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Abstract

The dynamics of winds around rotating hot stars, particularly the hottest and most massive
stars of spectral types O, B, and WR, are of great interest to astronomers. These stars have
powerful stellar winds that are believed to be driven by the scattering of the star’s con-
tinuum radiation field. However, there are still many questions surrounding these winds,
especially when it comes to their complex time variability and the influence of factors like
rapid rotation, pulsation, and surface magnetic fields.

In order to gain a better understanding of these phenomena, this dissertation aims to
model the dynamics of winds around rotating hot stars. By doing so, it seeks to synthesize
theoretical observational diagnostics that can be compared to actual data. This approach
will help to shed light on the behavior and characteristics of these winds, providing insights
into the underlying physical processes at play in these massive, evolving stars.

The rotation of a star has several effects on its behavior. It introduces centrifugal force,
which reduce the effective gravity of the star and cause it to become oblate, or flattened
at the poles. This oblateness leads to changes in the radiative flux distribution, with the
poles being heated more intensely than the equator. This phenomenon is known as gravity
darkening. In addition to these effects, nonradial radiation forces are acting on matter
around a rotating star. These forces point away from the equator and in the opposite
direction of rotation, causing a net deflection of wind streamlines towards the poles. This
is contrary to the "wind-compressed disk" model proposed by Bjorkman and Cassinelli,
for Be stars, and Wolf Rayet stars. When the rotation rate of stars exceeds 80 % of the
critical velocity, we have observed the formation of an equatorial disk in stars with low
metallicity.

We have also used the analytical formula of Brown and McLean to calculate the linear
polarization caused by electron scattering in Wolf-Rayet stars. We found that the two stud-
ied Wolf-Rayet stars meet the requirements to be progenitors of long gamma-ray bursts.
Additionally, we examined the accuracy of the analytical formula by using Monte Carlo
simulation to model the polarization in both optically thick and optically thin environ-
ments. The results were similar for low rotation rates, but there was a discrepancy at
higher rotation rates. We also discovered that multiple scattering, modeled through Monte
Carlo simulation, led to higher polarization at lower inclinations, specifically around 50 to
70 degrees. In the optically thin environment, both the analytical formula and the Monte
Carlo simulation showed polarization proportional to the square of the sine of the inclina-
tion angle, as previously determined by Brown and McLean.





Abstrakt

Dynamika větrů rotujících horkých hvězd, zejména nejteplejších a nejhmotnějších hvězd
spektrálních typů O, B a WR, je pro astronomii velmi zajímavá. Tyto hvězdy mají silné
hvězdné větry, které jsou považovány za hnané rozptylem kontinuálního záření hvězdy.
Nicméně stále existuje mnoho nezodpovězených otázek týkajících se těchto větru, ze-
jména pokud jde o jejich složitou časovou proměnnost a vliv faktoru jako jsou rychlá
rotace, pulzace a povrchová magnetická pole.

Abychom lépe porozuměli těmto jevum, klade si tato disertační práce za cíl namodelo-
vat dynamiku větrů kolem rotujících horkých hvězd. Tímto zpusobem se snaží získat teo-
retické předpovědi pozorovatelných parametru, které mohou být porovnány se skutečnými
daty. Tento přístup pomuže osvětlit chování a charakteristiky těchto větrů a poskytne nám
informace o základních fyzikálních procesech, které se odehrávají v masivních vyvíje-
jících se hvězdách.

Rotace ovlivňuje chování hvězdy několika zpusoby. Vede ke vzniku odstředivé síly,
která snižuje efektivní gravitaci hvězdy a zpusobuje její zploštění u pólu. Toto zploštění
vede k změnám v rozložení zářivého toku, přičemž póly jsou intenzivněji zahřívány než
rovník. Tento fenomén je znám jako gravitační ztemnění. Kromě těchto účinku pusobí na
látku v okolí rotující hvězdy také neradiální složky zářivé síly. Tyto složky síly směřují
od rovníku a ve směru opačném k rotaci, což zpusobuje celkové odchýlení proudnic větrů
směrem k pólum. To je v rozporu s modelem "disku stlačeného větrem", který navrhli
Bjorkman a Cassinelli pro hvězdy typů Be a Wolfova-Rayetova typů. Pokud rychlost
rotace hvězd překročí 80 % kritické rychlosti, bylo zaznamenáno vytvoření rovníkového
disku u hvězd s nízkou metalicitou.

Také jsme použili analytický vzorec Browna a McLeana pro výpočet lineární polar-
izace zpusobené rozptylem elektronu u hvězd Wolfova-Rayetova typů. Zjistili jsme, že
obě zkoumané hvězdy Wolfova-Rayetova typů splňují požadavky na předchudce dlouhotr-
vajících gama-záblesku. Navíc jsme ověřovali přesnost analytického vzorce pomocí
simulace Monte Carlo, která modelovala polarizaci v opticky tlustém i opticky tenkém
prostředí. Výsledky obou metod byly podobné pro nízké rychlosti rotace, ale při vyšších
rychlostech rotace se objevily odlišnosti. Zjistili jsme také, že vícenásobný rozptyl mod-
elovaný prostřednictvím simulace Monte Carlo vede k vyšší polarizaci při nižších inkli-
nacích, konkrétně kolem 50 až 70 stupňu. V opticky tenkém prostředí jak analytický
vzorec, tak simulace Monte Carlo předpovídaly polarizaci, která byla úměrná kvadrátu
sinu inklinace, jak předpověděli Brown a McLean.
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Chapter 1

Introduction

Massive stars are known to have stellar winds in their atmosphere; they play a dominant
role in the mass and energy balance of the interstellar medium. In addition to mass loss,
several other physical processes could also influence their evolution. The point of view
of wind outflow has been studied extensively in past decades by many authors from ro-
tation processes, pulsation, and magnetic field effects, for a better understanding of the
importance of stellar winds in astrophysics.

In this context, we study the dynamic of stellar winds, the effect of rotation, and mag-
netic fields. By multidimensional hydrodynamic modeling of winds, we test and compare
various theories of time-dependent and spherical wind outflow. In this chapter, we show
the state-of-the-art and literature overview of stellar wind mechanisms, and we discuss
model theory and observation of line-driven winds.

1.1 Hot star winds
To explain the radiative driven winds mechanism in Of stars, Castor, Abbott, and Klein
(1975, hereinafter CAK) have introduced the line driven wind model, where the radia-
tive force was expressed in terms of so-called CAK parameters. They expressed the line
force as a function of local velocity gradient, and the model theory of Parker’s solar wind
(Parker, 1960) is no longer applicable for hot stars. Following this work, Friend and Ab-
bott (1986, hereinafter FA) introduced the correction factor for the finite disk structure of
the star as well as the centrifugal term due to stellar rotation. This modification improved
the line-driven model theory to better fit with the observations, they observed an increase
in the mass loss rate and a decrease in the ratio of terminal velocity to the escape speed
in particular for B supergiants. In the same context Pauldrach, Puls, and Kudritzki (1986)
checked the rotation effect on the mass loss using self-consistent model atmospheres of
radiation-driven wind. In addition to rotational effect and finite disk correction factor, they
employed the radiative transfer in the comoving frame (CMF) for the lines at different
wavelengths, and they confirmed the validity of Sobolev approximation for the dynamic
of stellar winds.

Massive stars of O- and early B-type exhibit effective temperatures that span a range
from approximately 20,000 K to 50,000 K. This wide temperature range facilitates the oc-
currence of robust radiation-driven outflows known as line-driven winds (Crowther, 2007).

– 1 –
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The precise rates at which these stars lose mass are of utmost importance for evolution
models, as the majority of the mass loss during their relatively short lifetimes can be at-
tributed to radiation pressure (Vink, de Koter, and Lamers, 2001). However, it is now
universally acknowledged that the presence of density irregularities or "clumping" in O-
star winds is nearly ubiquitous. This raises doubts regarding earlier estimates of mass loss
that were derived from homogeneous models (Puls et al., 2006). Additionally, the exis-
tence of magnetic fields in a significant fraction of O-stars introduces further complexity,
as the geometry of these fields can influence and modify the flow of the wind (Grunhut
et al., 2017). These powerful wind outflows play a crucial role in the feedback mechanism
of stars and contribute to the enrichment of the interstellar medium.

1.2 Effect of rotation
Stellar rotation does not produce only the centrifugal term in the frame of the star, but also
could produce an equatorial outflowing disk for massive stars, in their work; Bjorkman
and Cassinelli (1993) (BC) using FA model showed that the formation of an equatorial
disk due to the rotation rate above the threshold depending on the ratio of the terminal
velocity to the escape speed. They found that the rotation threshold changes depending on
the stellar types, e.g for O stars the threshold can reach up to 90 % of the critical speed
whereas for B2 stars the disk can form at 50 % to 60 % of the critical speed. The theoretical
model explained the observation of the disk around massive rotating stars (Bjorkman and
Cassinelli, 1993).

Using time-dependent 2.5-D hydrodynamic simulation, Owocki, Cranmer, and
Blondin (1994) applied BC model to Be stars to simulate numerically the effect of ro-
tation into the wind; as a result, the disk formation was confirmed with a slight difference
in the opening angle. The numerical results showed other effects as well, which were not
possible to incorporate analytically, including rotational distorted oblate stellar surface and
the outward driving force.

Applying the wind compression model to different classes of massive stars, Ignace,
Cassinelli, and Bjorkman (1996) found that the flow and density structure is mainly im-
pacted by the ratio of stellar rotation to the critical speed and the threshold required for the
disk formation. Two types of disk compression were discussed: i) wind-compressed disk
(WCD) and ii) wind-compressed zone (WCZ) the latter can form even at lower rotation
rates on the order of 10 %.

The radiative force using CAK formulation was considered in spherical symmetry ra-
dial dependent, adding the rotation which generates the centrifugal force, the latter acted
as support for radiation to overcome the gravity. The flow becomes supersonic and with
rotation rate threshold leads to a WCD. The model of Cranmer and Owocki (1995) recon-
sidered the model of the formulation of CAK line force in 3D where radiative force does
not depend only on radius but has the angular components. Their work included also the
effect of gravity darkening; the obtained results were in contradiction with the WCD model
by BC. Instead of the flow being predicted by BC to be equatorward, it was observed to be
poleward. Additionally, the density in the equatorial region was found to be reduced. This
model has been confirmed by the numerical simulation by Owocki, Cranmer, and Gayley
(1996) where the WCD is inhibited by non-radial forces.
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1.3 Instability of line-driven winds
The line-driven wind instability (LDI) is an observed phenomenon in massive stars where
their stellar winds become unstable as a result of the interaction between radiation and
spectral lines in the stellar atmosphere. The instability was initially proposed by Lucy
and Solomon (1970) and has since been extensively researched in the field of stellar astro-
physics. The LDI occurs when the radiation pressure from the strong lines in the stellar
spectrum interact with the stellar wind, leading to the emergence of density fluctuations
and clumps in the wind. These density enhancements can have significant impacts on the
dynamics of the stellar wind, including its acceleration and shaping, as well as the for-
mation of structures like disks and shells around the star (Owocki and Puls, 1999). In
order to ascertain the impact of LDI on the light variability exhibited by O stars, Krtička
and Feldmeier (2018) employed the findings of hydrodynamic simulations to forecast the
variations in light emitted by hot stars. The LDI plays a critical role in the processes of
mass loss in massive stars and holds important implications for stellar evolution and the
enrichment of the interstellar medium with stellar material. Here I would also say that LDI
is a likely origin of shocks that lead to X-ray emission (Feldmeier et al., 1997) and that the
clumps influence the observational properties of hot stars (Sundqvist, Puls, and Feldmeier,
2010; Šurlan et al., 2013).

1.4 Continuum polarization
Rotation does not only affect the change of the star’s shape but it can modulate the light
scattering of free electrons which will result the polarization of the radiation. Brown and
McLean (1977) derived a general formula to calculate the polarization due to Thomson
scattering, where the polarization depends mainly on the inclination and the shape of the
star, the opacity of the medium, and the electron number density distribution. Following
this work, Cassinelli, Nordsieck, and Murison (1987) introduced the depolarization factor
for the finite size of stars; this factor has a slight effect on the value of the polarization as
has been shown by Brown, Ignace, and Cassinelli (2000). Calculating the net polarization
of Be and Wolf-Rayet stars, Fox (1993) found that the polarization is comparable to the
observed values, however, showed some differences for Be stars. Comparing the single
scattering model (Brown’s model) with multiple scattering models using the Monte Carlo
method, Townsend (2012) found that the two models are not consistent and concluded that
single scattering can not be applied to clumpy stellar winds.

To interpret polarimetric data, McLean (1979), applied optically thin polarization for-
mula on early emission-line stars, the observed polarization was comparable to the analyt-
ical formula. Line absorption results in a depolarization effect, where the attenuation fac-
tor has been included to explain the latter effect. In similar context, Friend and Cassinelli
(1986) included the attenuation factor to compute the polarization of an optically thick
axisymmetric winds in massive binaries.

Classical Wolf-Rayet (WR) stars are massive stars that have lost their hydrogen en-
velope during their evolution (Conti, 1975; Chiosi, Nasi, and Bertelli, 1979; Sander,
Hamann, and Todt, 2012). These WR stars, which are fast rotating, may collapse into
black holes and potentially generate long-duration gamma-ray bursts (Woosley, 1993).
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Vink and de Koter (2005) proposed that these fast-rotating WR stars could be the pro-
genitors of long-duration gamma-ray bursts. However, testing this model directly through
observation is challenging due to the difficulties in accurately measuring the rotational
velocities of Wolf-Rayet stars. One potential indirect method of testing the nature of
gamma-ray burst progenitors is by estimating their rotational velocities through polarized
light measurements.

Several methods exist for discerning interstellar polarization from intrinsic polarization
in the observational context described by Schulte-Ladbeck (1994). Stevance et al. (2018)
utilized Serkowski’slaw to analyze the interstellar polarization of WR93b and WR102.
Their findings suggest that these two stars do not possess inherent polarization, thus no
line effect could be observed. This lack of polarization could be due to the dilution of
continuum polarization by unpolarized line flux. They established an upper limit on the
rotational velocity, which is lower than the value determined by Sander et al. (2012) based
on the shape of emission line profiles. These two stars, with their round emission line
profiles, are potentially indicative of fast rotation. High rotational velocities are necessary
for the formation of collapsars, which are presumed to be sources of long-duration gamma-
ray bursts (Woosley, Eastman, and Schmidt, 1999).

