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Přírodovědecká fakulta, Masarykova univerzita
Ústav teoretické fyziky a astrofyziky
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Abstrakt

V této práci prezentujeme Monte Carlo kód pro přenos záření v trojrozměrném expandu-
jícím prostředí. Tento kód načte vstupní model model atmosféry, spočítá ionizační a ex-
citační rovnoháhu látky za předpokladu LTE aproximace, vytvoří vlastní kartézský grid
(propGrid) a pomocí metody Monte Carlo vyřeší přenos záření v příslušném expandujícím
prostředí. V této práci se zaměříme na testování propagační numerické sítě, testování in-
terakce v čarách a samotné aplikace na trojrozměnré modely: testovací modely a hydrody-
namický model.

Abstract

In this thesis, we present a Monte Carlo radiative transfer code in 3-D expanding outflows.
This program reads an input model of an atmosphere, then, assuming LTE approximation,
calculates ionization and excitation equilibrium of matter. The code creates its own prop-
agation cartesian grid (propGrid) and solves the radiation transfer in the expanding envi-
ronment. This thesis is focused on testing of propGrid and interaction in lines, and finally,
radiative transfer in the 3-D cases, namely, testing models, and, finally, hydrodynamical
model.
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Introduction

The very first discovering of space was not scientific at all. People did not understand physics, as
proved by the fact that they were describing the stars in the sky creating tales to explain their origin,
the reason of their existence and they assumed that stars do not change in time. Some of those myths
are still evident in today’s astronomy: for example, the names of constellations are originated in the
Greek mythology. Throughout history, Man discovered the laws of this world. In the ancient Egypt,
the helical rise of Sirius predicted forthcoming floods. Later, sailors were calculating their position
based on the stars. Johannes Kepler was the first astrophysicist, to found out the laws of planets
movement and used actual physical laws to describe objects in space and he definitely removed the
Earth from the centre of solar system. Since those times, the astronomers deciphered many other
interesting questions; furthermore, they found out, that our planet is not in a special place in the
space. The research of the Space continued beyond our dreams; we discovered the planets of the
Solar system (the Voyager), astronauts started exploring the universe. Nowadays, our research is no
less exciting; our measurements are precise enough to measure gravitational waves created during a
merge of two black holes, we saw saw very first photo of a black hole. Our computational sources are
large enough to simulate the sun photosphere in three dimensions.

The presented work is just only a water-drop in an ocean of intriguing research. However,
mankind did not have so many informations about stars in previous ages, paradoxically, we have
not been so far away from space. Light pollution limits significantly the number of objects visible
from the cities; citizens from bigger cities cannot see, what the Milky way or a sky full of stars looks
like.

Stars are very important objects in the Universe, especially from the life’s point of view. There
would not be any heavier elements than primordial helium and lithium if no star existed. There would
be no planet with a solid surface, and organic chemistry does not occur. The heavier elements are
developed via thermonuclear reactions which take place in stellar cores. Firstly helium via the p-p
chain and CNO cycle (core of massive stars), and, finally, heavy elements up to iron are created.
The atoms have to be transported back to space by stellar winds or by more cataclysmic process: the
supernova ejecta. Both these processes: stellar winds are found in the case of hot stars, moreover, hot
stars can end as supernovae.

Hot stars used to be treated with simple radiative transfer models. The atmospheres used to be
believed to be static, because the dominant energy transport is due the radiative transfer. However,
later the instabilities were measured and proven by numerical calculations. The 3-D modelling is
starting to be the main method to study physical phenomena in stellar winds, for this reason the
presented code is being developed to be full 3-D; the structure of this thesis is following.

Chapter 1 is a brief introduction to the stellar wind phenomena, physics of stellar winds and their
parameters. Mainly the characteristic spectra profiles are described, and, finally, the existing codes
used for the stellar wind research. Some pictures in this chapter are used with a kind agreement
by Jiří Krtička. Chapter 2 describes the physics of radiative transfer; a Monte Carlo approximation
‘Macro atom’ is introduced and all possible transitions are listed in this chapter. The next chapter,

x
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number 3, brings a description of our code. Starting with atomic data, then introducing modGrid and
propGrid. Chapter 4 is a discussion about the propGrid efficiency and accuracy. Several tests were
run, for artificial physical conditions. In Chapter 5, an implementation of line interactions is tested.
The emergent spectra were compared with the spectra calculated with the Tardis code. And, finally,
the very first applications 3-D cases are showed. First case is a simple pseudo 3-D model, the second
case describes the hydro-model MPI-AMRVAC and first spectra calculated by our code for this code.



CHAPTER 1

Hot stars and their winds

Searching for the basic definition of ‘star’, one would find: ‘A star is an object with thermonuclear
reactions inside its core are processed in a significant period of time.’ There is a wide range of stars in
a different evolutionary state. Let us focus on main sequence stars: main-sequence stars are burning
hydrogen via the p-p chain and CNO cycle, besides, the stars can be divided into two main groups:
hot stars and cool stars. The main difference consists in the mechanism of energy transport from the
stellar interior outwards, as shown in Fig. 1.1. Cool stars are characterized by a solar-type activity,
mainly driven by turbulent plasma, such as protuberations, eruptions, sun spots, which are not present
in the cases of atmospheres of hot stars; objects which we study in this thesis. The category of hot-
stars does not include only main-sequence stars; this chapter and the whole thesis is focused on hot
stars and related objects.

Hot stars is a category of stars with effective temperature higher than 7000K, concretely, main
sequence: O, B, A type stars, and also Wolf-Rayet stars (post main-sequence stadium). There are
other stellar types in the list of hot stars, for example, Herbig Ae/Be stars, giants or supergiants of the
population I, central stars of planetary nebulae, RR Lyrae variables, etc. Their importance is due to
the fact that they enrich the interstellar environment with heavy elements and create large bubbles via
their strong winds.

The phenomenon of stellar winds is described as a steady emission of matter from the star to
the circumstellar environment consisting of charged particles and dust. We can observe stellar winds
ourselves, concretely, aurora borealis is a consequence of the solar mass ejecta which hits earth mag-
netosphere. However, Sun’s stellar wind changes during the time depending on solar activity and it
can cause damage to electronics and communication technology. Nevertheless, this thesis is focused

Figure 1.1: Dominant mechanism of energy transport in cool and hot stars. Left: Radiation provides energy
transport inside cores of cool stars, whilst convection dominates in atmospheres. Right: the radiative transfer is
not efficient inside hot star cores, therefore convection is leading mechanism, however, energy in atmospheres
is transported by radiation.

1
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Name of a star Spectral type L Ṁ v∞

L� M�/yr km/s
ζ Pup O4 I (f) 7.9×105 6×10−6 2200
λ Cep O6 I 6.8×105 5×10−6 2250
ε Ori B0 Ia 4.6×105 4×10−6 1500
P Cyg B1 Ia+ 7.2×105 2×10−5 210
HD 12953 A1 Iae 1.3×105 4×10−7 150
HD 93250 O3V 1.9×106 5×10−6 3250
HD 15629 O5V 8.9×105 8×10−7 3000
τ Sco B0 V 3.2×104 7×10−9 2000
WR 1 WN5 1.0×105 6×10−5 2000
WR 111 WC5 2.8×105 1×10−5 2200

Table 1.1: Selected parameters of several OBA supergiants, main-type hot stars, Wolf-Rayet stars and central
stars of planetary nebulae; adopted from Carroll & Ostlie (2017) (Kudritzki et al., 1999, Lamers & Cassinelli,
1999, Pauldrach et al., 2004).

mainly on hot stars winds, which differ from the solar (and from cool stars in general) winds, for
example, hot star can lose significant mass via the stellar wind, which affects its evolution.

Stellar winds are characterized with two parameters: the first parameter refers to amount of matter
lost per unit time via the wind – mass loss rate. It is denoted with Ṁ; the second parameter refers to
the velocity of outflow in a large distance from the star, where all forces are negligible; theoretically
in the infinite distance, therefore this velocity is denoted v∞. The basic wind parameters are listed in
the Table 1.1.

