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Abstrakt

Detekce gama záblesků (GRB) v družicových datech s vysokým pozadı́m zůstává v astrofyzice
náročným problémem. V této práci se zabývám využitı́m algoritmů strojového učenı́ k detekci
GRB v pozorovánı́ch shromážděných družicı́ GRBAlpha. Porovnávám výkonnost několika nej-
modernějšı́ch algoritmů strojového učenı́: odšumovacı́ho autoenkodéru, predikce pozadı́ založené
na LSTM a binárnı́ho klasifikátoru založeného na kombinaci LSTM a konvolučnı́ch vrstev. Hledám
optimálnı́ prahovou hodnotu, která vyvažuje pravdivé a falešně pozitivnı́ výsledky.

Když byl nejlepšı́ model aplikován na data za dva roky pozorovánı́, dosáhl 100% přesnosti při
vyhledávánı́ známých GRB s poměrem signálu k šumu většı́m než 3.

Moje výsledky ukazujı́, že algoritmy strojového učenı́ mohou výrazně zlepšit detekci GRB
v zašuměných družicových datech a překonat standardnı́ přı́stup detekce odlehlých hodnot. Tuto
metodu lze implementovat do družic pro systémy detekce transientů v reálném čase a offline
vyhledávánı́ v archivnı́ch datech.





Abstract

The detection of Gamma-Ray Bursts (GRBs) in the noisy background of satellite data remains a
challenging problem in astrophysics. In this thesis, I explore the use of machine learning algorithms
to detect GRBs in observations collected by the GRBAlpha satellite. I compare the performance of
several state-of-art machine learning algorithms: denoising autoencoder, LSTM-based background
prediction, and a binary classifier based on the combination of LSTM and convolutional layers. I
search for optimal threshold, balancing true and false positives.

When the best model was applied to two years’ worth of data, it reached 100% accuracy in
finding known GRBs with signal-to-noise ratio greater than 3.

My results demonstrate that machine learning algorithms can significantly improve the detec-
tion of GRBs in noisy satellite data, beating the standard outlier z-score detection approach. This
method can be implemented into satellites for real-time transient detection triggering systems and
offline searches on archival data.
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Prohlášenı́
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Chapter 1

Gamma-ray Bursts

Gamma-ray bursts (GRBs) are some of the most energetic and unpredictable events in the universe.
These events occur at random times and positions in the sky (Figure 1.1) (Fishman et al., 1982)
and can last from milliseconds to several minutes (Figure 1.2), with a rate of several per day per
sky and energy 𝐸iso 1 up to 1054 erg, spectrum peaking for sGRBs in hard x-rays and long GRBs
in gamma-rays. Since gamma rays do not penetrate the Earth’s atmosphere, they are detected by
satellites, which automatically trigger ground-based telescopes for follow-up observations at longer
wavelengths (Gomboc, 2012).

Figure 1.1: Positions on the sky of all gamma-ray bursts detected during the BATSE mission. The
distribution is isotropic, with no concentration in any particular area2.

GRBs can be classified based on their duration 𝑇903 into two categories: short and long. Short
GRBs (SGRB) typically last for less than two seconds but can be short as a few milliseconds,
while long GRBs (LGRB) last for several minutes (Kouveliotou et al., 1993) or exceptionally hours
(Martin-Carrillo et al., 2014). These durations are closely related to the progenitor of the GRB.
The SGRBs are thought to arise from the merger of two compact objects, such as two neutron
stars or a neutron star and a black hole (Eichler et al., 1989; Narayan et al., 1992; Berger, 2014),

1 𝐸iso represents the energy emitted in all directions, assuming that the burst radiation is isotropically distributed and
corrected by beaming effect (GRBs emit in highly collimated jet, Kumar & Zhang, 2015) and cosmological redshift.

2 Image taken from https://heasarc.gsfc.nasa.gov/docs/objects/heapow/archive/transients/batse bursts.html.
3 𝑇90 is a commonly used parameter to describe the duration of the prompt emission phase of a GRB, defined as the

time interval between the times at which 5% and 95% of the total burst fluence are emitted making it the time duration
during which the burst releases the majority of its emission in the given energy band. The determination of 𝑇90 is not
exact, it depends on the instrument, background noise, energy band and burst intensity.

– 1 –

https://heasarc.gsfc.nasa.gov/docs/objects/heapow/archive/transients/batse_bursts.html


2 Gamma-ray Bursts

Figure 1.2: Left: distribution of the observed duration, right: distribution of the observed duration
to spectral hardness (hard/soft) (Shahmoradi, 2013).

their millisecond variability further suggests that the regions from which the energy originated are
small in size. For long GRBs, the progenitor is believed to be associated with the core collapse of
a massive star (Woosley, 1993; MacFadyen & Woosley, 1999). Detection of gravitational waves
from binary neutron star merger GW170817 by LIGO and Virgo observatories (Abbott & et al.,
2017) and simultaneous detection of short GRB (GRB170817A) by many instruments including
Fermi-GBM and INTEGRAL (Goldstein et al., 2017) has confirmed this mechanism for the SGRBs
and started a new multi-messenger era.

This bimodality is also supported by the hardness ratio, which is defined as the ratio of counts
in the high-energy band to the low-energy band. Generally, this ratio is computed as the ratio of
the number of counts in the 50 − 300 keV band to the number of counts in the 25 − 50 keV band,
but the ranges may differ depending on the instrument. As we can see, short-duration GRBs tend
to have harder spectra than long-duration GRBs (Ghirlanda et al., 2004). Unfortunately, this is
not as simple. There are four main setbacks: (i) the difference in brightness between the strongest
and weakest bursts causes variations in measured duration (Norris et al., 2000), (ii) far-away bursts
look longer due to the cosmological time dilation (Lamb & Reichart, 2000), (iii) the energy band
observed affects the duration of short bursts which usually have only a few pulses (Norris et al.,
1996; Kazanas et al., 1998), and (iv) some of the shortest bursts may not be detected because of
instrument limitations (Lee & Petrosian, 1996).

As you can see in Figure 1.2, there is an overlap of duration and hardness. This overlap
challenges the notion of a clear-cut division and suggests a more nuanced understanding of GRBs. It
is now understood that certain long-duration GRBs can exhibit characteristics commonly associated
with short-duration GRBs and vice versa, e.g. GRBs with 𝑇90 >> 2 s may also originate from
compact object merger. For several long GRBs (e.g., GRB 060605 and GRB 060614) deep optical
observations excluded an accompanying supernova (Fynbo et al., 2006). Furthermore, GRBs with
short peaked gamma-ray emission followed by a spectrally softer extended emission (EE-SGRBs)
have been proposed to originate from mergers of compact objects (Norris, 2002; Norris & Bonnell,
2006; Gehrels et al., 2006).

As seen in Figure 1.1, GRBs are isotropically spatially distributed (Kouveliotou et al., 1993;
Řı́pa & Shafieloo, 2019). The rate of GRBs is 33 ± 11 Gpc−3 yr−1, which corresponds to roughly
once a day, but may vary depending on the instrument and distance in interest. They are named
based on the date they were detected, using the format YYMMDD (year, month, day), followed by
a letter with the order they were detected during that day.
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1.1 Physics behind GRBs

A GRB event can be divided into two phases (Figure 1.3): prompt emission and afterglow. In the
generally accepted fireball model (Narayan et al., 1992; Piran, 2005), the initial burst of high-energy
gamma-rays is called a prompt emission, and it is produced by the collision of relativistic shells
of material ejected from the progenitor within the jet. This creates a shock wave that accelerates
particles to emit gamma rays through synchrotron radiation and amplifies the magnetic field at the
shock. The prompt emission is characterized by a complex light curve with multiple peaks and a
non-thermal spectrum (Dai et al., 2017).

Figure 1.3: Radiation across the spectrum arises from hot ionized gas (plasma) in the vicinity
(∼ 109 − 1012 cm) of the progenitor, collisions among shells of fast-moving gas within the jet
(internal shock waves), and from the leading edge of the jet as it sweeps up and interacts with its
surroundings (external shock)4.

Gamma-ray burst light curves exhibit an extensive range of complexity and diversity (Fig-
ure 1.4), with each burst having a distinct and unique profile. Observable emission can last
anywhere from milliseconds to several minutes or even hours, and the shape of the light curve can
vary greatly, with some bursts featuring a single peak while others have multiple sub-pulses (Fig-
ure 1.4). Additionally, individual peaks may have symmetrical shapes or display rapid brightening
followed by slow fading, known as the Fast Rise-Exponential Decay profile (FRED). Some bursts
are preceded by a “precursor” event, which is a weaker burst that is followed by a much more
intense episode after a period of no emission lasting seconds to minutes. There are some events
that have highly complex and chaotic light curve profiles with no clear discernible patterns.

4 Image taken from https://www.nasa.gov/sites/default/files/thumbnails/image/grb shell final 0.jpg.

https://www.nasa.gov/sites/default/files/thumbnails/image/grb_shell_final_0.jpg
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Figure 1.4: Clear representation of GRB profile diversity with data from the first BATSE catalog
(Band et al., 1993)5.

The energies and fluences associated with gamma-ray bursts (GRBs) surpass those of all other
astrophysical phenomena by several orders of magnitude. GRB fluences typically span the range
of 10−4 − 10−7 : erg, cm−2, corresponding to energy levels of 1051 − 1052 : erg. These immense
energy levels place GRBs at cosmological distances, ranging from hundreds of megaparsecs to
units of gigaparsecs, as determined through redshift measurements from afterglows. To put this
into perspective, the energy released in a GRB is comparable to that of a supernova explosion
(approximately 1051 erg) or the total energy our Sun emits over its entire lifetime, but compressed
into a mere few milliseconds.

5 Image taken from CGRO BATSE https://heasarc.gsfc.nasa.gov/docs/objects/grbs/grb profiles.html.

https://heasarc.gsfc.nasa.gov/docs/objects/grbs/grb_profiles.html


Gamma-ray Bursts 5

Figure 1.5: The redshift distribution of short GRBs (black) and long GRBs (grey). The inset shows
the redshift distribution of short GRBs separated by host galaxy type, which exhibits no discernible
difference between early-type (red) and late-type (blue) hosts (Berger, 2014).

Timely identification and localization of prompt emission are crucial for follow-up observation
of an afterglow emission in multiple wavelengths if any (Greiner et al., 2010). The information
about newly triggered GRBs is traditionally swiftly distributed to the GRB community by the online
GRB Coordinates Network (GCN) to allow a rapid follow-up observation from ground instruments
(Barthelmy, 2003).

Afterglows are the long-lasting emissions of radiation that follow the initial burst of gamma
rays. After the initial burst, the afterglow can be observed in various wavelengths, including X-rays,
visible light, and radio waves; the afterglow hunts are also reported through the GCN channel. The
afterglow emission is caused by synchrotron radiation, which occurs when high-energy electrons
are accelerated in a magnetic field. In the case of GRBs, the magnetic field is generated by
the shock wave that is produced when the relativistic ejecta from the explosion interact with the
surrounding medium. As the shock wave propagates through the medium, it accelerates particles
to very high energies, producing synchrotron radiation. The characteristics of the afterglow depend
on a number of factors, including the energy and duration of the initial burst, the density of the
surrounding medium, the distance between the GRB and the observer, and also a viewing angle.
By studying the afterglow emission, astronomers can learn about the properties of the GRB itself,
as well as the properties of the surrounding medium (Mészáros & Rees, 1997; van Paradijs et al.,
2000).

The extreme release of energy during these events can reveal insights into a wide range
of fundamental physics processes and making them an important laboratory for studying the
behavior of high-energy particles and fields in extreme conditions. Acceleration of particles to
very high speeds, often approaching the speed of light, makes them a prime target for studying
the properties of relativistic motion, such as time dilation, length contraction, and the Lorentz
invariance violation. The observed time delays between different components of the GRB emission
can provide information about the properties of the relativistic outflows that produce the bursts
(Piran, 2005). Since GRBs originate at cosmological distances, the penetrating power of their
emission and linkage to compact objects can serve as a proxy to measure the star formation rate.
Their spectra can trace the intergalactic medium on the way from the source to us (Prochaska
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et al., 2007). The detection of gravitational waves from the merger of neutron stars associated
with a GRB in 2017 (GRB170817a; Abbott & et al., 2017) provided the first multi-messenger
detection and allowed for tests of general relativity. The detailed study of the afterglow emission
can help to constrain the properties of the explosion and the environment in which it occurs, while
multi-messenger observations can provide complementary information about the physics of the
event. Overall, the study of GRBs offers a unique and exciting opportunity to probe some of the
most fundamental physical processes in the universe, providing new insights into the behavior of
matter, energy, and space-time under extreme conditions.