1.5 Plan and goals of the thesis
In this work, we construct hydrodynamic models of hot-star winds and compare the re-
sults with previous studies. Furthermore, we analyze the linear polarization from single
scattering and multiple scattering models. We start in Chapter 2 by presenting a review
of the current state of radiatively driven stellar winds and focus on spherically symmetric
solutions to the equations governing radiation hydrodynamics.

Rapid star rotation plays a critical role in the creation of nonspherical and temporally
variable circumstellar structures. In Chapter 3 we discuss the impact of rapid stellar ro-
tation on a spinning star’s mass flow using the Roche model, along with the presence of
von Zeipel gravity darkening. This results in a latitudinal variation where polar mass loss
increases, while there is a projected gain near the equator due to decreasing centrifugal
gravity. Additionally, rapid rotation can generate an axisymmetric stellar wind, potentially
leading to nonzero polarization caused by electron scattering in the wind. The radiation
transfer theory will be shown in Chapter 4, where we address the mathematical description
for the radiative transfer equation and the Stokes vector of polarization.

In Chapter 5, we explore the numerical methods employed in astrophysics to solve
the hydrodynamic equations and the equation of radiative transfer. Specifically, we focus
on the finite volume method and the Monte Carlo method. The hydrodynamic simulation
results will be presented in Chapter 6. Additionally, in Chapter 7, we delve into the topic
of linear polarization from a point source, utilizing both single-scattering and multiple-
scattering models. Chapter 8, at last, includes a concise summary and examination of the
research presented in this dissertation. Moreover, it also provides an outline for future
investigation that would tackle crucial inquiries regarding the radiation hydrodynamics of
rotating hot-star winds.



Chapter 2

Theory of Stellar Winds

2.1 Gas dynamic
Stellar winds in massive stars are driven by radiative forces from the star’s photosphere
toward the interstellar medium. The motion of the gas outflow is described by solving
the dynamical equations of mass, momentum, and energy conservation. These equations
are given, mathematically, in terms of partial differential equations with a source term
describing any external forces acting on the motion of the gas.

Neglecting the friction in the gas flow, the dynamics of the fluid are described by Euler
equations (Cranmer, 1996; Castor, 2007), as follows:

∂ρ

∂t
+∇(ρv) = 0, (2.1)

∂(ρv)
∂t
+∇(ρvvT +P) = 0, (2.2)

∂(ρe)
∂t
+∇[(ρe+P)v] = 0, (2.3)

where ρ is the fluid density, v is the velocity vector, P is the pressure of the fluid, and
e = UT + v2/2 is the total energy per unit mass, and UT is the thermal energy. As we can
see, the equations are a set of conservation laws. In the above form, they are not complete.
We need further relation for the pressure, to do so, we call the ideal gas law, in which the
pressure is given by

P = (γ−1)ρU, (2.4)

where γ is the specific heat constant. In the above equations, we can include source terms
or any external forces to the right-hand side of the equations. However, we are more
interested in fluid with an external forces such as the gravity force or any radiative forces
which will allow the gas to leave the star to the interstellar medium, as in our case, the
stellar winds of massive stars.

2.2 1D Spherically symmetric wind
The hydrodynamic model of stellar winds is expressed in spherical geometry (r,θ,ϕ), and
assuming axial symmetry,y can be written as (Bjorkman and Cassinelli, 1993; Owocki,

– 5 –
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Cranmer, and Blondin, 1994; Cranmer, 1996):

∂ρ

∂t
+

1
r2
∂(r2ρvr)
∂r

+
1

r sinθ
∂(ρvθ sinθ)

∂θ
= 0,

∂vr

∂t
+ vr

∂vr

∂r
+

vθ
r
∂vr

∂θ
−

v2
θ + v2

ϕ

r
= −

1
ρ

∂P
∂r
+gext

r ,

∂vθ
∂t
+ vr

∂vθ
∂r
+

vθ
r
∂vθ
∂θ
− cotθ

v2
θ

r
+

vrvθ
r
= −

1
rρ
∂P
∂θ
+gext

θ ,

∂vϕ
∂t
+ vr

∂vϕ
∂r
+

vθ
r
∂vϕ
∂θ
+ cotθ

v2
θ

r
+

vrvϕ
r
= gext

ϕ ,

P = a2ρ, (2.5)

where vr, vθ, vϕ are the velocity components in every direction, and a is the isothermal
sound speed. The external force gext is the sum of the gravitation and the CAK line
driving force.

Consider a one-dimensional steady state, and spherically symmetric wind, of a star
with mass M⋆, radius R⋆, and mass loss rate Ṁ. The mass conservation equation reduces
to (Cranmer, 1996; Lamers and Cassinelli, 1999)

1
r2

d
dr

(ρvrr2) = 0, (2.6)

integrating this gives the mass loss per unit of time;

Ṁ = 4πρvrr2 = constant. (2.7)

The momentum equation can be given by

vr
dvr

dr
= −

1
ρ

∂P
dr
+gr. (2.8)

Using the equation of state of an ideal gas, the pressure can be expressed as P = ρa2. We
can now replace the gradient in the continuity equation (2.6) to get,

1
ρ

dP
dr
= a2 1

ρ

dρ
dr
= −

a2

v
dv
dr
−

2a2

r
. (2.9)

Substituting into (2.8) yields:

(v2−a2)
1
v

dv
dr
=

2a2

r
−

da2

dr
+gr, (2.10)

where gr is the external radial force, which can be written in terms of gravitational and
radiation forces, where the latter can be separated into that due to the continuum and
spectral lines,

gr = −
GM⋆

r2 +gC
rad +gL

rad. (2.11)
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Here we will consider only the gravity force and we will consider the radiative force in the
following section. Plugging the expression of gr into (2.10) we get,

(v2−a2)
1
v

dv
dr
=

2a2

r
−

GM⋆

r2 . (2.12)

When the left-hand side vanishes, we obtain the critical radius rc which gives the critical
solution, where

rc =
GM⋆

2a2 . (2.13)

To satisfy the isothermal wind assumption, the critical point (rc) should be larger than the
initial radius (r0) , otherwise there will be no isothermal regime. The velocity gradient
at the critical distance will vanish because the numerator is zero, unless v(rc) = a. Sim-
ilarly, the gradient of the velocity will be ±∞ at the distance where v = a, because the
denominator is zero, unless r = rc.

The topology of the solution of Eq 2.12 is illustrated in Fig 2.1 (Lamers and Cassinelli,
1999). From the figure, we can observe multiple solutions, each with its specific set of
boundary conditions. The majority of these solutions are without physical significance,
despite being mathematically acceptable. For example, solutions 4 and 6 can be excluded
because there is no observational evidence of solar corona which starts supersonically at
the base. Solution 3 is called stellar "breeze", where the wind speed has zero asymptotes
leading to finite pressure at larger radii, which do not match with the pressure of the
interstellar medium. Solution 2 is called Boundi accretion because it starts supersonic and
goes to subsonic, with negative velocity. The most acceptable solution is type 1 where the
wind starts subsonic passing through the critical point and expands to supersonic.
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Figure 2.1: Solution of isothermal stellar wind momentum equation (Lamers and Cassinelli, 1999).

2.3 The Sobolev approximation
Most massive stars have high temperatures and high luminosity, leading to strong stellar
winds, which impact the interstellar medium and the evolution of these stars. The solar
wind is driven by gas pressure gradient, however, the hot star winds are driven by radiative
pressure gradient.

The force per unit mass due to the radiation (Cranmer and Owocki, 1995; Cranmer,
1996; ud-Doula, 2002) is given by:

grad =
1
c

∮ ∫ ∞

ν=0
κνIν(r,n)ndΩdν, (2.14)

where κν is the total mass extinction coefficient which includes absorption and scattering.
Iν is the monochromatic radiative intensity along the direction n.

Neglecting free-free and bound-free absorption, the total mass extinction can be ex-
pressed in two terms as:

κν = κe+ κL, (2.15)

where κe is the mass absorption coefficient due to electron scattering, and κL the absorption
coefficient due to bound electrons of line. Hence, the radiation force can be expressed in
terms of two forces, one due to electrons scattering ge and the other due to line gL:

grad = ge+ gL. (2.16)
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2.3.1 Force due to electron scattering
For an optically thin wind (such as in O and B stars), the scattering caused by free electrons
can be taken into account, leading to the expression of radiative acceleration (Cranmer and
Owocki, 1995; Owocki, 2013)

ge =
κe

c

∮
Iν(r,n)ndΩ. (2.17)

Assuming a point source star in spherical geometry, the integrand of Eq 2.17 gives the
total radiation flux and the force, in optical thin wind can be written as

ge =
κe

c
L⋆

4πr2 , (2.18)

where L⋆ is the luminosity of the star. As can be seen that the force is inversely propor-
tional to r2, therefore we can compare it to the gravity force, by defining the Eddington
parameter as;

ΓE ≡
ge

g
=

κeL⋆
4πGM⋆c

. (2.19)

The ratio, commonly referred to as the Eddington parameter, possesses a distinct value
for each star. In the case of the Sun, this value is exceedingly small, about 2.10−5. How-
ever, for hot, massive stars, it has the potential to approach unity. As Eddington observed,
electron scattering leads to a fundamental radiative acceleration that effectively counters
the gravitational forces exerted by the star. When the limit ΓE→ 1 is reached, this is known
as the Eddington limit, indicating that the star would no longer be gravitationally bound
(Owocki, 2013).

2.3.2 Line force of single line
The line force can be expressed as (Cranmer and Owocki, 1995; Cranmer, 1996; ud-Doula,
2002):

gL =
κL

c

� ∫ ∞

ν=0
ϕ(ν− ν′)Iν(r,n)ndΩdν, (2.20)

where ϕ(ν) is the normalized line profile function, ν′ is the frequency of the line in the
comoving frame of the gas related to the emitted frequency ν0 by

ν′ = ν0

(
1+

n.v(r)
c

)
, (2.21)

in non-relativistic domain and v(r) is the velocity of the flow. A change of variables can
be introduced and the frequency can be defined in terms of Doppler widths as

x =
ν− ν0

∆νD
. (2.22)

The line force can be rewritten as:

gL =
κL∆νD

c

� ∫ ∞

−∞

ϕ

(
x−

n.v(r)
vth

)
Iν(r,n)ndΩdx, (2.23)
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where the Doppler width is ∆νD = ν0vth/c, with ion thermal speed vth. The lower limit of
the integral of x is extended from −c/vth to −∞ with a negligible error.

For optically thin wind to continuum radiation, the continuum integral is simply the
bolometric flux F⋆ (Eq 2.17), however for the lines, the integral is more complicated. The
general, time independent radiative transfer equation is given by (Cranmer, 1996)

dIν
dτν
= −Iν+S ν; (2.24)

the formal solution is

Iν(τν) = I0
νe−τν +

∫ τν

0
S ν(tν)e−(τν−tν)dtν, (2.25)

where S ν(τν) is the source function of the medium, and the optical depth τν is defined
along general path length s, as

τν =

∫ s

0
κLρ(s′)ϕ

(
x−

n.v(r)
vth

)
ds′. (2.26)

For isotropic emission, we can take only the term I⋆ν e−τ , where the superscript ⋆
stands for the radiation from the star, from the formal solution of the intensity, the radiative
force can be written as

grad =
σe𭟋⋆

c
+

∑
lines

κL∆νD

c

∮ ∫ +∞

−∞

ϕ

(
x−

n.v(r)
vth

)
I⋆ν e−τνndΩdx; (2.27)

in a wind characterized by a steadily increasing velocity, it is possible to simplify the
integral for optical depth (Eq 2.26) by utilizing the Sobolev approximation (Cranmer,
1996). This approximation assumes that the variables κL and ρ do not experience signifi-
cant changes over a distance known as the " Sobolev length" LS . When the fluid velocity
is sufficiently high, the dominant factor in the integrand is the Doppler shift of the line
frequency, line profile function ϕ becomes sharply peaked as a function of r, where the
frequency x resonates with the local component of the fluid velocity. We can take out the
variable κL and ρ, so the optical depth can be written as

τν(r) = κLρ(r)
∫ s

0
ϕ

(
x−

n.v(r′)
vth

)
ds′. (2.28)

The path length extends from the surface of the star located at the position vector r0 to the
"observer" situated in the wind at position vector r, where the value of s′ varies from 0 to
s. The current position r′ can be expressed as the sum of r0 and s′ times the unit vector n.
Due to the assumption of a monotonic flow, it is possible to transform the variables into
frequency space so that

x′ = x−
n.v(r′)

vth
(2.29)

dx′ = −
1

vth
d
[
n.v(r′)

]
= −

1
vth

n.∇
[
n.v(r′)

]
ds′, (2.30)
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and this gives

τν =
κLvthρ(r)

(n.∇)(n.v(r))

∫ ∞

x− n.v(r)
vth

ϕ(x′)dx′. (2.31)

The constant part can be defined as Sobolev optical depth

τS ≡
κLvthρ(r)

(n.∇)(n.v(r))
= κLρ(r)LS , (2.32)

and the integral part

Φ(x,r) ≡
∫ ∞

x− n.v(r)
vth

ϕ(x′)dx′. (2.33)

We can now write the force for the single line as

gL =
κL∆νD

c

∮ ∫ +∞

−∞

ϕ
(
x′
)
I⋆ν e−τSΦ(x′,r)ndΩdx′ (2.34)

=
κL∆νD

c

∮ ∫ +∞

−∞

I⋆ν e−τSΦ(x′,r)ndΩdΦ(x′,r), (2.35)

integrating this equation gives

gL =
κL∆νD

c

(∮
I⋆ν ndΩ

[
1− e−τS

τS

])
. (2.36)

For a point source star, the term in the bracket is the total radiation flux at distance r and
frequency ν, and the radial component of the force becomes

gL =
κLν0Lνvth

4πr2c2

[
1− e−τS

τS

]
, (2.37)

and the Sobolev optical depth

τS ≡
κLvthρ(r)
∂vr/∂r

. (2.38)