1.1

Beyond the stellar winds: other objects with strong
outflows
We do not study just objects with strong stellar winds, but supernovae too. Therefore, this section is
oriented on supernovae description. In addition, Be stars are mentioned, mainly because of common
modelling of stellar wind and disc combined, furthermore, an interaction of supernova shock wave
with circumstellar disc can be modelled. The information is quoted from from Carroll & Ostlie
(2017).

1.1.1

Supernovae

A supernova is a cataclysmic object raising suddenly its luminosity and ejecting an extremely large
amount of material into space. It can be a late massive star or a component of a binary star. Spectra
of these objects are different, therefore it is a basement for the supernova classification.

Supernova type I: spectra do not exhibit hydrogen lines. These types are divided into three sub-
categories: a, b, and c. Ia–strong SiII line (6150 Å), b and c: presence (Ib) or absence (Ic) of strong
helium lines. Supernova type II: spectra contain strong hydrogen lines.

There are several possible scenarios of supernova explosion. Stars more massive than 8M� can
burn helium, and heavier elements, such as carbon, nitrogen, oxygen, and silicon. Inside those stars,
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Figure 1.2: An onion structure interior of a massive star a few days before a collapse. Red-labeled regions
with burning material are between inert zones with no thermonuclear reactions. Copied from Carroll & Ostlie
(2017).

an onion structure is modeled, see Fig. 1.2. The main reason of this structure is a sensitivity of the
nuclear reactions to temperature and mass density. The conditions are sufficient enough only in thin
zones, which leads to the creation of an inert zone upwards to the burning zone. The iron core is
located in the centre. Iron cannot be burned whilst energy is released, although photodisintegration
processes occur. The core collapses when the density exceeds ρ ≈ 8× 1017 kg ·m3. The strong
attractive force changes to strong repulsive force, the shock wave is triggered propagating outwards.
The shock drives the envelope expansion. The total energy in the expanding material is released
∼ 1044 J; when the ejecta becomes optically thin, the radiation with power about 1036 W (109L�)
(comparable with the brightness of an entire galaxy).

The supernovae type Ib and Ic may correspond to Wolf-Rayet stars (types WN and WC). The
supernovae Ia are usually exploding remnants in the binary systems. Those objects do not explode
simultaneously; the explosion is triggered by an accretion of mass from an accompanying star, while
temperature rises continuously, until thermonuclear reactions occur in the whole volume, then the gas
degeneration is destroyed and gas expands explosively to the outer space. Over than half of carbon
and oxygen are burned to iron. Another alternative is a merge of two white dwarfs.

1.1.2

Be stars

Be stars are main-sequence B-type stars, in which some of Balmer lines are in emission. This emission
profile is called emission Be-type. This specific profile is caused by a disc in the equatorial plane of
a star. Electron temperature is approximately 10000K, electron density 1012 cm−3. The disc reaches
a size of several stelar radii. The mechanism leading to the creation of a disc are not fully known
by now. Several theories were proposed, such as the creation of a disc caused by the critical rotation
of a star. Several studies, such as Porter (1997) derive velocities ∼ 70− 80% of critical velocity.
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Figure 1.3: Scheme of P Cyg profile creation. Three zones affecting an observed spectrum are depicted here.
Published with a kind agreement by the author of this picture (Petr Kurfürst).

Townsend et al. (2004) predict equatorial velocities of Be stars close to the critical velocity, because
gravitation darkening may make velocity measurements more complicated.

Strong stellar winds are observed in the case of Be stars, then one theory of creating of circum-
stellar disc Bjorkman & Cassinelli (1993) is based on the stellar wind existence, nevertheless, this
theory was found to be incorrect.

1.2

Observations of stellar winds
Stellar winds create characteristic spectral line profiles; which are called P Cygni, containing blue-
shifted absorption component and red-shifted emission component. The basic concept of creation
is drawn in Fig. 1.3, where three spatial zones with different contribution to observed spectra exist.
The zones are marked with capital letters, zone by zone, an absorption affects spectra in the zone A.
Re-emitted photons come mostly from the zone B, creating an emission profile, and finally, photons
from the zone C do not affect spectrum for the observer, therefore, summing up spectra from the zone
A and the zone B, we get a P Cyg profile. The line profiles are used for the mass-loss rate and the
terminal velocity determination. Some profiles are more sensitive on these wind characteristics.

Lines including P Cygni profiles are listed in Tab. 1.2. Several atlases of P Cygni lines were
published; namely Snow & Morton (1976), Snow et al. (1994). Lamers & Morton (1976) determined
the first mass loss rates from P Cygni profiles. An example of UV spectra is shown in the Fig. 1.4
with important lines labeled.

Another important factor is the infrared and radio excess in the spectra. The excess is caused
by free-free emission (Bremsshtrahlung) in the wind. The mass loss rate can be calculated from the
known velocity, and temperature structure. The radio excess was measured by Bieging et al. (1989),
Leitherer et al. (1997, 1995); the infrared excess was measured by the IRAS satellite (e.g., Waters
et al., 1987) or from the ground (Barlow & Cohen, 1977).
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Ion Abundance Ion. pot λ Exc. pot. gl f
eV Å eV

CII 3.7×10−4 11.26 1334.532 0.00 2 0.128
1335.708 0.01 4 0.319

CIII 3.7×10−4 24.38 1175.67 6.50 9 0.257
CIV 3.7×10−4 47.89 1548.195 0.00 2 0.191

1550.770 0.00 2 0.095
NIV 1.1×10−4 47.45 1718.551 16.20 3 0.179
NV 1.1×10−4 77.47 1238.821 0.00 2 0.157

1242.804 0.00 2 0.078
OVI 6.8×10−4 113.90 1031.928 0.00 2 0.130

1037.619 0.00 2 0.065
MgII 3.5×10−4 7.65 2795.528 0.00 2 0.612

2802.705 0.00 2 0.305
SiII 3.5×10−5 8.15 1526.707 0.00 2 0.230

1533.431 0.00 2 0.229
SiIII 3.5×10−5 16.35 1206.500 0.00 1 1.669
SiIV 3.5×10−5 33.49 1393.755 0.00 2 0.514

1402.770 0.00 2 0.255
FeII 2.5×10−5 7.87 2585.876 0.00 10 0.065

2598.370 0.05 8 0.099
2599.396 0.00 10 0.224

Table 1.2: Some important lines which are used to measure mass loss rate. Copied from Lamers & Cassinelli
(1999).

The very first models assumed the velocity and temperature structure of the wind to be spherically
symmetric and the velocity magnitude was estimated to be Chandrasekhar (1934)

v(r) = v∞

(
1− R∗

r

)β

, (1.1)

where v∞ is terminal velocity magnitude, R∗ stellar radius and β is a free parameter. More general
velocity profile takes a form

v(r) = v∞

(
1− b

r

)β

, b = R∗

[
1−
(
v0

v∞

) 1
β

]
, (1.2)

here, v0 is the velocity magnitude at the lower boundary. The density profile can be derived from the
continuity equation

ρ(r) =
Ṁ

4πr2v(r)
. (1.3)

Nowadays, this velocity model not used, since velocity structures are complicated non-symmetric
and non-monotonic functions, however the mean values of velocity profile agree with the β velocity
law.



CHAPTER 1. HOT STARS AND THEIR WINDS 6

Figure 1.4: Measured spectra of several stars. Taken from Krtička (2011).

1.3

The physics of stellar wind
The stellar wind phenomenon is originated via a strong radiative force in the case of massive stars.
Hot stars possess the strong radiation field and the rotation is fast. Both of those effects decrease the
escape velocity. We describe the basic physics in the following paragraphs.
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ν,k v v0

v′

ν ′,k′

Figure 1.5: Scheme of a wind particle acceleration; a packet with frequency ν and wavevector~k is absorbed
by an atom. The absorption is followed by emission of a new photon with a frequency ν ′ and wavevector~k′.
Scheme adopted from Krtička (2011).