Figure 1.6: Light curve of the Brightest of All Time (BOAT) gamma-ray burst GRB221009A
detected by GRBAlpha (Ripa et al., 2023).

1.2 Detection strategies

Gamma-ray detectors in space detect extreme bursts from astronomical objects such as supernovae,
pulsars, and active galactic nuclei, represented as a sudden peak of counts on a detector. However,
they can also detect background radiation that is present in the environment around the detector
with a variety of sources, including the Earth’s magnetic field, the Sun, cosmic rays, and even
the detector itself, and needs to be accounted for. The background levels of gamma-ray detectors
in space can vary depending on a number of factors, including the energy range of the gamma-
rays being detected, the location of the detector in space, and the sensitivity of the detector itself
(Hughes, 2004). To establish a baseline level of background, analysis of data before and after
the peak is done, which is then subtracted, giving us information about the gamma-ray emission.
Once the background noise is subtracted, analysis of the remaining gamma-ray signal is done to
determine if it exhibits certain characteristics typical of GRBs. These characteristics include a
FRED profile (Figure 1.4), a distinct spectral shape (the distribution of energies), and its duration
(Figure 1.2).

In general, gamma-ray detectors that are located in Low-Earth Orbit (LEO) will experience
higher background levels than those in higher orbits or in deep space due to a number of factors.
For example, the polar regions of LEO are areas where charged particles from the Earth’s radiation
belts can become trapped, creating a high-radiation environment. Similarly, the South Atlantic
Anomaly (SAA) is a region where the Earth’s magnetic field is weakest, allowing charged particles
from the radiation belts to penetrate lower altitudes (Koskinen & Kilpua, 2021; Baker et al., 2017).
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(a)

(b)

Figure 1.7: Top panels: Integral flux maps of trapped electrons for AE8 MAX model at 550 km
altitude with low energy thresholds of 40 keV, 1 MeV, and 5 MeV, respectively, from left to right.
Bottom panels: Integral flux maps of trapped protons for AP8 MIN model at 550 km altitude with
low energy thresholds of 0.1 MeV, 10 MeV, and 200 MeV, respectively from left to right (Ripa
et al., 2020).

Gamma-ray telescopes use a variety of techniques to remove background noise from their
measurements. One common approach is to use a combination of active and passive shielding to
reduce the impact of cosmic rays and other sources of background radiation by using a combination
of plastic scintillators and lead shields. The BATSE team used Polynomial Fitting Technique,
which does cubic fit on ∼ 1000 − 2000 s before and after the burst (Band et al., 1993). Non-
parametric methods, such as sliding window techniques or rolling medians, can also be employed
for background estimation. These methods involve calculating local statistics, such as the mean or
median, within a sliding window along the light curve. The resulting values provide an estimate of
the background level, which can be subtracted to isolate the signal. These methods are relatively
straightforward and are commonly used when the background is smoothly varying (Leon-Anaya
et al., 2023). The simplest detection method involves simultaneously monitoring multiple count
rates on different detectors or channels, triggering an alert only when the threshold is exceeded on
multiple channels.

1.3 Telescopes and instruments

The beginning of GRB detection happened coincidentally when Vela satellites in the late 1960s
aimed to detect nuclear explosions but detected emissions that did not originate in Earth’s vicinity.
Due to the limitations of their equipment and the fact that gamma rays cannot be collimated due to
their high energy and penetrating nature, studying and observing gamma-ray bursts present signif-
icant challenges. Notable progress in their understanding was made through the implementation
of coded masks, which is a patterned array of opaque and transparent elements that are placed in
front of a gamma-ray detector. This technique has been successfully employed by space-based
observatories such as Swift and INTEGRAL. When a GRB occurs, the gamma rays interact with the
mask, creating a unique shadow pattern on the detector. By analyzing this pattern, scientists can
determine the direction, intensity, and spectral properties of the burst. This provided the ability to
make follow-up observations and detect afterglows.
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1.3.1 Notable missions

VELA was a series of satellites launched by the United States in the late 1960s and early 1970s to
monitor compliance with the Limited Test Ban Treaty. While the primary purpose of the VELA
satellites was to detect nuclear explosions in space, they also played a significant role in the study
of GRBs (Singer, 1965). In fact, the discovery of GRBs can be traced back to VELA satellites. In
1967, the VELA 4 satellite detected an unusual burst of gamma radiation that was initially thought
to be a nuclear test by the Soviet Union. However, subsequent observations by other VELA
satellites showed that these bursts were not related to nuclear explosions but were instead coming
from deep space. These bursts had a duration of just a few milliseconds to several minutes and were
found to be coming from random directions in the sky. These observations led to the recognition
of gamma-ray bursts as a new class of cosmic phenomena. The VELA satellites detected a total of
16 gamma-ray bursts during their operational lifetime, which ended in the mid-1970s. While these
detections were limited in number and duration compared to later missions, they provided the first
evidence of the existence of GRBs and set the stage for further research in this field (Klebesadel
et al., 1973).

Burst and Transient Source Experiment (BATSE) was a scientific instrument on board the
Compton Gamma-Ray Observatory (CGRO) satellite, which was launched by NASA in 1991 and
operated until 2000. The primary goal of BATSE was to study GRBs and detect thousands of such
bursts during its operation, greatly increasing our understanding of these phenomena. In addition
to studying GRBs, BATSE also detected other types of transient events, such as solar flares and
soft gamma-ray repeaters. It consisted of eight detectors, each of which could detect gamma rays
in the energy range of 20 keV to 8 MeV. Thanks to this instrument, we were able to resolve the
extragalactic origin (Figure 1.1) and identify the bimodal character of GRBs (Figure 1.2) (Fishman
et al., 1982; Preece et al., 2000).

BeppoSAX was a satellite observatory launched in 1996 by the Italian Space Agency (ASI)
in collaboration with the Netherlands Agency for Aerospace Programs (NIVR) (Boella, G. et al.,
1997). It was primarily designed to study GRBs and the X-ray universe. Its instruments included
the Low-Energy Concentrator Spectrometer (LECS) for 0.1 − 10 keV X-rays, the Medium-Energy
Concentrator Spectrometer (MECS) for 1.3 − 10 keV X-rays, the High-Pressure Gas Scintillation
Proportional Counter (HPGSPC) for 3 − 120 keV X-rays, the Phoswich Detection System (PDS)
for 15− 300 keV X-rays, and the Gamma-Ray Burst Monitor (GRBM) for detecting and localizing
gamma-ray bursts. One of its major achievements was the discovery of the X-ray afterglow of
GRB 970508, which enabled the precise determination of their positions and facilitated the optical
follow-up observations that led to the identification of their host galaxies (Bloom et al., 1999).

High Energy Transient Explorer 2 (HETE-2) was a space observatory launched in 2000 with
the primary mission of detecting and studying GRBs. HETE-2 primarily aimed to conduct the
first multi-wavelength study of GRB using UV, X-ray, and gamma-ray instruments all mounted
on a single spacecraft. What set the HETE mission apart was its ability to rapidly and accurately
locate GRBs, with a precision of around 10 arcseconds, and quickly transmit that information to
ground-based observatories for follow-up studies in radio, IR, and visible light bands. With these
capabilities, HETE-2 aimed to shed light on the origin and nature of GRBs (Ricker et al., 2003).

The Neil Gehrels Swift Observatory (previously called the Swift Gamma-Ray Burst Explorer)
is a space-based observatory that was launched by NASA in November 2004 (Gehrels, 2004).
Swift consists of three instruments: the Burst Alert Telescope (BAT) covering an energy range
of 15-150 keV; the X-Ray Telescope (XRT) spanning the energy range of 0.2-10 keV; and the
Ultraviolet/Optical Telescope (UVOT). The BAT is responsible for detecting and localizing gamma-
ray bursts, while the XRT and UVOT observe the afterglows of these events in X-ray and UV/optical
wavelengths, respectively. One of the key features of Swift is its ability to quickly and accurately
pinpoint the location of GRBs. This allows us to find the source galaxy and detect the afterglow
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in various wavelengths. The Swift telescope has made several significant discoveries, including
detecting and studying the most distant gamma-ray burst ever observed, which provided insights
into the early universe and the formation of the first stars and galaxies (Tanvir et al., 2009).
Additionally, the telescope has discovered a new class of gamma-ray bursts, known as “ultra-long”
GRBs, which are thought to be produced by the collapse of massive stars or the merger of neutron
stars (Gendre et al., 2013).

The Fermi Gamma-ray Space Telescope is a space observatory designed to study high-
energy gamma rays. The Fermi telescope was launched on June 11, 2008, by NASA (Atwood
et al., 2009). The telescope is equipped with two main instruments, the Large Area Telescope
(LAT), the detection range of 10 keV− 25 MeV, and the Gamma-ray Burst Monitor (GBM), with a
range of 20 MeV − 300 GeV. The Fermi telescope has made many important discoveries since its
launch (Ajello et al., 2021): detecting GRB 130427A, which had the largest fluence, highest-energy
photon (95 GeV), longest 𝛾-ray duration (20 hours), and one of the largest isotropic energy releases
ever observed from a GRB and many detections admirable of gamma-ray bursts (Goldstein et al.,
2017).

Figure 1.8: Field of view vs localization accuracy for the currently operating GRB monitoring
instruments. By providing both all-sky coverage and good localization accuracy, the proposed
CAMELOT mission fills an empty region in the parameter space (Werner et al., 2018).

The International Gamma-Ray Astrophysics Laboratory (INTEGRAL) is a space observa-
tory that was launched on October 17, 2002, by the European Space Agency (ESA) in cooperation
with Russia (PROTON launcher) and the United States (Deep Space Network ground station).
INTEGRAL is equipped with four instruments: the Imager on Board the INTEGRAL Satellite
(IBIS), the Spectrometer on INTEGRAL (SPI), the Joint European X-Ray Monitor (JEM-X), and
the Optical Monitoring Camera (OMC). Altogether monitoring gamma-ray in 15keV−10MeV and
X-rays in 3 − 35 keV energy range with fine spectroscopy with 12 arcmin FWHM (Winkler et al.,
2003). In addition to detecting and studying individual GRBs, INTEGRAL has also contributed to
our understanding of the overall GRB population. For example, INTEGRAL’s observations have
helped to constrain the luminosity function of GRBs (Salvaterra et al., 2008) and the rate of long



10 Gamma-ray Bursts

GRBs in the local universe (Pescalli et al., 2016).
INTEGRAL, Fermi, and Swift are incredibly valuable missions that have helped astronomers

and astrophysicists to observe the high-energy sky. However, they are also very large and expensive,
with costs ranging from hundreds of millions to billions of euros. Given their high cost, building
and launching these telescopes is a significant challenge, but the demand for observing high-energy
spectra continues to be high. To address this issue, a new project called CAMELOT proposes a
different approach: using small, inexpensive satellites with the technology called CubeSats.

1.3.2 CubeSats

CubeSat is a type of miniature satellite that is designed to be low-cost and easily deployable.
CubeSats are designed to be modular, which means that different components can be added or
removed depending on the mission requirements. The standard CubeSat size is called 1U, which is
a cube that measures 10 × 10 × 10 cm and weighs about 1 kilogram. However, larger sizes such as
2U, 3U, 6U, and even 12U are also available, which allows for greater flexibility in mission design.
They can be launched as secondary payloads on larger rockets, reducing launch costs and making
space exploration more accessible to a wider range of organizations. CubeSats also enable faster
design and development cycles, allowing researchers to iterate and test new ideas more quickly
than with traditional satellite systems. They are now widely used in various applications, including
Earth observation, telecommunications, and detecting GRBs.

The Cubesats Applied for MEasuring and LOcalising Transient (CAMELOT) project
proposes using a fleet of at least nine 3U cubesats equipped with CsI(Tl) scintillator-based soft
gamma-ray detectors to perform all-sky monitoring and timing-based localization of gamma-ray
transients (Werner et al., 2018). This project is being developed by a team of researchers from
several institutions, including Masaryk University. The fleet will be able to determine the source
position of bright short gamma-ray bursts with an accuracy of approximately ∼ 1 degree by cross-
correlating their light curves taken from individual fleet members (Ohno et al., 2020). To achieve
this, precise time synchronization and accurate time stamping of detected gamma-ray photons will
be achieved by using onboard GPS receivers. The fleet will also have the capability for fast, nearly
simultaneous downlink of data using a global inter-satellite communication network. Overall, the
proposed fleet is expected to outperform all GRB monitoring missions in terms of all-sky coverage.