In massive stars, the flux at the position of lines can be roughly approximated by ν0Lν ≈ L⋆,
so

gL =
κLL⋆vth

4πr2c2

[
1− e−τS

τS

]
. (2.39)

For optically thin medium τS ≪ 1, so the term 1− e−τS ≈ 1, and for optical thick medium
τS ≫ 1 the exponential term e−τS becomes negligible, and

gL =
1
ρc2

L⋆
4πr2

∂vr

∂r
. (2.40)

In this section, we showed the formulation of radiation force due to a single line in the
stellar wind. However, the total radiative force is due to a large number of lines we show
next the total force for an ensemble of lines.
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2.3.3 Force for an ensemble of lines
The production of radiative acceleration in a stellar wind is caused by a diverse set of lines
with varying optical depth. The Collective effect of these individual lines contributes to
the total line radiative acceleration, which is calculated by summing the contributions of
each line (ud-Doula, 2002)

glines =
∑
lines

κLvth

c2
L⋆

4πr2

[
1− e−τS

τS

]
. (2.41)

In reality, the number of lines is huge and can be described by the statistical distribution.
CAK introduced the dimensionless optical depth

t ≡
σeρvth

dv/dr
, (2.42)

and parametrized the line acceleration as:

gL
rad ∝ kt−α, (2.43)

where σe is the value for the electron scattering cross-section, k defines the line force
strength, α determines the importance of optically thin and thick lines in the distribution;
for thin lines α = 0, and for thick lines α = 1. Following the CAK work, further modifica-
tion by Owocki, Castor, and Rybicki (1988)(OCR) to approximate the number distribution
of lines as an exponentially-truncated power law;

dN(κ)
dκ

=
1
κ0

(
κL

κ0

)α−2

e−κ/κmax , (2.44)

where κ0 is the normalization factor that is associated with CAK parameter k, and is given
by κ0 = Γ(α)(vth/c)(κ0/κe)1−α/(1−α), κmax is the cutoff which limits the maximum line
strength (OCR), and Γ(α) is the Gamma function. With this formulation the sum over
lines in the force is replaced by an integral (Puls, Springmann, and Lennon, 2000)∑

lines

gL
rad ≈

∫ ∞

0
gL

rad
dN
dκL

dκL, (2.45)

and the total force becomes

glines =

∫ ∞

0

κLvth

c2
L⋆

4πr2

[
1− e−τS

τS

]
1
κ0

(
κL

κ0

)α−2

e−κ/κmaxdκL. (2.46)

This can be easily integrated by letting κmax→∞.
In his paper, Gayley (1995) introduced a new formulation of the CAK line force by

introducing Q̄, a quantity that is closely linked to the classical oscillator strength. This
formulation effectively removes the dependence on the thermal velocity (vth) from the
equation. Gayley assumes that the following identity holds

κ0vth

c
≡ Q̄κeΓ(α)−

1
1−α . (2.47)

The line force can be written as

glines =
1

1−α
Q̄κeL⋆
4πr2c

(
∂v/∂r
ρcQ̄κe

)α
. (2.48)
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2.3.4 Solution in 1-D
In massive stars’ wind, the line force is dominant, and the gas pressure the gradient is
negligible; the momentum equation in 1-D steady state, in spherical geometry can be
written as (Cranmer, 1996; Lamers and Cassinelli, 1999; ud-Doula, 2002; Owocki, 2013):

v
dv
dr
= −

GM⋆(1−Γe)
r2 +glines. (2.49)

Gravity moderates the feedback between line driving and flow acceleration. We de-
fine gravitationally scaled inertial acceleration as follows (Cranmer, 1996; Lamers and
Cassinelli, 1999; ud-Doula, 2002; Owocki, 2013):

W ≡
r2vdv/dr

GM⋆(1−Γe)
, (2.50)

thus
CWα = 1+W, (2.51)

where the constant C ∝ 1/Ṁα determines the mass loss rate. Figure 2.2 shows the graphical
solution of the Eq 2.51 for different values of C. In this equation, the left-hand side
represents the line force, while the right-hand side tells us how much of that force is
attributed to inertia (W) and gravity. If the mass flow rate, represented by Ṁ, is high or
if C is small, there are no solutions. Conversely, if the mass flow rate is small or C is
high, there are two solutions. The critical solution, located between these two extremes,
corresponds to the maximum CAK mass loss rate solution. To achieve this solution, the
CWα line and the 1+W line must intersect tangentially, this implies

CcαWα−1 = 1, (2.52)

solving for W, we obtain,
W =

α

1−α
= constant. (2.53)

The critical value Cc is given by

Cc =
(1−α)α−1

αα
, (2.54)

replacing the constant C and after some manipulations, we can find

ṀCAK =
L⋆
c2

α

1−α

[
Q̄Γe

1−Γe

](1−α)/α

. (2.55)

Integrating the critical acceleration ωc from the surface radius R, we obtain the general
beta velocity law

v(r) = v∞
(
1−

R⋆
r

)β
(2.56)

For β = 1/2, we find the wind terminal speed

v∞ = vesc

√
α(1−Γe)

1−α
, (2.57)
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where vesc =
√

2GM(1−Γe)/R⋆ is the escape velocity from the stellar surface.

Figure 2.2: Graphical solution of 1D CAK wind model (ud-Doula, 2002)

These results apply to an ideal assumption that the radiation is illuminated from a
point source. The derived expressions of the mass loss rate and the terminal velocity were
obtained by neglecting the gas pressure term in the momentum equation. Including the
gas pressure and solving the full momentum equation can lead to similar expressions of
the mass loss rate and the terminal velocity, a detailed analysis can be found in the book
of Lamers and Cassinelli (1999).

Despite the aforementioned complexities of the line force, the Sobolev approach ap-
pears suitable for modeling the dynamic of wind of massive stars in optical thin stellar
wind. However, the model of CAK line force breaks down in the optically thick wind,
and as discussed in the recent work by Sundqvist et al. (2019), the occurrence of overlap
of close to the star the lines lead to the escape of radiation, thus reducing acceleration
and creating difficulties in explaining high mass-loss rates of WR stars. To solve these
difficulties, Moens et al. (2022) developed multidimensional radiation modules based on
flux-limited diffusion approximation. They found a smooth transition from the dense out-
flows of traditional WR stars to the less dense winds of smaller, hotter subdwarf stars
(Vink et al., 2011). This shift occurs at a luminosity level that is roughly 40 % of the
Eddington luminosity.



Chapter 3

Rapid stellar rotation

Modeling stars requires a multidimensional approach, but many stars, especially interme-
diate and high-mass stars, are known to be fast rotators (Owocki, Cranmer, and Blondin,
1994; Huang, Gies, and McSwain, 2010), which disrupts their spherical symmetry. The
distorted stellar surface causes the variation of surface brightness and the variation of the
effective temperature, which has been observed interferometrically for a number of stars
(van Belle et al., 2001; Che et al., 2011).

In this chapter, we briefly show the standard Roche model commonly used to model
the rapid rotators. The assumptions of the Roche model shown by Cranmer and Owocki
(1995) as a point mass with uniform rotation concentrated in the center of the star. To
describe the temperature variation along stellar surface we combine Roche model with
von Zeipel’s theorem.

3.1 Shape of rotating stars
Rotation plays a crucial role in the evolution of stars, particularly hot massive ones. The
fast rotation of these stars can lead to the shedding of their outer envelope, causing changes
in their shape. The shape of a star is determined by its stellar radius, which varies with
different angles of co-latitude (θ) within the star. This rotational phenomenon is especially
significant for massive stars and affects their evolution in a notable way (Cranmer, 1996;
Maeder, 2009).

The superposition of gravitational potential and the centrifugal term of point source
with mass M⋆ is given by

Φ(r, θ) = −
GM⋆

r
−

1
2
Ω2r2 sin2 θ, (3.1)

where Ω is the angular velocity of the body. This is called Roche model of the solid body,
the inner layers are considered spherical and not distorted by rotation. At the pole, the
centrifugal term vanishes (r = Rp,θ = 0); the potential at the pole is compared to the one at
any θ, for r = R(θ)

GM⋆

Rp
=

GM⋆

R
+

1
2
Ω2R2 sin2 θ. (3.2)

– 15 –
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The shape of the Roche model is shown in Fig 3.1 for different rotational velocities.

Figure 3.1: Shapes of fast rotating stars for different rotational velocities

The resulting effective gravity from the gradient of gravitational and centrifugal poten-
tials is given by (Maeder, 2009),

g⃗eff =

[
−

GM⋆

R2 +Ω
2Rsin2 θ

]
e⃗r +

[
Ω2Rsinθcosθ

]
e⃗θ, (3.3)

and the magnitude of the effective gravity is geff = |⃗geff|,

geff =

√[
−

GM⋆

R2 +Ω
2Rsin2 θ

]2
+Ω4R2 sin2 θcos2 θ. (3.4)

Figure 3.2 shows the variation of the effective gravity, scaled by polar gravity, as a function
of co-latitude θ for different rotation velocities.
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Figure 3.2: Surface gravity of rotating stars as a function of colatitude.

3.2 Critical velocity
To reach the critical velocity, the centrifugal force should equate the gravity (Maeder,
2009). The maximum angular velocity, where geff = 0, at the equator (θ = π/2), is given
by

Ω2
crit =

GM⋆

R3
eq,crit

, (3.5)

where Req,crit is the equatorial radius at the critical rotation, replacing the value of Ωcrit in
Eq 3.2 we can get the ratio of the equatorial to polar radius at the critical velocity

Req,crit

Rp,crit
=

3
2
, (3.6)

Introducing the non-dimensional rotation parameter ω as the ratio between the angular
velocity to the angular velocity at the critical rotation,

ω =
Ω

Ωcrit
=

Ω2R3
eq,crit

GM⋆


1
2

, (3.7)
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and for x = R/Rp, Eq 3.2 becomes

1
x
+

4
27
ω2x2 sin2 θ = 1. (3.8)

This is the cubic equation, and the shape of the stellar surface (Collins, 1963; Owocki,
Cranmer, and Blondin, 1994; van Belle et al., 2001) is given by

x(θ,ω) =
3

ωsinθ
cos

(
π+ arccos(ωsinθ)

3

)
. (3.9)

3.3 Theorem of von Zeipel

In 1924, von Zeipel showed that the distorted hydrostatic equilibrium of the star impacts
the net radiative flux, which is proportional to local gravity over its surface. The grav-
ity darkening can be expressed by assuming a hydrostatic equilibrium of the star’s inte-
rior where the effective gravity geff is derived from effective potential Φ (Cranmer, 1996;
Maeder, 2009)

∇P = ρgeff = −ρ∇Φ (3.10)

The gradient of pressure P and the normal to the potential surfaces are anti-parallel, and
this imposes that the gas pressure should be constant on the equipotential surfaces, which
results in P must be a function of Φ only, where the density can be expressed as

ρ =
|∇P(Φ)|
|∇Φ|

= −
dP
dΦ

, (3.11)

thus the density also is a function of Φ. In radiative equilibrium, the flux carried outward
by photons is proportional to the conductive term,

F = −
16σB

3κρ
T 3∇T, (3.12)

where κ is the Rosseland mean absorption coefficient and σB is the Stefan-Boltzmann
constant. We can write

∇T =
dT
dΦ
∇Φ. (3.13)

The flux of a rotating star can be written as

F = − f (r, θ)geff, (3.14)

where f (r, θ) is a function to be determined.
The variation of the effective temperature Teff, over the surface of a rotating star, with

local gravity, is given by the gravity darkening law, introduced by von Zeipel (1924)

Teff =
K
σB

g0.25
eff , (3.15)
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where K is the von Zeipel constant given by the condition that the total integral of the flux
gives the luminosity of the star L⋆ regardless of the degree of rotation. The constant K is
given by

K =
L⋆�

geff.dS
, (3.16)

where the denominator is integrated over the entire surface of the star, the integrand was
shown by Cranmer and Owocki (1995) to be proportional to the even powers of ω.

3.4 Espinosa Lara and Rieutord formulation

The formulation of von Zeipel does not take into account the convection and it neglects
the Eddington-Sweet current; 2D simulation using ESTER code by Rieutord and Espinosa
Lara (2009) showed the difference between von Zeipel law and numerical model with
gravity darkening. Following this work Espinosa Lara and Rieutord (2011) have improved
the gravity darkening equation to take into account fast rotation. The formulation started
by letting F = f (r, θ)geff, and imposing the condition ∇F = 0 to determine the unknown
function f (r, θ). Using the solid body rotation of Roche model the cubic equation 3.9 was
modified, and expressed in terms of Θ rather than x, as follows

cosΘ+ ln
(
tan
Θ

2

)
=

1
3

x3ω2 cos3 θ+ cosθ+ ln
(
tan

θ

2

)
, (3.17)

and this led to the new expression of the effective temperature, as

Teff =

(
Lω

σBGM⋆

)1/4 √
tanΘ
tanθ

g1/4
eff , (3.18)

after substitution, we can express the equatorial to polar effective temperature, as follows:

T e
eff = T p

eff

√
2

2+ω2

(
1−ω2

)
1/12 exp

(
−

4ω2

(6+3ω2)3

)
, (3.19)

from which we can recover von Zeipel’s theorem at slow rotation

Teff =

(
L

4πσBGM

) 1
4

g
1
4
eff. (3.20)
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Figure 3.3: Comparison between gravity darkening computed using von Zeipel’s law (dashed line),
Espinosa’s model (solid line), and model using 2D ESTER code (crosses). Left with rotation rate
ω = 0.7 and right with rotation ω = 0.9 (Espinosa Lara and Rieutord, 2011).

A comparison between the model of Espinosa Lara and von Zeipel’s theorem is shown
in Fig 3.3, it is clear from the plot that a good agreement was found between the 2D
ESTER code and the formulation by Espinosa Lara. Figure 3.4 shows the distribution
of the effective temperature, projected in the XZ plane, where x̃ and z̃ are the Cartesian
coordinate (x,z) scaled by Keplerian radius a.

Figure 3.4: Variation of the effective temperature, where T̃eff is the normalized value defined as
Teff( L

4πσR2
e
)−1/4 (Espinosa Lara and Rieutord, 2012).