The basic physical phenomenon causing the acceleration is the momentum conservation. Radia-
tion flux is coming mainly outward the stellar centre and photons interact with matter. Since the total
momentum must be conserved, an atom is pushed outwards the photosphere and it can be excited.
During deexcitation a pair atom-photon is produced again. The photon direction is random. Only if
a new direction of photon is identical to its original direction, no acceleration happens. Otherwise,
the velocity magnitude of the atom increases in comparison with its original velocity magnitude. The
whole process is depicted in the Fig. 1.5.

In addition to radiatively driven winds, there are dust driven winds and winds accelerated by
sound waves, moreover, each type plays a key role in a different type of star.

1.3.1

Hydrodynamical equations

Stellar wind is described by a set of equations: conservation of mass

∂ρ

∂ t
+∇ · (ρ~v) = 0. (1.4)

Here, ρ is mass density and~v is a vector of drift velocity. The Euler equation takes the form

∂ (ρ~v)

∂ t
+∇ · (ρ~v⊗~v+P) =~g+~frad, (1.5)

with gravity force ~g and radiative force ~frad on the right side, and the pressure tensor P on the left
side, ⊗ is a symbol of tensor product. This equation is non-linear which causes strong dependence of
solution the initial conditions in the liquid/gas dynamics. The last equation is conservation of energy

∂e
∂ t

+∇ · (e~v+ p~v) =~g ·~v+~frad ·~v+ q̇. (1.6)

Here e denotes energy density, p scalar pressure and q̇ represents the heating and cooling of gas by
radiation. To close this set of equation, we need a dispersion relation between energy density and
pressure.

1.3.2

Radiative force

The radiative force plays a crucial role in the stellar winds acceleration and it takes the form

~frad =

∞∫
0

dν

∫
ω

dΩ (κ(ν) · I(ν ,~n)−η(ν)) ·~n, (1.7)



CHAPTER 1. HOT STARS AND THEIR WINDS 8

where κ(ν) represents a total mass extinction (absorption and scattering) and η(ν) is emission co-
efficient, ~n is a unit vector of a direction propagation of radiation. If we assume isotropic emissivity
and opacity, the radiative acceleration can be written in the form

~frad =
1
c

∞∫
0

dν κ(ν ,r) ·~F(ν ,r), (1.8)

r is radial coordinate and F is the monochromatic flux

~F(ν ,r) =
∮

dΩ I(ν ,r,~n) ·~n. (1.9)

The radiative force depends on the opacity. The opacity consists of two significant parts: contin-
uum and line. Therefore, matter is accelerated in lines and in continuum.

The continuum opacity consists of Thomson scattering, free-free and bound-free absorption. We
define the Eddington parameter: a ratio of electron scattering acceleration and gravitational accelera-
tion

Γ =−gTh

g
=

σTh
µe

L∗
4πGM∗c

, (1.10)

gTh, g denotes acceleration due Thomson scattering, and gravitation acceleration respectively, σTh the
Thomson scattering cross section, and G the gravitation constant, which is approximately constant in
the stellar wind, therefore it cannot accelerate the wind, however, this force can lower the gravity. In
the case of an O star, Γ . 1; the gravitation field is lowered significantly. The escape velocity for the
ionized gas takes the form

vesc =

√
2GM∗(1−Γ)

R∗
, (1.11)

here, r denotes a radial distance from the center. The radiative force calculation is very challenging,
hence several approximation are used. We describe the Sobolev approximation and the CAK theory
in the further sections.

Sobolev approximation

The main idea of this approximation is a simplification of interaction of photons with lines. The in-
teraction area is reduced to a single point (Sobolev point), accordingly, line profiles are considered to
be a delta function with no broadening. This approximation is valid in the cases of large velocity gra-
dients. A calculation of optical depth is much more simple, since all quantities can be evaluated only
in one point and no integration has to be processed. The Sobolev approximation is frequently used in
the supernova ejecta modelling, since the assumption of large velocity gradients is well satisfied. A
radiative force due optically thick lines depends only on the velocity gradient in the wind.

CAK theory

This theory was published by Castor et al. (1975), absorption in optical thick and thin lines is assumed.
Two parameters are defined here: α – a ratio of radiative force due optically thick lines over the total
radiative force, and k defining the magnitude of radiative force; the radiative force then takes a form

frad =
f ΓGM∗L∗

r2

(
1

σThρvth

dv
dr

)α

. (1.12)
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In this equation, f is a correction factor due to finite size of a star, vth mean velocity due thermal
motion of wind particles; according to Gayley (1995) a parameter Q̄ can be introduced; then the
equation takes the form

grad =
f Q̄L∗

r2

(
1

4πρQ̄
dv
dr

)α

. (1.13)

The equation of motion takes the form (non-dynamical atmosphere ∂v
∂ t = 0).

v
dv
dr

=−GM(1−Γ)

r2 +
f ΓGM∗L∗

r2

(
vr2

ṀQ̄
dv
dr

)α

. (1.14)

Only one appropriate solution exists for a specific star, determining mass-loss rate and escape velocity.

1.4

Commonly used models of stellar winds
There is a wide range of commonly used models for the stellar wind modelling. The stellar wind
model is not calculated using general physical laws, although, some simplifications are used routinely.
Spherical symmetry (i. e. 1-D) is often assumed, using the NLTE approximation is necessary. The
codes solve the radiative transfer equation (hereafter RTE) and the kinetic equilibrium equations (the
NLTE line formation problem), in some cases supplemented by temperature-defining equation (either
radiative equilibrium or thermal balance). The codes are used for analysis of observed spectra.

One-dimensional codes

The most simple codes assume spherical symmetry, such as CMFGEN (Hillier, 1987, 1990, Hillier &
Miller, 1998) includes detailed RTE solving. The code is NLTE and account the line blanketing. The
code is designed for W-R, O stars and Luminous Blue-Variables, see the code websites1. Other codes
are FASTWIND (Santolaya-Rey et al., 1997, Puls et al., 2005, Puls et al., 2020), and PoWR Hamann
& Gräfener (2003, 2004), Sander et al. (2015). The METUJE code (Krtička & Kubát, 2004, 2009,
Krtička, 2006) calculates the global model of atmosphere – includes both photosphere and wind and
considers affection of wind onto the photosphere additionally. This code still assumes the spherical
symmetry.

Is one-dimensional approach good enough?

One-dimensional codes seemed to be reliable for the stellar winds modelling, however, several works
showed that one dimensional models are not capable to fully describe non-symmetric phenomena,
such as stellar rotation (Puls et al., 1993, Owocki & Cramner, 1994, Petrenz & Puls, 2000), by the
magnetic field (ud Doula, 2014), or by the accretion onto the compact object (Blondin et al., 1990,
Feldmeier et al., 1999).

Furthermore other studies has shown natural instabilities originating from light-atoms interac-
tions. The density, velocity field and other physical quantities are not simple monotonic functions:
Carlberg (1980), Owocki & Rybicki (1984), Owocki & Puls (2002), Feldmeier et al. (1997), and

1http://kookaburra.phyast.pitt.edu/hillier/web/CMFGEN.htm

http://kookaburra.phyast.pitt.edu/hillier/web/CMFGEN.htm
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many others. The instability was studied by radiative hydrodynamical simulations in 1-D (Feldmeier
et al., 233, Owocki et al., 1988, Runacres & Owocki, 2002) or in 2-D (e.g. Dessart & Owocki, 2003,
2005, Sundqvist et al., 2018, Driessen et al., 2021).

More than one-dimensional codes

As it was shown by 3-D calculations of line profiles in inhomogeneous winds, 1-D models can not
describe the effects of wind clumping both on line profiles and mass-loss rate determinations properly
(Sundqvist et al., 2010, 2011a, Šurlan et al., 2012, 2013).