A pathfinder project is already ongoing. GRBAlpha and VZLUSAT-2, satellites that carry
scaled-down gamma-ray detectors as the ones proposed for the CAMELOT project, more about
that in next Chapter 2.1.

6 Image taken from www.vzlusat2.cz.

https://www.vzlusat2.cz/en/
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Figure 1.9: Left: GRBAlpha (Pál et al., 2020); Right: VZLUSAT-2 6.





Chapter 2

Data

All the data used for this thesis is from GRBAlpha, which I was fortunate to get access to and work
with. Due to imbalanced data, having a plethora of data points containing background radiation
(Table 2.2), and only few GRB detections (Table 2.4) to have a good sample, I incorporated
synthesized data alongside the original GRBAlpha dataset to increase the diversity of the dataset
and capture a wider range of scenarios.

2.1 GRBAlpha

GRBAlpha (Pál et al., 2023), launched on 2021 March 22, is a 1U CubeSat mission and its
purpose is to serve as an in-orbit demonstration for the detector system on the CAMELOT mission
(Figure 1.3). Although GRBAlpha only provides 1/8th of the expected effective area of CAMELOT,
the purpose is to validate the core idea of CAMELOT, which is the feasibility of timing-based
localization, by comparing the observed light curves with those of other existing GRB monitoring
satellites. Since the launch and at the time of writing, GRBAlpha has detected and characterized
23 confirmed GRBs, 9 solar flares, 2 soft gamma repeaters (SGRs) and one X-ray binary outburst,
including prominent events like GRB 221009A (Ripa et al., 2023).

Together with Thallium-doped Caesium Iodide CsI(Tl) scintillator and dual-channel multi-pixel
photon counter (MPPC), to detect GRBs, on board are GPS receiver, sun-sensor, magnetometers,
gyroscopes, and thermometers. GRBAlpha doesn’t have an active attitude control system, but it
utilizes permanent magnets and magnetically soft material to achieve passive attitude stabilization.
Additionally, it obtains attitude information by using MEMS gyroscopes, magnetometers, and sun
sensors simultaneously (Pál et al., 2020).

2.1.1 Detection principle

When gamma rays interact with matter, they can transfer their energy to charged particles through
interaction mechanisms like the photoelectric effect, Compton scattering, and pair production.
When a charged high-energy particle interacts with a scintillator, it causes caesium and iodine
atoms to absorb its energy. Consequently, electrons in these atoms move from the valence band,
where they leave a positively charged hole, to the conduction band, where they can move freely
within the crystal lattice. Thallium atoms are then ionized by these holes, attracting free electrons
in the lattice. If an electron that is captured creates an excited configuration with a thallium atom,
it drops to the ground state immediately while emitting a photon. Although this deexcitation could
take place in a pure crystal, the emitted photons would be too energetic. Therefore, an activator
such as thallium is added to the crystal to create its energy states within the lattice, enabling the
emission of visible photons. These photons are then detected by arrays of thousands of avalanche
photodiodes connected in parallel, known as MPPCs or silicon photomultipliers. As the photons
collide with silicon atoms, electron-hole pairs are formed and accelerated by the strong electric field
inside the photodiodes, producing secondary electron-hole pairs. This chain reaction continues,
ultimately amplifying the output current. In an ideal scenario, each photodiode should be struck by
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a maximum of one photon. Consequently, the number of photodiodes that contribute to the output
signal, and therefore its amplitude, is directly proportional to the number of scintillation photons
(Knoll, 2010).

The output current is directed through the pre-amplifier and shaping amplifier, where it is
transformed into a voltage signal and reduced of any electrical noise to determine the pulse height
accurately. The pulse height corresponds to the signal generated in the MPPC and, therefore, to the
energy of the incident photons. The processed signal then enters the analog-to-digital converter
(ADC) and is converted into a digital form. Table 2.1 displays the approximate energies for energy
bands utilized in the analysis performed in this work. The conversion between the spectral channel
and energy was obtained through pre-launch calibration utilizing various radioactive isotopes
(Torigoe et al., 2019), and the resulting conversion is as follows:

𝐸 [keV] = 4.08 × ADC channel number − 154.

ADC channel E [keV]
64 - 128 ∼ 110 to ∼ 370

128 - 192 ∼ 370 to ∼ 630
192 - 256 ∼ 630 to ∼ 890

Table 2.1: The conversion between energy and ADC channel for energy bands used in the analysis.

2.2 Data Selection and Acquisition

Unlike other telescopes dedicated to observing GRBs, GRBAlpha does not have an onboard trigger
system to automatically detect and download data. Instead, the data must be manually downloaded
based on the confirmed detections of other telescopes. I have chosen to work with GRBAlpha
because colleagues from my university are involved in the satellite’s operation, and I have direct
contact with the main scientists working on the project. This connection provides me with unique
opportunities to learn and contribute to this project, making it an exciting and rewarding experience.

The data for this work were taken between March 14th, 2021, and May 15th, 2023. From May
2021 to June 2022, GRBAlpha made a 60 s long observation with full spectral resolution (256
bins) almost every day; since then, only once a week. The remaining observations are usually done
in four spectral bands and with an exposure time of 4 s, with a few that were done with 1 s and
60 s exposures. To characterize the long-term degradation of the detector, measurements with high
spectral resolution (64 and 256 spectral bins) are done but contain only a few data points and were
not used in this thesis. The lowest energy band, ADC channel 0 to 64, has an instrumental noise
peak starting around 45 ADC but gradually evolved to 54 ADC and was not used either. Also,
six sets of measurements were dropped due to bad time synchronization. Furthermore, 6120 data
points contain zero counts, which originated from internal software problems and therefore were
dropped. Due to the loss of the VHF radio and similar technical issues, there is no data, with an
apparent gap in data (Figure 2.3)
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𝑡exp [s] Data points
1 2003034
2 7985
3 292797
4 361739

15 9224
40 131
60 6

Table 2.2: The number of GRBAlpha data points for each exposure time.

Figure 2.1: Data from GRBAlpha (blue) and color representation of bin sizes from March 14th,
2021, to May 15th, 2023. The x-axis represents time converted to Julian Date and subtracted by
the date of the first light (JD - 2459319).

In the data (Figure 2.1), there are three apparent distinct areas with higher background count
rates repeating every orbit. Two of them are around the poles, between approximately ± 40 and
± 80 degrees of latitude, depending on the exact longitude. These are regions where the outer
Van Allen radiation belt gets closest to the Earth, those are the northern and southern polar rings.
The third region is the South Atlantic Anomaly (SAA), extending from approximately 270 to 30
degrees of longitude and from 0 to −60 degrees of latitude, but its shape is very irregular. The
SAA is an area over the South Atlantic Ocean where the Earth’s magnetic field is weaker, and it
allows charged particles from space, including those from the inner Van Allen Belt, to penetrate
closer to the Earth’s surface.

Figure 2.2: Sample of 19 orbits of GRBAlpha.

2.3 Simulated data

Due to a small number of detected GRBs or any non-background high activity, I have decided
to simulate additional data for training the models. Creating a large number of simulated events
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Figure 2.3: Data from GRBAlpha (blue) and confirmed GRB detections (red) from March 14th,
2021, to May 15th, 2023. The x-axis represents time converted to Julian Date and subtracted by
the date of the first light (JD - 2459319).

based on the known properties of GRBs and the instrument’s response will populate the parametric
space, ensuring a more robust and comprehensive dataset for model training.

No two bursts have ever been found to have exactly the same temporal and spectral evolution
(Nemiroff et al., 1993). So when simulating GRBs, the main focus was on the most common shape,
that being a Fast Rise Exponential Decay (FRED) profile (Figure 1.4). The FRED profile has been
found to be a reasonable approximation for many observed GRB light curves. Although not all
GRBs follow this exact profile, a significant number of them exhibit a similar shape. It requires
only a small number of parameters to describe the shape of the light curve, making it easier to
simulate and still capture the general shape.

FRED profile can be written as (Norris et al., 1996):

𝑦(𝑡) = 𝐴 · exp
{
−

(
|𝑡 − 𝑡max |

𝜎𝑟

)𝜈}
; 𝑡 ≤ 𝑡max (2.1a)

𝑦(𝑡) = 𝐴 · exp
{
−

(
|𝑡 − 𝑡max |

𝜎𝑑

)𝜈}
; 𝑡 > 𝑡max, (2.1b)

where 𝑡max is the time of the pulse’s maximum intensity, A; 𝜎𝑟 and 𝜎𝑑 are the rise (𝑡 ≤ 𝑡max) and
decay (𝑡 > 𝑡max) time constants, respectively; and 𝜈 is a measure of pulse sharpness (“peakedness”,
lower number imply a more peaked pulse).

In order to construct these curves, a 64-bin window with 1 s time-bins was selected. This choice
was made as a balanced compromise between capturing both the entirety of the burst and a portion
of the background while also considering the model’s complexity and efficiency. The range of 𝑡max
spanned from 8 to 56 bins, ensuring that either the entire burst or the majority of it was within the
window. For 𝜈 = 1 or 2, Equation 2.1 describes a two-sided exponential or Gaussian, respectively.
Figure 2.4 illustrates pulse shapes, with 𝜎𝑑/𝜎𝑟 = 2.5, near the most frequently occurring decay-to-
rise ratio. The most frequently occurring peakedness lies approximately halfway between Gaussian
and exponential, but higher values of 𝜈(≳ 4), which result in flat-topped pulses, often occur too,
but are mainly the result of low temporal resolution or broad overlapping structures, so chosen
range is from 1 (spikes) to 5 (FRED). As mentioned, the most frequent decay-to-rise ratio is 2.5.
Decay time 𝜎𝑑 is selected based on the anticipated time range of GRBs, which is calculated as
𝜏𝑡 ,𝑑 = [ln(2)]1/𝜈𝜎𝑟 ,𝑑 . The time range is determined by the temporal resolution (1s) and the time
window utilized (64 s), with the additional constraint that the peak position must fall between the
8th and 56th bin. This translates to a range of 2 to 48 seconds, corresponding to 𝜎𝑑 values ranging
from 1 to 26. The amplitude was calculated as signal-to-noise ratio (SNR) times mean background
level, which gives us more robust control about its peak amplitude than the count rate range. SNR
range was determined by analyzing already detected GRB from GRBAlpha (Table 2.4), GRB
221127A having the smallest SNR 3.0, and if we do not count the BOAT (GRB 230307A) with
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305.1 (Figure 1.6), the highest is GRB 230522A with 47.0. So the SNR was log-uniformly selected
in the range 3 to 25 because anything above SNR 25 is significant and detectable with a simple
threshold method, and we are more interested in finding lower SNR GRBs.

Figure 2.4: Pulses with different 𝜈 (𝜎𝑑/𝜎𝑟 = 2.5).

As mentioned, the generation of the GRB peak is also based on the background level. Since our
goal is to identify GRBs occurring in lower background regions, it is essential to locate these areas
and determine their respective levels. Figure 2.5 shows a logarithmic histogram of GRBAlpha’s
background levels. We see two main peaks around 75 and 150 counts, with the end of the tail
around 250, which corresponds with regions between north and south polar rings and region
within polar rings (Figure 1.7), respectively, which you can see in Figure 2.2. Only these two
low-background regions are of interest because, in high-background regions, it is difficult or nearly
impossible to find GRBs. So the range for the constant background was uniformly set between 75
to 250. Because the high and low background regions do not have strict edges, a linear trend with
a slope range between -1.5 and 1.5 was added. The distribution of simulated windows with the
constant and linear background was split evenly with a relative frequency of 50% for both types.