Stars that rotate rapidly undergo significant distortions due to their non-spherical
shape. As initially demonstrated by von Zeipel (1924), the emission of radiation from
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a rotating star is not evenly distributed across its surface. This principle, known as the von
Zeipel theorem, states that the radiative flux is greater in the polar regions compared to
the equatorial regions, as the effective gravitational force is stronger at the poles. Conse-
quently, this results in a phenomenon known as "gravity darkening," where the equatorial
regions appear darker than the polar caps. Numerous observations have extensively con-
firmed the existence of this phenomenon (e.g, Domiciano de Souza et al., 2014). The
redistribution of flux caused by this effect has significant implications, including the mod-
ification of inferred fundamental properties such as effective temperatures (Espinosa Lara
and Rieutord, 2011). Therefore, the rapid rotation of stars affects their structure and evo-
lution through both centrifugal distortion and the effects of gravity darkening.





Chapter 4

Radiative transfer and polarization

In the previous chapter, we showed the effects of fast stellar rotation and how it could
distort the geometry of the stars, leading to an oblate structure of the equipotential surface,
known as the gravity-darkening model. The rotation does not impact only the structure,
but also the physics. Because of the change in the sphericity, this leads to the occurrence
of electron scattering in media that is not spherically symmetric, which will result in an
intrinsic polarization; in this chapter, we will show how the radiation will be transferred.
We will mainly focus on the polarization due to electron scattering in the wind.

4.1 Unpolarized radiation

The general time-independent radiative transfer equation is a mathematical expression that
describes the behavior of radiation as it interacts with a medium, and can be expressed as
(Chandrasekhar, 1960; Hubeny and Mihalas, 2015)

dIν
ds
= −κνρIν+ jνρ, (4.1)

where κν is the absorption coefficient, jν is the emission coefficient for the radiation with
the frequency ν, ρ is the density of the material crossed by the radiation, Iν is the spe-
cific intensity, which depends on the frequency and the direction of radiation, so that the
radiation flux is written as:

πFν =
∫

Iν cosθdω, (4.2)

where θ is the angle (Fig 4.1) formed by the energy flow inclined to its outward normal
confined to an element of solid angle dω.

– 23 –
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Figure 4.1: Beam of radiation

If the medium is spherical symmetric, Eq 4.1 can be re-written as

µ
∂I(ν,µ,r)

∂r
+

(
1−µ2

)
r

∂I(ν,µ,r)
∂µ

= η(ν,µ,r)−χ(ν,µ,r)I(ν,µ,r), (4.3)

where r is the radius, µ is the cosine defined as µ = cosθ, and χ is called the extinction
coefficient as the sum of true absorption and scattering coefficients, and η is the thermal
emission coefficient.

4.2 Continuum polarization

The radiative transfer can be represented by four variables called Stokes vector, named
after George Stokes representation (Collins, 1989). The Stokes vector components de-
scribing the polarized radiation is given by the total intensity I, the difference of the two
orthogonal components of the intensity, related to the polarization degree, the ellipse ori-
entation specifying the polarization plane, and the degree of ellipticity (Chandrasekhar,
1960; Collins, 1989; Bohren and Huffman, 1998). An elliptically polarized light can be
expressed as follows (Fig 4.2)
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Figure 4.2: Incident unpolarized beam converted to elliptically polarized beam (Collins, 1989)

I = Il+ Ir = E2
l +E2

r ,

Q = Il− Ir = E2
l −E2

r ,
U = (Il− Ir) tan2χ = 2ElEr cosϵ,
V = (Il− Ir) tan2βsec2χ = 2ElEr sinϵ,

(4.4)

where tanβ represents the ratio of semi-minor to semi-major axis of the ellipse, and Er
and El are the amplitudes of the two orthogonal waves shifted by the phase ϵ. The sub-
scripts r and l determine the direction of the beam if it is left or right elliptically polarized
depending on the sign of β if it is positive or negative, where 0 ≤ |β| ≤ π/2. The light is
unpolarized, if Q = U = V = 0, whereas, for V = 0 the radiation beam is called linearly
polarized with the polarization plane, making an angle χ with the l-axis.

For completely polarized beams of radiation, there exists a relationship between the
Stokes parameters. The relationship is given by the equation

I2 = Q2+U2+V2, (4.5)

furthermore, the angle between the plane of polarization and the ellipticity can be deduced
from the Eq 4.4 as follows,

tan2χ =
U
Q
, and (4.6)

sin2β =
V√

Q2+U2+V2
. (4.7)
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The Stokes parameters represent the combination of the squares of amplitudes of an ar-
bitrary light, we can easily introduce the unpolarized beam to the completely polarized
beam, for this we have Il = Ir in all coordinate systems and Q = U = V = 0, so we the
inequality relation

I2 ≥ Q2+U2+V2, (4.8)

the proof of this inequality can be found in Chapter I of the book of Chandrasekhar (1960),
the ellipticity is required for the equality to occur, however for

I2 >

√
Q2+U2+V2, (4.9)

it is necessary to introduce the natural (unpolarized) light. The Stokes parameters I and
V are invariant to the rotation of the coordinate about the axis of propagation, but not the
case for Q and U Collins (1989). From Eq 4.8 we can define the total polarization degree
as

PT =

√
Q2+U2+V2

I
, (4.10)

the degree of linear polarization as

Pl =

√
Q2+U2

I
, (4.11)

and the circular polarization

Pc =
V
I
. (4.12)

If we rotate counterclockwise the l− r coordinate frame through an angle ϕ (Fig 4.2),

Q′ = Qcos2ϕ−U sin2ϕ = I cos2βcos2(χ+ϕ)
U′ = Qsin2ϕ+U cos2ϕ = I cos2βsin2(χ+ϕ) , (4.13)

we can easily write in matrix-vector notation the rotation form of the Stokes parameters,
because I and V are invariant to transformation of rotation.

When a photon with a specific Stokes vector, denoted as S ′, propagates in a certain
direction (θ′,φ′), and then scatters to a different direction (θ,φ), its Stokes parameters
change. The new set of Stokes parameters is then given by

S ∝ R(Θ).L (ϕ) .S ′, (4.14)

here L(ϕ) is the rotation matrix that rotates the Stokes vector into different frames, we
note that Chandrasekhar used angle ψ instead of ϕ. Massive stars have winds with ionized
gas, as a result we expect a rise in polarization due to electron scattering (called Thomson
scattering). The scattering matrix R(Θ) for electrons, where Θ is the angle of scattering
measured from the direction of the incident photon, is given by (Chandrasekhar, 1960;
Code and Whitney, 1995)

R(Θ) =
3
4


cos2Θ+1 cos2Θ−1 0 0
cos2Θ−1 cos2Θ+1 0 0

0 0 2cos2Θ 0
0 0 0 2cos2Θ

 . (4.15)
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Continuum polarization in massive stars is primarily caused by the interaction between
incident radiation and free electrons in the stellar atmosphere. This interaction, known as
electron scattering, leads to the polarization of the emitted light. The degree and direction
of polarization can provide valuable information about the physical properties of these
stars.

Studies conducted by Hillier and Miller (1998) and Vink et al. (2002) have shown that
the continuum polarization is sensitive to various factors. These include the density and
velocity structure of the stellar wind, as well as the orientation of the scattering region
relative to the observer. By analyzing the continuum polarization, researchers can gain
insights into crucial parameters like the mass-loss rates and wind geometries of massive
stars. Furthermore, line polarization observations have played a crucial role in investi-
gating the presence of magnetic fields in these stars. The work of Donati et al. (2002)
highlights how the analysis of line polarization can provide valuable information about
the existence and characteristics of magnetic fields in massive stars.

Overall, the study of line polarization due to electron scattering has become an es-
sential tool for understanding the complex atmospheres and winds of massive stars. It
contributes to our knowledge of stellar evolution and aids in the exploration of magnetic
fields in these objects.





Chapter 5

Numerical methods

Many physical problems are described by partial differential equations (PDEs), including
Maxwell’s equations of electromagnetism, some fundamental laws of nature like fluid dy-
namics, or general relativity (Springel, 2016). For PDEs we can not get a general solution
for these types of equations, a call for numerical method is needed to tackle the difficulties.
Several methods are commonly used in astrophysics, like finite difference method, finite
volume method, and Monte Carlo method. In this chapter we will show an overview of
the methods used during our studies, we will mainly focus on numerical hydrodynamics
and some brief discussion about Monte Carlo method.

5.1 Eulerian hydrodynamics
The mathematical description of Euler hydrodynamic equations, is based on the combi-
nation of continuity, momentum, and energy equations. Eulerian methods can be divided
into two groups: finite difference, and finite volume methods.

5.1.1 Simple advection
First-order hyperbolic equations are useful to introduce the numerical method, they also
used to address a non-linear conservation laws (LeVeque et al., 2002; Springel, 2016). We
start by the simple advection equation in one dimension

∂u
∂t
+ v.

∂u
∂x
= 0, (5.1)

where u = u(x, t) is a function of x and t, and v is a constant parameter. Let q(x) a function
space dependent, then

u(x, t) = q(x− vt) (5.2)

We can easily check that q(x) is a solution of the PDE, we can see u(x, t = 0) = q(x) as an
initial condition and then this is copied at a later time simply by translation vt along the
x−direction (Fig 5.1(Springel, 2016)).

Let’s try to solve the advection equation numerically, for example using the method of
line, eq-5.1 becomes

dui

dt
+ v

ui+1−ui−1

2h
= 0, (5.3)

– 29 –
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where i is the grid index, and h is the spacing. Further, we can discretize the time derivative
with a forward scheme we can get

un+1
i = un

i − v∆t
un

i+1−un
i−1

2h
, (5.4)

here ∆t is the time step, and n is the time grid.

Figure 5.1: Advection with constant velocity (Springel, 2016).

To compute this formula we need initial and boundary conditions in order to update the
solution in the grid. Applying for example a step function, one obtains strong oscillatory
errors in downstream region of the step, which render the numerical solution unstable
and lead to the failure of the method. In order to obtain an acceptable approximation
we need to impose some conditions. These conditions are defined as accuracy, stability
and convergence. These 3 conditions cover different aspects to the relation between the
numerical solution and the analytical solution of the differential equation.

To update the ui, the information is derived from upstream (ui−1) and downstream
(ui+1). The information should flow in the direction of the stream and as a result ui should
not really depend on the downstream side at all. So lets change the space derivative to
backward difference (upwind scheme)

dui

dt
+ v

ui−ui−1

h
= 0. (5.5)

The discretization now depends on the sign of v. For negative v one has to use forward
difference instead

dui

dt
+ v

ui+1−ui

h
= 0. (5.6)

Lets rewrite the upwind schemes of the spatial derivative as

ui−ui−1

h
=

ui+1−ui−1

2h
−

ui+1−2ui+ui−1

2h
. (5.7)
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Hence the stable upwind schemes can be written as

dui

dt
+ v

ui+1−ui−1

h
=

vh
2

ui+1−2ui+ui−1

h2 . (5.8)

Recall that
∂2u
∂x2 =

ui+1−2ui+ui−1

h2 , (5.9)

which is the Laplacian (diffusion) expressed as finite difference; if we define D = vh
2 , we

are solving the following equation

∂u
∂t
+ v.

∂u
∂x
= D

∂2u
∂x2 (5.10)

and not the original advection equation. The diffusion term on the right hand side is here
as a result of numerical algorithm that we have used, which is needed to be added to obtain
the stability of the integration. We can see that for better grid resolution h→ 0 the diffusion
term becomes smaller and we can obtain better solution. To get larger diffusivity we need
larger velocity v so faster advection the stronger the numerical diffusion effects become.

5.1.2 Riemann problem

The Riemann problem consists of an initial value problem for hyperbolic equations, to-
gether with two piece-wise constant states that meet a plane where t = 0 (Springel, 2016).

5.1.3 Finite volume method

The most common method user to solve hydrodynamic equations in astrophysics is the
finite volume method, or in other hand the Riemann solvers, the hyperbolic conservation
laws (LeVeque et al., 2002; Springel, 2016) can be written as

∂U
∂t
+∇.F = 0 (5.11)

where U is the state vector and F is the flux vector, and ∇ is the gradient. The Euler model
equation (Eq 2.1-2.3) can be written in the form

U =

 ρ
ρv
ρe

 , (5.12)

F =

 ρv
ρvvT

(ρe+P)v

 (5.13)

here e represents the specific energy, e = UT + v2/2 and UT is the thermal energy per
unit mass. To close the system we recall the ideal gas law, which gives the pressure
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P = (γ−1)ρUT. The finite volume schemes consists of averaging the state over a set of
finite cells, these cell averaged as

Ui =
1
Vi

∫
cell i

U(x)dV. (5.14)

We can now update the cell-averaged quantities, by integrating the conservation law over
finite interval in time and over a cell∫ xi+1/2

xi−1/2

dx
∫ tn+1

tn
dt

(
∂U
∂t
+
∂F
∂x

)
= 0, (5.15)

which gives∫ xi+1/2

xi−1/2

dx [U(x, tn+1)−U(x, tn)]+
∫ tn+1

tn
dt

[
F(xi+1/2, t)−F(xi−1/2, t)

]
= 0. (5.16)

We see that the first term is the cell average (similar to Eq 5.14), and then the integral
becomes

∆x [U(x, tn+1)−U(x, tn)]+
∫ tn+1

tn
dt

[
F(xi+1/2, t)−F(xi−1/2, t)

]
= 0. (5.17)

Now, for each time step t > tn, the function F(xi+1, t) can be determined by solving the
Riemann problem. At the interface, the solution depends on the left state Un

i and the right
state Un

i+1 of the current time. Therefore, we can express this as follows:

F(xi+1/2, t) = F⋆i+1/2, (5.18)

where F⋆i+1/2 = FRiemann
(
Un

i ,U
n
i+1

)
is a short notation for the corresponding Riemann

solution. Replacing in Eq 5.17, we get

∆x
[
Un+1

i −Un
i

]
+∆t

[
F⋆i− 1

2
−F⋆i+ 1

2

]
= 0, (5.19)

in explicit form can be written as:

Un+1
i = Un

i +
∆t
∆x

[
F⋆i−1/2−F⋆i+1/2

]
, (5.20)

where the term in the bracket gives the flux flowing from the left of the cell and the flux
flowing out of the cell on its right. Godunov came up with the idea of using the Riemann
solution in the updating step, which is why such schemes are sometimes referred to as
Godunov schemes (Springel, 2016).