A transition from 1-D to 3-D models is not straightforward; full 3-D model requires significantly
larger computational sources, which is the main reason to calculate pseudo 2-D models Oskinova
et al. (2004, 2006) or pseudo 3-D models Sundqvist et al. (2011b). Full radiation-hydrodynamics
LTE codes, (such as Nordlund & Stein, 2009, Ludwig & Steffen, 2016, Freytag et al., 2019) are
simulating convection in cool stars. Several steps to full NLTE 3-D have been already taken; since
a general velocity field must be implemented, only simplified problems were solved. The codes
differ by a way of solving radiative transfer: a finite volume method Adam (1990), Lobel & Blomme
(2008), and Hennicker et al. (2018), short characteristics method Papkalla (1995), Korčáková & Kubát
(2005), Georgiev et al. (2006), Zsargó et al. (2006), Leenaarts & Carlsson (2009), Ibgui et al. (2013),
Štěpán & Trujillo Bueno (2013), and Hennicker et al. (2020). Every code from the list requires large
computational resources to solve even the simplest line formation problem.

There are several codes for the MC 3-D radiative transfer calculations. HDUST (Carciofi et al.
2004, Carciofi & Bjorkman 2006, Carciofi et al. 2017) a code for calculation of radiative transfer
for a wide range of objects, like Be stars, hot star winds, etc. The PYTHON code (Long & Knigge,
2002), extended by (Higginbottom et al., 2013). PYTHON is a code for spectra calculation. It can
calculate with several astrophysical objects including analytical wind models. The Python code using
cylindrical or spherical grid but it also can read in arbitrary geometries. The source code is available
online here 2. (Šurlan et al., 2012, 2013) studied the clumping phenomena in the hot star winds. The
radiative transfer is solved in doublet resonance lines.

Radiative transfer through the supernova ejecta is treated with Monte Carlo as well. Tardis
(Kerzendorf & Sim, 2014, Vogl et al., 2019, Kerzendorf et al., 2019) is a supernova code for the quick
calculation of spectra. The code is written in C and Python languages. The procedures written in
the C language provide fast calculations whereas the Python part guarantee a user friendly working
environment. The parameters of the calculation are stored in a yml file and can be easily edited.
User can modify a wide number of conditions like the lower boundary condition, ejecta physical
parameters, applied physical approximations, numerical parameters, etc. More sophisticated codes,
such as (Lucy, 2005, Kromer, 2009, Kromer & Sim, 2009), simulate radioactive reactions in the
ejecta.

2https://github.com/agnwinds/python.

https://github.com/agnwinds/python


CHAPTER 2

NLTE Monte Carlo radiative transfer

Many methods to solve the radiative transfer equation were already developed. Classical codes solve
the radiative transfer equation as a classical partial differential equation. Another approach was devel-
oped later – solution of radiative transfer equation in the probabilistic interpretation which is described
in this chapter.

In the nature, the radiation field is quantized into photons. Every photon can interact with an
atom and these interactions lead to non-linear coupling between radiation and matter. It is not possi-
ble to quantize the radiation field to physical photons, hence, in the Monte Carlo approach, numerical
quanta are created. The quanta are denoted as packets and each packet represents an energy flow, it
is indivisible and posses a weight (importance), strictly constant during the whole propagation proce-
dure, which determines a contribution of the packet to the results (spectra). It may be understood as
an energy of the packet. The matter can be introduced in several approaches. We implemented Lucy’s
Macro atom approach: matter is divided into finite volume elements and the properties correspond to
the properties of real matter in a limit.

This Chapter begins with the Monte Carlo method description, then a ‘classical’ form of the
radiative transfer equation is introduced in the Section 2.2. Then, a probabilistic form of radiative
transfer equation is derived, the radiative packets are introduced and described: the creation, the
propagation, and the spectra calculation. The Section 2.5 redefines the statistical equilibrium equation
in the case of finite volumes, moreover, this approach is embraced in the final sections – Macro-atom
approach is introduced and all implemented rates are listed.

2.1

Monte Carlo method
The Monte Carlo method was used for a simulation of the neutron transport by Nicholas Metropolis
and his colleagues, see Metropolis (1985). The basic inspiration was the game of chance, which is
always played at the heart of Monte Carlo calculations (Noebauer & Sim, 2019, see, Chap. 3). The
heart of Monte Carlo simulations is a random number generator. A large amount of pseudo-random
1 number generators is known. Usually an initial seed is used; a different seed generate a different
series of random numbers. The true random number generators can generate numbers based on a

1Pseudo-random generator generates a sequence of numbers which distribution is approximately random.

11
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measured physical quantity changing in the time. If we want to create a regular distribution in an
interval [a,b],b > a, we calculate

c = a+(b−a) · z, z ∈ [0,1]. (2.1)

We show two standard methods of random sampling of variables based on a distribution function.
The first one is based on analytical function f (x):

z =
b∫

y

dx f (x), (2.2)

where f (x) is a non-negative, upper-bounded function, with

lim
x→±∞

f (x) = 0, (2.3)

the probability of choosing a value within an interval dx is then equal to

w(x,x+dx) =
f (x)dx

+∞∫
−∞

dx f (x)
. (2.4)

Firstly z ∈ [0,1] is randomly generated, secondly, the lower boundary y is determined. This method is
used less frequently than the following method, simply, because we usually work with non-analytical
functions.

The second method is named the acceptance-rejection method, see Fig. 2.1. The distribution
function is defined by a table of values, or by a non-integrable function. Firstly, the definition of
intervals on both axis is necessary and the basic rectangle is defined. Secondly, two random numbers,
xrand and yrand are generated. A value of function f (xrand) is determined. Thirdly two cases are
possible

• acceptance if yrand ≤ f (xrand),

• rejection if yrand > f (xrand).

If a value is accepted, we can use this value in forthcoming calculations; concretely, the calculated
value can be a packet frequency. The resulting distribution is in the right panel of Fig. 2.1. Rejection
means a new generation of two numbers, which will be accepted or rejected. This method can be
used for a numerical integration, such as a calculation of π , which is the first Monte Carlo program,
which every student probably writes. The scheme of a calculation is plotted in Fig. 2.2. Let the total
number of generated points be N, the number of points under the curve (accepted points) is equal N+.
The area of a circle is equal to S = πr2; if r = 1, then S = π . Since a symmetry can be applied, we get

π

4
=

N+

N
. (2.5)

This calculation can give a representative image of accuracy of the Monte Carlo method; the number
of points must be very large to achieve an acceptable precision.
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Figure 2.1: Acceptance-rejection method. Left panel: The red line represents the distribution function f (x) and
random points (N = 1000) are sampled in the bounded area. This construction can be used both for calculation
of an area below the curve and for generation of random x values with the distribution f (x). Right panel: a
histogram of generated values. Random points were generated with the implicit Tikz random number generator.

x

y

Figure 2.2: Scheme of numerical calculation to calculate a value of π .

2.2

Radiative transfer equation

The radiation is an oscillating electromagnetic field – given by the electric field ~E(~r, t) and the mag-
netic field ~B(~r, t). This idea was firstly published by James Clerk Maxwell. One can find the cal-
culation in every classical electromagnetic field theory book, for example Griffiths (1999). Making
simple calculations, we can derive the following physical quantities for every propagating light ray,
which is characterized by specific intensity, which can be defined as energy flowing through an area
dS

δε = I(ν ,~n) ·~n ·d~S ·dΩ ·dν ·dt, (2.6)

where ~n is an arbitrary unit vector, d~S is an element of an arbitrary area (oriented), dΩ is an angle
element, dν is a frequency element and dt is a time element. Analogically, we can define a decrease
of radiation energy by the extinction coefficient

δε = χ(ν ,~n) · I(ν ,~n) ·dS ·dl ·dΩ ·dν ·dt, (2.7)

and an increase of energy by the emission coefficient

δε = η(ν ,~n) ·dS ·dl ·dΩ ·dν ·dt, (2.8)
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dl is an element of length.
The light propagation through matter is a basic physical problem in the stellar atmospheres mod-

elling. The equation describing the light propagation is called the radiative transfer equation, it is
written in the form, (see Hubeny & Mihalas, 2015, Eq. (11.21))

∂ I(~n,ν ,~r, t)
∂ s

= η(~n,ν ,~r, t)−χ(~n,ν ,~r, t) · I(~n,ν ,~r, t). (2.9)

Here, the left-side derivative is a derivative on a path with a parameter s, the right-side quantities: η

is emissivity, and χ is opacity. Opacity and emissivity characterize the interaction of the matter with
electromagnetic radiation. Equation (2.9) describes an intensity change on a path ds. This intensity is
decreased by opacity and increased by emissivity.

