performed two 1D simulations of electron–positron plasma, actual
3D simulations with one dominant axis parallel to the magnetic field.
The only difference was in boundary conditions. Simulation I had
periodic boundaries representing a closed magnetic field line. Sim-
ulation II had absorbing boundaries simulating open magnetic field
lines.
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3. Implementations and results

Common parameters of both simulations are in Table 3.1. We
start with one electron and one positron per cell and a plasma fre-
quency ωp,i. The number of particles increased during the simulation
due to the pair creation. Consequently, a new plasma frequency was
calculated ωp with the maximum number of particles in the simula-
tion.

The electron skin depth associated with ωp is de = c/ωp ≈ 11.1 ∆.
With a typical frequency for electron–positron plasma fp = 1 GHz,
the electron skin depth is de = c/(2π fp) ≈ 4.77 cm. The length of
the simulations in x axis is then approximately 25.8 m.

Table 3.1: Common parameters of both simulations.

Parameter Value
Dimensions 6000∆ × 8∆ × 8∆
Particle density per cell ni 1
Speed of light c 0.5
Permittivity of the vacuum ϵ0 1
Mass of the particles me = mi 0.0625
Elementary charge e 0.003125
ωp,i∆t 0.0125
ωp∆t 0.045
ωce/ωpe 1000000
Particle thermal velocity vtb 1c
Friedman filter θ 0.1
γth 200
Energy ratio in decay 0.1
Magnetospheric current density (0.01, 0, 0)

A ratio between electron cyclotron frequency and electron plasma
frequency ωce/ωpe corresponds directly to the value of the magnetic
field. The threshold for the Lorentz factor γth in both simulations
is γth = 200 which corresponds to the physical value γth ∼ 107 (F.
Cruz et al. 2022). Our model of the pair creation depends mainly
on the value of γth. With higher value, the particles in Simulation
II leave the simulation before they are accelerated enough to create
secondary particles.
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3. Implementations and results

When a primary particle reaches a Lorentz factor γth a part of its
kinetic energy is used to create secondary particles with both kinetic
and rest energy. The amount of kinetic energy used in this process
is determined by the energy ratio in decay parameter. A particle at rest
with charge e = 1 and mass m = 1 is in one time step accelerated
by the convective electric field Econ = 0.01 to one hundredth the speed
of light. The convective electric field is set by themagnetospheric current
density parameter.

3.3.1 Kinetic energy

The time evolution of the total kinetic energy in simulations is shown
in Figure 3.3. Both startwith an acceleration of particles and an increase
in kinetic energy. Around the time step ωpt = 40, the first pair creation
starts.

In Simulation I, the kinetic energy after the pair creation starts
to oscillate. The amplitude gradually decreases due to the compensa-
tion of the convective electric field by the particle current. When the
electric field is completely screened the kinetic energy is stabilized
with no new spark events.
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Figure 3.3:Time evolution of the kinetic energy normalized to the initial
kinetic energy. On the left is Simulation I with periodic boundaries.
On the right is Simulation II with absorbing boundaries.

In Simulation II, the evolution of the kinetic energy is the same
as in Simulation I until around the time ωpt = 600. In the first spark
event, oscillations and compensation of the electric field are the same,
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3. Implementations and results

with different stabilized values of the kinetic energy because of the out-
flow of the particles from the simulation. When there are not enough
particles to screen the electric field anymore a new spark event starts
and the kinetic energy rises again.

3.3.2 Energy of the electric field

In Figure 3.4 is the time evolution of the electric energy Ex in the axis
parallel to the magnetic field. In the beginning, the energy of the elec-
tric field increases because of the convective electric field Econ added
in every time step. After the start of the pair cascade, the electric field
is gradually compensated and starts to oscillate with a change of po-
larity. The oscillations in the energy of the electric field Ex correspond
to the oscillations in the kinetic energy Ek.
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Figure 3.4: Time evolution of the electric energy in x axis normalized to
the initial kinetic energy. Simulation I is on the left and Simulation II
is on the right.

To better understand the correspondence we compare the electric
energy and the kinetic energy from Simulation I as shown in Figure
3.5. With the increase in the electric energy, the particles are acceler-
ated until around time ωpt = 40 first secondary particles are created.
A gentle stagnation in the kinetic energy at the start of the pair creation
is caused by the transformation of the kinetic energy of the primary
particle to the rest energy of the secondary particles.

Adecrease in the electric energy corresponds to an increase in the ki-
netic energy. Themore accelerated the particles are the bigger is the cur-
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3. Implementations and results

rent screening the electric field. When the kinetic energy reaches
a maximum, for example, in time ωpt = 50, the electric field changes
its polarity. With the changed polarity the particles are accelerated
in the opposite direction.

The little rise in the kinetic energy, for example, between ωpt = 60
and ωpt = 75 is caused by a significant change in the direction ofmove-
ment of particles.
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Figure 3.5: Comparison of the energy of the electric field with the ki-
netic energy during the pair cascade in Simulation I. Both are normal-
ized to the initial kinetic energy Ek,0.