Figure 2.5: Histogram showing the frequency distribution of log-transformed counts for all back-
ground data, with bins colored in blue for values less than 500 and orange for values equal to or
greater than 500 and peaking at 65 counts.
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chunk
ID

data
ID

exp start
time

exp end time sec from 1st
exp start

expo-
sure

spec
nbins

n
chunks

0 27540 2022-11-12
16:20:59

2022-11-12
16:21:00

0 1 4 9309

1 27539 2022-11-12
16:21:00

2022-11-12
16:21:01

1 1 4 9309

2 27538 2022-11-12
16:21:01

2022-11-12
16:21:02

2 1 4 9309

3 27537 2022-11-12
16:21:02

2022-11-12
16:21:03

3 1 4 9309

4 27536 2022-11-12
16:21:03

2022-11-12
16:21:04

4 1 4 9309

(a) Time and bin information.

lon start lat start alt start lon end lat end alt end
314.355 -78.0328 565.987 314.163 -77.9842 565.964
314.163 -77.9842 565.964 313.973 -77.9354 565.941
313.973 -77.9354 565.941 313.784 -77.8866 565.917
313.784 -77.8866 565.917 313.596 -77.8376 565.894
313.596 -77.8376 565.894 313.410 -77.7885 565.871

(b) Spatial information.

temp1(◦ C) temp2(◦ C) temp3(◦ C)
2.53000 2.69000 2.88000

NaN NaN NaN
NaN NaN NaN
NaN NaN NaN
NaN NaN NaN

(c) Temperature information, NaN present due to temperature information is recorded only every minute.

cnt band0 cnt band1 cnt band2 cnt band3 cps band0 cps band1 cps band2 cps band3 cnt sum cps sum
1683 2404 480 92 1683 2404 480 92 4659 4659
1670 2482 524 143 1670 2482 524 143 4819 4819
1648 2580 547 127 1648 2580 547 127 4902 4902
1762 2769 512 140 1762 2769 512 140 5183 5183
1777 2948 627 160 1777 2948 627 160 5512 5512

(d) Counts and count rate in 4 bands (2.1).

Table 2.3: The example format of five raw data points from November 12th, 2022
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2.3.1 Augmented peaks

In order to enhance the performance of the transient prediction model, we investigated the use of
Poisson noise augmentation for selected GRB peaks which serve as essential references due to
their well-characterized profiles. Adding Poisson noise is beneficial for augmenting the peaks of
GRBs for several reasons. Firstly, it enables the realistic simulation of statistical fluctuations and
random variations present in GRBs. By incorporating Poisson noise into the peaks, the synthetic
data becomes more representative of the natural variations observed in these astronomical events.
Secondly, the variability introduced by the Poisson distribution reflects the inherent fluctuations
in burst intensities, which are crucial for training models to accurately distinguish genuine peaks
from background noise. Finally, as the Poisson distribution is well-suited for modeling rare and
random events, it aligns with the characteristics of GRBs and allows the models to learn and adapt
to their statistical properties.

The selected criteria for augmenting GRB peaks included: requiring a bin resolution of 1
second, ensuring visual detectability, SNR above 3, and possessing representative (FRED) profiles.
In Table 2.4 are highlighted 11 GRBs and their corresponding SNR that were selected, with plots
in Appendix (Figure 1).

GRB SNR
GRB 230522A 47.0
GRB 230512A 11.0
GRB 230510B 15.7
GRB 230510A 6.6
GRB 230328B 13.3
GRB 230320B 22.5
GRB 230307A 305.1
GRB 230305A 8.3
GRB 230304B 28.4
GRB 230207B 25.0
GRB 230102A 5.6
GRB 221206B 35.8
GRB 221127A 3.0
GRB 221122A 4.3
GRB 221119A 23.5
GRB 221112A 3.4
GRB 221107A 9.3
GRB 221029A 9.8
GRB 221022B 22.8
GRB 221020A 11.3
GRB 220927A 19.7
GRB 220926B 4.8

Table 2.4: All GRB detections of GRBAlpha1 (between March 14th, 2021, and May 15th, 2023),
in bold are GRBs that were picked for augmentation and for testing.

1 All confirmed detection of GRBAlpha are updated on this site: monoceros.physics.muni.cz/hea/GRBAlpha/.

https://monoceros.physics.muni.cz/hea/GRBAlpha/
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Figure 2.6: Example of a real GRB and its two augmented versions (peak at 𝑡 = 0).



Chapter 3

Machine Learning

Machine learning (ML) is a field of artificial intelligence (AI) that involves developing algorithms
and models that enable computers to learn from and make predictions or decisions based on
data without being explicitly programmed. Machine learning has various applications in areas
like image recognition, language processing, recommendation systems, and more. One of the
most popular and well-known applications of ML is Artificial Neural Networks (ANN), which are
modelled after the structure and function of the human brain. It consists of interconnected layers
of artificial neurons (Equation 3.1), which are connected by weights (Section 3.2.2).

From powering our virtual assistants, optimizing supply chain logistics, medical diagnosis,
recommending cat videos, or filtering unwanted email, ML is now everywhere. Astronomy and
astrophysics are not behind (Baron, 2019). The rapid development of telescopes and detectors
brings us not only new and fascinating discoveries but also enormous quanta of data (Ball &
Brunner, 2010; Pesenson et al., 2010). The following is a selection of works that, in my humble
opinion, deserve acknowledgement: (i) Classifying galaxies based on their morphology, colour,
and other features (Raddick et al., 2010); (ii) Detecting and classifying different types of supernovae
based on their light curves and spectra (Foley et al., 2007); (iii) Detecting exoplanets based on
their transit signals. This led to the discovery of many new exoplanets, including some that are
potentially habitable (McCauliff et al., 2015); (iv) classifying variable starts based on their light
curves (Mahabal et al., 2017; Bassi et al., 2021); (v) gamma-ray burst detection (Abraham et al.,
2021).

In summary, ML is a valuable tool for several reasons, including its ability to handle large
amounts of data, automate tasks, quickly analyze data to identify patterns, make more accurate
predictions and decisions than traditional methods, and learn and adapt to new data.

3.1 Supervised, unsupervised and semi-supervised learning

There are three main types of Machine Learning: Supervised Learning, Unsupervised Learning,
and Semi-supervised Learning. The structure of your ML project depends on what kind of data
you have available and what kind of information you want to extract from them.

In Supervised Learning, the model is trained on labeled data, which means the dataset contains
input features and their corresponding output labels. The goal of the algorithm is to learn the
mapping between the input and output variables so that it can make accurate predictions on new,
yet unseen data. Examples of Supervised Learning algorithms include Linear Regression, Logistic
Regression, Support Vector Machines, and Neural Networks (Liu & Wu, 2012).

Unsupervised Learning, on the other hand, involves training the model on unlabeled data. In
this type of learning, the model tries to identify patterns or groupings in the data without being
given any prior information. This approach is commonly used for clustering and anomaly detection
(Mohan, 2017).

Semi-supervised learning is a type of Machine Learning that lies somewhere between Super-
vised Learning and Unsupervised Learning. In this type of learning, the model is trained on a
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combination of labeled and unlabeled data. The labeled data is used to train the model initially,
while the unlabeled data is used to refine the model’s predictions over time. By combining the
labeled and unlabeled data, semi-supervised learning algorithms can often achieve better results
than using either type of data alone. Semi-supervised learning is commonly used in applications
where labeled data is scarce, such as in Natural Language Processing or Speech Recognition (Getz
et al., 2006).

3.2 Building blocks of neural networks

As said at the beginning of the chapter, neural networks are a type of machine learning algorithm
that is loosely modelled on the structure and function of the human brain. The human brain operates
in a forward manner, processing information through interconnected neurons and adapting through
synaptic plasticity, which refers to the brain’s ability to strengthen or weaken connections between
neurons based on their activity and experiences. Artificial neural networks also have a forward
flow through interconnected layers of artificial neurons, but use backpropagation (Section 3.3.4) to
adjust weights and improve performance (Rumelhart et al., 1986). The upcoming subsection will
offer a comprehensive overview of what neural networks are made of.

3.2.1 Artificial neuron

The terms “artificial neuron” and “perceptron” are often used interchangeably to refer to the same
thing: a basic unit of a neural network. It takes one or more input values, multiplies them by
weight, adds them together, and passes the result through an activation function. However, there is
a historical difference between the two terms.

The term “artificial neuron” was first introduced in the 1940s by Warren McCulloch and Walter
Pitts (McCulloh & Pitts, 1943). They proposed a model of an artificial neuron that could perform
simple logical operations, such as AND and OR. The term “perceptron”, on the other hand, was
introduced in the late 1950s by Frank Rosenblatt (Rosenblatt, 1958). Rosenblatt’s perceptron
was an artificial neuron that could learn to classify input data into two categories (i.e., binary
classification). It used a simple learning algorithm called the “perceptron learning rule” to adjust
its weights and improve its classification accuracy over time. The perceptron was one of the first
successful Machine Learning models, laying the groundwork for developing more complex neural
network architectures.

Mathematically, the perceptron can be described as follows: input values 𝑥1, 𝑥2, ..., 𝑥𝑛 and
weights 𝑤1, 𝑤2, ..., 𝑤𝑛 with bias 𝑤0 are then passed through an activation function 𝑓 to produce a
final output 𝑦:

𝑦 = 𝑓

(
𝑁∑︁
𝑛=1

𝑤0 + 𝑤𝑛𝑥𝑛

)
. (3.1)

Neurons are organized into layers. The input layer receives the initial data, the hidden layers
process and transform it, and the output layer generates the final prediction. Hidden layers enable
the network to learn and extract complex features and patterns from the input data through their
interconnected computations.

3.2.2 Weights and bias

Weights represent trainable parameters of the neural network that determine how the information
flows through the network. Each connection between two neurons in the network is associated
with a weight, which represents the strength of the connection. However, this weighted sum alone
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may not be enough to produce the desired output for a given set of inputs, the neuron would only
produce an output of 0 when all of its inputs are 0. An additional parameter bias is added to the
weighted sum of the inputs in each neuron to help shift the output of the neuron, allowing it to
produce a broader range of outputs. So even when all of its inputs are 0, the neuron can produce a
non-zero output.

3.2.3 Activation function

Activation functions play a crucial role in the functioning of artificial neural networks (ANNs) by
introducing non-linearity to the network’s decision-making process. The choice of activation func-
tions behaves differently in the hidden layers and output layers. Some commonly used activation
functions include:

The Hyperbolic Tangent (Tanh) maps inputs to a range between -1 and 1. In hidden layers,
tanh functions were widely used before the emergence of ReLU, which will be explained next.
In the output, layers are used similarly to the sigmoid function in binary classification (Anireh &
Osegi, 2016).

𝑓 (𝑧) = 𝑒2𝑧 − 1
𝑒2𝑧 + 1

.

The Rectified Linear Unit (ReLU) function is a simple threshold function that outputs the input
value if it is positive, and 0 if it is negative. It is one of the most commonly used activation functions
in deep learning (Nair & Hinton, 2010; Agarap, 2019). However, ReLU has one limitation. When
the input is negative, the gradient becomes zero, leading to a phenomenon called ”dying ReLU.”
This issue can cause neurons to become inactive and cease learning, making them unable to recover
during training.

𝑓 (𝑧) = max(0, 𝑧)

Leaky ReLU is an improved version of ReLU that addresses the dying ReLU problem. It
introduces a small slope 𝑎 for negative values instead of completely turning them off (Dubey &
Jain, 2019).

𝑓 (𝑧) = max(𝑎𝑧, 𝑧)

The Sigmoid function maps any input value to a value between 0 and 1. In hidden layers,
sigmoid functions were commonly used in the past, but due to causing the vanishing gradient
problem 3.2.3, more efficient functions are used (ReLU). In the output layer, sigmoid functions are
still used for binary classification, as they can provide a probabilistic interpretation of the prediction
(Pratiwi et al., 2020).

𝑓 (𝑧) = 1
1 + 𝑒−𝑧

The Softmax activation function is commonly used in the output layer of multi-class classifi-
cation tasks. It normalizes the outputs of neurons in the layer, converting them into probabilities
that sum up to 1. Softmax ensures that the predicted probabilities represent the relative likelihoods
of different classes (Pearce et al., 2021):

𝑓 (𝑧𝑖) =
𝑒𝑧𝑖∑
𝑗

𝑒𝑧 𝑗

.
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where 𝑧 = wx + 𝑏, w is a matrix of weights, 𝑏 is bias and x is input data. The linear activation
function is also used, typically in the output layer of a neural network when the task at hand involves
regression, where the goal is to predict a continuous value.

When using activation functions with small gradients, such as sigmoid and tanh, the gradients
can become very small as they propagate backwards through the network, resulting in very slow
convergence or even convergence to suboptimal solutions. This is called the vanishing gradient
problem , which is a well-known issue in deep learning, particularly in the training of deep neural
networks with many layers. Several techniques have been developed to address the vanishing
gradient problem. One approach is to use activation functions with larger gradients, such as ReLU
and its variants, which help to maintain a consistent gradient throughout the network. Or try
to use an alternative optimization algorithm, such as the Adam optimizer (Section 3.3.3), which
adaptively adjusts the learning rate for each weight based on its historical gradients.