5.2 Godunov’s method
Godunov’s original methodology employs the most basic reconstruction scheme, which
relies on piecewise constant segments. This approach intuitively leads to Riemann prob-
lems at cell interfaces (LeVeque et al., 2002; Castor, 2007). We can consider the flow vari-
ables to be zone averages, and we can find their evolution by finding the gains and losses
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of conserved quantity at each zone. This is called Reconstruct-Evolve-Average schemes
(REA) (Springel, 2016). An update scheme of a hydrodynamical system discretized on a
mesh, using the REA, can be seen as a series of three successive steps (Springel, 2016):
i) the cell-averaged quantities (Fig 5.2) can be used to determine the variation of these
quantities throughout the cell. The sketch assumes a piece-wise constant reconstruction
method, which is the most basic approach with a first-order level of accuracy.

Figure 5.2: Piecewise constant states of a fluid that represent the simplest possible reconstruction
of its state based on a set of discrete values Ui is known at spatial coordinates xi (Springel, 2016).

ii) The reconstructed state is then advanced in time by ∆t using the Godunov’s ap-
proach, which treats each cell interface as a piece-wise constant initial value problem that
is solved either exactly or approximately with the Riemann solver. This method is mathe-
matically valid as long as the waves originating from opposite sides of a cell do not begin
to interact. However, in practice, it is necessary to set a maximum time step ∆t to prevent
this interaction from occurring. iii) The wave structure that arises from the progression
over a time step ∆t is averaged in a conservative manner to calculate new states Un+1 for
each cell. There is no need to explicitly perform the averaging step; instead, it can be
accomplished by accounting for the fluxes that enter or exit the control volume of the cell.
This process is then repeated in its entirety.

5.2.1 WENO
The subsequent category of Eulerian hydrodynamics schemes is known as the Essentially
Non-Oscillatory class (ENO) and its derivative, the Weighted Essentially Non-Oscillatory
(WENO) class (Castor, 2007). In order to comprehend these schemes, it is important to
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first discuss the Lax-Wendroff (Lax and Wendroff, 1960) method. This method is used for
solving a system of conservation laws in one dimension, such as the Euler equations. The
Lax-Wendroff method involves a two-step process: prediction and correction.

Un+1/2
i+1/2 =

1
2

(
Un

i+1+Un
i

)
−
∆t

2∆x

[
Fn

i+1−Fn
i

]
, (5.21)

Un+1
i = Un

i −
∆t

2∆x

[
Fn+1/2

i+1/2 −Fn+1/2
i−1/2

]
. (5.22)

It can be observed that the predictor equation calculates a solution vector at the half-time-
step point by utilizing the fluxes evaluated at zone centers based on the initial step values.
The corrector step then applies the edge-centered fluxes, derived from the half-time-step
unknowns, to update the zone-centered unknowns in a conservative manner.

5.2.2 Adaptive mesh refinement

Figure 5.3: Wind density model in cgs units computed using AMR.
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The concept of Adaptive Mesh Refinement (AMR) aims to provide higher grid resolution
in the parts of the spatial domain that require it the most at any given time. While it might
be possible to implement AMR in a Lagrangian framework, the need for this capability
is reduced as the Lagrangian zones automatically adjust to follow the material and tend
to be where additional resolution is required (Castor, 2007). However, there may still
be situations where extra resolution near shocks, for example, is necessary as they move
through the material. The second reason for not using Lagrangian AMR is that it could
become complex and burdensome. An example of an AMR solution is shown in Fig 5.3.
The test problem was computed using the FLASH code (Fryxell et al., 2000) for the stellar
wind model, where we implemented the CAK line force into the code (section 6.3).

5.3 Monte Carlo method of the radiative transfer
The Monte Carlo method, a powerful computational technique, has been extensively uti-
lized in astrophysics to solve the radiative transfer equation. This method employs random
sampling to approximate complex physical processes and systems, making it particularly
well-suited for addressing the challenges posed by the radiative transfer equation (see, for
example, Harries 2000).

In astrophysics, the radiative transfer equation is vital for understanding the propaga-
tion of radiation through various media, such as stellar atmospheres and interstellar clouds.
The Monte Carlo method simplifies this task by simulating the random paths of individual
photons as they interact with the surrounding medium. By tracking a sufficient number of
photons, the method can provide valuable insights into the overall behavior of radiation in
these environments (Whitney, 2011).

One of the key advantages of using the Monte Carlo method in astrophysics is its
flexibility; it can readily accommodate complex geometries and a wide range of scattering,
absorption, and emission processes. This has led to its widespread adoption in various
astrophysical applications, including modeling the radiation fields in star-forming regions,
simulating the propagation of light in accretion disks, and studying the radiative properties
of dust grains (Bianchi and Ferrara, 2005).

5.3.1 Simple scattering
The Monte Carlo method for radiative transfer (MCRT) is an approach that uses prob-
abilistic methods to simulate the transport of individual ’photon packets’ (or photons).
This method involves describing all radiation sources, tracing a path for each photon that
includes all interactions, and tabulating relevant parameters such as intensity, flux, angle
of exit, position of exit (for imaging), and wavelength (Whitney, 2011). This process is
essentially a random walk for each photon, and the resulting data can provide valuable
insights into how radiation interacts with different materials and media.

5.3.2 Sampling technique
Monte Carlo simulation is based on random sampling of probability distribution function
(PDF) in association with the physical processes that are being simulated. The continuous
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probability distribution function fX(x) is analogue to the discrete probability distribution
of a random variable X with the value x(Noebauer and Sim, 2019). The cumulative prob-
ability distribution FX(x) given as

FX(x) =
∫ x

−∞

fX(x′)dx′ (5.23)

is a monotonic function with values between zero and one. The simplest method for
random sampling consists of matching the cumulative distribution functions of both the
reference distribution and the distribution in question. In particular, by using a random
number z and ensuring that the associated cumulative probability functions are equal
(FX(x) = FZ(z)), a discrete value x that represents the probability distribution fX(x) can
be determined. As a result, this technique for taking random sampling needs an analysis
of the cumulative distribution function F(x) to be done in reverse. For instance, when
the radiation field is isotropic ( fµ(µ) = 1

2 ), the direction of propagation is determined by
resolving ∫ µ

−1
dµ′

1
2
=

∫ 1

0
dz′.1 (5.24)

giving µ = 2z−1. However, there may be complex distributions for which the correspond-
ing cumulative distribution functions cannot be easily inverted. An example of this is
the drawing of the initial packet frequencies in accordance with a thermal radiation field,
governed by the Planck distribution. In such cases, the rejection method may be used to
perform the random sampling process. In its simplest version, which is often referred to as
von Neumann rejection sampling (Neumann, 1951), pairs of random numbers are drawn
(zx, zy), which are then mapped onto the support and image of the probability distribution.

5.3.3 Random number
The sampling and MCRT calculation in the above outline requires some form of random-
ness, which is difficult to achieve on a deterministic computer. However, a (pseudo) Ran-
dom Number Generator (RNG) can provide " pseudo-randomness" that is sufficient for
many purposes. These algorithms produce sequences of numbers ξ, which are typically
uniformly distributed over the interval [0, 1] based on a starting value (seed). Although
they are generated by deterministic prescriptions, such sequences share statistical prop-
erties with true randomness (Noebauer and Sim, 2019). A well-known example of such
algorithms is the family of linear congregational methods. A new random number ξi+1
is generated based on a previous draw, and a set of large numbers, a, c, and M, the new
generated random number is given by

ξi+1 = (aξi+ c) mod M. (5.25)

5.3.4 Computing flux and intensity
In order to determine the specific intensity of the photons that exit the binning process, we
will refer to a study conducted by Chandrasekhar (1960)

Iν =
dEν

cosθdνdAdtdω
, (5.26)
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where dEν is the energy at frequency interval (ν, ν+ dν), and θ is the angle of exit to the
normal of a surface with area dA into a solid angle dω over time dt. This represents a
narrow beam of radiation emitted from the surface of the atmosphere. Assuming we are
considering monochromatic photons with no time dependence, let’s denote the number
of photons exiting at specific angles µi and φ j as Ni, j. In this case, the intensity of the
radiation, denoted as Ii, j, can be calculated using the given formula (Whitney, 2011)

Ii, j =
hνNi, j

µi∆µ∆ϕdAdt
. (5.27)

The observed intensity of light is often measured and expressed in terms of flux F. Ac-
cording to Chandrasekhar (1960), the rate at which energy flows across a surface per unit
area per unit frequency interval can be calculated by integrating the intensity I(µ,φ) over
all angles. This can be represented by (Whitney, 2011)

πF =
∫ 1

−1

∫ 2π

0
I(µ,φ)µdµdϕ. (5.28)

To put it into perspective, let’s assume N0 photons are incident at a cosine angle µ0. In that
case, the net rate of energy flow can be calculated as

πF =
hνN0

µ0dA
, (5.29)

where ν denotes the frequency of the photons. By rearranging the equation, we can express
the intensity Ii, j in terms of the flux F as

Ii, j

F
=

πµ0Ni, j

µiN0∆µ∆ϕ
. (5.30)

Here, Ni, j represents the number of photons incident at a specific angle µi and azimuthal
angle φ j, while ∆µ and ∆φ are the small intervals over which the integration is performed.

5.4 Scattering and polarization
Astrophysical applications typically focus on scattering problems such as electron scatter-
ing, Compton scattering, resonance line scattering, and dust scattering. In many cases, the
angular dependence of the scattering phase function, known as the scattering function, can
be approximated analytically or computed numerically and represented in tabular form.
The Monte Carlo method is a commonly used technique to solve these scattering problems,
including polarization components (Whitney, 2011). In Figure 5.4, a diagram illustrates
the scattering process of a photon from the direction P1 to direction P2. Analytically de-
scribing the phase function for scattering problems is straightforward for angles relative to
P1, but for polarization problems, the frame of reference must be considered, necessitating
the use of Müller matrices and rotation into and out of the photon propagation direction
(Chandrasekhar, 1960; Code and Whitney, 1995; Whitney, 2011). We consider here the
linear polarization as described in Chap 4, we use the Stokes vector for the polarization



38 Chapter 5. Numerical methods

Figure 5.4: Geometry for scattering. A photon propagating into direction P1(θ′,φ′) in the ob-
server’s frame) scatters through the angle Θ into direction P2(θ,φ) (Code and Whitney, 1995)

S =
[
I(Θ,ϕ),Q(Θ,ϕ),U(Θ,ϕ),V(Θ,ϕ)

]
. (5.31)

For electron scattering, the elements of the rotation matrix (see Chap 4) are

P11 = P22 = cos2Θ+1 = µ2+1
P12 = P21 = cos2Θ−1 = µ2−1
P33 = P44 = 2cosΘ = 2µ

, (5.32)

where µ = cosΘ, and the rest of the other elements are zeros. In this case, we compute the
Stokes I parameter in the reference frame of the photon using

S = L (π− i2)R (Θ) L(−i1)S ′, (5.33)

this gives
I =

(
µ2+1

)
I′+

(
µ2−1

)
cos2 i1Q′−2µsin2 i1U′. (5.34)

Ultimately, the goal is to sample the scattering direction (µ, i1) based on the computed
function. We could sample i1 (Fig 5.4) and µ from a uniform distribution so that (Code
and Whitney, 1995)

i1 = 2πξ1, (5.35)
µ = 1−2ξ2, (5.36)
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where ξ1 and ξ2 are two random numbers generated by the computer. The next step in-
volves calculating the new Stokes parameter using Eq 5.33. However, for greater accuracy,
it is recommended to sample from a probability distribution function that is a closer ap-
proximation to the exact distribution. In the case of Thomson scattering, sampling from
the exact probability distribution can be achieved using the rejection method. The process
is as follows: First, we choose values for µ and i1 from a uniform distribution and use
them to calculate the I Stokes parameter. Then, a random number y is selected within the
range of minimum and maximum values of the probability distribution for all angles and
Stokes parameters (Code and Whitney, 1995; Whitney, 2011),

y = ξ3 (Imax− Imin) . (5.37)

To ensure that angles are sampled according to their probability, we reject angles where y
is greater than I and select again until I becomes greater than y. This method guarantees
that the angle distribution is sampled with the appropriate frequency. The efficiency of
this method can be measured by comparing the area of the probability distribution to the
smallest box that can encompass it, or by comparing the number of accepted angles to the
total number of attempts. In the case of Thomson scattering, the efficiency is 66%, which
is considered reasonably high (Code and Whitney, 1995).

The code presented below provides a high-level overview of the technique, but for a
more comprehensive understanding, please refer to the work of Code and Whitney (1995)
and Wood et al. (1996). The technique employed in this code follows a Monte Carlo
approach and can be summarized in the following steps:

1. A photon packet, which is not polarized, is emitted randomly from a random loca-
tion on the surface of a spherical star.

2. To determine the distance the photon will travel before scattering, a random optical
depth, denoted as τ, is generated using the equation τ = − logξ.

3. Follow the path of the photon and integrate it until it reaches the optical depth, τ =∫
neσT ds, where ne represents the electron number density and σT is the Thomson

scattering cross section.

4. Use the scattering phase function, also known as the differential cross section, to
generate a new random direction for the photon. This involves generating a random
scattering angle and calculating the new Stokes parameters of the scattered photon.

5. Repeat steps 2 to 4 until the photon exits the envelope. If the photon intersects with
the star, remove it and emit a new photon (go back to step 1). This accounts for the
occultation of the scattered light by the star.

6. Tally relevant quantities of interest by grouping the flux and polarization based on
the directions of observation.

7. Emit a new photon from the star (go back to step 1).

8. Repeat steps 1 to 7 until the emergent flux and polarization results have sampling
errors that are sufficiently small.
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Polarization in massive stars has been extensively studied using the Monte Carlo method as
a powerful numerical technique that allows for the realistic modeling of complex physical
processes. In particular, researchers have employed Monte Carlo simulations to investigate
the impact of electron scattering on the polarization properties of these stellar objects.

By considering various factors such as the scattering phase function and the Thomson
cross section, Monte Carlo simulations can accurately capture the intricate interaction
between photons and electrons in massive stars. A noteworthy contribution to this field is
the work of Code and Whitney (1995), which provided a comprehensive framework for
simulating the scattering process in these stars.