We can define a quantity optical depth between two points~r1 and~r2 on a path C

τ =
∫
C

ds χ(~n,ν ,~r, t), C= {x(s),y(s),z(s); t ∈ [s1,s2]} . (2.10)

Here, the C denotes a curve parametrized by a parameter s. It expresses a transparency of an environ-
ment. If τ < 1, then the probability of interaction (scattering, etc.) is very small. This environment is
denoted as optically thin. In another case, τ > 1 describes optically thick environment and the most
of photons interact. The optical depth τ = 1 corresponds to average free photonic path which is equal
to

〈l〉= 1
χ(~n,ν ,~r, t)

. (2.11)

One can imagine optically thin environment as a sunny day with a great visibility; optically thick
environment corresponds to a foggy weather – the main free photonic path is much smaller than it is
needed for discovering of a surrounding environment.

If we put (2.10) into (2.9), then we get

∂ I(~n,ν ,~r, t)
∂ s

=
∂τ

∂ s
∂ I(~n,ν ,~r, t)

∂τ
= χ(~n,ν ,~r, t)

∂ I(~n,ν ,~r, t)
∂τ

= η(~n,ν ,~r, t)−χ(~r,ν ,~r, t) · I(~n,ν ,~r, t),
(2.12)

after dividing by χ(~n,ν ,~r, t),

∂ I(~n,ν ,~r, t)
∂τ

=
η(~n,ν ,~r, t)
χ(~n,ν ,~r, t)

− I(~n,ν ,~r, t), (2.13)

we can now define the source function

S(~n,ν) =
η(~n,ν ,~r, t)
χ(~n,ν ,~r, t)

, (2.14)

and put this definition into (2.13)

∂ I(~n,ν ,~r, t)
∂τ

= S(~n,ν ,~r, t)− I(~n,ν ,~r, t). (2.15)

2.3

Probabilistic interpretation of the radiative transfer
equation
The standard radiative transfer equation includes the specific intensity which is a statistical quantity.
If we want to calculate a propagation of a single photon, we have to switch to the probabilistic terms.
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Let us assume an environment with pure absorption only, consequently, without emission (η = 0).
Therefore, the equation (2.15) takes the form

∂ I(~n,ν ,~r, t)
∂τ

=−I(~n,ν ,~r, t), (2.16)

which is a differential equation of the first order. Using a standard method ‘separation of variables’,
the intensity can be expressed in a form

I(τ) = I(0)exp(−∆τ). (2.17)

The probability that the photon is not absorbed in optical depth ∆τ is

w(∆τ) = exp(−∆τ).

The inverse function is then
∆τ =− ln(w(∆τ)) , (2.18)

In this equation, w(∆τ) ∈ (0,1) is a random number. It is important for calculation of the probability
interaction during the propagation of packets, it can be found in the forthcoming text.

2.4

Radiative packets
The radiative packets represent a numerical quantization of the radiation field. The real procedure of
propagation of photons depends on time, since light propagates with a finite velocity. The simulation
can be done for a single time snapshot. Furthermore, packets can be propagated one by one, which is
the great advantage of MC simulation in the case of parallelization. The packet life cycle is displayed
in the Fig.2.3. The packets are created at the lower boundary, then the packets are propagated until:

1. it reaches lower boundary,

2. it reaches upper boundary,

3. a number of interactions Nint > Nmax (Nmax is a variable defined by user),

4. an interaction occurs.

The first point leads to a packet deactivation, unless a ‘reflexive’ lower boundary condition is set; a
new r-packet is re-emitted instead of the previous one. The second and the third items cause the packet
deactivation. The interactions change the type of packet. The whole packet machinery is described in
the following parts.

2.4.1

Creation of radiative packets

The packets are created according to lower boundary physical conditions valid within this area. At
least, the total luminosity, and frequency distribution must be defined to create packets and set their
properties. A standard boundary shape is assumed to be a sphere and it represents the stellar ‘surface’.
A packet initial position is random, and it is

~rinit = (Rsin(Θ) · cos(Φ),Rsin(Θ) · sin(Φ),Rcos(Θ)). (2.19a)
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r-packet emission

propagation

interaction point next cell cross

deactivation

deactivation and save for a spectrum

macro-atom machinery

Is the position
r > R∞?

Is the position
r < R∗?

re-emission

Is photosphere reflective?

yes no

no

yesno

yes

START

Figure 2.3: Scheme describing a life cycle of a packet. The packet is created (the most upper panel) and
propagated through the atmosphere. The propagation distance can be either to the point of interaction, or to
the next crossing with the grid. If the next cross with grid is chosen, a new position is tested for to be inside
the computational domain (R∗ < r < R∞). If this inequality is not satisfied, the packet is deactivated. The left
inequality means packet is inside the photosphere. If the photosphere is reflexive, then the packet is emitted
again, otherwise the packet is deactivated. In the case of r > R∞, the packet is deactivated and can be used
to create a spectrum. If the packet is inside the computation domain, the propagation can continue. If an
interaction is chosen, the packet is propagated to the point of interaction, the MA machinery is processed until
the packet is transformed to r-packet (not necessary with the same frequency) and the propagation can continue.

The angles are calculated by the equations

Φ = 2πτ, (2.19b)

cos(Θ) = 2σ −1. (2.19c)

Here τ and σ are randomly generated numbers in the interval [0,1] (see also Noebauer & Sim, 2019,
Eqs. (26) and (27)). The propagation direction of the r-packet is randomly chosen in the outwardly
direction from the stellar surface, hence another random unit vector~ninit. is generated as

~ninit. = (sin(t) · cos(p),sin(t) · sin(p),cos(t)), (2.20a)

with
p = 2πτ

′, (2.20b)

sin2(t) = 1−σ
′. (2.20c)
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Figure 2.4: Initial packet frequency distributions. Left panel: generated with the Planck function. The total
number of packets is 5×106; right panel: generated with the emergent spectrum, the total number of packets
5×106. The input spectrum was calculated with the TLUSTY code (Hubeny, 1988).

Here τ ′ and σ ′ are randomly generated numbers in the interval [0,1] (see also Noebauer & Sim, 2019,
Eq. (47)). The propagation direction in the stellar coordinate system is calculated as a double rotation
(multiplication of two rotation matrices), then the initial packet direction ~dpack takes the form

~dpack = (r3 · sin(t) · cos(p)+ r1 · cos(t) · cos(p)− r2 · sin(p),

r3 · sin(t) · sin(p)+ r1 · cos(t) · sin(p)+ r2 · cos(p),r3 · cos(t)− r1 · sin(t)), (2.21)

where ri represent the Cartesian coordinates of the position vector (2.19a). This direction is corrected
for aberration

~na =
~n− v

c

1− ~nv
c

. (2.22)

The packet initial frequency follows the radiation distribution, emerging from the stellar surface which
may be equal to the Planck distribution. More precisely, it can be the calculated synthetic spectrum
of the stellar photosphere (see Fig. 2.4). The packets are created at the beginning of every iteration.
Packets’ energy differ from photonic energy emitted per unit time and it is defined

E =
L∗

Npacks
, (2.23)

where L∗ is the stellar (or an inner boundary in a general case) luminosity, and Npacks is a total number
of created packets. It is clear that it does not depend on packet frequency. This definition is important
because of energy conservation.