Figure 3.1: Graphical representation of selected activation functions.

3.2.4 Batch normalization

Training ANN can be affected by internal covariance shift that refers to the change in the distribution
of layer inputs as the parameters of preceding layers are updated during the training process of a
neural network. It occurs because the distribution of inputs to each layer is highly dependent on the
parameters of the preceding layers. As these parameters change during training, the distribution of
inputs also changes, leading to the internal covariance shift. This phenomenon can slow down the
training process and make it harder for subsequent layers to learn effectively. Batch Normalization
is a technique used to mitigate this issue by normalizing the inputs of each layer. It operates on a
mini-batch of training examples and adjusts the activation functions by subtracting the batch mean
and dividing by the batch standard deviation. The normalized activation functions are then scaled
and shifted using learned parameters (Ioffe & Szegedy, 2015).
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3.2.5 Dropout

The dropout layer is a regularization technique to prevent overfitting and improve generalization.
During training, the dropout layer stochastically determines which units to drop out, set to zero,
based on a dropout rate, which introduces noise and forces the network to learn redundant rep-
resentations, making it more robust. This random dropout process is applied independently to
each training example, creating an effect similar to training multiple neural networks with different
architectures, ultimately lowering variance. During testing, the dropout layer is typically turned off,
and the network approximates the average behaviour of the ensemble formed by the sub-networks
(Srivastava et al., 2014).

3.3 Training a model

The success of a machine learning model depends on the quality of the data it is trained on. To
ensure the model is accurate and effective, we divide the data into training, testing, and validation
sets (Section 3.3.1). To evaluate how well the model is able to predict the right output for a given
input, the loss function (Section 3.3.2) is computed, so the learning process involves minimizing this
function. It also involves finding the right weights and biases (Section 3.2.2) through optimizing
techniques (Section 3.3.3).

3.3.1 Training, testing and validating data

The data splitting process involves selecting a portion of the available data to be used for training
the model and setting aside the remaining portion for validating during training (hyperparameter
search and to ensure the model just does not memorize the data) and testing (how does it perform
on new data). The common percentage of splitting datasets can vary depending on the dataset’s
size, the model’s complexity, and the specific task at hand. However, a common practice is to use
an 80/20, where 80% of the data is used for training, and the remaining 20% is used for testing
and validation. For smaller datasets, a 50/25/25 split may be used, where 50% of the data is
used for training, and 25% each is used for testing and validation. In some cases, cross-validation
techniques may also be used, where the data is split into multiple folds, and the model is trained
and tested on different subsets of the data.

Before splitting the dataset, it is essential to shuffle the dataset to ensure that the data is
randomly distributed across the training, validation, and testing sets. Without shuffling, the dataset
may have a particular order or pattern that could influence the model’s training and performance.
For example, if the dataset is sorted by class labels or some other feature, the model may learn to
rely on this order and perform poorly on unseen data. Shuffling the data ensures that the model is
exposed to a random and diverse set of examples during training, making it more robust and able
to generalize well to new data. However, shuffling the dataset is not recommended for time-series
data, as the order of the samples is essential to model the time-dependent relationships between
them. In time-series data, the dataset is typically split using a sliding window approach, where
a fixed number of contiguous samples are used to predict the next sample in the sequence. This
sliding window approach ensures that the time-dependency structure is maintained, and the model
can accurately capture the patterns and relationships between the samples (Nguyen et al., 2021).

3.3.2 Loss function

A loss function is a mathematical function used to evaluate how well a neural network is performing
on a given task. The goal of a neural network is to minimize the loss function, which means reducing
the difference between the predicted output and the actual output.
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There are many different loss functions used in neural networks, and the choice of which one
to use depends on the specific task at hand (classification/regression). Here are some common loss
functions used in neural networks:

• Mean Squared Error (MSE): The mean squared error loss function is commonly used for
regression tasks (Ren et al., 2022). It measures the average squared difference between the
predicted and actual output. The formula for MSE is:

MSE =
1
𝑁
·

𝑁∑︁
𝑖

(𝑦pred,𝑖 − 𝑦true,𝑖)2

where N is the number of samples (batch size), 𝑦pred is the predicted output, and 𝑦true is the
actual output. MSE penalizes large errors more heavily than small errors, which can make
it sensitive to outliers.

• Mean Absolute Error (MAE): Mean absolute error loss function is another commonly
used regression loss function (Qi et al., 2020; Wang et al., 2023). It measures the average
absolute difference between the predicted and actual output. The formula for MAE is:

MAE =
1
𝑁
·

𝑁∑︁
𝑖

|𝑦pred,𝑖 − 𝑦true,𝑖 |

where N is the number of samples, 𝑦pred is the predicted output, and 𝑦true is the actual output.
MAE penalizes large errors less heavily than MSE and can be less sensitive to outliers.

• Huber Loss

Huber loss is a loss function used in regression problems, particularly in cases where the data
may contain outliers. The Huber loss combines the properties of both MSE and MAE by
using a quadratic loss for small errors and a linear loss for large errors (Gokcesu & Gokcesu,
2021).

𝐿 (𝑦true, 𝑦pred) =
{

0.5 · (𝑦true − 𝑦pred)2, if |𝑦true − 𝑦pred | ≤ 𝛿

𝛿 · ( |𝑦true − 𝑦pred | − 0.5 · 𝛿), otherwise

where 𝛿 is a threshold parameter that determines the point at which the loss function
transitions from quadratic to linear.

• Binary Cross-Entropy: Binary cross-entropy loss function is used for binary classification
tasks (Ruby & Yendapalli, 2020; Zhang & Sabuncu, 2018; Gordon-Rodriguez et al., 2020). It
measures the difference between the predicted probability and the actual label. The formula
for binary cross-entropy is:

BCE = − 1
𝑁

𝑁∑︁
𝑖=1

(
𝑦true,𝑖 log

(
𝑦pred,𝑖

)
+ (1 − 𝑦true,𝑖) log

(
1 − 𝑦pred,𝑖

) )
where 𝑦pred is the predicted probability and 𝑦true is the actual label. BCE penalizes strongly
for wrong predictions and tends to give high loss values to predictions that are very wrong.
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• Categorical Cross-Entropy: Categorical cross-entropy loss function is used for multi-
class classification tasks (Li et al., 2022). It measures the difference between the predicted
probabilities and the actual label. The formula for categorical cross-entropy is:

CCE = − 1
𝑁

𝑁∑︁
𝑖=1

𝐶∑︁
𝑐=1

𝑦true,𝑖,𝑐 log
(
𝑦pred,𝑖,𝑐

)

where 𝑦pred is the predicted probability and 𝑦true is the actual label, and C is the number
of classes. CCE gives high loss values for incorrect predictions and smaller loss values for
correct predictions.

The loss function plays a crucial role in training a neural network as it guides the optimization
process toward finding the best set of weights that will minimize the difference between the predicted
and actual output. An ideal loss function should be differentiable, allowing for gradient-based
optimization methods, and have a monotonic increase with error to ensure that the optimization
process moves toward minimizing the error.

3.3.3 Optimization algorithm

Optimizing algorithms are an essential component of training neural networks to learn from data.
The goal of these algorithms is to find the optimal set of weights and biases for the network that
minimizes the loss function on the training data. There are several types of optimizing algorithms,
each with its strengths and weaknesses.

Here is a brief overview of some commonly used optimizing algorithms in NNs:

Gradient Descent is the most basic optimization algorithm used in NNs. It works by updating
the weights in the opposite direction of the gradient of the loss function. The learning rate parameter
controls the size of the weight updates at each iteration (Bryson Jr & Ho, 1969).

Stochastic Gradient Descent (SGD) is a variant of gradient descent that randomly selects a
subset of the training data at each iteration to compute the gradient. This helps to avoid getting
stuck in local minima and can speed up the convergence of the algorithm (Robbins, 1951).

RMSprop is an adaptive learning rate optimization algorithm that divides the learning rate by
the running average of the squared gradient. This helps to reduce the learning rate for weights with
high variance in the gradients (Graves, 2013).

Adam is an adaptive learning rate optimization algorithm that combines the ideas of momentum
and RMSprop. It keeps track of the first and second moments of the gradients and uses this
information to adapt the learning rate for each weight (Kingma & Ba, 2014).

The choice of optimizing algorithm depends on the specific problem and network architecture.
Some factors to consider when selecting an algorithm include the size of the dataset, the complexity
of the model, and the computational resources available.



28 Machine Learning

Figure 3.2: Visual representation1 of finding the minima of loss function by gradient descend
approach differing in the amount of data they use in each gradient update.

3.3.4 Backpropagation

Backpropagation, proposed by Rumelhart et al. (1986), is a commonly used algorithm when
training neural networks. It involves an efficient way of calculating the gradients of the loss
function with respect to the weights of the network and then updating those weights in the direction
of the negative gradient. The algorithm proceeds in two stages: a forward pass to calculate the
output of the network given the input and a backward pass to calculate the gradients of the loss
function.

Let 𝑥 be the input to the network, 𝑦 be the desired output, and 𝑓 (𝑥;𝑤) be the output of the
network given input 𝑥 and weights 𝑤. The loss function 𝐿 (𝑦, 𝑓 (𝑥;𝑤)) measures the difference
between the desired output and the actual output of the network. The goal of backpropagation is
to update the weights 𝑤 so as to minimize the loss function.

In the forward pass, the output of each neuron in the network is calculated as follows:

𝑧𝑖 =

𝑛∑︁
𝑗=0

𝑤𝑖 𝑗𝑥 𝑗

𝑎𝑖 = 𝜎(𝑧𝑖)

where 𝑧𝑖 is the weighted sum of the inputs to neuron 𝑖, 𝑤𝑖0 is the bias term for neuron 𝑖, 𝐹 (𝑧𝑖)
is the activation function, and 𝑛 is the number of inputs to neuron 𝑖. The output of the network is
the output of the final neuron: 𝑓 (𝑥;𝑤) = 𝑎𝑛.

In the backward pass, the gradient of the loss function with respect to the weights is calculated
using the chain rule:

𝜕𝐿

𝜕𝑤𝑖 𝑗

=
𝜕𝐿

𝜕𝑧𝑖

𝜕𝑧𝑖

𝜕𝑤𝑖 𝑗

=
𝜕𝐿

𝜕𝑎𝑖

𝜕𝑎𝑖

𝜕𝑧𝑖

𝜕𝑧𝑖

𝜕𝑤𝑖 𝑗

=
𝜕𝐿

𝜕𝑎𝑖
𝜎′(𝑧𝑖)𝑥 𝑗

1 Downloaded from https://www.analyticsvidhya.com/.

https://www.analyticsvidhya.com/blog/2022/07/gradient-descent-and-its-types/
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where 𝜎′(·) is the derivative of the activation function. The gradient of the loss function with
respect to the bias term is:

𝜕𝐿

𝜕𝑤𝑖0
=

𝜕𝐿

𝜕𝑧𝑖

𝜕𝑧𝑖

𝜕𝑤𝑖0

=
𝜕𝐿

𝜕𝑎𝑖

𝜕𝑎𝑖

𝜕𝑧𝑖

The weights and biases are then updated using the gradients and a learning rate 𝛼:

𝑤𝑖 𝑗 ← 𝑤𝑖 𝑗 − 𝛼
𝜕𝐿

𝜕𝑤𝑖 𝑗

𝑤𝑖0 ← 𝑤𝑖0 − 𝛼
𝜕𝐿

𝜕𝑤𝑖0

3.3.5 Underfitting and overfitting

Underfitting and overfitting are two common problems in machine learning when training a model.
Both issues can lead to poor performance and inaccurate predictions.

Underfitting happens when a model is too simple to capture patterns in the data, leading to
poor performance. It can be caused by insufficient complexity, data, or important features, as well
as excessive regularization. The result is low accuracy and ineffective predictions.

On the other hand, overfitting occurs when the model is too complex and can perfectly fit the
training data, including the noise and outliers. This means the model has too many parameters and
can fit the training data too well, resulting in low bias but suffering from high variance. When a
model overfits the data, it may perform well on the training set but does not generalize well to new,
unseen data, resulting in poor testing accuracy.

To prevent underfitting, the model should be more complex, and additional features can be added
to capture the underlying patterns in the data. On the other hand, the model should be simplified
to prevent overfitting, and the number of features or parameters should be reduced. Regularization
techniques, including L1 and L2 regularization (Mazilu & Iria, 2011; Kolluri et al., 2020) which
add penalties on weights, as well as dropout (Section 3.2.5), which randomly deactivates neurons,
can effectively prevent overfitting.

