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ABSTRAKT

Kupy galaxii jsou jedny z nejhmotnéjsich gravita¢né vdzanych struktur ve vesmiru,
které se skladaji ze stovek az tisict jednotlivych galaxii. Studium téchto masivnich
objektti mtize odhalit poznatky o vyvoji velkorozmérovych struktur, povaze temné
hmoty nebo tepelnych i netepelnych procesech v mezigalaktickém prostfedi. Pochope-
ni sloZitych fyzikdlnich procestt v kupdch galaxii vS8ak vyZaduje podrobnou spek-
trdlni analyzu rentgenového zéfeni, kterd je Casové ndro¢nd a se soucasnymi meto-
dami obtizné proveditelnd. V této praci zkoumadme piistup strojového uceni vyuzi-
vajici Analyzu hlavnich komponent s Random Forest klasifikatorem k analyze viceteplot-
nich oblasti v kupach galaxii s vyuZitim dat z rentgenové observatofe Athena, ktera
poskytne tisice spekter ke zpracovani.

Efektivita metody byla také testovana na simulovanych a redlnych datech rentgen-
ové observatofe Chandra, pro porovndni soucasnych pozorovacich moZnosti, a na
simulovanych datech rentgenové zobrazovaci a spektroskopické mise XRISM, kterd
ma své zahdjeni napldnované mnohem dfive neZ mise Athena a jeji parametry cili k
vyssimu spektrdlnimu rozliSeni neZ ma observatof Chandra. Nasim cilem je vyvinout
a prozkoumat méné vypocetné a ¢asové naro¢nou metodu zpracovani dat, kterd by
mohla byt v budoucnu implementovdna do spektralni analyzy redlnych pozorovani

2 v 2z

jako prvni krok pro nalezeni zddoucich a zajimavych oblasti.

ABSTRACT

Galaxy clusters are the most massive gravitationally bound structures in the universe,
consisting of hundreds to thousands of individual galaxies. Studying these massive
objects can reveal insights into the evolution of large-scale structures, the nature of
dark matter, or the thermal and non-thermal processes in the intra-cluster medium.
However, understanding the complex physical processes in galaxy clusters requires
detailed spectral analysis of the X-ray emission, which is time-consuming and chal-
lenging to do with current methods. In this study, we explore a machine learning
approach based on Principal Component Analysis with Random Forest Classifier to an-
alyze the multi-temperature regions in galaxy clusters using data from the Athena
X-ray observatory, which will provide thousands of spectra to process.

The effectiveness of the method was also tested on simulated and real data from the
Chandra X-ray Observatory to compare the current observational capabilities and on
simulated data from the upcoming X-ray Imaging and Spectroscopy Mission XRISM,
which is scheduled to launch earlier than the Athena mission and whose parameters
aim for higher spectral resolution than Chandra. Our aim is to develop and study
a less computationally and time-consuming method of processing spectral data that
could be in the future implemented in the spectral analysis of real observations as the
tirst step to finding desired and interesting regions.






PRIRODOVEDECKA FAKULTA
KOTLARSKA 2, 611 37 BRNO
IC: 00216224

DIC: Cz0o0216224

L |
"
|

I MASARYKOVA UNIVERZITA

wn =
gl —
—

ZADANI
DIPLOMOVE PRACE

Akademicky rok: 2022/2023

Ustav: Ustav teoretické fyziky a astrofyziky
Studentka: Bc. Eva Batkova

Program: Fyzika

Specializace: Astrofyzika

Reditel dstavu P¥F MU Vam ve smyslu Studijniho a zkugebniho ¥adu MU uréuje diplomovou préci s ndzvem:

Nazev prace: Studying the heating/cooling balance in galaxy cluster with the Athena X-ray observatory

Nazev prace anglicky:

Jazyk zavérecné prace: anglictina

Oficialni zadani:

We will investigate the capability of the Athena X-ray observatory to determine the atmospheric cooling rates by using
temperature-sensitive line ratios over a broad temperature range. Deep observations of nearby galaxy clusters with
the Athena X-IFU will produce thousands of high resolution spectra the analysis of which would be demanding if
not impossible with current techniques. We will introduce and discuss new data analysis techniques for maximum
utilisation of the rich X-IFU data. These techniques, which employ elements of machine learning, allow us to use
spectral and spatial information optimally, while speeding up the data analysis considerably

Vedouci prace: prof. Mgr. Norbert Werner, Ph.D.

Konzultant: Dr. Martin Topinka, PhD.
Mgr. Tomas PlSek

Datum zadani prace: 16. 11. 2021
V Brné dne: 14.5. 2023

Zadani bylo schvaleno prostfednictvim IS MU.

Bc. Eva Batkova, 16. 12. 2021
prof. Mgr. Norbert Werner, Ph.D., 7. 1. 2022
Mgr. Du8an Hemzal, Ph.D., 25. 1. 2022



ACKNOWLEDGEMENTS

First and foremost, I would like to thank my supervisor, Norbert Werner, and my con-
sultant, Tomas Pl3ek, for their guidance, patience, and support throughout the process.
Their knowledge and expertise have been instrumental in shaping the direction of this
work.

Special thanks go to Carter Rhea, who not only provided me with academic exper-
tise and his Pumpkin code for multi-temperature analysis but also showed a genuine
interest in my professional development. I would also like to thank all members of
the High Energy Astrophysical group for their insightful comments, critiques, and
suggestions that have helped me to improve the quality of my research.

Finally, I would like to express my wholehearted appreciation to my husband and
the entire family for their unwavering support, encouragement, and understanding
throughout my academic journey.

Overall, thank you to everyone who has helped to make this thesis possible.

DECLARATION

Hereby I declare that I have prepared my diploma thesis independently under the
guidance of the supervisor with the use of cited works.

Brno, 2023

Eva Bat'kova



The universe is like a safe to which there is a combination,
but the combination is locked up in the safe.

— Richard Feynman
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INTRODUCTION

The majority of baryonic matter in galaxy clusters (GCs) exists in the form of hot gas
emitting X-ray radiation. The origin of this emission was proposed only recently and
was initially met with skepticism (Gorenstein P. et al., 1973; Gursky H. et al., 1971).
First observations proving this theory were done by Ariel V Sky Survey Experiment,
which discovered a bump in the spectrum corresponding to an iron line and thus
confirmed that the X-ray emission originates from thermal plasma within the cluster
(Mitchell R. J. et al., 1976).

The confirmation of the origin of this emission marked a significant breakthrough in
our understanding of the intracluster medium (ICM). The ICM is a dynamic and com-
plex environment, and its properties are shaped by various physical processes such as
heating, cooling, and turbulence (Bohringer H. et al., 2007; Fujita Y. et al., 2020). By
studying the heating and cooling balance of the ICM, we can gain insight into the pro-
cesses that regulate its temperature, pressure, and entropy profiles. These properties
can provide us with a deeper understanding of the formation and evolution of GCs,
as well as the role of feedback from active galactic nuclei, supernovae explosions, or
thermal conduction in shaping them (Yang H.-Y. K. and Reynolds Ch. S., 2016).

Scheduled for launch in the early 2030s, the Athena mission promises to deliver un-
paralleled capabilities for investigating the heating and cooling balance in GC. With
cutting-edge X-ray spectroscopy, imaging, and timing technologies, Athena will enable
high-resolution mapping of the thermodynamic properties of the ICM with excep-
tional precision, facilitating deeper exploration and understanding of the characteris-
tics of GC (Nandra K. et al., 2013). Moreover, the Athena instruments are designed
to perform with remarkable sensitivity and broad energy coverage, which will allow
the detection of faint X-ray lines and thus unlock a profound understanding of the
underlying properties and dynamics of GC (Lotti S. et al., 2021).

This study is motivated by the large number of high-resolution spectra that are
expected to be produced by Athena’s deep observations with an X-IFU detector. Ana-
lyzing all these spectra manually using current XSPEC analysis procedures would be
a very demanding and time-consuming task. In response to this challenge, machine
learning (ML) techniques have gained popularity in astrophysics for analyzing such
large datasets. The ability of ML algorithms to quickly and accurately identify trends
and patterns in complex data sets has made them an invaluable tool in various fields
(Belabbas M. A. and Wolfe P. J., 2021; Ntampaka M. et al., 2019; Rhea C. et al., 2021;
VanderPlas J. et al., 2012).



INTRODUCTION

In order to gain a better understanding of the thermodynamic state of GC, it is
crucial to identify the number of underlying components in their spectra. In this the-
sis, we aim to advance our understanding of the thermodynamic properties of galaxy
clusters by utilizing machine learning techniques to identify the multi-temperature
components present in spectra simulated for the Athena mission. Additionally, these
techniques were investigated on simulated spectra for the Chandra and XRISM satel-
lites to compare their capabilities.

In Chapter 1, we outline the fundamental characteristics of galaxy clusters, high-
lighting the significance of their intracluster medium and X-ray emission in determin-
ing their thermal structure. This Chapter also explores the theoretical background of
the heating and cooling processes in these clusters, as well as the challenges posed
by existing theories. Chapter 2 is dedicated to the observatories Chandra, XRISM and
Athena, their description, and technical specifications. The analysis techniques we used
for data handling are presented in Chapter 3. Chapter 4 gives a detailed insight into
the methodology and our models, as well as their application to real observations
and comparison with the XSPEC platform. Finally, in Chapters 5 and 6, we provide
a summary of our research, including the key takeaways and directions for future
investigation.



CLUSTERS OF GALAXIES

Galaxy Clusters (GC) are massive, gravitationally bound structures that contain hun-
dreds to thousands of galaxies. The total mass of these objects goes from 10'* to above
10" M, (Peterson J.R. and Fabian A.C., 2006). To depict a full image of the GCs, such
as their mass distribution or the information about all the obscured physical processes,
the observational studies developed into broad, multi-wavelength fields. One of the
tields focuses on the bright X-ray emission, which is a good tracer of hot, intracluster
plasma trapped in the GC’s potential well and represents most of the baryonic matter
in the cluster (see Figure 1.1). The trapped gas has a temperature up to several keV (~
millions of Kelvin), thus making GCs one of the most luminous X-ray emitters in the
universe (Bohringer H., 2002).

Figure 1.1: Observations of Abell 1689 galaxy cluster obtained by Hubble Space Telescope (on
the left) and the same image combined with X-ray observation from Chandra X-ray
Observatory (on the right). Hot intracluster gas is represented by the purple color.
Adapted from NASA et al., 2022.

Early observations showed the hot intracluster medium (ICM) at a typical tempera-
ture around T ~ 108 K (Sarazin C. L., 1986). The relation between the cluster temper-
ature and their total X-ray luminosity Lx in the absence of gas cooling and heating
emerging from simulations of cluster formation is proportional to T2. However, obser-
vations and recent studies using methods to correct selection bias follow L-T relation
Lx o T? (Connor T. et al., 2014; Ettori S. et al., 2004; Giles P. A. et al., 2016). Numerous
possible scenarios were presented to explain this deviation from theoretical expecta-
tions, including mainly non-gravitational energy input, such as supernovae feedback,
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pre-heating, thermal conduction, or heating from active galactic nuclei (AGN). Most of
these mechanisms were and still are being investigated (Fujita Y. et al., 2020; Jennings
E et al,, 2022; Ubertosi F. et al., 2022). Although satellites have made significant efforts
to collect data with sufficient resolution, there is still a need for better data acquisition
capabilities, particularly in the softer energy band, to enable a more thorough analysis.

With current satellites, such as the Chandra X-ray observatory, the temperature mea-
surements and identification of multi-temperature plasma in GCs are technically chal-
lenging. However, future X-ray missions will be able to provide the necessary resolu-
tion and thus revolutionize our understanding of the energy transfer into the ICM and
the processes behind it (see Chapter 2).

1.1 THE INTRACLUSTER MEDIUM

The intracluster medium consists of hot, diffuse, X-ray-emitting plasma representing
approximately 85% of the baryonic matter in the cluster. The composition of the ICM
is mainly ionized hydrogen and helium. The medium is also enriched with heavier
elements (Sparke L. S. S., 2007), whose quantity rises towards the center of GC along
with the X-ray brightness (see Figure 1.1).

The dissipative physics of baryons and detailed modeling of the non-gravitational
processes in the core are the key requirements for the full description of cluster for-
mation (Kravtsov A. V. and Borgani S., 2012), and this field still faces more open
questions regarding the energy transport between the cluster core and the ICM than
answers. However, some promising theories suggest that part of the energy might be
transported by bubble-generated turbulence (Norman M. L. and Bryan G. L., 1999)
or sound waves (Ruszkowski M. and Begelman M. C., 2002). Additionally, the obser-
vations of ICM revealed a complex multi-phase structure within several tens of kpc
from the cluster’s center (see Figure 1.2), containing volume-filling hot X-ray emitting
gas (> 10® K) with dense cold co-existing structures (> 10* K), possibly formed by
local thermal instabilities (Das H. K. et al., 2021; Yang H.-Y. K. and Reynolds Ch. S.,
2016). The existence of these cold gas clouds is closely related to one of the biggest
open problems of cluster physics known as cooling flow problem, described in detail in
Section 1.4.3.