3.3.3 Spark event in the phase space

The distribution of electrons in the phase space is shown in Figure
3.6. At the beginning of the simulation, the electrons are distributed
the same way in both simulations.

In themiddle row,we can see accelerated particleswith Lorentz fac-
tor near the γth in the whole length of the simulation. This means that
the pair creation starts at the same time in every grid cell of the simula-
tion. That is because the conditions are the same and as soon as a par-
ticle reaches the threshold value γth secondary particles are created.
The bottom horizontal line in the phase space represents the primary
particles. The rest of the horizontal lines are the consecutive decays of
the primary particles. The first spark event is in both cases in the whole
length of the simulation.
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(a) Simulation I
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(b) Simulation II

Figure 3.6:Aphase space for electrons in three different parts of the sim-
ulation. At the top is the initial distribution of electrons. In the middle
is the beginning of the pair cascade. At the bottom is the stabilization
in Simulation I and new spark event in Simulation II.
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At the bottom left subfigure is the end of Simulation I with stabi-
lized kinetic energy and completely screened electric field. The pri-
mary particles are still separated in velocity from the secondary par-
ticles. The secondary particles are no longer in separated horizontal
lines but they are blended together.

At the bottom right is the new spark event in Simulation II. The new
pair creation is different and does not happen in the whole length of
the simulation at the same time. Only in certain places is the accelerat-
ing electric field not screened and bunches of particles are created.

3.3.4 Intensity of the electric field

The time evolution of the intensity of the electric field is shown in Fig-
ure 3.7. In both cases, we start with the same value in every cell
of the simulation. The initial intensity of the electric field is zero.
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Figure 3.7: Time evolution of the intensity of the electric field across
the simulation. On the left is Simulation I and on the right is Simula-
tion II.

In Simulation I, the oscillations following the start of the pair
cascade are uniform throughout the whole length of the simulation.
The homogeneity is reflected in the horizontal lines in the phase space
in Figure 3.6. With time, the amplitude of the oscillations decreases
as the particles compensate the electric field and the homogeneity
is disturbed.

In Simulation IIwith absorbing boundaries, the intensity on the edges
is slightly higher because there is a smaller number of particles screen-
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ing the electric field. After the first pair cascade, the evolution is similar
to the one in Simulation I. Around time ωpt = 600 plasma on both
edges is depleted of particles and the convective electric field is no
longer screened. In this region starts a new sparking event.

3.3.5 Evolution of the created bunches

The time evolution of an electron andpositron densitywith the bunches
of particles created in the pair cascade are in Figure 3.8 and Figure
3.9. In both simulations we start with one electron and positron per
cell and the first increase in density is along the whole simulation
at the same time. The reason is the same as with the intensity of the
electric field, the conditions are the same in every cell.
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Figure 3.8: Time evolution of the density of electrons in Simulation I
on the left and Simulation II on the right.
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Figure 3.9: Time evolution of the density of positrons in Simulation I
on the left and Simulation II on the right.
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In Simulation I, the movement of the bunches of particles across
the simulation is a straight line indicating a constant velocity. A differ-
ent situation is in Simulation II. The particles created in the first spark
event leave the simulation and at time ωpt = 600 in the new spark
event the bunches are created only at the edges.

3.3.6 Dispersion properties

Dispersion of electrostatic waves along the x axis is shown in Figure
3.10. We took the whole length of the x axis and an average value
in the y and z axis. The electric intensity was saved every 10 time
steps and its absolute value is shown in (ω, k) space. The data were
processed with a cosine window filter.

The cutoff frequency ω is lower than the plasma frequency be-
cause it decrease as ω = ⟨γ−3⟩ ωp. The horizontal line with the wave
number k close to zero is caused by the addition of the constant con-
vective electric field in every time step. In both simulations, relativistic
Langmuir wave branches can be seen as hyperbolas.

While in Simulation I the branch is relatively narrow in frequency,
in Simulation II we can see a set of overlying branches. This is caused
by the variation in density and plasma frequency during the spark
event which changes the frequency of the Langmuir waves in Simula-
tion II. Simulation I is filled with particles and their density, as well as
the Langmuir wave frequency, is saturated.
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Figure 3.10: The absolute value of intensity Ex along the x-axis in (ω, k)
space. Simulation I is on the left and Simulation II is on the right.
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Conclusion

The aim of this thesis was to analyse the time evolution of the spark
event. Two spark events in 1D particle-in-cell (PIC) simulations with
different boundary conditions were compared.

In the first part, I presented today’s knowledge of neutron stars and
more specifically pulsars, their properties and a fundamental model
of the magnetosphere. The processes in the magnetosphere are closely
connected with radio and high-energy emissions. Different plasma
instabilities andmechanisms of radiation are responsible for the X-rays
and radio emission observations.