2.4.2

Propagation and interaction of radiative packets

Radiative packets represent radiation field propagating through the wind. Properties of packets de-
pend on the reference frame. There are two main reference frames in the stellar wind. The first one
is the rest frame, the frame connected with the center of the star. We denote physical quantities ex-
pressed in the rest frame (hereafter RF) using the index ]. The second one is the co-moving frame.
The wind is ‘frozen’ in the origin of this frame, hence the relative velocity of this reference frame
depends on position and time, in general. In this case, the physical quantities in co-moving frame
(hereafter CMF) are denoted �.
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During the propagation, a position of interaction must be determined. Interactions depend on
frequency of a packet; a rest frame frequency of a packet is ν] at a position~r with density ρ(~r) and
temperature T (~r). Therefore, CMF frequency is equal to

ν
� = ν

]

(
1−~n ·~v

c

)
, (2.24)

which is Doppler shift formula. In this equation, ~v is the velocity vector of the matter (in the RF) at
the given point~r, and ~n is the direction unit vector of the light ray. The CMF frequency is changing
during the propagation.

The point of line interaction has to be determined, then we get a resonance point and line and
continuum optical depth can be calculated. Optical depth by continuum opacity is equal to:

τcont =

~rR∫
~r

d~r′ ·χcont(~r′), (2.25)

where ~r is the packet position, ~rR is the position of the closest possible line interaction (resonance
point) of the r-packet with matter and χcont (~r′) is the continuum opacity which is equal to

χcont(~r,ν�) = χ
Th(~r)+

NI

∑
i=1

χ
ff
i (~r,ν

�)+
NL

∑
i=1

χ
bf
i (~r,ν�). (2.26)

The first term corresponds to Thomson scattering, the second one to free-free processes and the third
one to bound-free processes. NI is the total number of all atomic ions and NL is the total number of
energy levels of all ions.

The optical depth in a line for a transition from a level l to a level u integrated along a path s from
0 to s0 is given by (see Kromer, 2009, Eq. 4.15)

τline = nl
Bluhν

4π

ν�(s=s0)∫
ν�(s=0)

dν
�
(

1− nugl

nlgu

)
φ
(
ν
�) ds

dν� , (2.27)

where φ is the line profile, nl,nu are number densities of atoms at levels l (lower) and u (upper),
respectively, gl,gu are corresponding statistical weights, and Blu is the Einstein coefficient for a tran-
sition from a level l to a level u. If we assume the Sobolev approximation, this equation takes a
form

τline = nl
Bluhν

4π

(
1− nugl

nlgu

)
×
(

ds
dν�

)
νlu

×
{

0 νlu /∈ [ν�(0),ν�(s0)],

−1 νlu ∈ [ν�(0),ν�(s0)].
(2.28)

Here, νlu is the transition frequency, note that the derivative (ds/dν�)νlu is negative. In the case of
spherically symmetric fields, the optical depth can be simplified into a form (Castor 1974, see also
Noebauer & Sim 2015, Eq. 22) to

τline =
χc
νlu

[
µ

2 dv
dr

+
(
1−µ

2) v
r

]−1

, (2.29)

where µ is angle cosine between~n and~v(~r), and

χ =
πe2

mec
flunl

(
1− nu

nl

gl

gu

)
, (2.30)
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Figure 2.5: Method of selection of the next event from a randomly sampled optical depth.~r∗R signs a resonance
distances (in case of Sobolev approximation). The continuum optical depth grows constantly. Adopted from
Kromer (2009).

according to Noebauer & Sim (2015, Eq. (7)). In this equation, flu is the oscillator strength for a
transition from a level l to a level u.

In the Section 2.3, a probabilistic version of the radiative transfer equation was derived. According
to Eq. (2.18), the packet is allowed to travel a random optical depth without an interaction (see, e.g.
Whitney, 2011)

τrand =− ln(1− z) =− ln(z′), z,z′ ∈ [0,1], (2.31)

where z is a random number. The generation of the random optical depth is followed by calculation of
continuum optical depth τcont and line optical depth depth τline (Eq. 2.29), which are compared. The
line and continuum optical depths are calculated by integration along the photon path. Line optical
depth increases in Sobolev points only, whereas the continuum optical depth increases continuously.

In the case
τrand > τcont + τline, (2.32)

the photon continues its path, otherwise it interacts. The Sobolev approximation simplifies calcula-
tions; instead of integration over a path, local values in the Sobolev point can be used. According
to (as in Kromer, 2009) the type of interaction: line, or continuum is chosen: the first optical depth
which causes the invalidity of (2.32).

Obviously, the line and continuum interactions are treated differently. For a line interaction a
specific transition must be chosen. Usually, only one transition in the specified frequency is possible.
If there are more possible transitions, a line is chosen firstly, based on its optical depth:

wi =
τi

Nlines

∑
j=1

τ j

, (2.33)

where Nlines is the number of lines with the same transition frequency. Once the transition is chosen,
the macro-atom is activated; it means that the packet transmits into i-packet, which is after one,
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Figure 2.6: Scheme of the macro-atom interactions.

or more transitions deactivated. In the case of continuum interaction, the specific process must be
determined, currently: bound-free, free-free transitions, and Thomson scattering can occur.

Thomson (and coherent) scattering causes reemission of a packet in a random direction (coherrent
scattering is currently assumed) with the same CMF frequency as of the original packet. The CMF
quantities are recalculated to corresponding RF values. Free-free processes transform an r-packet
into a k-packet and vice versa. Bound-free processes can transform r-packet to i-packet , or k-packet.
Following Lucy (2003, Eq. (27)), the fraction of packets νi/ν� (νi < ν�) converts to an i-packet,
where νi is the ionization edge frequency. For each r-packet we decide (again using random numbers)
whether it changes to a k-packet or to an i-packet. The descibed transitions are shown in Fig. 2.6. The
Macro-atom mode is described in detail in the forthcoming sections.

2.4.3

Calculation of emergent spectra

Spectra are calculated due to the propagated packets through the stellar wind. Packets are stored in
text files containing all important informations: the packet state (deactivated by crossing the outer
boundary, destruction in photosphere, a numerical destruction because too many interactions), RF
frequency and energy. Frequencies are transformed to wavelengths, since values of wavelengths are
more ‘user friendly’ and memorable than the frequency values.

A spectrum is generated this way: initially, a wavelength interval (λmin,λmax) is defined (by user).
The wavelength grid is set up. The number of intervals (bins) is defined and based on this integer the
interval length is calculated

∆λ =
λmax−λmin

Nbin
, (2.34)

where Nbin is the total number of bins. Calculated spectrum is a histogram technically. The boundary
wavelengths of intervals are

λi = λmin +(i−1) ·∆λ , (2.35)

here, i is an integer number corresponding to the order of an interval. When the computation domain
is set up, we can start creating the spectrum. We read informations packet by packet from the file.
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If a packet is escaped, then we read its frequency (ν) and its energy (E). If wavelength (λ = c/ν)
satisfies the condition λmin < λ < λmax the number of a wavelength bin is calculated

i =
⌊

λ −λmin

∆λ
+1
⌋
. (2.36)

An energy contribution due this packet is calculated using the equation

∆E =
E

∆λ

1
4πr2 , (2.37)

where r denotes a distance of a detector to the central star.
The previous description is the most efficient if a spherical symmetry is assumed, hence all packets

can be used to create a spectrum. If we want a spectrum measured in a specific direction, then a packet
position and direction must be stored; therefore, the spectrum is more realistic. However, only a small
fraction of propagated packets is used, which requires enormous number of propagated packets, at
least 109; more sophisticated methods have to be used, such as peel-off method (Yusef-Zadeh et al.,
1984, Wood & Reynolds, 1999, Baes et al., 2011, Steinacker et al., 2013, Lee et al., 2017), in the cases
of fast mass outflows is this method referred as virtual packet scheme (Knigge et al., 1995, Long &
Knigge, 2002, Kerzendorf & Sim, 2014, Bulla et al., 2015).