On large scales, the ICM plasma can be described by magneto-hydrodynamic (MHD)
equations while assuming an optically-thin plasma in collisional equilibrium (more in
Section 1.3). The equations can be significantly simplified for the case of unmagnetized
single subsonic flow in a steady state with neglection of viscosity, resistivity, conduc-
tion terms, and assumption of spherical symmetry. The first equation 1.1 is the mass
conservation equation outlining the constant mass of the fluid as:

V - (p?) = 0. (1.1)
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Figure 1.2: Schematic illustration of gas clouds with different temperature distributions due to
local cooling (represented by arrows) and heating flows. Adapted from Haghighi
M. H. Z. et al., 2019.

The second equation 1.2 expresses momentum conservation with gravitational com-
pression term on the left side and thermal pressure term on the right side:

d® _ d(pT)
O T Tar

(1.2)

The third equation 1.3 is the energy equation, where the left side describes the
compression and energy of the plasma, and the right side outlines the energy loss due
to radiative cooling with the potential interactions between other matter (cosmic rays,
dust, dark matter) and studied plasma:

pU% (gT — cI>> = —TleTlHA(T,Z> + interactions. (1.3)

The last, fourth equation 1.4, sets the gravitational field with the contribution of both
the plasma and dark matter:

% (rzil—cf> = 41G(p + ppm)- (1.4)
The individual variables describing the four MHD equations are the density p, the
fluid velocity v, the gravitational potential ®, the temperature T express the energy
per particle, the electron and hydrogen number densities 1., ny, the cooling function
A(T,Z), the density p and the dark matter density ppy (Peterson J.R. and Fabian
A.C., 2006). Understanding these equations and their implementation for more generic
models is crucial for explaining future observations with more sensitive detectors.

5
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1.2 X-RAY EMISSION

Thorough observations and imaging of the heart of GCs revealed the presence of many
exciting features, such as cavities, line-emitting filaments, and weak shocks. In theory,
X-ray instruments could enable distinguishing some of these non-thermal processes.
However, in practice, the detection of their signature X-rays is limited by the instru-
ment’s resolution, and most of their emission is overshadowed by the dominant ther-
mal ICM signal. This obscured field thus opens many opportunities for future X-ray
missions, including the Athena and XRISM observatory. With their new spectrome-
ters, it will be possible to detect the fine resonant scattering effect, non-equilibrium,
non-thermal ionization, or line emissions yet unseen.

Three fundamental emission processes contribute to the radiation from ICM: Brem-
strahlung radiation (free-free emission), recombination (free-bound emission), and de-
excitation (bound-bound emission). The first two processes produce continuum radi-
ation, and the final process gives rise to line radiation (Fabian A. C. and Ross R. R,,
2010). The ICM’s very low plasma density allows for the occurrence of all “forbid-
den’ transitions. Consequently, to accurately model the spectral spectrum of thermal
plasma, we have to take into consideration all the ion-electron collisional rates along
with their branching ratios (Bohringer H. and Werner N., 2010).

In the low-density ICM, the collision rates between electrons and ions in the thermal
plasma depend on the temperature. The shape of the resulting spectrum is dictated by
the temperature and chemical composition of the plasma, while its normalization is
directly proportional to the densities of electrons and ions under the assumption of a
low plasma density limit.

1.2.1  Thermal Bremsstrahlung

In the ICM of a galaxy cluster, the essential source of continuum emission and thus
the most crucial contributor to the cooling mechanism for high-temperature plasma
is the Bremstrahlung or free-free emission. Radiation from this process arises from an
acceleration of a charged particle in the Coulomb field of another charged particle.
Power radiated by a single particle P is given by Larmor’s formula first stated in 1897

(Larmor J., 1897):
2 e20?
=33 (1.5)

where e is the elementary charge, v its proper acceleration derived from Coulomb’s
law 0 = Ze?/(m,x?), where Z is the ion’s charge, m, is the mass of the lightest particle
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(electron in our case), x is the distance between the electron and the nucleus, and c is
the speed of light (see Figure 1.4). The total energy emitted in the interaction is:

2e [ Ze?

where T represents the collision time defined as T = b/v. Parameter b is the distance of
the closest approach between the two interacting particles, and v is the relative velocity
at which the particles approach each other before the interaction.

Figure 1.3: Schematic illustration of Bremsstrahlung produced by a deflection of a high-energy
electron in the Coulomb field of an atomic nucleus (own illustration).

Since the emissivity is defined as the energy emitted per frequency v, volume V,
and unit time, the emissivity of free-free interaction is defined as:

i 25 o \V2_,
el = 3.2 (3mek3T> Znenigsr(Z,T,v) exp (—hv/kgT), (1.7)

where k is the Boltzman constant, T is the kinetic temperature of electrons n,, n;
are the electron and ion number densities, and g(Z, T,v) is the Gaunt factor. This
factor corrects for the quantum mechanical effects, and its values for the intracluster
plasma can be found in Nozawa S. et al., 1998. The equation 1.7 indicates that the
X-ray spectrum is nearly exponentially dependent on the frequency, meaning that the
emission should quickly fall off at high frequencies, as is observed.

1.2.2 Line emission

Although current instruments for spectral analysis are known to have limited reso-
lution for detecting fine structures of spectral lines, significant improvements were
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made in studying the intercluster medium (ICM). These include the discovery of fun-
damental elements in the ICM (Mushotzky R. et al., 1996), the absence of cold gas in
the cores of galaxy clusters observed by XMM-Newton (Peterson]. R. et al., 2001), and
the recent detection of Fe-peak elements by the micro-calorimeter onboard the Hitomi
observatory (Hitomi Collaboration et al., 2018a).

In the energy range of 1 — 10 keV, where most of the radiation of a typical GC
is emitted, the emission lines arise from transitions between the inner shell states of
heavy elements such as oxygen, neon, and iron. These transitions can originate from
several processes, such as ionization, excitation, resonant scattering, and following
radiative cascades (Bonamente M. et al., 2002). In the soft X-ray range, the Fe-L and
Fe-K lines are particularly important due to their strong emission and characteristic
properties that can be examined (Lindtroth E. and Indelicato P., 1993).

The Fe-L complex, which spans the energy range of 0.7 — 1.1 keV, is a mix of many
lines from different charge states of iron. The ratios of Fe-L lines to themselves and
other lines such as the H-like and He-like oxygen lines can be used as diagnostic tools
for determining the temperature and metallicity of the ICM (Werner N. and Mernier F.,,
2020). On the other hand, the Fe-K line at 6.7 keV is produced by transitions between
the K and L shells of iron and can provide information about the ionization state of
the gas and the presence of a turbulence (Urdampilleta I. et al., 2019).

1.0
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Figure 1.4: Example of ion fraction for Oxygen and Iron in collisional ionization equilibrium
as a function of temperature, where the different ionization states are represented
by different colors. Adapted from Ezoe Y. et al., 2021
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If the gas can be described as a single-temperature plasma in collisional ioniza-
tion equilibrium (see Section 1.3), the temperature determined from the mentioned
ratios should match the temperature obtained from the continuum shape. Any devi-
ations from a single-temperature CIE plasma may indicate the existence of a multi-
temperature or non-equilibrium ionization region (Hitomi Collaboration et al., 2018b).

1.3 COLLISIONAL IONIZATION EQUILIBRIUM

The X-ray emission from ionized atoms can exhibit complex behavior. However, when
it comes to plasma on larger scales such as in the GCs, several approximations, collec-
tively known as the coronal approximation, can effectively capture its properties. These
approximations depict an image of optically-thin plasma in collisional equilibrium.

The first estimate assumes that photons do not interact with ions or electrons, mak-
ing photo-excitation and photo-ionization processes relatively rare compared to colli-
sional processes. This statement is suitable for describing larger scales in galaxy clus-
ters, where radiation densities are very low. However, some strong emission lines may
still exhibit spectral and spatial distortions due to resonant scattering.

The second estimate assumes that all electrons are in their ground state, which
cannot be described using the commonly used Boltzmann distribution in the local
thermodynamic equilibrium (LTE) approximation. However, this approximation only
holds when excitations dependent on density are less frequent than radiative decays
at densities below < 10'° cm~3. This condition is met in the ICM as both the electron
and radiation densities are < 10~! cm~3 (Dekel A. and Ostriker ].P,, 1999).

The final assumption is that the plasma’s age or cooling time (see section 1.4.2)
significantly exceeds the time scale of elastic collisions between particles. As a result,
the free particles will eventually relax to a Maxwellian distribution around a single
kinetic temperature, known as the general kinetic temperature.

Despite their usefulness, these approximations limit our ability to study obscured
non-thermal processes, which are tangled in the web of hot intracluster plasma.

1.4 STANDARD COOLING FLOW MODEL

The Standard Cooling Flow Model is a widely accepted theoretical model suggested
to occur in various environments, from clusters of galaxies (Fabian A. C. et al., 2022)
to accreting white dwarfs in binary systems (Goldman S. R. et al., 2022; Munari U. et
al., 2022), where the cooling flow is present in the material, which is settling onto the
surface from the accretion disk and has to dissipate its rotational energy. The model
was first proposed by Fabian in 1984 (Fabian A. C. et al., 1984) and has since been
refined and improved by many authors.
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The model simplifies the physics of general flows based on the assumption that
the gas is in hydrostatic equilibrium and is cooling dominantly through radiative pro-
cesses, which in GCs leads to a cooling flow that transports mass and energy from
the center of the cluster to the outer regions. The model also neglects any heating
processes, which can transport thermal energy into cold gas clouds.

1.4.1  Hydrostatic equilibrium

Hydrostatic equilibrium is an inseparable part of the Standard Cooling Flow Model. It
is the state in which the gravitational forces acting inward are balanced by the pressure
of the hot gas pushing outward, resulting in a stable system. In spherical symmetry,
the equation describing this balance is:

dPgas

B ()25, (1.9

where ‘fj—f is the gradient of the gas pressure to the radius, p(r) is the gas density as a
function of radius, G is the gravitational constant, M(r) is the mass enclosed within a

radius 7, and 7 is the distance from the center of the cluster.

1.4.2 Cooling rates

The ICM is depicted as a hot, ionized, dense environment that emits photons mainly in
the X-ray band. This leads to substantial energy losses and cooling (radiative cooling),
particularly in the central brightest X-ray regions of the galaxy cluster. The simple
estimation of ICM’s susceptibility to radiative cooling can be obtained by analyzing
the timescale, during which the gas can continuously release energy at its present rate
(Sanderson A. J. R. et al., 2006). The timescale for the ICM to dissipate all its energy
through cooling is called the ‘cooling time’. If the pressure in the ICM is constant, the
cooling time of a plasma £, is determined as:

31’LkBT

t = — .
cool ZnineA(T, Z) ’ (1 9)

where 7 is the particle number density, kg is the Boltzmann’s constant, T is the gas
temperature, n; and #. are the ion and electron number density, and A(T,Z) is the
cooling function dependent on both temperature T and metallicity Z. Defined cooling
time can be interpreted as the thermal energy 3kgT divided by energy loss per unit
volume.

The gas in the central part of GCs has a radiative cooling time approaching 5 x 10%
yr (Haghighi M. H. Z. et al., 2019), which is much shorter than the age of the cluster
itself. From the view of the standard cooling flow model, this indicates the presence of
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cooling flows. The cooling rate (mass deposition rate within the cooling flow model)
in the absence of heating M, can be calculated from the excess X-ray luminosity Ly
as:

Lx = ;%kgﬂ (1.10)
where pum is the mean mass per particle and T is the gas temperature. Typical cooling
rates are predicted to range between 10 to 100 M yr~!, which would result in strong
spectral line emission in the soft X-ray band (Liu H., 2021). However, no evidence of
such extreme cooling is evident from the current high-resolution spectroscopy obser-
vations (see Section 1.4.3).

1.4.3 Cooling flow problem

The cooling flow problem in galaxy clusters is a long-standing issue in astrophysics
that refers to the discrepancy between the predicted and observed amount of gas
cooling in the center of clusters. Theoretical models indicate that the gas located in the
central regions of galaxy clusters should go through rapid cooling and condensation,
resulting in a high star formation rate in this region, which is not observed (McDonald
M. et al., 2013; McNamara B.R. and Nulsen P.E]., 2007; Werner G. R. et al., 2018).
Observations also suggest that while the cooling flow model seems to agree with
the data at higher temperature ranges, it falls short in the soft X-ray band. At lower
temperatures, the model captures Fe XVII lines that are not evident in the observed
data. (see Figure 1.5).

Mathematically the cooling flow problem could be described by a set of equations
(continuity equation, momentum equation, energy equation, radiative transfer equa-
tion) that model the evolution of the ICM and take into account various physical
processes such as radiative cooling and heating (Voit G. M., 2005).

One promising solution to the cooling flow problem is a mechanism that heats the
gas in cluster cores and prevents it from cooling as quickly as expected. Therefore,
the energy equation can be modified to include heating sources, which can provide
additional energy to the gas and counteract the cooling. Another potential solution to
the cooling flow problem could be provided by non-thermal mechanisms in the ICM.
For example, magnetic fields or cosmic rays could impact the detected X-ray radiation
and diminish the apparent cooling rates of the gas (Peterson J.R. and Fabian A.C.,
2006).