Finding the right balance between underfitting and overfitting is crucial to building an accurate
and reliable machine-learning model. The model should be complex enough to capture the
underlying patterns in the data while being simple enough to generalize well to new data. Cross-
validation is a common technique used to evaluate the model’s performance and find the optimal
balance between underfitting and overfitting.

3.3.6 Accuracy metrics

There are several metrics that can be used to measure the accuracy of machine learning models,
depending on the specific task and problem being addressed. One of the most common metrics for
classification (Raschka & Mirjalili, 2019) and regression tasks (James et al., 2013):

• Classification Metrics:

– Accuracy:
ACC =

TP + TN
TP + TN + FP + FN

2 Downloaded from https://www.analyticsvidhya.com/.

https://www.analyticsvidhya.com/blog/2020/02/underfitting-overfitting-best-fitting-machine-learning/
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Figure 3.3: Visual representation of finding the balance of underfitting and overfitting2.

where TP is the number of true positives, TN is the number of true negatives, FP is
the number of false positives, and FN is the number of false negatives. Accuracy is
commonly used in classification tasks where the goal is to predict the correct class or
category.

– Precision:
PREC =

TP
TP + FP

Precision measures the proportion of correctly predicted positive instances out of the
total predicted positive instances. Precision is useful in situations where the cost of
false positives is high. It is commonly used in applications such as fraud detection and
medical diagnosis, where false positives can have significant consequences.

– Recall, also known as sensitivity or true positive rate (TPR):

TPR =
TP

TP + FN

Recall measures the proportion of correctly predicted positive instances out of the total
actual positive instances. The recall is valuable when the cost of false negatives is high.
It is frequently used in tasks such as disease detection, where missing a positive case
can have severe implications.

– F1 Score:
F1 Score = 2 × PREC × TPR

PREC + TPR
The F1 score is the harmonic mean of precision and recall. It provides a balanced
measure between the two. The F1 score is widely used when there is an uneven class
distribution or an imbalance between the importance of precision and recall. It is
a helpful metric in cases that need a balance between identifying relevant instances
(recall) and ensuring their correctness (precision), like document classification.

– ROC AUC: The ROC AUC (Receiver Operating Characteristic Area Under the Curve)
measures the performance of a model in terms of its ability to discriminate between
positive and negative classes by plotting the True Positive Rate (TPR) against the False
Positive Rate (FPR) at various classification thresholds. The area under the ROC curve
(ROC AUC) is a single scalar value that summarizes the overall performance of the
model.
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– Confusion matrix: The confusion matrix is a grid that organizes predictions made by a
model for different classes or categories. In the case of binary classification, the matrix
consists of two classes labeled as “positive” and “negative”. The numbers within the
matrix represent the counts or frequencies of the model’s predictions for each class.
Specifically, the matrix includes True Positive (TP) for correct positive predictions,
True Negative (TN) for correct negative predictions, False Positive (FP) for incorrectly
predicted positives, and False Negative (FN) for incorrectly predicted negatives. These
values provide valuable insights into the model’s performance by illustrating the dis-
tribution of accurate and inaccurate predictions with evaluation metrics like accuracy,
precision, recall, and F1 score.

• Regression Metrics:

– Mean Squared Error (MSE):

MSE =
1
𝑛

𝑛∑︁
𝑖=1
(𝑦true − 𝑦̂pred)2

MSE measures the average squared difference between the predicted values (𝑦̂pred) and
the true values (𝑦true) of a regression model, where 𝑛 is the number of instances. MSE
is used where the goal is to predict a continuous numerical value. It quantifies the
overall magnitude of prediction errors, giving more weight to larger errors.

– Mean Absolute Error (MAE):

MAE =
1
𝑛

𝑛∑︁
𝑖=1
|𝑦true − 𝑦̂pred |

MAE measures the average absolute difference between the predicted values (𝑦̂pred) and
the true values (𝑦true) of a regression model, where 𝑛 is the number of instances. MAE
is frequently used as an alternative to MSE. MAE provides a more robust measure of
errors as it is not sensitive to outliers.

– R-squared (R2) Score:

R2 = 1 −
∑𝑛

𝑖=1(𝑦true − 𝑦̂pred)2∑𝑛
𝑖=1(𝑦true − 𝑦̄true)2

R2 represents the proportion of the variance in the dependent variable that is predictable
from the independent variables. It ranges from 0 to 1, where a higher value indicates
a better fit of the regression model.

3.3.7 Fine tuning

Hyperparameters are parameters that are not learned from data. Instead, the user sets them before
training the model. There are general hyperparameters that can affect the overall training process.
The learning rate determines the step size at each iteration, influencing how quickly the model
learns. The number of epochs defines the number of times the model iterates over the training data.
Batch size determines the number of training examples processed together before updating the
model’s weights. Learning rate decay reduces the learning rate over time, based on given criteria.
Then there are hyperparameters which are related to the architecture of the neural network. The
number of layers determines the depth of the network, and the number of neurons per layer defines
the width of the network, influencing its expressive power. Dropout rate (Section 3.2.5) defines
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Figure 3.4: Confusion matrix with all classes perfectly predicted.

the fraction of neurons that are randomly disabled or set to zero during the training of a neural
network, introducing a form of regularization to prevent overfitting (Section 3.3.5) and lower
variance. The choice of an appropriate activation function (Section 3.2.3) is crucial as it introduces
non-linearity to the network, allowing it to learn complex patterns. An optimizer (Section 3.3.3)
is a key component in training a model as it iteratively adjusts the weights and biases based on the
loss function (Section 3.3.2), which quantifies the difference between the predicted output and the
actual output, ultimately aiming to minimize the loss and optimize the model’s performance.

There are several techniques that help fine-tune a model and find the best hyperparameters. Grid
search systematically explores a predefined grid of hyperparameter values, exhaustively evaluating
each combination, making it computationally expensive and time-consuming, especially when
dealing with a large number of hyperparameters or a wide range of values. Random search, on
the other hand, randomly samples hyperparameter combinations within a specified search space,
but there’s a possibility of missing important combinations. Bayesian optimization combines the
advantages of both techniques by constructing a probabilistic model of the performance, focusing
the search on promising areas. It adapts its exploration based on the evaluation results, efficiently
narrowing down the search space. However, it requires careful tuning of its own hyperparameters
and can be more complex to implement.

3.4 Types of neural networks

Neural networks come in various types, each tailored for specific tasks and data patterns. In
this section, we will explore the different types of neural networks, their characteristics, and their
applications.

• Feed-forward neural networks (FFNNs), also known as multi-layer perceptrons (MLPs),
are the simplest and most commonly used type of artificial neural network. FFNNs are made
of multiple layers of interconnected neurons that process input data and produce output,
without any feedback loops, hence the name “feed-forward”.

Each neuron applies a (linear or nonlinear) activation function on input from the previous
layer and produces an output that is passed on to the next layer. The neurons in the input layer
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have no activation function, while those in the hidden and output layers can use different
activation functions (Section 3.2.3).
FFNNs are trained using a supervised learning approach (Section 3.1), where the network
learns from labeled examples of input-output pairs. During training, the network adjusts the
weights and biases of its neurons to minimize the error between the predicted output and the
actual output. This is achieved using backpropagation (Section 3.3.4).

• Convolutional Neural Networks (CNNs) are a type of deep neural network commonly
used in signal processing (1D) and image (2D) applications. It was first introduced by
Yann LeCun in the late 1980s. LeCun developed the first convolutional neural network,
designed to recognize handwritten digits and used for processing checks in the banking
industry (Lecun et al., 1998). The key difference between a CNN and a traditional neural
network is convolutional layers, which apply a set of learnable filters to the input data. These
filters have small spatial dimensions and slide over the input data, performing element-wise
multiplication and summation operations. The result of this operation is a new feature map
that highlights regions in the input data that are similar to the filter. By stacking multiple
convolutional layers, the network can learn increasingly complex and abstract features, using
backpropagation (Section 3.3.4) and gradient descent (Section 3.3.3).

Figure 3.5: FFNN scheme3.

After the convolutional layer, a pooling layer is often added to reduce the spatial size of the
feature maps and make the network more computationally efficient. The pooling operation
typically involves taking the maximum or average value over a small region of the feature
map. This has the effect of downsampling the feature maps and reducing their resolution,
which also helps to introduce some degree of translation invariance to the feature maps,
making the network more robust to variations in the position of the features in the input.
The formula for convolution operation in a 1D convolutional layer:

ℎ𝑘𝑗 = 𝜎

(
𝑓∑︁

𝑢=1

𝑐∑︁
𝑙=1

𝑤𝑘
𝑢𝑙𝑥 ( 𝑗−1)𝑠+𝑢,𝑙 + 𝑏𝑘

)
, (3.2)

3 Downloaded from https://brilliant.org/wiki/feedforward-neural-networks/.

https://brilliant.org/wiki/feedforward-neural-networks/
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Figure 3.6: 1D CNN scheme (Castro et al., 2019).

Figure 3.7: 2D CNN scheme (Phung & Rhee, 2019).

where index 𝑗 represents the index of the neuron within the layer, index 𝑘 represents the
index of the layer, ℎ𝑘

𝑗
is the output of the neuron, 𝜎(·) represents the activation function, 𝑤𝑘

𝑢𝑙

represents the weight of the connection between the 𝑙-th input in the previous layer and the
𝑗-th neuron in the current layer, 𝑥 ( 𝑗−1)𝑠+𝑢,𝑙 represents the 𝑙-th input value from the previous
layer, specifically from the ( 𝑗 − 1)𝑠 + 𝑢-th neuron, where 𝑠 represents a stride factor, 𝑓

represents the filter size and 𝑐 represents the number of channels in the input.
The output of the convolutional and pooling layers is then flattened and passed through one
or more fully connected layers (similar to the ones in a traditional neural network), which
perform the final classification or regression.
In addition to these layers, CNNs may also include normalization (Section 3.2.4) layers,
which can help prevent the network from being affected by differences in the scale of the
features (different instrument, same physical origin - pattern), making the network more
robust to variations and can help prevent overfitting, speed up training (it is faster with
smaller numbers), and dropout layers that randomly drops out a fraction of the neurons in
the previous layer to prevent overfitting.

• Recurrent Neural Networks (RNNs) Recurrent neural networks are designed to process
sequential data, such as text or speech. They are composed of a feedback loop that allows
the output of a neuron to be fed back into the network as an input. RNNs can remember
past inputs and use that information to influence future outputs. One type of RNN is Long
short-term memory (LSTM) which can remember longer input data sequences.

• Long Short-Term Memory (LSTM) is a type of recurrent neural network (RNN), which
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Figure 3.8: RNN scheme (Mishra et al., 2018).

was first proposed by Hochreiter and Schmidhuber in 1997 (Hochreiter & Schmidhuber,
1997), that is especially effective in processing sequential data such as handwriting, speech,
language translation and most importantly time-series. Unlike traditional RNNs, which
suffer from the vanishing gradient problem (Section 3.2.3) that limits their ability to learn
long-term dependencies, LSTMs are designed to maintain a memory state that allows them
to remember important information over extended periods of time.

Figure 3.9: LSTM scheme4.

The core idea behind LSTMs is to introduce a set of memory cells controlled by three types
of gates: the input gate, the forget gate, and the output gate. The input gate determines how
much new information should be added to the memory cells, and the forget gate decides what
information should be discarded from the memory cells. The output gate controls how much
information is read from the memory cells to produce the output of the LSTM. By carefully
tuning these gates, LSTMs can learn to model complex sequences and capture long-term
dependencies in the data.

Overall, LSTMs have proven to be a powerful and versatile tool for modelling sequential
data. Their ability to handle long-term dependencies has made them a popular choice in
many fields.