Through these simulations, it becomes possible to calculate the polarization properties
of massive stars and gain insights into their internal structure and magnetic fields. The
analysis of polarization in these objects offers valuable information about their formation,
evolution, and circumstellar environments (Halonen and Jones, 2013). Furthermore, re-
searchers have also explored the effects of multiple scattering on polarization by utilizing
Monte Carlo radiative transfer codes. This has allowed them to investigate polarization in
stellar wind bow-shock nebulae (Shrestha et al., 2018).



Chapter 6

Modeling of stellar winds of rotating,
hot and massive stars

Hydrodynamic modeling of stellar winds including a wind-compressed disk in massive
stars is a complex and challenging problem in astrophysics. Such models are essential to
understanding the mass-loss processes and evolution of massive stars, which play a crucial
role in the chemical enrichment and energy balance of the universe. These winds are
composed of highly ionized gases that are accelerated to high velocities due to the intense
radiation from the star’s surface. Understanding the properties of these winds is important
for many astrophysical phenomena such as the evolution of galaxies, the formation of
stars and planets, and the distribution of chemical elements in the universe. Numerical
models are used to simulate the complex processes that occur in the stellar winds of hot
stars. These models incorporate the principles of gas dynamics, radiation transfer, and the
effects of magnetic fields to predict the velocity, temperature, and density of the wind as
it flows outwards from the star. These models also take into account the properties of the
star itself such as its mass, luminosity, and surface temperature.

6.1 Wind compressed disk
To explain the presence of disk observed around Be stars, Bjorkman and Cassinelli (1993,
BC hereinafter) developed a semi-analytical model that shows that the disk is generated
due to two factors: Firstly, the wind at the equator of the star is deflected, and secondly,
the streamlines crossing the equatorial plane lead to the formation of the disk. Be stars are
a type of B-class the star that displays prominent emission lines in their spectra, indicating
the presence of a circumstellar disk composed of gas and dust. The disks around Be stars
are thought to form as a result of the star’s rapid rotation, which generates a centrifugal
force that can counteract the gravitational force of the star, allowing material to accumulate
in a disk. Hydrodynamic modeling by Owocki, Cranmer, and Blondin (1994) showed that
the approximations used by BC are valid with minor modifications. Since our work mainly
consists of numerical modeling, we set up the hydrodynamic code that incorporates the
relevant stellar parameters.

We employed the VH-1 code developed by Blondin et al. (1990) modified by Owocki,
Cranmer, and Blondin (1994), which uses the piecewise parabolic method (PPM) algo-

– 41 –
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rithm, and coupled it with the subroutine created by Owocki, Cranmer, and Gayley (1996)
to determine the radiative force and solve the hydrodynamic model equations. The PPM
algorithm, a third-order finite difference scheme developed by Colella and Woodward
(1984), was employed. The VH-1 code allows for the solution of hydrodynamic equa-
tions in various geometries, including 1D, 2D, and 3D planar, cylindrical, and spherical.
To incorporate the oblate stellar surface due to rotation, the lower boundary condition in
the radial direction is crucial in the hydrodynamic simulation of stellar winds. To address
this issue, we adopted the specified stair-casing boundary condition proposed by Owocki,
Cranmer, and Blondin (1994). Additionally, we set the base wind density to a constant
value proportional to the mass loss rate Ṁ to ensure a subsonic inflow of matter at the base
of the wind where

ρ(r = R⋆) ∝
Ṁ

4πR2
⋆cs

. (6.1)

We made different assumptions for the radial and azimuthal velocity components. Specif-
ically, we considered a subsonic outflow for the radial velocity and rigid body rotation for
the azimuthal velocity. For latitudinal velocity, we used the same subsonic outflow as the
radial velocity. To account for the oblateness of the stellar surface, we defined the radius
as a function of colatitude θ and the ratio of rotational velocity and the critical velocity ω̄
(see Eq 3.9), where the critical velocity (Eq 3.7) is given by

vcrit =

√
2GM⋆

3R⋆
. (6.2)

As for the upper boundary, we implemented an outflow condition. In the latitudinal direc-
tion, we applied reflecting boundary conditions due to the symmetry, which was already
implemented by default in the VH-1 code.

To perform the time-dependent calculations, we need to specify an initial condition
for each flow variable across the spatial mesh at the starting time t = 0. Our experiments
show that if the outer part of the initial wind outflow is significantly supersonic, the models
eventually converge to the same 2D steady flow solution. Therefore, we set the initial state
by fitting a 1D mCAK wind model onto the oblate stellar surface at each latitude (Owocki,
Cranmer, and Blondin, 1994).

The model is then evolved in time using fixed time steps, which are set to a fraction
of the Courant time. To maintain numerical stability in the time integration process, we
adopted the Courant time (CFL) of 0.2 to ensure numerical stability. Hence, this value is
used in all the models presented here.

6.1.1 Be stars
Our simulation involves applying the model setup to a typical massive stars. We begin
by simulating the star with spectral type B2.5, using the same grid setup and boundary
conditions as in Owocki, Cranmer, and Blondin (1994). In the radial direction, we use
ni = 296 grid points, and in the latitudinal direction, we use n j = 120 grid points. The
star has a mass of M⋆ = 7.5M⊙, a radius R⋆ = 4R⊙, a luminosity L⋆ = 2310L⊙, and an
effective temperature Teff = 2.104K, we limit our model for this star to a rotation of vrot =

350 km.s−1.
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The CAK line force parameters are (Owocki, Cranmer, and Blondin, 1994, Table 1)
α = 0.51, k = 0.6, and δ = 0.166.
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Figure 6.1: Surface plot in logarithmic scale of the density (left), and radial velocity (right) of Be
star, showing the wind compressed disk model.

Figure 6.2: Linear plot as function of radius for the density (left), and radial velocity (right) for
different angles θ for vrot = 350 km.s−1, for Be star.

Figure 6.1 shows a surface plot of the density and radial velocity, we can see the
flow toward the equator forms a compressed density of material moving outward from the
stellar surface. This provides a good view of the flow estimate, consisting of low-density
and fast flow at the polar regions and dense outflow at the equator; we note the symmetry
at the equatorial plane. Figure 6.2 shows line plots for the density and velocity for various
co-latitudes as a function of radius. The plots show the increase of the density from the



44 Chapter 6. Modeling of stellar winds of rotating, hot and massive stars

pole toward the equator, on the other hand, the velocity decreases from the pole to the
equator, while reaches its highest magnitude at the polar sides. These results confirm the
prediction by BC.

6.1.2 Wolf Rayet stars
Wolf-Rayet (WR) stars are massive stars that have shed their hydrogen envelope in the
course of their evolution (Conti, 1975; Chiosi, Nasi, and Bertelli, 1979; Sander, Hamann,
and Todt, 2012). The collapse of WR stars that spin at a high rate can give rise to long-
duration gamma-ray bursts, as hypothesized by Woosley (1993) and proposed by Vink and
de Koter (2005) that these stars can be progenitors of such bursts. However, due to difficul-
ties in accurately measuring the rotational velocities of Wolf-Rayet stars, it is challenging
to test this model using direct observations. Nonetheless, we can use polarized light as an
indirect means of estimating rotational velocities and evaluating the nature of gamma-ray
burst progenitors. Stevance et al. (2018) applied spectropolarimetry technique to measure
the polarization of two types of WR stars (WR93b, WR102). To numerically model the
winds of WR stars we need to know the stellar parameters and the CAK parameters of the
line force.

For the stellar parameters, we adopted the data from Tramper et al. (2015) and Stevance
et al. (2018) as shown in Table 6.1. However, for CAK parameters there has not been any
precedent calculation for these two stars. We selected such values of α and k, to fit the
observational terminal velocity and the mass loss rate. The obtained values of α, k, and δ
are given in Table 6.2.

Table 6.1: Adopted stellar and wind parameters of studied WR stars.

WR log(L⋆/L⊙) T⋆ R⋆ M⋆ v∞ log(Ṁ/1 M⊙ yr−1)
(kK) (R⊙) (M⊙) (kms−1)

WR93b 5.30 160 0.58 7.1 5000 -5
WR102 5.45 210 0.39 7.0 5000 -4.92

Table 6.2: Adopted CAK parameters for WR stars.

Star α k δ

WR93b 0.52 0.61 0
WR102 0.52 0.61 0

We implemented the stellar parameters in the code and we kept the same configuration
of the boundary conditions as for Be star. It is worth noting that we were able to find the
best fit for the mass loss and the terminal velocity for nonzero of δ, however, when we run
the simulation with rotation, we found the non-physical structure of the density and the
other hydrodynamic parameters.

The corresponding mass loss rate to the selected CAK parameters is 5.8×10−7M⊙yr−1

for WR93b and 4.7× 10−7M⊙yr−1 for WR102, which is different from the one given in
Table 6.1. For quantitative analysis, such as polarization, we need to multiply the density
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by the ratio of the observed mass loss to the fitted values from the numerical simulation,
assuming the linear dependence of the density on the mass loss rate. The ratio is found to
be 17 and 24, for WR93b and WR102, respectively. For the terminal velocity we found
that v∞ = 6000km.s−1 for WR93b, and v∞ = 8000km.s−1 for WR102.

We run the model for different rotational velocities and this lead to wind compression
effect as proposed by Bjorkman and Cassinelli (1993) and Ignace, Cassinelli, and Bjork-
man (1996). As for Be star, there is a density enhancement at the equatorial regions, as
discussed in the work of Ignace, Cassinelli, and Bjorkman (1996) for WR star the is a
formation of wind-compressed zone (WCZ) due to just low stream at the equator.

6.1.3 Low metallicity stars

Metal-poor stars, also called low-metallicity stars, have reduced amounts of elements
heavier than helium. These stars exhibit transparent winds due to decreased mass loss
(Kubátová et al., 2019). To simulate the wind dynamics of such stars, we require knowl-
edge of their stellar parameters and CAK line force parameters. As in the case of WR
stars, no prior information on CAK parameters was found, necessitating the optimization
process we performed in the previous section. Table 6.3 presents the stellar parameters for
various stars.

Utilizing these parameters, we established the code setup, maintaining the same con-
figurations as those for the preceding stars. Table 6.4 provides a summary of the optimized
CAK line force parameters based on the given mass loss rate and terminal velocity.

Table 6.3: Stellar parameter of low metallicity (Kubátová et al., 2019), the mass loss rates, based
on the code of Krtička and Kubát (2017), are from private communication with Krtička.

Star log(Teff) log L⋆ R⋆ M⋆ log(Ṁ) v∞
(K) (L⊙) (R⊙) (M⊙) (M⊙yr−1) (km.s−1)

CheB(T-5) 5.08 5.67 1.55 16.8 -7.02 2040
0.28(T-6) 4.74 5.75 8.14 58.9 -8.09 1340
0.75(T-8) 4.84 6.13 8.08 58.3 -7.31 970
0.98(T-9) 4.92 6.29 6.68 55.3 -6.09 750

CheB(T-10) 5.14 6.34 2.6 49.4 -5.79 3220
0.28(T-11) 4.76 6.29 13.71 130.8 -7.26 1260
0.50(T-12) 4.79 6.42 14.26 129.9 -7.85 930
0.75(T-13) 4.84 6.57 13.63 126.8 -6.31 1530
0.98(T-14) 4.93 6.96 10.18 112.5 -5.85 2420

CheB(T-15) 5.14 6.68 3.82 93.3 -5.01 520

As for previous stars, we ran the code for different rotational velocities, we found a fair
agreement comparing the semi-analytical model of BC. We note those stars are similar to
O stars so the compressed material at the equator can be classified as WCD.
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Table 6.4: CAK line force parameters of low metallicity stars.

Star α k δ

CheB(T-5) 0.396 0.141 0.12
0.28(T-6) 0.43 0.143 0
0.75(T-8) 0.34 0.2 0.16
0.98(T-9) 0.28 0.22 0.16

CheB(T-10) 0.34 0.23 0.13
0.28(T-11) 0.358 0.2 0
0.50(T-12) 0.36 0.15 0
0.75(T-13) 0.37 0.15 0
0.98(T-14) 0.36 0.1 0

CheB(T-15) 0.2 0.26 0.05

6.2 Effect of gravity darkening and nonradial forces

In the previous section, we followed the assumption of BC, and we modeled dynamically
the WCD. The results showed a good agreement between theoretical predictions and 2.5D
numerical simulations. It is worth noting that in this model, we only considered the radial
component of the radiative force. However, in reality, the radiative force has three direc-
tional components frad = ( fr, fθ, fϕ). We show in the following section the effect of radial
force, non-radial forces and gravity darkening.

As in the previous section, we derive the time-dependent numerical hydrodynamic
simulation for a set of massive stars. The simulations here are based on the method and
code described by Cranmer and Owocki (1995) and Owocki, Cranmer, and Gayley (1996),
where line force is expressed in all three components, and the boundary is controlled by
the effect of gravity darkening model using von Zeipel theorem described in Chap 3.

The boundary conditions were similar to those in the previous section, where we set a
fixed density of a lower boundary in the radial direction to maintain the supersonic wind
and the velocity was set to extrapolate (inflow). For the upper boundary, all variables were
set to outflow. We set a reflective boundary conditions at the latitudinal direction.

We will discuss two models that are representative of the wind of massive stars: the
WR star which has an optically thick wind, low-metallicity and VFTS stars which have
optically thin wind. Our simulation of Be stars was conducted to compare it to the existing
literature, specifically the research done by Owocki, Cranmer, and Gayley (1996). Figure
6.3 displays the contour plot of the density of the Be star.

For quantitative analysis needed to compute the polarization we have extended the
radius r from 1R⋆ up to 10R⋆, subdivided into 320 grid points to get a fine structure, and
we reduced the latitudinal grid to 100 grid points to reduce computational time.
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Figure 6.3: Density contours of stellar wind of Be star as a function of radius and co-latitude θ,
log scaled spaced by 0.8 dex, for rotation Vrot = 350 km.s−1, the denoted contour correspond to
log(ρ/(1g.cm−3)) = −16.8.