11



12

CLUSTERS OF GALAXIES

20 462
M87

10 — 231

10 15 20 25 30
NGC 533 —6

10* Photons/s/A
3
S
4
;
3
>
82 E
10~ Photons/cm®/s/A

10 15 20 25 30 35
Rest Wavelength (A)

Figure 1.5: Spectra from Chandra satellite of M87 and NGC533 (blue line) fitted with standard
cooling flow model (green line), where the red line represents fit that allows the
normalization of the cooling flow model to be adjusted for several temperatures.
Adapted from Peterson J. R. et al., 2003

1.4.4 Heating vs cooling

The first thorough overview of the temperature structure of the GCs was depicted
in Pratt G. W. et al., 2007, which analyzed X-ray temperature profiles of 15 nearby
representative clusters (see Figure 1.6).

These results and other observations of the cores of galaxy clusters have revealed
their several underlying X-ray properties. At small radii, we observe profound changes
in the temperature profiles, which are specific for two types of observed clusters: cool
core (CC) clusters with high-density cores and decreasing temperatures towards the
center, resulting in short cooling times for the ICM; and non-cool core (NCC) clusters,
with moderate densities (below 102 cm™3), flat temperature profiles and longer cen-
tral cooling times. Additionally, cool core clusters show a very bright peak in X-ray
surface brightness. The CC cluster scenarios were found in at least 50% of the ob-
served GCs (Fabian A. C., 1994) and imply the existence of cooling flows. Since the
standard cooling flow scenario does not represent well the spectra in the entire X-ray
band of the GC as we established earlier, recent research has focused on finding a suit-
able mechanism that would fill these missing gaps in our theories. However, before
delving into potential solutions, let us examine the issue more closely.

The basic assumption for the cooling flow model was that the X-ray photons come
from the thermal energy content of the ICM. If the gas at the center of clusters were not
disturbed or mixed with the outer part of ICM, the gas would cool radiatively. Thus
all the energy that escapes from the core is in the form of X-ray photons which we
detect (Sarazin, C.L., 2007). As the center of GCs loses enormous amounts of energy,
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Figure 1.6: Projected temperature profiles of 15 nearby GCs, normalized by a global tempera-
ture of the cluster Tx. Adapted from Pratt G. W. et al., 2007.

the temperature of the attending gas drops, and the pressure will decrease simulta-
neously concerning the state equation pV = nRT. The weight of the surrounding gas
will compress the central cooling gas, and it will start to fall toward the center of GC.
The density in the core increases, causing the gas to heat up and thus emit more X-ray
photons carrying away the core’s energy, further cooling the center. If this scenario
was correct and no heating processes were present to balance the cooling, we should
observe catastrophic cooling in the central regions of GC. However, this extreme cool-
ing and associated star formation have not yet been observed, thus giving rise to the
theoretical research of possible heating sources present in the system (see for example,
Ley F. et al., 2022; Nath B. B. and Roychowdhury S., 2002; Petrosian V. and East W. E.,
2008).

During the early stages of hierarchical structure formation simulations, the models
considered only the gravitational effects, but soon it became clear that clusters did not
follow these predicted self-similar relations. Consequently, non-gravitational heating
effects, such as supernovae and AGN feedback, were necessary to be incorporated.
Recent models and observations suggest that the AGN is the most probable source of
heating, capable of preventing the ICM’s runaway cooling (refer to Figure 1.7). The
feedback is provided through the accretion of infalling material onto a supermassive
black hole (SMBH), which self-regulates its fuel supply by either radiation pressure or
mechanical energy (Calzadilla M. S. et al., 2022).

13
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Although heating is considered a feasible approach to counterbalance cooling flows,
its effectiveness relies heavily on precise adjustments. Excessive heat generation can
disperse both the dense gas cores and cooling flows that have been observed. More-
over, the presence of entropy profiles that progressively increase towards the cluster’s
outer regions (refer to Figure 1.8) raises yet another question: how can the heating
sources operate without disrupting these entropy profiles and, subsequently, causing
heat dissipation through convection (Bohringer H. and Werner N., 2010). These dis-
coveries emphasize the importance of delving deeper into understanding how nature
achieves such a delicate balance, making this an exciting topic.
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Figure 1.7: AGN heating expressed by the cavity power P,y as a function of the X-ray luminos-
ity in the ICM within the cooling radius for a sample of 33 cluster central dominant
galaxies. The radiative losses are balanced by AGN in over half of the systems.
Adapted from Rafferty D. A. et al., 2006.
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Figure 1.8: Entropy profiles of 239 galaxy clusters. Adapted from Cavagnolo K. W. et al., 2009.



SATELLITE SELECTION AND DESCRIPTION

In this Chapter, we will explore the capabilities of Chandra, XRISM, and Athena obser-
vatories for detecting multi-temperature gas as well as their structure and technical
characteristics.

All mentioned X-ray observatories utilize the Wolter-I type nested mirrors, designed
to collect and focus X-ray photons through grazing incidence reflection onto a detec-
tor. The detectors employed in these observatories are typically fabricated using semi-
conductors (Chandra) or, more recently, microcalorimeters (XRISM and Athena). They
provide information about the energy and intensity of the detected X-ray photons,
allowing us to gain a deeper understanding of the fundamental properties of high-
energy objects (more details in Section 2.1.1 and 2.2.1). The mirrors themselves are
arranged in nested cylindrical shells, each with a slightly different radius of curvature
to achieve the desired grazing incidence angles. The mirror design enables efficient
photon collecting and enables the satellites to detect faint and distant X-ray sources
(see Figure 2.7). However, each observatory has different mirror sizes, coating materi-
als, and detector technology, resulting in different capabilities and scientific goals.
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Figure 2.1: Graphical illustration of Walter-I type nested mirror assembly (own illustration).

While all three observatories share some elements, there are essential differences in
their designs and instruments that affect their performance.
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2.1 CHANDRA X-RAY OBSERVATORY

The Chandra X-ray Observatory is a NASA satellite that has played a crucial role in our
understanding of the high-energy universe. Its ability to detect X-rays from celestial
objects with relatively good resolution and sensitivity has made it, in the past years,
an ideal tool for studying the hot gas that fills GCs.

10 m long
optical bench

Figure 2.2: Graphical illustration of Chandra X-ray observatory. Adapted from NASA, 2022a.

One of the key structure components enabling Chandra to focus and detect X-ray
photons is the High-Resolution Mirror Assembly (HRMA), which consists of four pairs
of nested mirrors that focus the X-rays onto detectors. The mirrors are coated with a
thin iridium layer and can focus photons with energies ranging from 0.08 to 10 keV
onto the focal plane of Chandra’s detectors (Weisskopf M. C. et al., 2000).

2.1.1 ACIS

For imaging and spectroscopic studies, Chandra is equipped with an X-ray detector
known as the Advanced CCD Imaging Spectrometer (ACIS). The detection of X-ray
photons using the ACIS instrument is done through a set of ten Charge-Coupled De-
vices (CCDs).

CCDs comprise a large array of individual pixels, each containing a photosensitive
material capable of converting X-ray photons into an electrical charge that can be read
out and processed to form an image. More explicitly, when an X-ray photon strikes the
photosensitive material, it ionizes atoms within the material, producing free electrons
that are then collected by a potential well in each pixel. The number of electrons
collected by each pixel is proportional to the intensity of the X-ray radiation that the
pixel was exposed to (Li J. et al., 2004). After the electrons are collected, they are read
out from each pixel using a series of shift registers that transfer the charge from one
pixel to another. This process, known as charge-coupling, allows for the transfer of the
charge from the photosensitive material to the readout electronics without the need of
physical contacts or wires (Garmire G. P. et al., 2003).



2.2 X-RAY IMAGING AND SPECTROSCOPY MISSTON (XRISM)

Since the CCD detector can effectively transfer charge, its noise in the signal has an
average value of around 2 electrons (Burke B.E. et al., 1997), and the ACIS detector can
achieve a moderate spectral resolution of about 150 — 200 electron volts (eV) at 1 keV
(CXC, 2023). The CCDs also impact the spatial resolution, which is limited by their
physical size (~ 0.429 arcsec).
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Figure 2.3: Illustration of ACIS focal plane (own illustration).

Chandra’s ACIS is composed of two detector arrays: ACIS-S (Spectroscopic) and
ACIS-I (see Figure 2.7). ACIS-S contains more sensitive back-illuminated CCDs, and
due to its smaller field of view (8.3x8.3 arcmin) but better energy resolution, it is
optimized for spectroscopic observations. On the other hand, ACIS-I has only front-
illuminated chips and with a combination of its more extensive field of view (16.9x16.9
arcmin) it is optimized for imaging observations (Chartas G. et al., 1998).

2.2 X-RAY IMAGING AND SPECTROSCOPY MISSION (XRISM)

The X-Ray Imaging and Spectroscopy Mission (XRISM) is one of the latest addition
to the fleet of X-ray observatories designed to study the high-energy universe under
JAXA-NASA collaboration and is planned to launch in spring 2023. As a successor to
the Hitomi satellite, which suffered an unfortunate malfunction shortly after launch,
XRISM aims to continue the study of high-energy astrophysical phenomena (Ishisaki
Y. et al., 2018).

Similarly to the Chandra X-ray Observatory, XRISMs mirrors are arranged in a Wolter
Type-I configuration called X-ray Mirror Assembly (XMA). The XMA consists of 203
nested shells coated with a thin layer of gold, with a maximal diameter of 45 cm
(JAXA, 2018). The angular resolution attained by XRISM is 17 arcseconds, which is
substantially worse than the 0.5 arcsecond resolution achieved by Chandra. The mission
is equipped with a soft X-ray spectrometer Resolve (see 2.2.1) and a soft X-ray imager
Xtend. Each instrument has its own XMA with a focal length of 5.6 m (Tashiro M. et al.,
2020).
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XMA
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Figure 2.4: Graphical illustration X-Ray Imaging and Spectroscopy Mission. Adapted from
NASA, 2022b.

2.2.1 Resolve

The Reflection Grating Spectrometer (Resolve) is one of the two primary detectors on-
board XRISM. The instrument consists of an array of 6x6 microcalorimeters, each with
4x4 cm in size (XRISM Science Team, 2020). One microcalorimeter comprises more
than 128 transition edge sensor (TES) pixels made of a superconducting thin film,
which are connected to a readout circuitry. The TES pixels are designed to detect X-
ray photons by converting their energy into heat, which is then measured by a highly
sensitive thermometer (see Figure 2.5).

X-ray photon Absorber

s Thermometer
— e
Low temperature
heat sink

Figure 2.5: Illustration of TES microcalorimeters working principles (own illustration).

More specifically, the temperature rise, caused by incoming photons, causes a change
in resistance on TES, which is monitored by a quantum interference device (SQUID).
To ensure that the TES pixels remain in their superconducting state, and thus main-
tain their eV level energy resolution, the detector is cooled to a temperature close
to an absolute zero (around 50 mK) inside a dewar with a complex cooling system
(Ezoe Y. et al., 2020). The cooling system can use two methods to achieve the final
operational temperature, the liquid helium and additional Joule-Thomson coolers. To
prevent the mission failure due to the loss of liquid helium, the cooling system was
designed with an secondary unit of adiabatic demagnetization refrigerator that could
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use a Joule-Thomson cooler as a heat sink to maintain cooling even after the liquid
helium is depleted (Sato K. et al., 2023).

Focused X-ray photons

Resolve dewar

\/T ES sensor

array

He tank

\ Joule-Thomson cooler

Figure 2.6: Cooling chamber for XRISM mission (own illustration).

This architecture will allow XRISM to surpass Chandra satellite in both sensitivity
and resolution (see Table 1) and enable us to address fundamental questions in astro-
physics.

2.3 ADVANCED TELESCOPE FOR HIGH-ENERGY ASTROPHYSICS (ATHENA)

The Athena X-ray Observatory is a next-generation space observatory developed by
the European Space Agency (ESA) designed to study the hot and energetic universe
with unprecedented sensitivity and spectral resolution. Similar to Chandra and XRISM
missions, the Athena is equipped with a segmented Wolter-I configuration mirror as-
sembly with an effective area of nearly 2 m?.

X-IFU

12 m long
optical bench

MAM

Figure 2.7: Graphical illustration of Athena Mission (own illustration).
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Scheduled for launch in the early 2030s, Athena will be the largest X-ray observatory
ever built, with a collecting area five times larger than its predecessor, the Chandra
X-ray Observatory.

At the heart of Athena’s science capabilities is the X-ray Integral Field Unit (X-IFU),
an advanced cryogenic imaging spectrometer that offers high-resolution spectroscopy
over a wide range of energies, from 0.2 to 12 keV (see Section 2.3.1). The second im-
portant instrument that the mission carries onboard is the Wide Field Imager (WFI),
which provides a view of the sky with an angular resolution of 5 arcseconds (Nandra
K. et al., 2013).