4 Downloaded from https://medium.com/analytics-vidhya/lstms-explained.

https://medium.com/analytics-vidhya/lstms-explained-a-complete-technically-accurate-conceptual-guide-with-keras-2a650327e8f2
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• Autoencoders
The architecture of an autoencoder typically consists of three main parts: an encoder,
a bottleneck, and a decoder. The encoder takes the input data and maps it to a lower-
dimensional representation, which is then passed through the bottleneck. The bottleneck has
fewer neurons than the input and output layers for it to be able to capture the most essential
features. The decoder then maps the bottleneck representation back to the original input
space. Autoencoders have several advantages in unsupervised learning, including reducing
dimensionality, detecting anomalies, learning meaningful features, and generating new data.
There are many different types of autoencoders, each with unique architecture and training
objectives. Some common types include (i) Denoising autoencoder: This type of autoen-
coder is designed to remove noise from input data. During training, the autoencoder is
presented with noisy input data and is trained to generate a clean output; (ii) Variational
autoencoder: This type of autoencoder is designed to learn a probability distribution over
the encoded latent space rather than a deterministic mapping. This allows the autoencoder
to generate new data samples by sampling from the learned distribution; (iii) Convolutional
autoencoder: These neural networks are particularly useful for time-series data or image
data, where the (spatial) structure of the data is essential; (iv) Recurrent autoencoder: RAEs
can be used for a variety of tasks, such as sequence prediction and anomaly detection. For
example, in sequence prediction, the RAE can be trained on a dataset of time series data and
used to predict future values in the sequence. In anomaly detection, the RAE can be used
to detect unusual patterns in the input sequence that may indicate a problem or anomaly. In
sequence generation, the RAE can be used to generate new sequences by sampling from the
compressed representation and decoding using the decoder.

Figure 3.10: Autoencoder scheme5.

5 Downloaded from https://www.assemblyai.com/blog/introduction-to-variational-autoencoders-using-keras/.

https://www.assemblyai.com/blog/introduction-to-variational-autoencoders-using-keras/
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Methods

The main goal of this thesis is GRB detection in light curves from GRBAlpha data. Classification
models based on convolutional, LSTM, and dense layers were employed to identify if the given
time window contains significant gamma-ray emission or background. Three approaches were
investigated; (i) classification to GRB/background (Transient detection classifier), (ii) classification
based on denoised light curves by autoencoders, (iii) predicting background by LSTM regression,
which could reveal excess emission.

In the first approach, the task involved classifying between Gamma-Ray Bursts (GRBs) and
background signals. The input for this classification was a time window, and the output was a
floating point number between 0 for the background and 1 for GRB. To tackle this problem, a
combination of 1D convolutional, LSTM, and dense layers was employed.

In the second approach, an autoencoder was used for denoising the light curves, followed by the
classification of the denoised data. It is known that noise is not compressible (Saliwanchik & Slosar,
2022), making it difficult to remove using traditional methods. To address this issue, two types
of autoencoders were employed: one based on dense layers and another based on convolutional
layers. The input and output of the autoencoder were the light curves themselves, and the model
was trained to reconstruct the clean version of the light curve by minimizing the Mean Squared
Error loss.

Lastly, in the third approach, an LSTM-based model was utilized for background prediction.
The goal was to predict future data points in the time series based on the previous window and
compare them with the real observations. By identifying any significant deviations or excesses,
the model could determine the presence of a GRB. This approach leveraged the sequential nature
of the data and the ability of LSTMs to capture long-term dependencies, allowing for accurate
predictions and the detection of anomalies in the background signal.

4.1 Data preprocessing

The data utilized in this thesis were obtained by the GRBAlpha satellite. Most of the data points
were observed using a bin size of 1 s, however, especially in the early operational phase of the
satellite, also longer time bins were used. The distribution of bin sizes can be found in Table 2.2
and their visual representation in Figure 2.1. Table 2.3 serves as a reference for the format of the
raw data, which needs to be further filtered and preprocessed. Only specific data columns were
utilized in the analysis, namely the “start” and “end” timestamps as well as the exposure duration
extracted from Table 2.3a. All relevant information was extracted from Tables 2.3b and Table
2.3d, while the temperature data from Table 2.3c was disregarded due to being captured only every
minute. The exposure time and satellite position were averaged by calculating the mean of the
“start” and “end” timestamps.

– 37 –
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4.1.1 Satellite position

Spatial data given by GRBAlpha are in the Geographic Coordinate System (GCS). The drawback
of this system is the wrap-around effect, meaning that locations near the International Date Line
may have their longitude values abruptly change from positive (180◦) to negative (-180◦) or vice
versa. So transformation process is required. I have chosen to convert these coordinates into XYZ
(Cartesian) coordinates and scale them, for the same reason explained in the previous subsection.

4.1.2 Time conversion

The time format of YY-MM-DD hh:mm:ss is not suitable for model training, so the dates need to
be converted to an integer or floating point number, namely Julian Date format was used. To avoid
calculating with large numbers, Julian date of the first light was subtracted i.e. 2459319.

4.1.3 Filtering data

As said in Section 2.1, there are some data that were excluded from the analysis. Namely, data
with bins 3,15,40, and 60 seconds, ADC channel 0 to 64, data with high spectral resolution (64
and 256), and six sets due to bad time synchronization. A total of 6,120 data points with zero
counts, which were identified as originating from internal software problems, were also excluded
from the analysis. These points are undoubtedly invalid and do not represent noise (the second
lowest number of counts in the dataset observed is 27).

4.1.4 Rebinning

For the background estimating model, we used training data with 4-second bins. In order to utilize
also the 1 and 2-second bin data, we decided to rebin 1s and 2s bins into 4s bins. This approach
allowed for the utilization of a larger dataset while maintaining a consistent binning interval. For
the remaining models (GRB classification, AE denoising), we only used data with 1-second time
bins.

4.1.5 Sliding window

Processing continuous temporal data is not particularly well-suited for employed model architec-
tures. In order to process the data, the data need to be segmented into smaller intervals of fixed
size using a sliding window method. In the case of transient detection classifier, such an approach
can also be utilized to produce continuous output and make the prediction more robust.

The sliding window method is commonly used when applying LSTM for background predic-
tion. This technique involves sliding a fixed-size window over the time series data, generating
multiple overlapping sequences, and increasing the amount of training data. This can improve the
LSTM model’s ability to generalize and make accurate predictions.

Moreover, the sliding window method can emulate real-time prediction situations by refreshing
the window with every incoming data point and act as a triggering system. If the window does not
match with the prediction for an interval of time, it can be considered a trigger.

4.1.6 Scaling and normalization

Transformation and normalization of the input data are important in machine learning applications
because they can help to equalize the scales of different features. When features have different
scales, it can lead to biased results and inefficient convergence of optimization algorithms, also
avoiding numerical instability and allowing the model to focus on relative relationships rather than
absolute values. For these reasons, we performed a logarithmic transformation of count rates. In
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addition to logarithmic scaling, other methods, such as scaling between 0 and 1 and normalization,
were also considered, but logarithmic scaling demonstrated the best overall performance. It also
helps in handling missed outliers. Further normalization of the input data is performed by having
the BatchNormalization layer as the first layer in every model (Section 3.2.4).

4.2 Transient detection classifier

4.2.1 Architecture

The model architecture consists of several layers: a 1D convolutional layer (Conv1D) with 64
filters, a kernel size of 5, and a ReLU activation function, capturing local patterns in the input
sequence; a max pooling layer (MaxPooling1D) with a pool size of 2, downsample and retain the
most salient features; a Long Short-Term Memory (LSTM) layer with 32 units, capturing long-
term dependencies in the data; a flattening layer (Flatten); a dense layer (Dense) with 32 units and
ReLU activation; and finally, a dense layer with 1 unit and sigmoid activation, which produce a
probability score indicating the likelihood of a GRB within the input time window. Overall, this
model architecture aims to leverage the strengths of convolutional and recurrent layers to capture
both local and long-term patterns in the input sequence, making it suitable for tasks involving
sequential data.

Figure 4.1: Transient detection classifier architecture.

4.2.2 Training

For this model architecture, 4 sets of training data were employed: model SIM trained with only
simulated data (50/50 GRB/background) (Section 2.3,) model SIM+BKG250 with simulated data
and real background with the time windows having mean under 250 counts, model SIM+BKG500
is similar but with mean under 500 counts, and last one model SIM+BKG250+AUG with simulated
data (50/50 GRB/background), time windows means under 500 and with 11 augmented real GRBs
(Section 2.3.1). For every picked real GRB, 100 augmented ones were generated. The model is
compiled with the Adam optimizer, a learning rate of 0.0001, and the binary cross-entropy loss
function.

Table 4.1: Number of Windows for Each Dataset and Model

Dataset Number of Windows
Simulated 1,000,000

Real Background (Mean < 250) 1,223,774
Real Background (Mean < 500) 1,356,441

Augmented Peaks 52,800
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4.2.3 Testing

In the task of detecting GRBs, various metrics are utilized to assess the performance of the model.
The model is evaluated using both simulated and real data. Since the model outputs likelihood
probability scores, it is necessary to set an optimal threshold to classify them into background and
GRB categories. To determine this threshold, heatmaps were generated, plotting different SNR
ratios against threshold values ranging from 0 to 1. This process was repeated for 1000 simulated
GRBs and backgrounds.

For training and testing purposes, only 11 GRBs detected by GRBAlpha were selected (Section
2.3.1). Given our knowledge of the GRB locations, we extracted 64-bin time windows with the peak
amplitude positioned in the middle. From these windows, we calculated the mean and standard
deviation using the first 20 bins and the last 5 bins. The peak value was determined as the maximum
value within the window. All real backgrounds with 1-second bins were divided into training and
testing samples.

In addition to the ROC curve, AUC score, and confusion matrix, a histogram was created
to display the predicted values for real GRBs and backgrounds. This histogram provides both
numerical and visual insights into the classification performance.

4.3 Denoising autoencoder

4.3.1 Architecture

Two variants of the autoencoder model were studied: one utilizing dense layers and the other
employing 1D convolutional layers. Both had similar structures; the encoding and decoding part
had 3-5 dense/convolution layers with descending number of units/filters ranging from 64 to 16,
with convolution layers having kernel sizes from 3 to 8, bottleneck with size 8 or 16 and all using
ReLU activation function.

Figure 4.2: Example of used autoencoder architecture.

4.3.2 Training

Autoencoders were training using 852,512 4-second bins, with a training/testing split of 90/10.
The training process involved 200 epochs, but to prevent overfitting, an EarlyStopping callback
was utilized, so generally never crossed 100 epochs. Additionally, a ReduceLROnPlateau callback
was employed, reducing the learning rate by a factor of 0.3 if the validation loss did not improve for
4 consecutive epochs. Several loss functions were examined, including mean square error (MSE)
and mean absolute error (MAE). Subsequent experimentation revealed that the utilization of MAE
resulted in superior performance compared to MSE.

4.3.3 Testing

Several metrics were used to assess the performance of the model. These metrics included mean
squared error (MSE); mean absolute error (MAE); root mean squared error (RMSE). By utilizing
a combination of these metrics, the effectiveness of the denoising autoencoder in removing noise
while preserving important features were thoroughly evaluated.
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4.4 Background predicton

4.4.1 Architecture

The LSTM model was tried due to its ability to capture long-term dependencies effectively. The
model consists of multiple LSTM cells, each containing an input gate, forget gate, and output
gate. These gates regulate the flow of information within the cell, allowing it to retain and
update information. In our implementation, input data were time windows (Section 4.1.5), 1-3
LSTM layers with 16-128 hidden units in each layer. Following the LSTM layers, non or up to
3 dense layers with 4-128 units, to further process the LSTM outputs and capture higher-level
representations. This combination of LSTM and dense layers enables the model to learn complex
patterns and relationships in the data.

Figure 4.3: Example of used LSTM architecture.

4.4.2 Training

LSTM model was trained on 852512 data points of 4s bins (90/10 split for training/testing). The
number of epochs was set to 200, but EarlyStopping callback was employed, and so the models
almost never crossed 100 epochs. Also, ReduceLROnPlateau callback was added, with a factor of
0.5, with the condition of validation loss not improving for 4 epochs. Different loss functions were
tested, including mean square error, mean absolute error, Huber loss, or even custom ones.

4.4.3 Testing

For the LSTM background prediction model, several metrics were employed to evaluate its per-
formance. Firstly, the mean absolute error (MAE). This metric provides a measure of the model’s
accuracy in capturing the magnitude of the background fluctuations. Additionally, the root mean
square error (RMSE) was utilized, considering both magnitude and direction. The coefficient of
determination (R-squared) was employed to determine the proportion of variance in the background
data. This metric indicates how well the LSTM model captures the underlying patterns and trends
in the background data.

4.5 Implementation

For the implementation of below stated neural networks, I have chosen Python due to its simplicity,
flexibility, and powerful libraries, e.g., Pandas (Reback et al., 2020) and Numpy (Harris et al., 2020)
for preprocessing and data-handling, Scikit-learn (Pedregosa et al., 2011), TensorFlow (Abadi et al.,
2015) with API Keras (Chollet et al., 2015) for building machine learning models.