One of the possible instability behind the radio emission called
sparking eventwas described in section 1.5.1. In the spark event the par-
ticles in the magnetosphere plasma are accelerated to ultra-relativistic
velocities and γ photons are emitted. The decay of these photons
creates electron–positron pairs and starts a pair cascade responsible
for radio emission.

In the second part, I describe the fundamental principles of the PIC
simulations and the TRISTAN code numerical algorithms used in this
work. Specific implementations simulating the conditions in the pulsar
magnetosphere were presented in the next part.

The sparking event was simulated in Simulation I with periodic
boundary conditions representing closed magnetic field lines. Af-
ter the first spark event with pair creation and oscillations in the ki-
netic and electric energy (Figure 3.3 and 3.4) there was a stabilization
of the simulation with no new pair creation.

Simulation II with absorbing boundary conditions represents open
magnetic field lines with possible particle outflow. In these conditions,
the time evolution of the first spark event was similar to Simulation I
until the first saturation. Unlike in the first simulation, the spark event
was repeated with pair creation primarily at the edges of the simula-
tion (Figure 3.8 and 3.9) where the plasma can outflow first.

For future improvements a pair creation model with decay prob-
abilities and a non-trivial photon mean free path calculation could
be implemented into the TRISTAN code. The analysis of the electro-
magnetic waves created during the sparking event requires a longer
simulation.
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Appendix

Here is a simplified pair creation model implemented in Fortran into
the TRISTAN code .

1 module qed
2
3 contains
4
5 subroutine threshhold_decay(n1,n2,n_stop ,n_other ,

n_other_stop ,bx ,by ,bz ,x,y,z,u,v,w)
6 use config , only: nptl , c, g_thresh , me,

decay_energy_ratio
7 use init , only: random
8 implicit none
9
10 real (8), dimension (:,:,:):: bx ,by ,bz
11 integer :: n, n1 ,n2 , n_stop , n_other ,n_other_stop

, sigma
12 real (8), dimension(nptl):: x,y,z,u,v,w
13 integer :: i,j,k
14 real (8) :: g, E, dE , B, dv , v_new , v_old , E_ratio

, vx , vy, vz, r
15
16 do n = n1 , n2
17 g = c/sqrt(c*c-u(n)*u(n)-v(n)*v(n)-w(n)*w(n))
18 !write (* ,*) "gamma , g_thresh ", g, g_thresh
19
20 if (g.gt.g_thresh) then
21 E = (g-1)*me*c*c
22 dE = decay_energy_ratio*E
23
24 ! Check weather a new pair can be created
25 if (dE.lt.(2*me*c*c)) then
26 STOP "Emitted␣energy␣is␣not␣large␣

enough␣to␣creat␣new␣pair"
27 end if
28
29 dv = c/((E-dE)/(me*c*c)+1)
30 v_new = sqrt(c*c-dv*dv)
31 v_old = sqrt(u(n)*u(n)+v(n)*v(n)+w(n)*w(n

))
32
33 ! Energy loss of primary particle
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34 !write (* ,*) " velocity decrease ", v_new/
v_old

35
36 u(n) = v_new/v_old*u(n)
37 v(n) = v_new/v_old*v(n)
38 w(n) = v_new/v_old*w(n)
39
40 ! Calculate velocity of secondary

particle
41 E_ratio = 2*me*c*c/dE
42 !write (* ,*) " Energy ratio", E_ratio
43 v_new = c*sqrt(1-E_ratio*E_ratio)
44
45 i = int(x(n))
46 j = int(y(n))
47 k = int(z(n))
48 B = sqrt(bx(i,j,k)*bx(i,j,k)+by(i,j,k)*by

(i,j,k)+bz(i,j,k)*bz(i,j,k))
49
50 vx = v_new*bx(i,j,k)/B
51 vy = v_new*by(i,j,k)/B
52 vz = v_new*bz(i,j,k)/B
53
54 !write (* ,*) "new particle velocity ", vx ,

vy , vz
55
56 if (vx.gt.0) then
57 sigma = 1
58 else
59 sigma = -1
60 end if
61
62 n2 = n2+1
63 if (n2.gt.n_stop) then
64 STOP "Cannot␣add␣secondary␣particle ,␣

buffer␣is␣not␣large␣enough"
65 end if
66
67 u(n2) = sigma*vx
68 v(n2) = sigma*vy
69 w(n2) = sigma*vz
70 x(n2) = x(n)
71 y(n2) = y(n)
72 z(n2) = z(n)
73
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74 n_other = n_other +1
75 if (n_other.gt.n_other_stop) then
76 STOP "Cannot␣add␣secondary␣particle ,␣

buffer␣is␣not␣large␣enough"
77 end if
78
79 u(n_other) = sigma*vx
80 v(n_other) = sigma*vy
81 w(n_other) = sigma*vz
82 x(n_other) = x(n)
83 y(n_other) = y(n)
84 z(n_other) = z(n)
85
86 end if
87 end do
88
89 end subroutine threshhold_decay
90
91
92
93 end module qed
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