2.3.1 X-IFU

The X-ray Integral Field Unit (X-IFU) is an X-ray spectrometer that will be placed on
board the Athena observatory. Like Resolve detector, the X-IFU is based on a Transition
Edge Sensor (TES) technology, which involves using a superconducting material to
detect small temperature changes caused by incoming X-rays (see Section 2.2.1). How-
ever, the X-IFU detector has a much larger array of TES pixels (2376 pixels), allowing
for much higher spatial resolution. The detector is stored in a cooling chamber (see
Figure 2.6), which keeps it at a temperature of 55 mK (Castellani F. et al., 2022). More-
over, the X-IFU is designed to have a wider energy range, covering X-rays from 0.2 keV
to 12 keV.

One of the main advantages of the X-IFU is its high energy resolution, which is
currently estimated to be 2.5 eV at 7 keV (Gottardi L. and Smith S., 2022). Its high
resolution with a wide field of view allows for simultaneous observation of multiple
sources and better identification of X-ray emission lines. These capabilities make X-IFU
a powerful tool, that could be used for detailed studies of the physical processes taking
place in the hot universe, including the dynamics of galaxy clusters, the feedback of
supermassive black holes, and the formation and evolution of galaxies.

Specification Chandra XRISM Athena
Energy range [keV] 02-10 03—-12 02-12
Energy resolution @1keV [eV] 140 5 2.5
Angular resolution [arcsec] 0.5 17 5
Field of view [arcmin] 60 3 40
Effective area @1keV [cm?] 120 160 2000
Focal length [m] 10 5.6 12

Table 1: Selected specifications for satellites introduced in the Chapter 2. Adapted from CXC,
2023; Gottardi L. and Smith S., 2022; Ishisaki Y. et al., 2022; NASA, 2022b; Sato K. et al.,
2023



DATA ANALYSIS

3.1 MACHINE LEARNING APPROACH

The power of machine learning (ML) in spectral analysis has been proven in multi-
ple studies (Belabbas M. A. and Wolfe P. J., 2021; Kerby S. et al., 2021; Ntampaka M.
et al., 2019; VanderPlas J. et al., 2012). However, the most relevant study to this work
was presented by Carter Rhea, who investigated hot intracluster medium surround-
ing the center of galaxy clusters using Principal component analysis (see Section 3.1.1),
commonly used in the spectral analysis for dimensionality reduction of the data, and
then the Random forest classifier (see Section 3.1.2) used for categorizing the number of
underlying components (Rhea C. et al., 2020). Since the results of his study demon-
strated a very reliable and efficient estimate of multi-temperature plasma in GC, we
will apply a similar ML technique to our data as well.

3.1.1  Principal Component Analysis

Principal Component Analysis (PCA) is a standard data reduction tool in modern data
analysis that extracts relevant information from complex, confusing datasets. The tech-
nique unfolds complicated relations between variables into their primary components.
In other words, the PCA reduces the number of dimensions and reveals obscured sim-
plified structures that often underlie the data (Bro R. and Smilde A. K., 2014). In more
detail, PCA rotates the original data to a new, orthonormal basis in which the projec-
tion of data, with maximized variance, is included in the first principal component
(the first coordinate), the data, with the second most significant variance, is included
in the second principal component, and so on (see figure 3.1). This method is closely
related to the multivariate statistical technique Singular Value Decomposition (SVD),
which calculates values of eigenvectors (Shlens J., 2014).

Mathematically, PCA transforms the correlated data from its original basis of vari-
ables to a base where the data isn’t correlated. Following the work of Murtagh F. and
Heck A., 1987, we outline this tool. Let us consider a spectrum represented as an
M-dimensional vector, X, and a dataset composed of N of these individual spectra.
The first principal component Xy represents the direction of maximum variance in
M-dimensional vector space, S, generated by the spectra. In general notation, the i-th
component, from the total of M principal components in the perpendicular subspace,
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Component 1
Component 2

Component 3

Figure 3.1: Graphical illustration of PCA in 3D vector space. Adapted from Barnett R. M., 2017.

is in the direction of the i-th highest variance. The corresponding equations describing
the spectra are, therefore:

1 N
(ri) = N ;rijz (3.1)
Xij = rij — (i), (3-2)

where r;; are the initial spectra measurements, including the spectrum’s number rep-
resented by i and the wavelength bin represented by j. The covariance matrix will be
then constructed as:

1 N
Cik = Z; Xii Xk, (3:3)
1=
where M > i,j > 1. The first principal component is then defined as:
Céi = Méi, (3-4)

where €] is the first eigenvector and A is the first eigenvalue. Since our work focuses
on emission spectra from ICM, the equations above can be rewritten and described in
terms of spectra:

N
J?i = ﬁ + Zai]"(?]‘, (3-5)
j=1
where ¥; corresponds to a given spectrum, ji represents the mean spectrum evaluated

from the whole dataset, and 4;;0; are the decomposed eigenspectra (Yip C. W. et al.,
2004).
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3.1.2 Random Forest classifier

The Random Forest (RF) classifier, introduced by Leo Breiman in 2001, is an ensemble
algorithm that builds upon a fundamental set of uncorrelated decision trees (Breiman
L., 2001). The method extends the concept of decision trees by generating an ensemble
of decision trees working together to make predictions (see Figure 3.2). The RF em-
ploys a seemingly counter-intuitive strategy that ensures the divergence of individual
trees within the forest. It achieves this through two distinct steps (Yi Z. and Pan J.,
2010).

In the first step, each decision tree is constructed using different bootstrap samples
of the original dataset. By generating these bootstrapped samples, RF introduces diver-
sity into the ensemble, enabling each tree to capture unique patterns and information
from the data. In the second step, at each node of every tree, the algorithm randomly
selects a subset of predictors from the available features. This subset of predictors is
again randomly chosen for each tree, and the split is determined based on the best
fit of selected variables (see Figure 3.2). This random selection of predictors further
enhances the diversity of the trees within the forest, supporting its robustness and
reducing the risk of overfitting (Hastie T. et al., 2009).

The process via which the RF model learns its parameters is known as training. Dur-
ing training, each tree in the ensemble independently learns from the data, and their
decisions are then integrated to form the final prediction. By combining the predic-
tions of multiple trees, the RF classifier can effectively handle complex patterns and
capture the underlying relationships within the data (Belgiu M. and Dragut L., 2016).

Datasct

Class A Class B Class A Class A

Predictions
Majority voting

Final prediction

Figure 3.2: Simplified working principle of RF classifier (own illustration).

RFs are one of the most popular machine learning techniques available due to their
advantages, such as speed, simplicity of implementation, and robustness to overfitting.
On the other hand, the mechanism is extremely complex and comprises several driving
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forces, making the result all the more difficult to interpret (Biau G., 2012; Liaw A. and
Wiener M., 2001).

Despite its limitations, the RF classifier with the combination of PCA has shown
to be a valuable tool for classification problems, displaying outstanding accuracy and
robustness in various scientific domains. By harnessing the collective decision-making
power of multiple trees and leveraging the insights from PCA, the RF classifier with
PCA offers a comprehensive approach to solving complex classification tasks.

3.2 XSPEC MODELS

The XSPEC software package is widely used in X-ray astronomy for modelling and fit-
ting the spectra of astrophysical sources and was developed by Keith Arnaud at NASA
Goddard Space Flight Center (Arnaud K. A., 1996). The platform offers an extensive
library of spectral models that can mathematically describe X-ray emissions from dif-
ferent physical processes. These models can be combined to build and investigate the
physical properties of any required sources in detail (Arnaud K. A., 1996-2021).

To study multi-temperature gas in GCs, the most relevant models for synthetic spec-
tra are PHABS, which represents the absorption of X-rays by neutral hydrogen, and
APEC, which represents the thermal emission from diffuse hot gas. The physics behind
these XSPEC models will be discussed in the following section.

3.2.1 PHABS model

The PHABS model in XSPEC is a photoelectric absorption model that calculates the
absorption of X-ray photons by interstellar gas or dust (Wilms J. et al., 2000). The model
is based on the cross-sections for photoelectric absorption, calculated from the atomic
cross-sections and energy levels of the absorbing atoms and ions. It assumes that the
absorbing material is fully ionized and can be described by only one parameter: the
hydrogen column density, which describes the total number of hydrogen atoms along
the line of sight to the X-ray source and is a measure of the amount of material capable
of absorbing X-ray photons. The equation expressing this model is:

M(E) = exp[-Nno(E)], (3.6)

where Ny is the hydrogen column density in units of 10?2 cm~2 and ¢(E) is the ab-
sorption cross-section of neutral hydrogen as a function of photon energy (Balucinska-
Church M. and McCammon D., 1992).



3.2 XSPEC MODELS

3.2.2  APEC model

The APEC (Astrophysical Plasma Emission Code) model in XSPEC is based on the
assumption that the X-ray emitting diffuse gas is in ionization equilibrium (Brickhouse
N. S. and Smith R. K., 2005). The model calculates the X-ray spectrum emitted by the
plasma as a function of temperature and elemental abundances from the AtomDB
atomic database (Foster A. and Smith R. K., 2017).

The model is characterized by several parameters: temperature kgT, abundance Z
cosmological redshift z, and normalization N, which is given as

10714
N= 47[DA(1 +2)]2 /"e"HdV’ (3.7)

where D, is the angular diameter distance to the source in ¢cm, n. and ny are the
electron and hydrogen densities in cm 3, and V is the volume of the emitting region
in cm®. The model assumes that the plasma is optically thin so that all the radiation
escapes from the emitting region (Heuer K. et al., 2021). The X-ray emissivity A;(E, T)
of an ion i is calculated as

0
N(E,T) = éhViAi,jk(E/ T), (3.8)

Ai(E,T) = (230 x 1079 3¢y, (hvf"> ) (3.9)
Sk E;

where 1n; is the number density of the ion i, hv; is the energy of the emitted photon,

A;(E, T) is the Einstein’s A coefficient for the transition between levels j and k of ion i,

where g; and g are the statistical weights, Cj is transition probability coefficient and

E; is the ion’s ionization energy. The number density of the ion i is given by the Saha

equation

My ne (2mmmekgT 3/2 E;
;—i = (T) exp %) (3.10)

where m, is the electron mass, kg is the Boltzmann constant, T is the temperature,  is
the Planck constant, and E; is the ionization potential of the ion i (Peacock J. A., 1999).
The total X-ray emissivity of the ion i is then calculated by summing over all possible
transitions, whereas the population of level j to the level k is given by the Boltzmann
distribution

8j Ejx
fir(E, T) = g—lj{eXP (kB—]T> , (3.11)

where Ej is the energy difference between levels j and k. The AtomDB database pro-
vides the necessary atomic data for the APEC model calculations, including energy
levels, transition probabilities, and collisional excitation and ionization rates (Brick-
house N. S. et al., 2000).
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METHODOLOGY & RESULTS

In this chapter, we will introduce the procedures, processing, and results of our study
that focuses on a machine learning approach to analyze multi-temperature regions
in the ICM and the capabilities of the selected missions (Athena, XRISM, Chandra) to
recognize different temperature components in the X-ray spectrum. Our focus will be
directed towards the hot gas in the Virgo and Perseus clusters, which are among the
tirst proposed targets for the Athena observatory.

4.1 DATA SIMULATION

Since the number of underlying temperature components in these clusters is unknown,
and Chandra does not provide sufficient resolution of real observations to identify
them accurately, with the fact that Athena and XRISM have not yet been launched, we
simulated sets of synthetic spectra for each cluster with desired parameters and trained
our models on these datasets. This approach enables us to explore the observatories’
sensitivity in the soft X-ray bands in a more controlled and precise manner.

4.1.1  Synthetic spectra

The synthetic spectra were constructed using CIAO’s modelling and fitting package
Sherpa (CXC, 2022b) with fake pha tool. To produce mock spectra, the tool takes a
response matrix file (RMF) and an ancillary response file (ARF) representing the de-
tectors” properties on board studied missions. These files are consistently updated as
the detectors’” performances are steadily degrading (case of Chandra) or are still in
development (case of XRISM and Athena).

For consistency between all three satellites, we selected response files that were
calibrated on-axes of the telescopes, and to maximize the spectroscopic capabilities
tor Chandra, we selected response files for the ACIS-S detector, while for XRISM and
Athena, we employed the response files for the Resolve and X-IFU detectors, acquired
from CXC, 2022a; JAXA, 2022; X-IFU, 2020 (see Figure 4.1). When simulating the spec-
tra, we used the whole range of energies that are covered by individual files. However,
in order to ensure consistency among the satellites, we established a maximum energy
range of 4 keV for all observatories during the training process. Additionally, for the
Chandpra satellite, we introduced a minimum limit of 0.5 keV (see Section 4.2.2).
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For each model (described in section 4.2), we generated 10,000 single-temperature
component spectra for the Virgo Cluster in the energy range of 1 — 4 keV and for
the Perseus Cluster in the range of 2 — 5 keV. In addition, we generated 10,000 two-
temperature component spectra for each model, with the first thermal component cov-
ering the same energy range as the single-temperature spectra, while the second ther-
mal component for the Virgo Cluster ranged from 0.5 — 0.75 keV and for the Perseus
Cluster ranged from 0.6 — 0.85 keV. Each temperature was randomly sampled from a
uniform distribution (see Figure 4.2).
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Figure 4.1: Selected on-axis ARF (upper) and RMF files (lower) for observatories in this study.