As said before, the use of graphics cards (GPUs) is essential in deep learning because they
can significantly speed up the training process of large neural networks. As computing power to
carry out the experiments efficiently, I used a school server called Cthulhu, equipped with Nvidia
GeForce RTX 2080 Super GPU with 8 GB of GDDR6 memory. With this computing power, the
longest training duration did not exceed ten hours.
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4.5.1 Callbacks

Callbacks are functions or objects that enable the execution of custom code at specific stages during
the training of a model. The following callbacks are commonly employed in various models: (i)
ReduceLROnPlateau reduces the learning rate when the validation loss ceases to improve (either
it starts increasing or remains constant); (ii) EarlyStopping terminates the training process when
the validation loss fails to improve for a specified number of epochs; (iii) ModelCheckpoint saves
the entire model during training when the validation loss reaches its lowest value.



Chapter 5

Results

5.1 Transient detection classifier

For the purpose of the transient detection classifier, we employed four models that shared the same
architecture (Section 4.2.1) but were trained on different combinations of datasets (Table 4.1).

Given the comparable performance of all four models on the simulated data, Figure 5.1 serves
as a visual representation rather than an accurate assessment of their capabilities, with the left plot
depicting an almost perfect ROC curve, the center plot showcasing a histogram of predicted values,
and the right plot illustrating a confusion matrix with values expressed as percentages.

When analyzing the models’ performance on simulated data, we concluded that the sufficient
threshold for detections is 0.8, which maximizes the true positive rate while maintaining the false
positive rate at an acceptable level for testing data (5.1). Our set threshold and for SNR above 3 .
We can see in Figure 5.2 that our set threshold yields good performance for simulated GRBs above
SNR ≳ 3.

Figures 5.3 show four plots, each containing predictions of real backgrounds and known GRBs
from GRBAlpha by each model. SNR for the background was estimated from the bin with the
highest count rate in the window.

Figure 5.4 displays a comparison of the four models by ROC curve, histogram of predicted
values, and their corresponding confusion matrix. Models performance is summarized in Table
5.1.

Model AUC
SIM 0.808

SIM+BKG250 0.455
SIM+BKG500 0.636

SIM+BKG500+AUG 1.000

Table 5.1: Models performance.

Figure 5.5 shows the prediction of model SIM+BKG500+AUG on windows with real GRBs.
As the window slides through the data, continues region of predictions above set threshold (< 0.8).
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Figure 5.1: Representation of the performance of all four models on a million simulated light curves;
Left: ROC curve, demonstrating near-perfect scores; Center: histogram of predicted values,
showcasing the distribution of model outputs; Right: confusion matrix with values expressed in
percentages, providing an overview of the classification accuracy for each predicted class.
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(a) model SIM (b) model SIM+BKG250

(c) model SIM+BKG500 (d) model SIM+BKG500+AUG

Figure 5.2: Visualization of model performance on GRB data based on SNR. The plot illustrates
the number of predictions above different threshold values for various SNR levels. Each cell
represents the percentage of predictions above the threshold, with SNR values plotted on the y-axis
and threshold values on the x-axis. The color intensity indicates the proportion of predictions
above the threshold, with darker shades indicating a higher percentage.
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(a) model SIM (b) model SIM+BKG250

(c) model SIM+BKG500 (d) model SIM+BKG250+AUG

Figure 5.3: Scatter plot depicting the performance evaluation of models on 3378 real background
windows and selected 11 GRBs, illustrating the relationship between the background mean of
the window and SNR. True negatives are represented by light green markers, false positives by
tomato-colored markers, true positives by green markers, and false negatives by red markers. The
plot showcases the distribution of predicted outcomes based on the model’s threshold (< 0.8), with
the x-axis representing the background mean and the y-axis representing the SNR. The logarithmic
scale is used for the y-axis.
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(a) model SIM

(b) model SIM+BKG250

(c) model SIM+BKG500

(d) model SIM+BKG500+AUG

Figure 5.4: Accuracy metrics for all four models on real GRB light curves; Left: ROC curve;
Center: histogram of predicted values, showcasing the distribution of model outputs; Right:
confusion matrix with values expressed in percentages, providing an overview of the classification
accuracy for each predicted class.
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Figure 5.5: Prediction of model SIM+BKG500+AUG on windows with real GRBs.
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5.2 Denoising autoencoder

After conducting thorough experimentation and evaluation, I have made the final decision not to
employ autoencoders due to their disappointing performance. Despite our initial optimism and
significant investment in training the models, they consistently demonstrated limitations and fell
short of meeting our expectations.

Figure 5.6 shows examples of the poor performance of these models on 4 GRBs and background
in 4-second bins.
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Figure 5.6: Autoencoder application on Left: selected GRBs, Right: various background

5.3 Background prediction

Unfortunately, despite our initial hopes and extensive experimentation and evaluation, we ultimately
decided against utilizing trained models for background prediction due to their unsatisfactory
performance. Despite initial optimism and investment in training the models, they consistently
exhibited limitations and failed to meet our expectations. Consequently, we shifted our focus
toward detection itself.
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Figure 5.7: Plots showcasing the poor performance of LSTM-based background estimation.
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Discussion

The thesis presented three approaches for the detection of GRBs in light curves from GRBAlpha
data, using various types of deep learning models. These approaches included the transient
detection classifier, denoising autoencoders for pre-processing light curves, and an LSTM-based
model for predicting background emission.

In terms of data preprocessing, there were numerous challenges addressed, such as bin size
variability, converting geographical coordinates, and dealing with outliers. The logarithmic trans-
formation used for count rates proved to be an effective method for normalization, which not only
equalized the scales of different features but also helped in handling outliers.

6.1 Transient detection classifier

The transient detection classifier proved to be an effective tool for GRB detection. The model
exhibited near-perfect performance on simulated data, with a well-defined ROC curve, suggesting
that it can distinguish between background and GRB signals reliably. However, the model’s
performance on real data remains a critical point for further investigation.

Based on the figures presented in Section 5, a comprehensive comparison of the four models
used in our study reveals distinct variations in their performance. Model SIM consistently demon-
strated the poorest performance when considering the entire dataset, exhibiting limited accuracy
and sensitivity in transient detection due to its tendency to generate a significant number of false
positives in the background. However, it is important to note that model SIM showed relatively
good performance on known GRBs, except for two cases with low SNR and low mean count 5.3a.
On the other hand, models SIM+BKG250 and SIM+BKG500 exhibited lower numbers of false
positives compared to model SIM, suggesting a better ability to discriminate against background
events. However, this improvement came at the cost of lower numbers of true positives. Models
SIM+BKG250 and SIM+BKG500 displayed reduced sensitivity in detecting transient events, po-
tentially indicating a more conservative approach in classifying events as transients. Despite the
lower number of false positives, the trade-off with a decreased number of true positives raises con-
cerns about the overall performance of models SIM+BKG250 and SIM+BKG500 in capturing the
full range of transient events. In contrast, model SIM+BKG500+AUG consistently outperformed
the other models, showcasing the highest accuracy and sensitivity in detecting both known GRBs
and background events. This superior performance can be attributed to its incorporation of real
background and augmented peaks.

It is important to highlight that only model SIM+BKG500+AUG consistently outperformed
the thresholding method in transient detection. While the rest of the models exhibited their own
strengths and weaknesses, they did not consistently outperform the thresholding method in terms
of sensitivity and specificity. The thresholding method relies on setting a fixed threshold (in our
case, SNR 4) for event detection. These findings emphasize the superiority of the models over the
traditional thresholding method and underscore their potential as valuable tools for reliable and
accurate transient detection in real-world scenarios.
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Figure 6.1: Scatter plot depicting the performance evaluation of thresholding method on 3378
real background windows and selected 11 GRBs. True negatives are represented by light green
markers, false positives by tomato-colored markers, true positives by green markers, and false
negatives by red markers. The plot showcases the distribution of predicted outcomes based on
the model’s threshold (< 0.8), with the x-axis representing the background mean and the y-axis
representing the SNR. The logarithmic scale is used for the y-axis.

Figure 6.2: Performance of thresholding method on a real GRB and background light curves;
Left: ROC curve; Center: histogram of predicted values, showcasing the distribution of model
outputs; Right: confusion matrix with values expressed in percentages, providing an overview of
the classification accuracy for each predicted class.
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6.2 Denoising autoencoder

Denoising autoencoders were not utilized due to their insufficient performance in capturing the
underlying patterns of the GRBAlpha background, which is not stationary. This could be for many
reasons. If the noise patterns in the data were too complex or intricate due to some unpredictable
motions of the satellite (in some light curves, there are prominent sinusoid variations, which
suggests rotation of the satellite). Limitations in the chosen autoencoder architecture could have
also hindered its performance, suggesting that alternative architectures or more advanced techniques
may have been better suited for the task.

6.3 Background prediction

The main disadvantage of utilizing LSTM background prediction methods is the accumulation of
errors, which occurs bin by bin. This error accumulation stems from the sequential nature of the
LSTM models, where predictions are made based on previously predicted values. As the prediction
process continues, any inaccuracies or deviations from the actual background values in the initial
bins propagate and accumulate throughout the prediction sequence. This effect is also amplified
by the fact that the LSTM layer will naturally give the most weight to the last few data points.

Due to this error accumulation, the accuracy and reliability of the LSTM background predictions
may diminish over time. This is especially problematic when dealing with long-duration light
curves or complex temporal patterns.

Similar problems addressed as in the previous subsection on the autoencoders contributed to
the unsuccessful background estimation. Therefore I decided to drop this approach.





Conclusion

Traditionally, satellite-based systems rely on predefined thresholds or simplistic algorithms to
identify these cosmic events. However, the proposed model, with its machine learning methods,
has the capacity to enhance the sensitivity and accuracy of such detection systems. The model we
propose for GRB transient detection showcases not only impressive capabilities (100% accuracy
and O.01% false positives on real data) but also holds significant potential to be integrated as a
triggering system.

Once the model is properly trained, which can take hours, the detection is fast enough to
integrate as a real-time triggering system of satellites. This would allow more quick localization
of afterglows, which would improve our understanding of the underlying physics behind GRBs.
Specifically, future versions of the model can be tailored to suit the computing power limitations
typically found in satellites.

While our proposed model holds great promise, it is important to acknowledge its current
limitation with respect to background noise levels. The model, as it stands, is primarily suited for
scenarios with relatively low background noise (background count less than 500 2.5). In instances
where the SNR is high (Figure 5.5), the model may erroneously interpret it as a high background
region, potentially leading to false negatives or reduced performance. However, it is crucial to note
that this limitation could be overcome with ongoing research and development; future iterations of
the model may offer improved performance in high SNR environments.

To address the issue of high background regions, several potential avenues for improvement can
be explored. One approach could involve enhancing the model’s training data by incorporating a
broader range of GRB signatures and corresponding background noise variations or fine-tuning the
model’s architecture. The current approach employed in our study for transient detection involved
summing the counts across all energy bands. However, upon further reflection, it is apparent that
a more effective method may be to utilize multi-band light curves. This approach would allow for
a more nuanced assessment, taking into account the unique spectral features that distinguish GRB
emission from background noise.

Furthermore, our model can be optimized specifically for upcoming missions, for example,
GRBBeta, which will be an advanced version of GRBAlpha CubeSat, which is under consideration.
By tailoring the model to the characteristics of the satellite, with its sensitivity to energy bans,
and using temporal and spectral data, we can achieve even better performance in detecting GRB
transients, this detection method is not limited to GRB. It can be used for detecting other transients
if trained on a representative sample of the transient class. This method could also be used for
offline archival data transient search in already existing missions when adjusted to the satellite.
Moreover, the improved performance of the optimized model extends to its integration within
the CAMELOT constellation, which would benefit from a multi-satellite configuration, providing
enhanced coverage and a broader field of view. By deploying the optimized model across the
satellites in the constellation, the detection system can leverage collective data from multiple
vantage points, resulting in a lower chance for false positives and improved overall performance.

When discussing the generation data and usage of multi-band data for our research, one
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potential approach is to utilize existing sophisticated codes, such as CosmoGRB. These well-
established codes have been developed specifically for modeling the emission properties of GRBs
and can generate synthetic spectra that closely resemble real observations. By considering the
option of using codes like CosmoGRB, we open up the possibility of incorporating more advanced
and accurate simulations into our study.

0ff

https://github.com/grburgess/cosmogrb
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Figure 1: GRB peaks used for augmentation and testing.
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