6.2.1 Wolf Rayet stars

We performed simulations with varying rotational speeds of the two stars (WR93b and
WR102) as described in the previous section. Figure 6.4 depicts the wind density pattern,
taking into account the influence of non-radial line forces and gravity darkening. This
particular illustration represents WR93b with a rotational velocity of 1100 km.s−1, which
is 63% of the critical rotation speed 1736 km.s−1. In this particular case, it is interesting
to note that there is no presence of a disk, and the density in the equatorial region is lower
compared to the polar regions. This observation contradicts the prediction of the WCD
model proposed by Bjorkman and Cassinelli (1993). However, it aligns with the findings
of Owocki, Cranmer, and Gayley (1996), who found an inhibition of the WCD in Be stars.
This discrepancy raises questions about the mechanisms that govern the formation and
presence of disks in massive stars.

In our investigation of WR102, we observed comparable results. Throughout our ex-
tensive simulations, we examined rotation rates reaching up to 85% of the critical speed.
However, we did encounter numerical instability concerns near the equator when the rota-
tion rate exceeded 75%.
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Figure 6.4: Density contours of stellar wind of WR93b as a function of radius and co-latitude θ,
log scaled spaced by 0.8 dex, for rotation Vrot = 1100 km.s−1, the denoted contour correspond to
log(ρ/(1g.cm−3)) = −11.2.

We observe that the stronger (weaker) flux from the poles (equator) significantly influ-
ences the mass flux, leading to an increase (decrease) in mass loss and local wind density.
Additionally, the presence of stellar oblateness causes the radiative force to point away
from the equator and in the opposite direction of rotation (Cranmer and Owocki, 1995;
Owocki, Cranmer, and Gayley, 1996). As a result, there is a net deflection of wind stream-
lines towards the poles. This contradicts the "wind-compressed disk" the model proposed
by BC.

6.2.2 Low metallicity stars

In our simulation, we considered the rotational velocities mentioned in the study conducted
by Kubátová et al. (2019). The rotation rate varies among the stars (see Table.6.5), with
some, like T6 and T14, having a rotation speed of about 40% of the critical rotation.
Others, such as T5 and T12, exhibit rotational velocities of approximately 85% of the
critical rotation.
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Table 6.5: Rotational velocity (vrot) from Kubátová et al. (2019), and computed critical velocity
using Eq 6.2 for different stars, ω̄ is the ratio of rotational velocity to the critical velocity.

Star vrot(km.s−1) vcrit(km.s−1) ω̄ (%)

CheB(T-5) 994 1173,63 84,69
0.28(T-6) 421 958,93 43,90
0.75(T-8) 422 957,57 44,06
0.98(T-9) 404 1025,69 39,38

CheB(T-10) 755 1553,89 48,58
0.28(T-11) 905 1101,1 82,19
0.50(T-12) 925 1075,94 85,97
0.75(T-13) 820 1087,31 75,41
0.98(T-14) 520 1185,07 43,87

CheB(T-15) 587 1761,78 33,31

Figure 6.5: Surface plot in logarithmic scale of the density for the stars:(left) T5 with vrot = 994
km/s , (right) T6. vrot = 810 km/s.

We have performed hydrodynamic simulations for all the rotational velocities stated
in Table 6.5. Interestingly, we found that stars T5 (Fig 6.5), T11, and T12 (Fig 6.8),
which have rotational velocities exceeding 80% of the critical velocity, exhibited a density
enhancement in their equatorial regions. This goes against our initial expectation of the in-
hibition of the WCD at high rotational velocities. To further investigate this phenomenon,
we decided to increase the rotation of the stars to reach a rotational velocity of 85% of the
critical velocity.
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From the results shown in Fig 6.7, it is evident that the increased rotation did not lead
to the formation of a disk for the stars T8 and T9. Additionally, the density at the equator
was reduced for these stars. Similar results were observed for the stars T13, T14, and
T15, where no disk formation occurred and there was a decrease in density at the equator.
However, for the star T6, T10, and T13, a density contrast was observed at the equator,
indicating the potential formation of a disk (Fig 6.5).

Figure 6.6 shows the radial velocity and latitudinal velocity for the star T6. This par-
ticular description offers valuable insights into the overall structure of the flow pattern. It
consists of two key components: a fast radial flow at the pole, characterized by low density
(Fig 6.5), and a slower outflow that is denser and primarily located within the equatorial
disk. It is important to note that the variables ρ, vr, and vϕ exhibit symmetry around
the equator, while the velocity vθ exhibits antisymmetry (Owocki, Cranmer, and Blondin,
1994). This asymmetry is a result of the compressional flow directed towards the equator,
which consequently leads to the heightened density and formation of the disk. Table 6.6
presents an expanded summary of the formation process of an outflowing equatorial disk
for each star.

Figure 6.6: Surface plot for radial velocity (left), and latitudinal velocity (right) for the star T6 with
vrot = 810 km/s.

The figures clearly show the existence of stripes, a phenomenon that can be explained
by the particular staircasing boundary conditions that were considered. Additionally, the
snapshots were taken during a time frame of 106 to 107 s for certain stars, and the steady
solution has not been fully achieved yet.



Chapter 6. Modeling of stellar winds of rotating, hot and massive stars 51

Figure 6.7: Surface plot in logarithmic scale of the density for the stars: (left) T8 with vrot = 810
km/s, (right) T9 with vrot = 910 km/s.

Table 6.6: Summary of the presence of WCD in low metallicy stars.

Star vrot(km.s−1) WCD

CheB(T-5) 994 yes
0.28(T-6) 810 yes
0.75(T-8) 810 no
0.98(T-9) 630 no

CheB(T-10) 1330 yes
0.28(T-11) 905 yes
0.50(T-12) 925 yes
0.75(T-13) 920 yes
0.98(T-14) 1000 no

CheB(T-15) 1510 no

These findings suggest that the rotational effects on disk formation and density distri-
bution can vary among different stars. In a previous study by Curé (2004) and Curé, Rial,
and Cidale (2005), they observed an outflowing disk with a rotation rate higher than 70%.
However, their analysis focused on the location of the critical point (Curé, 2004), and the
bi-stability jump (Curé, Rial, and Cidale, 2005), which was not considered in the current
investigation. Additionally, they neglected to include the effect of gravity darkening, an
aspect that we have considered in our research.
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Figure 6.8: Surface plot in logarithmic scale of the density for the stars: (left) T11 with vrot = 905
km/s, (right) T12 with vrot = 925 km/s.

Another effect that could be cause of the disk formation is the viscosity. The idea that
the near-critical rotation of Be stars leads to the formation of disks has been proposed by
Townsend, Owocki, and Howarth (2004). According to this notion, these disks are likely
formed through the centrifugal ejection of material near the equatorial surface, resulting in
a Keplerian orbit. This ejected material then undergoes an outward diffusion of mass and
angular momentum, leading to the formation of a radially extended viscous decretion disk
(Lee, Osaki, and Saio, 1991). In contrast to the well-understood process of radiative lifting
of stellar wind, which occurs due to a deep gravitational potential, decretion represents a
different mechanism where material spills over from a critical surface, similar to Roche-
Lobe overflow in mass-exchange binaries. While wind driving is comparable to suction
through a straw from a partly full glass, with mass flux depending on the strength of
the suction force, centrifugal decretion is more like the spillage from a nearly full glass
Owocki (2012). Small perturbations can cause random and chaotic mass overflow. Instead
of relying on external driving forces, the overall level of centrifugal mass loss depends on
the internal mechanisms that maintain the stellar rotation near critical.

6.2.3 VLT-FLAMES Tarantula Survey (VFTS)
The VLT-FLAMES Tarantula Survey (VFTS) is a project conducted by the European
Southern Observatory (ESO) aiming to gather extensive spectroscopic data on a large num-
ber of massive stars in the 30 Doradus region of the Large Magellanic Cloud (LMC). This
survey involves the use of the Very Large Telescope (VLT) and the FLAMES instrument
to observe these stars multiple times over some time (Evans et al., 2011).

According to the spectroscopic observations conducted by Shepard et al. (2020), they
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discovered some interesting features in the stars VFTS 102 and VFTS285. In the case of
VFTS102, they detected a double-peaked Hα profile, suggesting a complex and possibly
inhomogeneous wind outflow. On the other hand, for VFTS 285, they observed fast wind
outflow in the Nv lines and a slower wind component in the overall spectrum.

In the previous section, we utilized a time-dependent numerical hydrodynamics sim-
ulation to determine the wind structure of different stars. Similar to our approach with
previous stars, we required the stellar parameters for VFTS to optimize the CAK line
force. These stellar parameters, essential for our calculations, are provided in Table 6.7.

Table 6.7: Stellar parameters of VFTS stars (Shepard et al., 2020).

Star log(Teff) log L⋆ R⋆ M⋆ log(Ṁ)
(K) (L⊙) (R⊙) (M⊙) (M⊙yr−1)

VFTS 102 4.55 5.0 8.17 18 ...
VFTS 285 4.53 5.0 6.6 20 ...

By applying our methodology, we were able to obtain the CAK parameters for the
two stars, which are summarized in Table 6.8. These CAK parameters represent crucial
information that helps us understand and model the wind behavior of the VFTS stars.

Table 6.8: CAK line force parameters

Star α k δ

VFTS 102 0.52 0.61 0.166
VFTS 285 0.51 0.61 0.166

In this case, we chose to restrict our numerical simulation to a rotational velocity of
100% of the critical velocity. This decision was made to directly compare our simulation
results with the observations conducted by Shepard et al. (2020). The reported rotational
velocities for VFTS 285 and VFTS 102 were recorded as 609 and 610 km/s, respectively.
These values indicate that these stars are rotating at their critical speed, making them
significant observations in the study of stellar rotation.

In Figure 6.9, we can observe a surface plot representing the density and radial ve-
locity of the star VFTS 285. The plot provides valuable insights into the star’s dynamics.
Specifically, we notice a density enhancement in the star’s equatorial regions, indicating a
relatively slower outflow of material in those areas. On the other hand, the polar regions
demonstrate lower density with a faster outflow of material.
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Figure 6.9: Surface plot for the density (left) and radial velocity (right) for VFTS 285 star, at the
critical rotation of 609 km/s.

The density distribution observed in VFTS 285, characterized by an equatorial density
enhancement and a polar density decrease align with the findings reported by Shepard
et al. (2020). The researchers suggested a two-wind regime based on the presence of
the two elements Nv and SiIV . This distinction is evident in the image, where a density
enhancement is observed at the equator, while some dense material is still present around
the polar regions. This observation supports the hypothesis that high rotation rates can lead
to an expansion of the equatorial radius, resulting in the observed density distribution.

For the star VFTS 102, the simulation results demonstrate the presence of an equa-
torial outflowing disk, thus supporting the observation of a double peak of Hα (Shepard
et al., 2020). This alignment between the simulation and observation provides compelling
evidence for the existence of a disk around the star, with material flowing outward in the
equatorial plane.

It is interesting to note that in our simulations, we observed a reduction in density at
the equator rather than an enhancement, when simulating with a rotation speed less than
90% of the critical value. This aligns with the inhibition of WCD by Owocki, Cranmer,
and Gayley (1996).

Shepard et al. (2022) have recently reported a new critical velocity for VFTS 102 and
VFTS 285 stars. According to their study, the critical velocity for VTFTS 285 is calculated
to be 648 km/s, while for VFTS 102, it is determined to be 649 km/s. This finding will be
a topic of discussion in our forthcoming project.
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6.3 Other codes

The VH1 code has limitations as it only considers the hydrodynamic model equation and
does not account for magnetic fields. However, several other codes have been developed
and are commonly used in astrophysics. Some of the currently available codes are FLASH
(Fryxell et al., 2000), ATHENA++ (Stone et al., 2020), and PLUTO (Mignone et al.,
2007). We implemented the radiative force in all of these codes, and the result found
in 1D agreed with the literature, however, in 2D we encountered some numerical issues
including the limitation of some codes compared to others. For instance, in the FLASH
code, the effect of rotation is not included in the PPM split solver, since it is required by
the spherical geometry. We choose to continue with PLUTO due to its universality. Unlike
VH1, PLUTO requires that the variables be in dimensionless units (code units), where we
scaled the density by the values ρ0 = 2.10−13 g/cm3, the velocity by v0 = 105 km/s, and the
length by stellar radius L0 = R⋆.

To replicate the setup used in VH1, we have made some modifications to the grid and
boundary conditions. Firstly, we have extended the radial domain up to 10 times the stellar
radius with a total of 200 grid points. Additionally, we have divided the colatitude into
100 grid points. We focused specifically on the radial component of the radiative force,
and we selected a spherical geometry case as the basis for our model.

To ensure proper boundary conditions, we have implemented reflective boundaries in
both the upper and lower sides of the latitudinal direction. For the upper boundary in the
radial direction, we have set an outflow boundary. Meanwhile, at the lower boundary,
we have fixed the wind density and set the radial velocity to be a subsonic inflow. After
several tests, we determined that setting the latitudinal velocity to zero yielded the best
results. Additionally, we have maintained solid body rotation for the azimuthal velocity.
These adjustments aimed to replicate the same setup as VH1 while ensuring accuracy and
reliability in our simulations.

To establish the initial conditions, we assign a wind density value of one and apply the
beta velocity law for the radial velocity. We assume zero latitudinal velocity and adopt the
Keplerian rotation law for the azimuthal velocity.

Figure 6.10 shows the surface plot of the density and radial velocity. The result ob-
tained from the simulations bears a resemblance to the findings depicted in Fig 6.1. How-
ever, there are minor variations that can be attributed to the setup of the lower boundary
conditions in the radial direction possibly influenced by the latitudinal velocity. To en-
hance the accuracy of the simulations, additional analysis and tests are required.
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Figure 6.10: Surface plot of the density in log scale (left), and the radial velocity (right) of Be star
from PLUTO code.



Chapter 7

Polarization due to electron scattering

In the atmospheres of massive stars, electron scattering leads to polarization. The process
results in light waves becoming aligned along specific directions. Instruments like spec-
tropolarimeters utilize this polarization by detecting it and measuring light intensity across
various wavelengths.