The parameter values of the primary thermal component were selected by drawing
upon the findings of multiple studies investigating the temperature characteristics of
the clusters (such as Ichinohe Y. et al., 2019; Young A. J. et al., 2002), while the temper-
ature range for the second component was derived from more detailed examinations
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of intriguing filaments within these cluster cores (Sanders J. S. and Fabian A. C., 2007;
Simionescu A. et al., 2017). It is important to note that these values do not cover the
complete spectrum of temperatures observed in the clusters in the past years. However,
to investigate the characteristics of satellites to their utmost limits, these parameters
were deliberately selected.

Normalization

Selecting an optimal normalization range for our clusters is crucial as it greatly influ-
ences the count statistics within the resulting spectrum and impacts its signal-to-noise
ratio (SNR). In this regard, the primary component’s normalization N for the two
chosen clusters was derived using Equation 3.7. The respective density profiles were
adopted from Fabian A. C. et al,, 1981; Kartun-Giles A. et al., 2018; Plsek T. et al.,
2022; Taylor G. B. et al., 2006. In the calculations we assume the redshift and hydrogen
column density of Virgo cluster zy = 0.004, ny, = 0.2 x 10?! cm~2, the redshift and
hydrogen column density of Perseus cluster zp = 0.02, ny, = 1.4 x 10 cm~2 and the
standard ACDM model with parameters Hy = 70 km s 1 Mpcfl, O, =03, 0, =0.7.

The derived normalization values for both of the clusters vary between 1072 and
10~°. Consequently, the normalization of the primary temperature component was
adjusted accordingly, while the secondary component normalizations were selectively
set for each model. This strategic approach enabled us to carefully and effectively
explore the satellite’s ability to discriminate the multi-temperature regions. In order to
minimize the likelihood of generating primary data that could be too easily identified
by the satellites (higher normalization = less noise and more recognizable features),
each normalization was randomly sampled from a loguniform distribution. (see Figure

4.2).
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Figure 4.2: Example of 500 temperatures (on the left) and normalizations (on the right), gener-
ated from a uniform and logarithmic distribution for single-temperature spectrum
in Virgo cluster.

The selection of a suitable normalization for a given spectrum is closely linked to
the number of counts it comprises (see Table 2). To generate realistic observation, we
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established minimum and maximum count thresholds for the spectra. In doing so,
we can adjust the normalization factor to reflect the count values, which can be feasi-
bly observed by Chandra X-ray observatory. To better understand the extent to which
satellites are able to distinguish multi-temperature components with varying normal-
ization ratios, we must also consider the effects of exposure time on the count rate.
However, while normalization is inherently tied to the structure of celestial objects, ex-
posure time can be adjusted as needed. We maintained a constant exposure time of 100
ks in all models to secure a realistic number of counts in spectra and to guarantee any
variations in count rate were primarily dependent on the normalization parameter.

To ensure an unbiased performance comparison between all missions, we adopted
the same parameters also for XRISM and Athena. Both satellites offer a significantly
higher spectral resolution compared to Chandra, which means that a higher signal-to-
noise ratio (SNR) is required to resolve the spectral lines properly. However, XRISM
has only a slightly larger effective area than Chandra, which can limit the collection of
counts and ultimately affect the SNR. With our specifications, primary normalization
set to 10~* and exposure time 100 ks, Athena is capable of collecting around 500 counts
per channel, while XRISM can collect approximately 2 counts per channel and Chandra
22 counts per channel. The specific count values corresponding to the minimum and
maximum thresholds and their corresponding SNR are presented in Table 2. The SNR
was calculated from Poisson statistics as follows:

N
SNR_gyﬁ__¢N) (4.1)

where N is the number of photons in one spectrum.

Chandra XRISM Athena
norm SNR Counts SNR Counts SNR Counts
1075 22 500 33 1100 205 42000
104 74 5500 114 13000 742 550000
1073 265 70000 575 33000 3606 13000000

Table 2: Comparison of signal-to-noise ratio and Counts for specified normalizations for Chan-
dra, XRISM, and Athena satellites.

By employing the parameters described above into SHERPA's fake _pha tool, we con-
structed spectra with single and two thermal components via the application of an
absorbed thermal emission model sourced in XSPEC as:

PHABSx (APEC)
PHABS x (APEC1+APEC2)
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where the APEC (used version 3.0.9) models the thermal emission (see Section 3.2.2)
and PHABS represents the galactic absorption (see Section 3.2.1). Initially, we limited
our analysis to only two thermal components, with the primary aim of exploring
the extent to which the satellites are capable of distinguishing the cooler component
based on the normalization ratios between the first and second components. However,
we also conducted a brief analysis of a three thermal component plasma for the Virgo
cluster.

1073 + u""w WW

1014 4 $ab b i

Counts

1004 P
------- Lower limit for models

¢ Chandra: Single-T spectrum

-------- Lower limit for models %,o‘mh\"""“w""‘.\'
10°4 | Chandra: Double-T spectrum : Rad

("
: M\Qp
bty : it
: 4

5 }
101 bt : Lt

Counts

t  XRISM: Single-T spectrum

101,

Counts

1094

XRISM: Double-T spectrum

101!

Counts

10°4

1034

102_

Counts

101+

10°4

1034

t  Athena: Double-T spectrum

102,

Counts

101 4

10°4

0.5 1
Energy [keV]

Figure 4.3: Comparison of selected single-temperature and double-temperature spectra, gener-
ated for Chandra, XRISM, and Athena observatories.
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4.2 RF MODELS

In this section, we will explore the RF models that were trained for the selected
satellites to identify multiphase regions in Virgo and Perseus clusters. These models
were developed in order to significantly speed up the process of the traditional multi-
temperature analysis and to test the capabilities of the future X-ray missions XRISM
and Athena in comparison to the present Chandra X-ray observatory.

We will discuss the training process, the architecture of the models, and their per-
formance on simulated and real data. We will also examine the limitations of our ML
analysis compared to the XSPEC platform and the potential for future developments
in this exciting field.

4.2.1  Selected spectrum of training data

As described in the previous chapter, we have generated thousands of spectra with var-
ious parameters, which will serve as input for the RF models. The aim is to explore the
ability of the Chandra, XRISM, and Athena observatories to distinguish the presence of
the cooler component, depending on the normalization ratio between the two temper-
ature components presented in the spectra. To achieve this objective, we have divided
the simulated spectra into five distinct categories for each satellite individually.

Ninax Nimn Nénax Nimn Rmin
107%(107°) 0.1

0= 10-5 5-1077(5-107°) 0.05

1073 a0 10 1077(107°) 0.01

5-1078(5-1077)  0.005

10-8(1077) 0.001

Table 3: Selected normalization parameters for double-temperature models. NI, NMmaX rep-
resents the minimum and maximum of the normalization range for the main ther-
mal component, N7*?%, N;“in represents minimum and maximum of the normalization
range for the second cooler thermal component and the R™" parameter is the ratio
between the minimum normalization values of the second and first components. The
numbers in brackets were selected for the second set of models for Chandra satellite.

For the main temperature component, we set the normalizations the same for all
the groups (10~2 — 10~°) since this parameter should represent the realistic properties
of the clusters. However, we made an exception for the Chandra satellite and trained
the models on a more limited range as well (10~% — 10~*) due to the poor accuracy of
the models on spectra with such low count rates. For the second cooler component,
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these 5 categories are differentiated based on the ratio of the minimum values for
normalization ranges (see Table 3)

As can be deducted from Table 3, these categories differ in the normalization ra-
tios of the minimum values between the cooler thermal component and the first main
component. Since the normalizations were simulated with a loguniform distribution,
this approach can provide insights into the extent to which the satellites can distin-
guish the second component. In doing so, it tests the limits of the satellites” ability to
recognize multi-temperature regions with a significant acceleration of the traditional
process. Furthermore, it will enable us to assess the effectiveness of future X-ray mis-
sions such as the XRISM and Athena in comparison with the current Chandra X-ray
Observatory.

4.2.2  Training & Testing

A total number of 100000 spectra corresponding to one cluster were generated for
each satellite (twice as much for Chandra for the second normalization ranges). To
train and test the performance of our models, we used the cross-validation method,
which is commonly used in ML analysis, to estimate the accuracy for various splits
into training and testing data, allowing us to estimate an average accuracy together
with uncertainties. We divided our dataset of 20000 spectra (for each model) into five
groups and individually trained the model on four of these groups. We then tested
all of the trained models on the fifth set, which had not been seen by our models till
then. The final mean accuracy and uncertainty were determined by simply following
the standard average calculation steps.

In the training process, we adapted the PCA algorithm for principal component
analysis and the standard RF classifier from RandomForestClassifier for classification
(see Section 3.1.1 and 3.1.2), both from the Scikit-learn library. Firstly, we applied the
classifier to each spectrum individually. Next, we summed the probabilities over the
entire ensemble using the definition of the classifier. The final classification is based
on the class with the highest summed probability.

Due to the difference in the energy range of the simulated spectra from the var-
ious missions, we need to adjust them for the sake of uniformity. To this end, we
adopted a maximum limiting value of 4 keV, guided by two factors. Firstly, the high
spectral resolution of XRISM and Athena satellites makes loading all available chan-
nels computationally demanding and very time-consuming (see Figure 4.1). Secondly,
the principal components derived from PCA exhibited the most variability in the soft
X-ray regime from 0.5 — 2 keV, which is an expected trend since we primarily model
diffuse hot gas emitting mostly in these bands. The ‘tail” of the spectrum has almost
no bearing on the accuracy of the models and is negligible (refer to Figure 4.4).
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To further optimize our bounded resources and computing power, as an input for
our models, we used a maximal energy limit of 4 keV for both XRISM and Athena
satellites, while for Chandra X-ray observatory, the input for models was limited in the
range of 0.5 — 4 keV. The lower limit for Chandra is based on the future application of
the models on real data, which below 0.5 keV have relatively low sensitivity and lower
SNR. Moreover, the systematic calibrations of response files are challenging in these
conditions, making it difficult to obtain accurate measurements. With these criteria, the
final number of channels that went into the model were for Chandra 245, for XRISM
8000, and for Athena 11000 (see Figure 4.1).

In Figure 4.4, we visualized the first 5 eigenspectra and mean spectra of the Chandra
training set (16000 synthetic spectra) without the limitations set above. The individual
components in the graph represent the eigenspectra projected onto the original domain
(0j in Equation 3.5), and the mean emission spectra is their sum.
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Figure 4.4: Visualisation of the first 5 principal components and their linear combination (mean
emission) for the channel range extended beyond the limitations for our models of
Chandra satellite for configuration N = 1075 and R™" = 0.1.

In order to determine the number of principal components that would be the best to
include, we looked at how the number of components affects the accuracy of models.
The final number of components was chosen based on the highest parameter vari-
ance coverage while still maintaining great accuracy (see Figure 4.5). As the number
of principal components increases beyond a certain point, the model’s accuracy be-
gins to drop, as can be seen in Figure 4.5. The beauty of principal components lies in
their ability to filter out the noise in the data and capture the essential features in the
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spectra. Therefore, when the number of components becomes too large, in our case,
30 and more, the components included after tend to contribute significant noise, lead-
ing to confusion in the algorithm. After this analysis, we concluded that 25 principal
components would be used as the input for our RF classifier.

o o = - e o o

CHANDRA: model accuracy
60 4 CHANDRA: components coverage
~—f— ATHENA: model accuracy

-+~ ATHENA: components coverage
—}— XRISM: model accuracy

-+- XRISM: components coverage e

40 1

é 1IO 1I5 2l0 2I5 3‘0 3I5 4‘0 45 50
Number of underlyning components in PCA

Figure 4.5: Investigation of the dependence between a number of components and the model’s
prediction accuracy, as well as parameter coverage for model configuration Nj™" =
107° and R™" = 0.1.

Through a careful process of exploring diverse architectures and experimenting with
various hyper-parameters, we selected the most optimal configuration for the machine
learning model dependent on the parameter coverage, an appropriate number of prin-
cipal components, and prediction accuracy. The success of the model’s predictions
was evaluated using confusion matrices. In the employed cross-validation technique,
we combined results from 4 confusion matrices to capture the deviation of the model’s
predictions (one matrix from each model is shown in Appendix A).

The complete training procedure for both Chandra normalization limits, including
the loading of synthetic spectra, the application of PCA, and the actual training stage,
required 0.4 hours for a single cluster. While for XRISM and Athena, the computing
time was 24.2 hours and 17.4 hours for a single cluster, respectively. However, The
most time-consuming part was the loading of synthetic spectra, which took about 95%
of the entire process.