2.5

Macro-atom transition probabilities
We present a derivation a statistical equilibrium equation (SEE) in the ‘finite volume representation’,
see Lucy (2002). Let us assume a matter with absorption and emission of radiative energy per unit
volume and unit time with

aR
i = nlRliεil =

i−1

∑
l=1

nlRli(εi− εl), (2.38a)

eR
i = nlRliεil =

Nl

∑
l=i+1

nlRli(εi− εl), (2.38b)

where Rli is a radiative rate for transition l→ i, ε is the excitation plus ionization energy of the given
energy level, i denotes the current energy level, and l the lower energy level. The corresponding rates
for the kinetic energy take form

aC
i = nlCliεil =

i−1

∑
l=1

nlCli(εi− εl), (2.38c)

eC
i = nlCliεil =

Nl

∑
l=i+1

nlCli(εi− εl). (2.38d)

Then, the total amount of absorbed and emitted energy is then equal to

aR
i +aC

i − eR
i − eC

i =
i−1

∑
l=1

nlRliεil +
i−1

∑
l=1

nlCliεil−
i−1

∑
l=1

niRilεil +
i−1

∑
l=1

niCilεil

=
i−1

∑
l=1

(nlRli +nlCli)εil−
i−1

∑
l=1

(niRil +niCil)εil :=
i−1

∑
l=1

(Rli−Ril)(εi− εl), (2.39)
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where we defined the total rate from/to lower levels for level i R

Ril = niRil +niCil. (2.40)

The statistical equilibrium equation for the level i takes the form

i−1

∑
l=1

(Rli−Ril)+
NL

∑
u=i+1

(Rui−Riu) = 0. (2.41)

We can eliminate the sum containing (Rli−Ril)εi, which leads to

i−1

∑
l=1

(Rli−Ril)εi = aR
i +aC

i − ε
R
i − ε

C
i +

i−1

∑
l=1

(Rli−Ril)εl.

Then

−
NL

∑
u=i+1

(Rui−Riu)εi = aR
i +aC

i − ε
R
i − ε

C
i +

i−1

∑
l=1

(Rli−Ril)εl,

while we finally get

eR
i + eC

i +
NL

∑
u=i+1

Riuεi +
i−1

∑
l=1

Rilεl = aR
i +aC

i +
i−1

∑
l=1

Rliεl +
NL

∑
u=i+1

Ruiεi. (2.42)

The equation (2.41) represents the standard form of the equation of the statistical equilibrium. It
relates to nature’s quantization of radiation into photons and matter into atoms. However, the equation
(2.42) corresponds to energy flow in a finite volume element. It is an equivalent representation of the
SEE. The flows can be quantized into indivisible e-packets. The Macro-atom (MA) approach is
derived from this quantization of matter.

The Macro-atom approach is constructed to simulate the processes of interaction between ra-
diation and matter. As described in Noebauer & Sim (2019) energy flows among different states
approximate real matter dynamics. The whole machinery is not strictly limited by a single possible
implementation; in our code, we are following the implementation of Lucy (2002, 2003).

Energy flow is represented by the indivisible energy packets, thus a packet cannot be divided
into two, or more packets. However, the real processes do not conserve the number of packets. The
fluorescence cascade is a process when an excited atom deexcites several times, while lowering its
energy sequentially. Let us consider a three level atom. An atom is excited into the state three and
this excitation is followed by two deexcitations, while two photons are created. In the macro-atom
machinery, this energy redistribution flow should be implemented as well. Those transitions are
processed via internal, non-radiative transitions. Concretely, energy packet connected with the initial
frequency is allowed to undergo first transition virtually, the second transition radiatively.

2.5.1

Internal energy packets

Internal energy packets (i-packets) represent excitation energy in excited atoms. The internal packet
state is characterized with the element number, ion number and level number. The ion and level
numbers can change during the activation via the internal processes. To describe particular processes
changing excitation and ionization state, we use following index notation: i – the current level, l – a
lower level, u – an upper level, m – a level in a lower ionization state than the level i, and p an upper
level ionization state. The states can be specified via the lower index (E – element, I – ion, L – level)
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Figure 2.7: Scheme of the i-packet machinery. The internal processes cause change of the current state.
Radiative or collisional deexcitation and recombination changes i-packet to r-packet or k-packet, respectively.

and its lower index clasifies its concrete value, for example iIkL0 represents the basic level of the ion k
(the state is denoted as i).

The total energy loss (left hand side of Eq. 2.42) caused by transitions from the energy level i as
(see Kromer, 2009, Eq. 4.38)

etot
i = er

i + ec
i + eint, down

i + eint, up
i , (2.43)

where er
i and ec

i denote radiative and collisional deactivation (introduced in Eq. 2.38b), respectively,
and eint, up

i and eint, down
i mean internal upward and downward jumps, respectively. The rate ei is a sum

over all possible transitions from the state i within the current process; the transition rate is denoted
ptype

i .
The basic scheme of i-packet machinery is shown in Fig. 2.7. This scheme is run until a non-

internal process happens. Internal process can change both: ion and level index, concretely: internal
downward jumps and upward jumps within an ionization state (change only level), internal downward
and upward jumps changes also ionization state. Internal rates are calculated with both, radiative and
collisional rates. Deactivation of a packet can be done via radiative deexcitation, or recombination.
Furthermore, the energy can be transformed into kinetic energy via collisional deexcitation, or re-
combination. The rates for each transition are, namely: 2

• radiative deexcitation from the state i to the state l – the probability of this process is equal to

pR
il = niRS

il (εi− εl)/etot
i , (2.44a)

where RS
il is a rate in the Sobolev approximation, denoted with an upper index S,

• radiative recombination (considered only from an ion ground level)

pR
im = niRim

(
εiL0
− εm

)
/etot

i , (2.44b)

2Detailed expressions for radiative (R) and collisional (C) rates can be found in the Appendix A.
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Rim is the rate for recombination (A.11), the index iL0 means the lowest level of the ion,

• collisional deexcitation – in this case

pC
il = niCil (εi− εl)/etot

i , (2.44c)

Cil is the collisional deexcitation rate (see Section A.2),

• collisional recombination (considered only from an ion ground level)

pC
im = niCim

(
εiL0
− εm

)
/etot

i , (2.44d)

Cim is the collisional recombination rate (see Section A.2).

The internal processes (which do not deactivate the macro-atom) taken into account include

• internal downward jump within the current ionization state

pint, down
il = ni

(
RS

il +Cil
)

εl/etot
i , (2.45a)

• internal downward jump to the lower ionization state

pint, down
im = ni (Rim +Cim)εm/etot

i , (2.45b)

• internal upward jump within the current ionization state

pint, up
iu = ni

(
RS

iu +Ciu
)

εi/etot
i , (2.45c)

where RS
iu is the rate of transition to the upper level,

• internal upward jump to a higher ionization state

pint, up
ip = ni (Rip +Cip)εi/etot

i . (2.45d)

Equations (2.44) and (2.45) contain rates which can be corrected for the stimulated emission. If we
want to correct the rates for the stimulated emission, we replace rates with Eqs. (A.8) and (A.9). Oth-
erwise, the rates are not corrected for the stimulated emission. By analogy, stimulated recombination
can be treated as negative photoionization via the Eq. (A.15). The energy of states can be defined
as following: the ground state is zero, following excitation energies are equal to sum of ionization
potential and an excitation energy of a given ion. Therefore, no internal transitions are possible into
the ground state. The total transition rate (for all transitions) from the i-th level is:

Ltype
i = ∑

j
ptype

i j , (2.46)

where ‘type’ has a value from the set rad deexc., rad. recomb., col deexc, col recomb, internal: up-
ward/downward jump within or to lower/upper ionization state. During the calculation, a cumulative
probability is needed for a right choice of upcoming process. We define the cumulative probabilities
for individual processes (a summation over types),