The polarization of light due to electron scattering in massive stars was first predicted
by Chandrasekhar in the 1940s (Chang, Jiang, and Lin, 2013). He calculated that a sub-
stantial linear polarization would occur at the stellar limb, meaning that the light waves
would be aligned in a particular direction. The root of this divergence lies in the dissym-
metry that pervades the limpid milieu enveloping individual stars, an imbalance brought
about by a binary partner or other extraneous influences.

Electron scattering in massive stars can produce light polarization that is subject to
modification by a weak magnetic field, known as the Hanle effect (Cotton et al., 2017).
The strength of this field determines how much change occurs. Polarized light caused by
electron scattering has other benefits including studying properties like stellar winds and
local medium characteristics while tracking star motions for more comprehension regard-
ing its atmosphere structure or physical processes happening within it. With such study,
astronomers may explore the magnetic fields surrounding celestial objects effectively via
the use of tools provided by the Hanle effect among others available to them today with
great results seen so far!

7.1 Continuum polarization

The theoretical model of the polarized radiation due to electron scattering depends on
the integral of the electron number density over the volume of scattering (Brown and
McLean, 1977). The analytical expression of the polarization from Thomson scattering
developed by Brown and McLean (1977) has been refined to include the effect of finite
stellar structure D(r) (called depolarization effect) by Cassinelli, Nordsieck, and Murison
(1987), using this expression, the polarization due to an axisymmetric density distribution
is given by

PR =
3

16
σT sin2 i

∫ r2

r1

∫ µ2

µ1

ne(r,µ)(1−3µ2)D(r)drdµ (7.1)
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where σT is Thomson scattering cross section, i represents the inclination angle, ne is the
electron number density, r is the radius, and µ = cosθ is the cosine of the colatitude θ; the
integral is carried out over the surface as shown in Fig 7.1.

z

O

r1

r2

θ1

θ2

Figure 7.1: Plane of integration in spherical geometry adopted from Brown, Ignace, and Cassinelli
(2000).

7.2 Single scattering polarization

The analytical expression of the polarization Eq 7.1 is intended for optically thin electron
scattering. Since the numerical hydrodynamic simulation includes stair casing at lower
boundary conditions in radial coordinate, to avoid this effect that could lead to an over-
estimate of the polarization, we choose to integrate from the region where we ensure that
the optical depth τ is less than one, we applied Eq 7.1 to compute the polarization for two
typical WR stars, where the integral is computed from the r1 = 1.2R⋆.

In the context of observations, Stevance et al. (2018) investigated the dependence of
the intrinsic polarization on the stellar rotation using the simplified WCD model by Ig-
nace, Cassinelli, and Bjorkman (1996). Figure 7.2 shows a comparison of the polarization
computed assuming the simplified model (WCD), oblate density distribution from nu-
merical simulation due to the effect of radial force only (hydro with radial), and prolate
density structure due to the effect of non-radial forces and gravity darkening (hydro with
full model) of the two WR stars (WR93, WR102) at a rotation speed vrot = 900 km.s−1.
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Figure 7.2: Comparison of the percentage polarization as a function of the inclination between
the analytical model of WCD (based on the model of Ignace, Cassinelli, and Bjorkman 1996),
numerical hydrodynamic model including radial force only (hydro with radial), and complete hy-
drodynamic with nonradial forces and gravity darkening, for a rotational velocity vrot = 900 km.s−1

for the two stars; Left; WR93b, Right; WR102.

The polarization signature depends on geometry. It is clear from fig 7.2 for a disk-
like geometry the polarization is positive, when the geometry changes to jet-like geometry
it becomes negative. Another effect that can be seen due to the inclination angle is that
when the system is viewed pole-on (i = 0), the polarization vanishes, indicating that the
matter is symmetric concerning the direction of viewing. Changing the observation angle
and viewing edge-on (at the equator i = 90deg) we can see the maximum polarization
is reached. The hydrodynamic model using radial force only showed a higher value of
polarization compared to WCD, this is due to the fact that the matter is confined to the
equatorial regions, and comparable absolute values can be seen between WCD and the
complete model.

To study the effect of rotation on polarization we limited ourselves to the complete
hydrodynamic model, where the density is given as a prolate distribution. Figure 7.3 shows
the variation of linear polarization as a function of the inclination for different rotational
velocities.
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Figure 7.3: Percentage polarization as a function of inclination, for different rotational velocities in
unit of km s−1 as labeled, using complete hydrodynamic simulation; Left; WR93b, Right; WR102
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We intended to compare our model with the model of Stevance et al. (2018), where
the determined the upper limit for the rotational velocities according to the polarimetric
observations. However, we faced more complex computational challenges, since we were
not able to make hydrodynamic modeling at low rotational speed (< 500 km s−1), as we
have seen non-physical structure for the density distribution using both cases (radial and
complete model). To determine the upper limits for the rotational velocity, we used a
logarithmic least square fitting of the polarization obtained by the complete model. Ta-
ble.7.1 shows a comparison between our model using the complete model and the limits
obtained by Stevance et al. (2018). The angular momentum is calculated using the formula
j = vrot ∗R⋆. Comparing the results of the angular in Tab.7.1 with the derived threshold
( j ≥ 3.1016cm2.s−1) by MacFadyen and Woosley (1999), we easily see that the obtained
limits exceed the threshold, as a result, the studied WR stars qualify as a progenitor of
long Gamma-Ray burst (LGRB). Our model agrees well with the results from observation
using spectropolarimetry (Stevance et al., 2018) and using the photometry by Gräfener
et al. (2012).

Table 7.1: Comparison between the fitted maximum observationally allowed rotational velocity
(in km s−1 ) in our model and the model of Stevance et al. 2018. PR is the upper limit of the
polarization. The last column gives the maximum specific angular momentum determined from
the maximum allowed rotational velocity.

WR PR vrot(km/s) vrot(km/s) log( j/1cm2s−1)
(%, observation) (Stevance’s model) (Current model)

93b 0.077 324 277 17.88
102 0.057 234 444 17.85

7.3 Effect of multiple-scattering
In this section, we apply the Monte Carlo method for computing the polarization of the
emergent intensity due to electron scattering in the wind. Stokes parameters were com-
puted using 3D Monte Carlo radiative transfer (MCRT) code HYPERION (Robitaille,
2011). The code is parallelized and solves the radiative transfer equation in different sets
of geometry, including Cartesian, cylindrical, polar, and spherical. In this work, we will
use the spherical geometry.

Our simulation focuses on calculating the polarization resulting from electron scatter-
ing alone. The simulation involves tracking the movement of photon packets emitted from
a central radiation source. In section 7.2, we utilized the outcomes derived from hydro-
dynamic simulation to calculate the polarization. The framework we employed was based
on the simplified model of the CAK line force for an optical thin wind. However, it is
important to note that the wind of WR exhibits optical thickness, implying the presence
of outer envelopes that envelop the atmosphere of WR stars. An analytical expression of
the density in fast rotating stars was developed by Dwarkadas and Owocki (2002), which
takes into account the gravity-darkening effect and considers the distribution of mass flux
in the simulation. This expression reveals that the mass flux is more pronounced at the
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polar regions and gradually diminishes towards the equator. This density distribution is an
essential factor in determining the polarization and is given by

ρ(ω̄, θ) = ρ0(r)
√

1− ω̄2 sin2 θ. (7.2)

In this study, we used the equation ρ0(r) = Ṁ/(4πv(r)r2) to calculate the density distribu-
tion in our computational domain. This equation takes into account the mass loss rate Ṁ,
the radial distance r, and the rotation ratio ω̄ which compares the rotational velocity to the
critical velocity. Additionally, we incorporated the β velocity law, denoted as v(r), which
describes how the velocity changes with distance.

To represent the stars in our simulation, we treated them as point sources located at the
center of the computational domain. These stars were assigned specific luminosities and
effective temperatures (see Table 6.1). By combining these parameters with the density
distribution equation, we were able to model the behavior and characteristics of the stars
in our study. To enhance accuracy, we have adjusted the photon numbers to be 107 for
both imaging and ray-tracing purposes. We have conducted a comparison between the
output of the Monte Carlo simulation with the single scattering model (Eq 7.1), and the
single scattering model incorporating an attenuation factor. By introducing the attenuation
factor e−τ, we can express the polarization equation as follows (McLean, 1979; Friend and
Cassinelli, 1986)

PR =
3
16
σT sin2 i

∫ r2

r1

∫ µ2

µ1

ne(r,µ)(1−3µ2)e−τD(r)drdµ, (7.3)

where τ is the optical depth for absorption.

7.3.1 Effect of rotation

The results of a comparison between the single scattering model, the single scattering
model with attenuation, and the multiple scattering model are presented in Fig 7.4. The
comparison reveals that the two models agree reasonably well up to a 50% rotation of the
critical value. However, at higher rotation speeds, the polarization induced by multiple
scattering exhibits significant deviations from the single scattering model.

A closer examination of the polarization data reveals that the effect of multiple scatter-
ing is quite pronounced at inclination angles of 40 and 60 degrees. Specifically, the degree
of polarization was found to increase significantly at 40 degrees, followed by a sharp de-
crease at 60 degrees, as shown in Fig 7.5. This observation indicates that when the system
is observed at high inclinations, the scattered light has to pass through a larger amount of
gas before it leaves the system. Due to this, a portion of the polarized light gets absorbed,
leading to a decrease in the overall polarization level. This effect is seen also in the Monte
Carlo simulations of polarization by Wood et al. (1996) and Halonen and Jones (2013).
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Figure 7.4: Polarization as a function of the inclination, due to the effect of single scattering (sing),
single scattering with attenuation (Sing+Atten), and multiple scattering (MCRT) for different rota-
tion rates: (left) for WR93b, (right) for WR102.

Figure 7.5: Polarization as a function of inclination for different rotational velocities from multiple-
scattering: (left) for WR93b, (right) for WR102.

7.3.2 Effect of mass loss
The polarization properties of Wolf Rayet stars are influenced by various factors, including
the mass loss rate. As the mass loss rate of a Wolf Rayet star changes, the optical depth of
its stellar wind also changes, leading to variations in the polarization of the scattered light.

To illustrate this relationship, a plot of the polarization as a function of inclination was
created for different values of mass loss. As shown in Fig 7.6, the degree of polarization
increases with increasing mass loss rate. This effect is due to the fact that higher mass
loss rates result in a greater number of scattering particles in the wind, leading to a higher
degree of polarization.

Reducing the mass loss rate will reduce the number density will decrease, resulting in
a decrease in the optical depth. This reduction in optical depth, denoted as τ << 1, can be
approximated using Taylor expansion as e−τ ≈ 1− τ. Consequently, the attenuation factor
will no longer have an impact on polarization, unlike its effect on high mass loss.
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Figure 7.6: Polarization, in log scale, as a function of inclination for different mass loss in unit
M⊙/yr from single with attenuation and multiple-scattering at rotation rate ω̄ = 0.6.





Chapter 8

Conclusion and future work

8.1 Current work overview

The purpose of this work has been to model numerically the stellar winds around massive
stars, and explore the effect of rapid stellar rotation into radiation-driven winds. We present
here the summary of the results obtained and conclusions of this work, and outline the
ongoing and future projects related to the current topic of ffast-rotatinghot star winds.

After an overview of the literature of the previous works in the wind of massive stars
Chap 1, we presented a general picture of radiation-driven winds and discussed the CAK
line force based on Sobolev approximation in Chap 2. In Chap 3 we showed the influence
of rapid stellar rotation based on the Roche model, and the presence of von Zeipel gravity
darkening which governs the latitudinal variation of the mass flux of a rotating star. This
results increase of the polar mass loss, opposite to the expected increase at the equator due
to the centrifugal gravity weakening. Rapid rotation can lead to axisymmetric stellar wind,
and due to electron scattering in such media, we can expect a nonzero polarization. The
theory of radiation transfer is showed in Chap 4, where we discussed the mathematical
formulation of the radiative transfer equation, and the Stokes vector of the polarization.

To solve the hydrodynamic set of equations and equation of radiative transfer, we
discussed in Chap 5 the numerical methods used in astrophysics, we focused on the finite
volume method, and the Monte Carlo method. The results of the hydrodynamic simulation
are shown in Chap 6, and in Chap 7 we discussed the polarization from a point source,
using single-scattering and multiple-scattering models.

We have revisited the line-driven wind models for various types of massive stars, rang-
ing from optically thin winds to optically thick winds. To validate our model, we compared
it with previous studies and found agreement with the semi-analytical model of BC and
the numerical model of Owocki, Cranmer, and Blondin (1994), which only considered the
radial force.

We went beyond these previous models and incorporated non-radial components and
gravity darkening into our simulations. Interestingly, our results were similar to the find-
ings of Owocki, Cranmer, and Gayley (1996) for Be and WR stars. The inclusion of
non-radial forces inhibited disk formation and led to a reduction in density at the equator.

However, when studying low metallicity stars, we observed that some exhibited equa-
torial compression at high rotation rates (greater than 80% of the critical velocity). This
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suggests that the dynamics of line-driven winds in low metallicity stars are more complex
and warrant further investigation.

We also computed the linear polarization resulting from electron scattering in the wind
of Wolf Rayet stars through the ingenious formalism of Brown and McLean (1977), uncov-
ering their potential as progenitors of long gamma-ray bursts. In addition, we embarked on
a grand exploration to validate the analytical formulation, employing the power of Monte
Carlo simulation to recreate polarization behavior in both optically thick and thin media.
The findings were strikingly similar for modest rotations, while a discrepancy emerged
when the rotations reached higher values. Intriguingly, the simulation revealed that multi-
ple scatterings gave rise to unparalleled polarization, particularly at inclinations between
40 and 60 degrees. Furthermore, in optically thin media, both the analytical formulation
and the Monte Carlo simulation dutifully presented a polarization directly proportional to
the square of the sine of the inclination, echoing the seminal works of Brown and McLean.

8.2 Future work aspects
There is a lot of work that still needs to be done, both in advancing the theoretical work
presented in this dissertation and in including novel physics in models of the winds of
rotating massive stars. Although we explained the dynamics of Wolf Rayet stellar winds
using the assumption that the wind is optically thin, similar to that of Be stars, in reality,
these winds are thought to be optically thick. To address this in optically thick media,
we started to use more advanced hydrodynamic codes that take radiation into account.
We have recently started to incorporate fast rotation into the MPI-AMRVAC code, which
includes a radiation module added by Moens et al. (2022).
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