In summary, we first simulate X-ray spectra for both single and double-temperature
plasma. With the implementation of PCA, we reduce the number of free parameters by
creating projection matrices for each training spectrum. Subsequently, we train our RF
algorithm to classify the input spectra based on the underlying number of components.
Finally, we validate the success of the trained algorithm on a test set (see Figure 4.6)
that had been fine-tuned using the same approach as the training dataset.
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Figure 4.6: Graphical illustration of prediction accuracy (upper graph) and parameter coverage
(lower graph) for all models plotted as a function of the normalization ratio between

From the results visualized in Figure 4.6, it is evident that the performance of Athena
surpasses that of Chandra and XRISM satellites for both galaxy clusters. The Chandra
satellite’s ability to distinguish between single-temperature and double-temperature
spectra remains the poorest for both of the investigated normalization ranges. Al-
though the principal component coverage varies between the clusters for all models, it
is not reflected in the model’s accuracy.
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Mission Rmin MY [%] CY (%] MPE [%] CP [%]
0.1 65.62 + 0.43 76.92 +0.30 64.20 4 0.56 55.29 + 0.54
Chandra 0.05 62.82 4 0.66 76924034 60434094  55.0840.33
10-5) 0.01 56.21 + 0.77 76.85 + 0.36 55.30 4 0.73 54.98 +0.48
0.005 54.75 4 0.96 76.95 4 0.29 5321+054  55.09+0.18
0.001 52.77 + 0.64 7646 +£0.07  52.16 + 0.48 55.02 +0.30
0.1 88.69 4 0.72 91.98 +£0.04  86.46 +0.43 61.61 +0.24
Chandra 0.05 81.1140.35 91.804+0.07  80.594+0.74  60.68 +0.19
10-4) 0.01 69.77 + 1.00 91.66 £+ 0.12 69.76 + 0.51 59.80 + 0.17
0.005 66.99 4 0.65 91.63 4 0.08 65.86 4 0.41 59.48 + 0.37
0.001 61.81+057  91.63+0.13 62.18 +£1.18 59.16 + 0.25
0.1 87.38 +0.32 4122 +0.43 87.25 +0.71 29.69 + 0.29
0.05 83.47 4 0.29 39.92 +0.51 82.05 + 0.71 28.46 + 0.32
XRISM 0.01 72.39 + 0.83 39.14 £+ 0.51 74.00 + 0.42 28.24 4+ 0.33
0.005 69.57 4 0.56 38.69 4+ 0.23 69.84+054  28.14+0.43
0.001 62.91 4 0.81 38.634+0.3 65.264+0.44  28.03+0.38
0.1 92.53 + 0.43 94.12 +0.10 95.87 4 0.56 86.34 +0.33
0.05 89.1240.16 93.59 4 0.09 93.31 4- 0.43 85.39 +0.28
Athena 0.01 79.51 + 0.24 92.80 £0.24  87.62+0.39 83.84 4 0.42
0.005 76.52 + 0.34 92.67 £0.15 84.46 +0.37  82.94+0.38
0.001 69.53 4 0.85 92.36 4 0.21 77.39+0.57  82.71+0.50

Table 4: Results of our trained models for all satellites and their configurations. Prediction

accuracy of Virgo and Perseus cllljlster is represented by MY, MP . and parameter

coverage is represented by CY,., CP. . Listed accuracy values were calculated from the
cross-validation method.

4.2.3 Triple-temperature model

In addition, we conducted a test on triple-temperature component spectra simulated
for the Virgo cluster to evaluate the performance of our algorithm on more than
double-temperature plasma. This analysis was motivated by the fact that, according to
the current literate (Frank K. A. et al., 2013; Rhea C. et al., 2020; de Plaa J. et al., 2010),
in some clusters, we can detect up to 4 thermal components. The dataset for each
model consists of 30000 synthetic spectra, with 10000 spectra of single, double, and
triple-temperature components included. The temperature ranges were again selected
by drawing upon studies investigating multiple-phase characteristics of the Virgo clus-
ter (Liu H. et al., 2020; Werner N. et al.,, 2013). The single-temperature component
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spectra were generated with temperature 1 — 4 keV, the double-thermal component
spectra with temperature 0.5 — 1.5 keV, and the triple-thermal component spectra with
temperature 0.3 — 0.7 keV.

N{nax N'{nin N}nax Nimn N;)nax N;)mn er’nin Rgﬁn
1073 1075 1075(107%) 5-107%(5-107%) 1075(107%) 1076(10~°) 0.5 0.1

Table 5: Selected normalization parameters for triple-temperature models. N{Ui", NI@ repre-
sents the minimum and maximum of the normalization range for the third thermal
component. The RPN, RPN parameter is the ratio between the minimum normaliza-
tion values of the second-first and third-first components. The numbers in brackets
were selected for the second model for Chandra satellite.
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Figure 4.7: Selected confusion matrices for all triple-temperature component models .

From the selected confusion matrices in Figure 4.7 for each model, it is apparent that
the algorithm is capable of detecting more than two thermal components in the spec-
trum. However, the model could not achieve the same accuracy as the two-temperature
models, even though the normalization ranges were set slightly higher (see Table 3 and
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Table 5). Despite these observations, the trend among satellites remains consistent: the
Athena satellite continues to perform the best, while the Chandra satellite lags behind
in the last place in both presented models.

Mission N{nm MXCC %] C“,/ar %]
107° 53.38 +0.38 81.734+0.28
104 67.47 +0.52 94.71 4 0.04

XRISM 107° 68.89+0.77  4549+0.36

Athena 107° 78.72 4+ 0.30 96.01 4+ 0.09

Chandra

Table 6: Result prediction accuracy MY.. and component coverage CY,. for triple-temperature

models.

4.3 COMPARISON WITH XSPEC

To validate the performance of our trained RF models, we will compare them with the
widely-used X-ray spectral analysis platform, XSPEC. For the evaluation, we generated
a set of test data with a specified SNR (see Table 7) on which we examine the accuracy
and speed of the models in comparison with XSPEC.

Chandra XRISM Athena
norm SNR Counts SNR Counts SNR Counts
103 250 62500 350 122500 2100 4410000
5.107% 170 28900 250 62500 1500 2250000
5.107° 50 2500 80 6400 550 302500

Table 7: Signal-to-noise specifications for generated test sets of spectra for Chandra, XRISM,
and Athena satellites.

The test spectra were generated as described in section 4.1.1, with the main thermal
component matching the corresponding GC temperature (1 — 4 keV for Virgoand 2 —5
keV for Perseus) and the second thermal component mimicking the cooler temperature
filaments (0.5 — 0.75 keV for Virgo and 0.6 — 0.85 keV for Perseus). To ensure consistent
signal-to-noise ratios for each test set, we fixed the normalization values N; and N.
For the 1%-thermal component, we used Ny = 1073, 5-107%, 5105, while for the
2"d-thermal component, we tied the normalizations to the 1%-thermal component with
ratios N/ N1 = Rp/1 = 0.1, 0.05, 0.01, 0.005, 0.001. For each configuration, a total of
one hundred single-temperature and double-temperature spectra were generated.
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4.3.1  XSPEC evaluation

Extracting physical parameters of astrophysical sources, such as temperature or metal-
licity, requires the spectral fitting of the observed X-ray spectra. A crucial aspect of
spectral analysis is the ability to distinguish between single and multi-temperature
plasma components for which XSPEC platform is a widely-used and popular tool.

To evaluate the goodness of a fit and identify potential underlying components
in the plasma, we used the x? test statistic in our analysis. This statistical method
compares the predicted fit to the spectral data and quantifies the differences between
the two. To ensure the validity of the test, we binned the data to have at least one
count per bin and have adequate degrees of freedom (Chandra: binning= 1, XRISM:
binning= 20, Athena: binning= 500). The binning allows the independent random
variables in each bin to be approximated by Poisson distribution. This enables the
calculation of the expected counts for each bin, which are subsequently used in the
calculation of the x? value using the formula:

k 2
A;—E;
e =y Bt 4
i=1 Ei

where k is the number of classes and A;, E; is the number of observed and predicted
counts in the i-th class (Liu H. and Setiono R., 1995). In order to obtain a precise
evaluation of the goodness of the fit, it is necessary to calculate the reduced x? statistic,
which is defined as:

XZ

degrees of freedom’

Xk = (43)
In this section, we analyze the precision of XSPEC platform in identifying multi-
temperature regions. To achieve this, we model both single and double-temperature
spectra, perform spectral fitting analysis, and compare the results of individual fits.
We introduce three criteria for classifying the synthetic test spectra as either single
or double-temperature. Firstly, a good fit is indicated by a reduced x% value between
0.8 —1.2; otherwise, the algorithm does not include the fit in the final results. Secondly,
the selection of the better fit, either single- or double-temperature, is based on the
smaller value of the )(%{ statistic. Thirdly, if the difference between the )(%{ values of
both fits for a given spectrum is less than 1% of the maximum difference allowed by
the first condition, the simpler model (single-temperature) is chosen as, the better fit.

For the spectral fitting process, we used the default levmar method in XSPEC. Our ap-
proach involved fitting the normalization, temperature, and abundance independently.
Although XSPEC offers more advanced and precise methods for spectral fitting, we
chose this method due to its superior speed and sufficient fit statistics, which met our
tirst criteria in 99.9% of the 12000 test spectra.



GC SNR R2/1 XSEPC M 0.1 MﬂO.OS MﬂO.Ol Mﬂ0.005 MﬂO.OOl Mbo-l Mb0.05 MbO.Ol Mb0.005 MbO.OOl

0.1 61.5 60.0 55.0 59.0 57.0 59.0 50.5 54.5 54.5 52.0 55.0

0.05 53.5 52.0 51.0 53.5 54.0 56.5 55.0 48.5 50.5 51.0 54.0

50 0.01 50.5 52.0 51.0 53.5 54.0 61.0 51.5 51.0 49.5 51.0 55.0
0.005 51.0 47.5 47.5 53.5 45.5 48.0 51.5 52.0 53.5 52.5 50.5

0.001 49.0 47.0 50.5 52.5 45.0 48.5 51.0 50.5 53.5 50.5 53.0

0.1 95.0 76.5 65.5 58.0 52.5 58.5 57.5 67.0 66.0 58.0 59.5

0.05 90.0 59.0 56.0 54.0 60.0 49.0 69.5 50.5 49.5 52.0 50.5

Virgo 170 0.01 56.5 59.0 56.0 54.0 60.0 49.0 51.5 51.0 50.0 45.5 50.5
0.005 54.5 53.5 47.0 48.0 52.5 52.5 53.5 49.5 46.5 47.0 49.5

0.001 51.0 50.5 48.5 52.5 53.0 49.5 51.0 48.5 46.5 43.5 46.5

0.1 95.5 76.5 61.0 63.0 64.0 62.0 65.0 73.5 68.5 70.0 65.5

0.05 94.0 57.5 56.5 52.5 56.0 54.0 74.0 52.0 52.0 52.5 54.0

250 0.01 62.0 57.0 56.5 52.5 56.0 54.0 50.0 50.5 48.0 48.5 51.0
0.005 53.5 49.5 49.0 55.0 56.0 56.0 51.0 52.0 51.5 49.0 47.5

0.001 52.5 52.5 47.0 57.0 57.0 48.5 54.0 53.5 51.5 49.5 47.0

0.1 64.5 72.0 71.5 61.0 55.0 58.5 66.5 69.0 71.0 72.0 66.5

0.05 53.0 64.0 63.5 52.5 49.0 56.5 59.0 64.0 65.5 66.0 61.0

50 0.01 49.0 49.5 50.5 44.5 47.5 50.5 46.0 47.0 45.5 48.5 47.0
0.005 49.0 48.5 54.0 44.5 45.0 52.0 51.5 55.5 53.0 53.5 54.0

0.001 51.0 49.0 52.0 46.5 47.5 46.5 49.0 46.5 49.5 49.0 48.0

0.1 97.0 75.5 71.5 64.5 72.0 59.0 89.5 92.5 87.5 84.0 85.0

0.05 92.0 69.0 66.0 59.5 60.5 56.5 75.5 82.5 80.5 73.0 76.5

Perseus 170 0.01 52.5 60.5 49.5 56.0 62.0 51.5 57.0 58.0 58.0 57.0 62.5
0.005 49.0 50.0 51.0 55.0 57.0 55.5 46.5 48.5 48.5 49.5 50.5

0.001 49.0 49.5 48.0 54.0 52.5 52.0 44.5 47.0 53.0 50.0 52.5

0.1 97.5 75.5 74.0 66.5 68.0 56.0 94.0 96.0 80.5 76.0 85.5

0.05 95.0 70.5 71.5 57.0 59.5 53.0 88.5 92.5 78.5 75.0 84.0

250 0.01 58.0 56.5 58.5 57.0 50.5 44.5 56.5 62.0 58.5 56.0 62.0
0.005 52.5 55.0 51.5 53.5 52.5 49.5 52.0 55.0 50.0 47.0 51.5

0.001 48.5 47.0 56.0 54.0 49.5 44.5 56.0 57.0 48.5 48.0 61.5

Table 8: The capability of the XSPEC platform to distinguish between spectra containing single and double-temperature components, as
well as the accuracy of our RF models on the same spectra evaluated for the Chandra mission. The M parameter represents the
performance of RF models on test data based on their signal-to-noise ratio and R;/; parameter. The bottom numbers at parameter
M are the Rp,i, values, described in Section 4.2.1.

a model trained on data with N™in = 10>
b model trained on data with N/t = 104
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Mission SNR Ry XSEPC* Mo, M5 Mo M0 M0 XSEPC? M bo.l Mbo.os Mbo.m M b0.005 Mbo.om

0.1 94.0 99.0 99.0 96.5 81.0 95.5 48.5 47.0 56.0 54.0 49.5 44.5

0.05 93.5 98.5 97.5 93.5 94.5 93.5 95.0 97.5 98.5 94.0 94.0 94.0

80 0.01 93.5 59.5 64.5 71.0 68.5 68.5 74.5 56.5 64.0 68.0 72.0 71.0
0.005 68.0 53.5 57.5 57.0 65.5 58.5 63.5 51.0 54.5 50.5 58.5 56.0

0.001 48.5 49.5 51.5 51.0 48.5 49.0 53.0 49.0 52.0 51.5 51.5 50.5

0.1 98.0 86.5 86.0 80.5 85.0 79.5 99.5 87.5 87.5 83.5 81.0 79.5

0.05 99.5 86.5 86.0 80.5 85.0 79.0 99.5 87.5 87.5 83.5 81.0 79.5

XRISM 250 0.01 97.0 82.0 81.0 75.5 81.0 75.0 96.0 82.5 85.0 82.0 80.0 78.0
0.005 86.5 72.5 71.0 67.0 70.0 63.5 73.5 68.5 73.0 715 71.0 68.0

0.001 53.5 52.5 55.5 54.0 58.5 53.5 51.5 56.0 54.0 50.5 53.0 51.5

0.1 100.0 81.5 76.5 75.0 81.5 76.0 100.0 83.5 79.5 775 78.5 75.5

0.05 98.5 81.0 76.5 75.0 81.5 76.0 100.0 83.5 79.5 775 78.5 75.5

350 0.01 98.5 79.0 72.5 735 78.0 70.0 97.5 83.0 78.5 77.0 77.5 73.5
0.005 87.5 75.5 68.0 66.0 70.0 66.0 82.5 74.5 73.5 715 72.0 67.5

0.001 53.0 57.0 51.5 56.0 60.5 59.0 50.0 52.0 50.0 485 50.5 51.5

0.1 96.5 99.0 96.5 96.5 93.5 92.5 95.0 99.0 100.0 99.0 99.0 95.0

0.05 97.0 99.0 96.5 96.5 93.5 92.0 95.0 99.0 100.0 99.0 99.0 95.0

550 0.01 96.5 83.0 83.5 87.5 85.0 82.0 94.5 85.5 88.5 97.5 98.0 94.0
0.005 96.5 65.5 67.5 67.5 72.0 75.5 92.5 61.5 64.0 86.5 92.5 92.0

0.001 81.0 54.5 55.5 54.0 52.0 57.0 67.0 51.0 52.0 53.0 54.5 62.5

0.1 99.5 96.0 92.5 91.5 91.5 84.0 100.0 98.0 98.0 97.0 94.0 87.5

0.05 100.0 96.0 92.5 91.5 91.5 83.5 100.0 98.0 98.0 97.0 94.0 87.5

Athena 1500 0.01 99.5 90.5 91.0 89.0 91.0 80.5 100.0 98.0 98.0 96.5 94.0 87.5
0.005 99.5 80.0 81.0 80.0 83.5 74.5 100.0 92.5 95.5 94.0 93.5 87.5

0.001 94.5 51.0 56.5 59.5 60.5 62.5 92.5 54.5 54.5 67.0 71.0 74.0

0.1 100.0 96.5 94.5 93.5 94.0 85.0 100.0 98.5 94.0 95.5 97.0 91.0

0.05 100.0 96.5 94.5 93.5 94.0 84.5 100.0 98.5 94.0 95.5 97.0 91.0

2100 0.01 100.0 94.5 93.5 91.5 92.0 82.0 100.0 98.5 94.0 95.5 97.0 91.0
0.005 99.5 84.5 87.5 86.5 88.5 77.5 100.0 96.5 93.5 94.0 97.0 91.0

0.001 98.5 51.5 53.5 60.5 59.0 57.0 94.0 56.0 59.5 72.5 76.5 79.0

Table 9: The capability of the XSPEC platform to distinguish between spectra containing single- and double-temperature components, as
well as the accuracy of our models on the same spectra evaluated for the XRISM and Athena missions. The M parameter represents
the performance of our models on test data based on their signal-to-noise ratio and R;,; parameter. The bottom numbers at
parameter M are the Rpn values, described in Section 4.2.1.

a values for Virgo-like spectra
b values for Perseus-like spectra
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4.4 TESTS ON REAL OBSERVATIONS

To further evaluate the performance and effectiveness of our models, we conducted a
test on real observations of the Virgo and Perseus clusters (see Table 10). Since from
the investigated missions, Chandra is the only satellite with available observations, we
explored only this mission in the test. For the purpose of this analysis, we chose to
examine the observations of M87 (member of the Virgo cluster) and NGC1275 galaxy
(member of the Perseus cluster). These two objects are one of the brightest and most
massive exemplars in each cluster and comprise a wide range of temperatures, making
them ideal targets for detailed multi-temperature studies.

GC Object ObsID Detector Exposure time [ks] Date
Virgo M87 18856 ACIS-S 25.46 2016
Perseus NGC1275 1513 ACIS-S 24.88 2000

Table 10: Selected observations for objects in Virgo and Perseus cluster.

Both observations were obtained from Chandra Search & Retrieval archive ChaSeR
(Harvard-Smithsonian Center for Astrophysics, 2021) and were selected for several
reasons: their exposure time is comparable and long enough for good count statistics,
and in both of the cases the detector device ACIS-S matches the instrument chosen
for generating the synthetic spectra. Our aim is to extract real spectra from selected
regions (see Figure 4.9), use XSPEC platform to determine the number of underlying
components, and subsequently apply our models to the same spectrum.

4.4.1  Data processing

The processing of the data, starting with the initial level I file provided by the CXC, was
done using the Chandra Interactive Analysis of Observations (CIAO) software package
(version 4.15) that stores required calibration files in Chandra Calibration Database
CALDB (version 4.10.2). In order to create quality spectra from selected regions, we
followed the reduction and cleaning procedures described below.

The data was reprocessed to create level 2 event file using chandra_ repro tool, fol-
lowed by the detection of background and bright sources using vtpdetect routine
and their subtraction from the original image (see Figure 4.9). In addition, we used
lc_sigma_ clip routine to filter remaining flares with 3¢ factor. The final exposure times
corrected by the filtering were for Virgo 25.21 ks and for Perseus 24.29 ks.

Moreover, a background file was created for each observation using the ASIC-S cal-
ibration files stored in the CALDB with blansky script. These files were subsequently
used as background files in later analyses. A total of 20 regions were chosen for spec-
trum extraction using the contour analysis feature in the SAOImageDS9 imaging tool,
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with 10 regions being selected for each cluster. The selection was made based on the
cluster’s existing temperature maps and the number of counts in each region, which
ranged from 800 to 6000 counts (see Table 11). The spectra for each region were ex-
tracted from the processed event file and the created background file using specextract
tool and analyzed with Sherpa fitting package.

20 arcsec

(a) Original data for Virgo

(c) Cleaned data for Virgo

168.6

42.0

10.3

2.3

0.3

60 arcsec

(b) Original data for Perseus

60 arcsec

(d) Cleaned data for Perseus

126.6

31.5

Figure 4.8: Selected Chandra observations (upper row) and reprocessed images with subtracted
bright and background sources and outlined regions, later used in the analysis
(lower row) visualized in SAOImageDSg application.
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4.4.2 Data fitting and comparison with models

In order to determine the number of underlying components present in the extracted

spectra, we employed a fitting approach using XSPEC, which was similar to that de-
scribed in section 4.3.1 with few adjustments.
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Figure 4.9: Selected spectra that were classified as double-temperature. Upper parts of the
graphs: Extracted spectra fitted with single (orange) and double-temperature (red)
models using Sherpa application. Lower parts of the graphs: Difference between ob-
served data and single (blue), double-temperature (orange) models.
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After the binning was applied to the data, the background spectrum was subtracted
from each region. A power-law model with a photon index fixed to 1.56 was included
in the fitting procedure to account for potential non-thermal processes (Irwin J. A.
et al., 2003). The remaining parts of the algorithm were kept unchanged. The XSPEC
model, which was characterized by better statistics, was subsequently considered to
be the ground truth, and the RF model predictions were compared to this established
model. Table 11 shows the final classifications derived from the best fits of the XSPEC
models for spectra in each selected region.

Virgo Perseus
Region Class Counts Class Counts
A Single 2106 Double 2757
B Double 2636 Double 3662
C Single 1268 Double 4864
D Single 1362 Single 1225
E Single 1047 Single 4815
F Single 865 Double 5425
G Single 1462 Single 2446
H Single 1718 Single 4971
I Single 1682 Single 3140
J Single 2315 Single 3026

Table 11: Classification results from XSPEC on selected regions and their number of counts.

The overall prediction accuracy of our models on all selected regions in real obser-
vations is presented in Table 12. The results indicate that the models could identify

N GC Moa[%] Mo 05[%] Mo.01[%] Mo.005[%] Mo .001[%]

10-4 Virgo 80 80 60 40 40
Perseus 60 60 50 40 40

10-5 Virgo 70 70 60 50 50
Perseus 60 50 50 40 40

Table 12: Accuracy of models on all regions selected from real Chandra observations.

some of the key features in the synthetic data, successfully apply those findings to
the real observation, and predict the presence of multi-temperature components with
reasonable accuracy. Although the models demonstrated comparable performance on
the synthetic data (see Figure 4.6), their performance differs when applied to real data,
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as can be seen in Table 12, where the models developed for the Virgo cluster outper-
formed those developed for the Perseus cluster.

The results for the Perseus cluster could be attributed to the relatively lower cov-
erage of parameter variance in the models for the Perseus cluster compared to those
for the Virgo cluster (see Figure 4.6). Another potential factor contributing to the con-
fusion of the algorithm could be our assumption of single-temperature and double-
temperature plasma within the clusters. The selected regions in the Perseus cluster
could contain more than two thermal components (see Section 4.2.3), which would
introduce additional uncertainty to the outcome. Nonetheless, all the findings suggest
that the models have the potential to identify complex spectral components in a variety
of astrophysical environments.
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The results obtained in this study provide insight into the performance of the machine
learning technique used for identifying the number of underlying components in X-ray
spectra for galaxy clusters. By simulating both single and double-temperature plasma
and training the RF algorithm on the spectra processed by PCA, we were able to
successfully classify input spectra based on the number of thermal components. The
validation on a test set demonstrated the efficacy of the algorithm and the superiority
of Athena observatory over Chandra and XRISM satellites for both galaxy clusters. In
this Chapter, we look into the limitations of our methodology, the factors that can
impact the outcomes of the models we constructed, and outline the potential avenues
of future research.

5.1 PRINCIPAL COMPONENTS

As discussed in Section 3.1.1, the principal component analysis (PCA) method effec-
tively reduces the challenge of high dimensionality by transforming the data into a
linear combination of eigenspectra 7; and mean emission ji (see Equation 3.5). The
eigenspectra represent the primary components projected onto the initial basis, and
the selected sample for each satellite is shown in Figure 5.1. Notably, the PCA success-
fully captures the main variations in the soft X-ray region (ranging from 0.5 to 2 keV),
which is expected to occur due to the modelling of mostly diffuse gas that primarily
emits in this regime.

The physical interpretation of the individual eigenspectra is often an issue in the
PCA. The problem lies in that the newly defined variables are usually linear functions
of all the original variables. Therefore, many new variables have non-trivial coeffi-
cients, making the components difficult to interpret. However, with a thorough review
of the relevant literature and a close examination of the eigenspectra presented in Fig-
ure 5.1 (Folkes S. et al., 1999; Jolliffe I. T. and Cadima J., 2016; Rhea C. et al., 2021), it is
possible to suggest that the first two principal components captured by the algorithm
for the Chandra satellite represent the Fe-L/Ne emission line complex close after 1 keV,
resulting from the instrument’s relatively poor energy resolution. However, the fea-
tures captured by other displayed principal components for this satellite may require
further investigation to be clearly interpreted.

The energy resolution of the XRISM and Athena satellites is undoubtedly better
than that of the Chandra mission. This is reflected also in the eigenspectra and mean
emission, which captured fine emission line structures visible in Figure 5.1 (see also

49



DISCUSSION & FUTURE WORK

w
o

_/\/\V\/’—“\/\_A component 4
7_,/\/\/,_/7\&/_‘77*‘, component3 o

g
[

~
o

Normalized Emission + offset
—
w

1.0 _)—»fxﬁ_‘_ B R o component 1
0.5
mean emission
0.0
05 10 15 20 25 30 35 40
Temperature [keV]
(a) Chandra
oo . ) component 4

N
o

component 3
—_.%WW

=
wn

component 1

Normalized Emission + offset

1.0 ey
05
N A mean emission
0.01
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Temperature [keV]
(b) XRISM
2.5
L LL..I component 4
g

g
o

| component 3

R

=
w0

component 1

=

o
|
{
\

4

Normalized Emission + offset
=
(%]

el I . L mean emission

(=]
(=]

0.0 0.5 1.0 1.5 2.0 2.5 3.0 35 4.0
Temperature [keV]

(c) Athena

Figure 5.1: Visualization of the first four principal components and the linear combination of
all 25 components (mean emission) for investigated observatories. The components
corresponds to model with NJ™™ = 10~° and Ry = 0.1.



5.2 SATELLITES PERFORMANCE

Appendix C). However, interpreting the eigenspectra for these satellites is still very
difficult and requires additional investigation. Despite this, it is clear from the figure
that Athena outperforms both XRISM and Chandra satellites and therefore has great
potential to advance our understanding of obscured fields.

5.2 SATELLITES PERFORMANCE

The resulting prediction accuracy presented in Figure 4.6 and Table 4 demonstrates
that the Athena observatory has performed exceptionally well across all models com-
pared to the Chandra and XRISM satellites. This result was anticipatable and may be
attributed to the outstanding spacecraft architecture of Athena, which has an effective
area of 2 m?, enabling it to capture a significantly higher number of photons and hold
a better energy resolution as illustrated in Table 1. Athena’s favorable performance and
the underperformance of the other satellites can be further drawn from the dependen-
cies of the principal components (see Appendix B).

Since we investigated double temperature spectra with carefully balanced normal-
ization ratios between their thermal constituents, the principal components did not
segregate into visually distinct regions. Nonetheless, we can observe specific trends
for the different number of underlying temperatures. For example, one of the trends
can be observed in Figure B.1 generated for Chandra satellite, where the second prin-
cipal component in single-temperature spectra gradually descends towards a negative
value of —2 before changing direction and ascending towards a positive value. If a
test spectrum falls near this trend line, it is highly probable to be categorized as a
single-temperature spectrum. Similar or more intricate trends can also be seen in the
component dependencies graphs of the XRISM and Athena satellites.

A noteworthy finding is that the strength of correlation among principal compo-
nents is heightened as the signal-to-noise ratio of the thermal components increases
(marked by the Rp, value, corresponding to the normalization ratios). This pattern
is consistently observed across all satellites and is noticeable from the graphs in Ap-
pendix B.

In addition, we tested the algorithm on triple-temperature plasma using the same
architecture as for double-temperature spectra. Although the achieved accuracy was
lower than that of the two-temperature models, the successful application of the algo-
rithm on more complex datasets highlights its potential for further development and
optimization to achieve greater accuracy in the future.

5.2.1 Accuracy and speed

To further evaluate our models, we conducted additional tests to compare their accu-
racy and efficiency with the current spectral analysis tool, XSPEC platform. While our
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models were not designed to outperform the XSPEC but rather to expedite the clas-
sification process, they still achieved remarkable accuracies, which are approaching
the same level of accuracy as XSPEC and, in some cases, are almost comparable. The
results of these tests are presented in Tables 8 and 9.

Although none of the models for the Chandra satellite were able to surpass the per-
formance of XSPEC platform, most of them were approaching its accuracy, especially
those applied on spectra with the highest normalization ratios of the first and second
thermal component (Ry,; = 0.1) and the highest signal-to-noise ratios (SNR = 250).
The model’s best prediction accuracy of 96.0% was achieved for the Perseus-like clus-
ter, which is only slightly below the XSPEC’s accuracy of 97.5%. For the Virgo-like
cluster, we achieved the best prediction accuracy of 76.5%, which is still a highly accu-
rate result.

A similar analysis performed for XRISM and Athena observatories (see Table 9) re-
vealed significant improvements compared to the Chandra satellite. The models showed
promising results and even outperformed XSPEC in some scenarios, mainly for spec-
tra with the highest normalization ratios of the first and second thermal component
(Rz/1 = 0.1) and the lowest signal-to-noise ratios (SNR = 80,550). Specifically, the
XRISM models attained an impressive 99.0% accuracy and the Athena models 99.5%
accuracy, while the precision of the XSPEC platform was only 94.0% and 96.5%, respec-
tively. However, the models experienced a decrease in accuracy for spectra with lower
Rj/1 values and were unable to achieve the same level of precision as XSPEC in most
cases.

Our models, while in most cases not achieving the same or higher accuracy as the
XSPEC platform, demonstrated a remarkable advantage in terms of speed for analysis.
In comparison to the standard fitting procedure using the levmar method in SHERPA
that took approximately 9 seconds to classify one spectrum for Chandra, 25 seconds for
XRISM, and 122 seconds for Athena, our ML approach was able to classify 100 spectra
in only 0.5 seconds for Chandra (~ 1800x faster), 23 seconds for XRISM (~ 110x faster),
and 14 seconds for Athena (~ 870x faster). This significant decrease in analysis time
highlights the potential of ML algorithms to enhance the efficiency of spectral analysis
in astrophysics, especially when dealing with large datasets such as those anticipated
from future satellite missions like Athena.

In particular, this method could facilitate the preliminary data analysis phase by
quickly identifying regions of interest in the observations, which could then be sub-
jected to more detailed analysis using more accurate conventional fitting procedures.
A promising strategy for advancing our analysis could be integrating a feature that
can precisely determine the temperature of each underlying component. This modifi-
cation could also speed up the process of finding the regions of interest, resulting in
increased efficiency.
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5.2.2  Chandra performance on real observation

The performance of the models on synthetic data seems to be unaffected by the princi-
pal component variance coverage, which is significantly different for each galaxy clus-
ter for all satellites, with models for the Perseus cluster covering less dataset variability.
However, when we test the Chandra models on the real observations (see Section 4.4
and Appendix D), the models applied to the Virgo cluster performed noticeably better
than the models applied to Perseus.

The observed differences between the two clusters may be attributed to the diversity
between the model’s parameter variance coverage (see Figure 4.6) or to the fact that
we selected regions within the Perseus cluster that might have contained additional
thermal components beyond the ones we accounted for (see Section 4.2.3), although
this hypothesis would require further inspection. Nonetheless, it should be noted that
the models developed for both the Virgo and Perseus clusters successfully found the
same features they were trained on in real observations.

To further enhance the accuracy of the models, additional physical parameters can
be incorporated, and different ML algorithms and techniques could be explored. More-
over, it would be insightful to extend the application of the models to a wider range
of galaxy clusters and compare the results.

53






CONCLUSION

In order to expedite the current analysis process, we explored a machine learning ap-
proach based on Principal Component Analysis and Random Forest Classifier to analyze
the multi-temperature regions in Virgo-like and Perseus-like galaxy clusters using syn-
thetic data from the Athena, XRISM and Chandra X-ray observatories. Our research
was primarily motivated by the enormity of data that is expected to be collected by
the forthcoming Athena observatory and the challenge of analyzing these vast datasets
using conventional fitting methods, which are both time-consuming and computation-
ally expensive. To thoroughly investigate the capabilities of individual satellites, we
trained multiple models for each observatory, differing in the normalization ratio of
the first and second thermal components (R™").

The models were initially trained and tested on synthetic single and double tem-
perature spectra as outlined in Section 4.2.2, where the resulting accuracy of the pre-
diction demonstrates the Athena observatory’s superiority. Specifically, the accuracies
of Athena’s models range from approximately 92% — 69% for the Virgo cluster and
95% — 77% for the Perseus cluster, respectively. In comparison, the XRISM satellite
follows closely behind Athena with accuracies ranging from 87% — 62% for the Virgo
cluster and 87% — 65% for the Perseus cluster. Lastly, the Chandra satellite’s perfor-
mance falls behind with accuracies of 65% — 52% for the Virgo cluster and 64% — 52%
for the Perseus cluster, in case of the same normalization ratio. The exact values of
individual models are listed in Table 4.

Additionally, the performance of the algorithm with identical architecture was tested
on triple-temperature plasma, which successfully demonstrated its ability to effectively
process more complex data sets and its potential for further improvement and appli-
cation.

In Section 4.3, we compare the performance of our models with the widely-used
X-ray spectral analysis platform, XSPEC. For this purpose, we generated a new testing
dataset with a specified signal-to-noise ratio (SNR) (see Table 7). The model’s pre-
diction accuracy was evaluated with the confusion matrices in the same way as in
previous measurements. Within the XSPEC platform, we used a standard fitting pro-
cedure to identify potential underlying components in the plasma with reduced x2
statistics. In cases of high SNR data, the best-performing RF models for XRISM and
Athena achieved impressive 99.0% and 99.5% accuracy, respectively, whereas the preci-
sion of the XSPEC platform was only 94.0% and 96.5%. As the SNR decreased, all the
RF models and XSPEC experienced a decrease in accuracy. However, the models” ac-
curacy dropped more rapidly, leading to better performance by XSPEC in most cases.
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CONCLUSION

Although it was anticipated that the XSPEC platform would outperform our models,
they exhibited promising results and demonstrated exceptional advantage in the speed
of the analysis process. The speed gains with the Athena models were approximately
870 times faster, XRISM 110 times faster, and Chandra 1800 times faster. This notewor-
thy reduction in analysis time suggests that the method could be implemented in the
early analysis phase, allowing for the rapid identification of regions of interest that
could be further investigated using conventional fitting techniques to achieve greater
accuracy.

Finally, the performance of the Chandra models was validated using real observa-
tions of M87 (for the Virgo cluster) and NGC1275 (for the Perseus cluster). The obser-
vational data were processed and cleaned using standard methods outlined in Section
4.4.1. Ten selected regions in each observation (see Figure 4.9) were then subjected to
our models. The number of underlying thermal components was determined by the
more precise fitting procedure in XSPEC, following the application of our RF models.
The implemented models were successfully applied to the selected regions, and the
top-performing models, which had the highest R™" value compared to the XSPEC
classification, achieved an 80% accuracy for the Virgo cluster and a 60% accuracy for
the Perseus cluster (see Table 12)

In summary, our study has revealed that machine learning techniques offer the ca-
pacity to efficiently classify multi-temperature regions in galaxy clusters while signifi-
cantly reducing the analysis time compared to traditional fitting procedures. Further-
more, the findings demonstrate the extraordinary capabilities of the Athena satellite
to advance our understanding of the properties and evolution of hot gas in galaxy
clusters.
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Figure A.4: Confusion matrices for Athena models for Virgo Cluster.
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Figure B.1: The interdependence of the initial four principal components for 500 single (circle) and
double (triangle) temperature spectra of the Chandra satellite pertaining models with
Nmin = 1075 for the Virgo Cluster.
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The interdependence of the initial four principal components for 500 single (circle) and double
(triangle) temperature spectra of the Chandra satellite pertaining models with Nt = 10~# for the
Virgo Cluster.
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Figure B.4: The interdependence of the initial four principal components for 500 single (circle) and double
(triangle) temperature spectra of the Athena satellite models for the Virgo Cluster.
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Figure B.6: The interdependence of the initial four principal components for 500 single (circle) and double
(triangle) temperature spectra of the Chandra satellite pertaining models with Nt = 10~# for the
Perseus Cluster.
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Figure B.8: The interdependence of the initial four principal components for 500 single (circle) and double
(triangle) temperature spectra of the Athena satellite models for the Perseus Cluster.
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Figure B.g: The interdependence of the initial 4 principal components for 500 single (circle), double (triangle),
and triple (square) temperature spectra of the Chandra satellite models for the Virgo cluster.
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APENDIX C: INDIVIDUAL PRINCIPAL COMPONENTS &
VARIANCE COVERAGE
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Figure C.1: First few individual components (left) and their variance coverage
(right). Chandra N = 104, R™in = 0.1 for Virgo.
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Figure C.2: First few individual components (left) and their variance coverage
(right). Chandra Nf® = 104, R™in = 0.001 for Virgo.
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Figure C.3: First few individual components (left) and their variance coverage
(right). Chandra N0 = 104, R™in = 0.1 for Perseus.
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Figure C.4: First few individual components (left) and their variance coverage
(right). Chandra Nj™" = 104, R™in = 0,001 for Perseus.
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Figure C.8: First few individual components (left) and their variance coverage (right).

Chandra N{“in =10"°, RMin = (0,001 for Perseus.
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Figure C.g: First few individual components (left) and their variance coverage (right).
XRISM Nfin = 105, R™in = 0.1 for Virgo.
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Figure C.10: First few individual components (left) and their variance coverage (right).

XRISM Npin = 1075, Rmin = 0,001 for Virgo.
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Figure C.11: First few individual components (left) and their variance coverage (right).

XRISM Nin = 1075, R™in = 0.1 for Perseus.
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Figure C.12: First few individual components (left) and their variance coverage (right).
XRISM Npin = 107, Rmin = 0,001 for Perseus.
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Figure C.13: First few individual components (left) and their variance coverage (right).
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Figure C.14: First few individual components (left) and their variance coverage (right).
Athena NN = 10~°, R™in = 0,001 for Virgo.
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Figure C.15: First few individual components (left) and their variance coverage (right).
Athena NM = 1075, R™in = 0.1 for Perseus.
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APENDIX D: RF MODEL PREDICTIONS ON
SELECTED REGIONS

The correct and incorrect predictions of the Chandra RF models on se-
lected regions from real observations. The Y-axis labels correspond to
individual regions, while the X-axis values represent parameter Rmin
of models, with the index values 4, b corresponding to N™" (g = 104
and b = 107°). False model predictions are marked by the symbol “x’
in the cells.
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Figure D.1: Visualization of the correct (empty yellow cells) and incorrect
(green cells with symbol "x’) classification of Chandra models on
real spectra for Virgo cluster.
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Figure D.2: Visualization of the correct (empty yellow cells) and incorrect
(green cells with symbol “x’) classification of Chandra models on

real spectra for Perseus cluster.
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