Lk =
k

∑
type=1

Ltype
i (2.47)
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Figure 2.8: Scheme of choosing the corresponding process. There is saved information for concrete transitions
(lower rectangle represents transition of a specific type with a definition (2.48)). Number of these transitions can
be very high. For saving a computer time, first of all it is determined which process occurs. All total transition
probabilities for specific processes are determined with Eq. (2.46). After the process determination the program
goes through all possible transitions and chooses the right one which satisfies the condition described in the
text. In the example here eight processes are possible, out of them the fourth process is chosen and it contains
eleven transitions. The fifth transition is then selected. Adopted from Fišák et al. (2022).

used in the upper panel of Fig. 2.8. Clearly L0 = 0. We can also define a cumulative probability for
a transition

Li,x = Li−1 +
x

∑
y=1

ptype
iy . (2.48)

Here x is an index of the last transition taken into account. The choice of the transition, see Fig. 2.8
is following: a random number then it is multiplied with the total rate Ltot = LN (N is the total
number of included processes (N ≤ 8, cf. Eqs. 2.44 and 2.45)), hence the probability is rescaled to all
processes correctly. Firstly, the condition Lq−1 ≤ z ·Ltot < Lq (where q ∈ {1,2, . . . ,N} and L0 = 0)
is tested. Then the process is known. If the transition is needed, the second step is calculated in
the similar way to the previous step: Lq,x−1 ≤ z ·Ltot < Lq,x is tested and the concrete transition is
chosen; these indexes q and x are denoted as Q and X , respectively. This two-step process is faster
than a one-step process which goes through all transitions once and determines directly a specific
transition. Therefore, this algorithm is implemented into i and k packet machinery.

The rates depend on the Sobolev optical depth via Eqs. (A.4) and (A.7), see also Klein & Castor
(1978). For spherical non-homological velocity fields µ does not vanish and Eq. (2.29) depends on
µ . The change to r-packet requires a new direction vector and frequency of the packet, which is
randomly sampled

~n = (sin(Θ) · cos(Φ),sin(Θ) · sin(Φ),cos(Θ)), (2.49)

where Θ and Φ are determined using Eqs. (2.19c) and (2.19b), respectively.
The frequency is equal to chosen transition frequency, in the case of radiative deexcitation. If

the radiative recombination is chosen, the corresponding transition is chosen too, moreover, this fre-
quency is sampled via an integral equation

∞∫
ν�

dν
(
η

fb
im(ν)

)�
= z

∞∫
νi

dν
(
η

fb
im(ν)

)�
, (2.50)
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where z ∈ [0,1] is chosen randomly and the emissivity is given by Eq. (A.22) and νi is the ionization
frequency. The method of sampling of a frequency is following: first the integral on the right hand
side is calculated. Second, the left hand side integral is repeatedly evaluated as a function of its
lower boundary until the integral value is approximately the same as the right hand side. The lower
integration boundary value ν� is a new r-packet frequency.

The collisional deexcitation (2.44c) and recombination (2.44d) change i-packet into k-packet. A
k-packet do not posses any specific information, therefore, no additional calculations are needed.

2.5.2

Kinetic energy packets

Kinetic energy packets represent free electrons in the medium. In the Macro-atom approximation, this
energy can be implemented into the scheme as an additional energy pool. The k-packet do not contain
any information about status, moreover it does not propagate in the space, although it changes into
a r-packet or an i-packet. Which type is chosen depends on a random choice based on cooling rates.
The procedure is similar to the procedure described in the Section about internal energy packets; it is
as the same algorithm as in the Fig. 2.8. The possible processes are collisional excitation, free-free
emission, free-bound transition and collisional ionization.

The total collisional cooling rate is equal to (Kromer, 2009)

C =
NI

∑
i=1

niC
ff
i +

NL

∑
i=1

(
niC

fb,sp
im +niC

ion
ip +

NL

∑
i′=i+1

niC
exc
ii′

)
, (2.51)

where NI is the total number of ions (of element k), and finally NL is the total number of levels (of
ion j of element k). Individual processes leading to a change of a k-packet include

• collisional excitation
C exc

iu = niCiu (εu− εi) , (2.52)

where Ciu is given by (A.17).

• free-free emission
C ff

i =C0q2
i T 1/2

e Nine, (2.53)

where C0 = 1.426×10−27 in CGS units, qi is the charge of ion i, and Ni is the ion i concentra-
tion,

• free-bound transition (radiative recombination)

C fb, sp
mi = Nmne

(
α

E, spont
i −α

spont
i

)(
εmL0
− εi

)
, (2.54)

the cross section α
E, spont
i can be found in the Eq. (A.21). The first term represents thermal

and ionization energy converted to radiant energy and the second term the ionization energy
spontaneously converted to radiant energy in a given f-b transition.

• collisional ionization
C ion

im = cim

(
εmL0
− εi

)
. (2.55)

where cim is written in the Eq. (A.20).
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A k-packet transforms into an i-packet via collisional excitation (2.52) or ionization (2.55). A
corresponding transition (or ion) must be chosen, because i-packet has to contain information, which
element (ion, level) will be set during the initialization.

Free-free (2.53) and free-bound (2.54) transitions change k-packets to r-packets. A new frequency
ν� of this packet is in the free-free case determined from the equation

∞∫
ν�

dν

(
η

ff
jI j
(ν)
)�

= z
∞∫

0

dν

(
η

ff
jI j
(ν)
)�

, (2.56)

z ∈ [0,1] is chosen randomly. In the case of free-bound transition the equation is as the same as the
Eq. (2.50).
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The general code structure

We present a Monte Carlo code for the stellar wind (and other interstellar matter) radiative models.
The general code structure is shown the Fig. 3.1.

The basic information must be read: chemical composition, atomic data, input parameters, and
input model (hydrodynamical model) of an atmosphere, which is a precalculated model (theoretical
or a more realistic hydrodynamical model calculated with another code). The data are collected to
an object called the model grid (modGrid). It is a set of discrete points where the physical charac-
teristics are defined. Based on the modGrid, the code create another grid called the propagation grid
(propGrid). The whole propagation of packets is determined in this grid, while the physical proper-
ties like the ionization fractions, electron density, etc. is calculated in the modGrid. The propGrid
can be chosen to be regular or adaptive. The adaptive propGrid takes into account non-homogeneous
distribution of modGrid points. The propGrid and modGrid are connected. Every propGrid cell have
a modGrid cell associated. Currently, three additional modGrid cells are created for propGrid cells
outside the computational domain, or if the closest modGrid grid is in larger distance than allowed by
a condition (depends on the definition specific for every model).

The packets are created in a defined lower boundary r = R∗ and propagated through the propGrid
until they reach the outer boundary R∞. Propagation and interactions are based on random number
generation. Random numbers are generated with a function initialized a seed which is an input pa-
rameter. If the seed value is positive, the input value is not changed, otherwise the input value is
recalculated based on the CPU time and the number of processor rank.

The basic parts of the code had been developed by Brankica Kubátová (Šurlan), and by Markus
Kromer. The code included simple 1-D model and basic propGrid, simple hydrogen atomic data,
propagation of packet in the basic propGrid, including resonant line scattering. This version was un-
published. Full macro-atom approach, adaptive propGrid, more various 1-D – 3-D models, including
subroutines for full 3-D calculations, parallelization, were implemented by the author of this thesis. A
paper (Fišák et al., 2022) has been published (accepted) together with the initial authors of this code.

3.1

Atomic data
The atomic data are divided into three files: atomic levels, atomic transitions and photoionization
cross section data. The code is written in the way to enable simply implementation of another atomic
data source. The atomic data are read during the initial procedures and are not changed in the fol-
lowing subroutines. One of the data source is the Opacity project Delahaye et al. (2016). Data can

28
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tion, included atomic data

read model grid
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packet propagation

Output
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Figure 3.1: The current code structure.
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be simply copied from the project web sites and saved into a simple text file. No more changes is
needed.

Energy levels file contain the principal quantum number, the configuration, energy, and degener-
ation of a level. Energy of a level is defined like in Lucy (2002): the ground level energy is equal
to zero and the energy is equal to excitation energy. In the case of ionized atoms the level energy
is equal to the ionization energy plus the excitation energy. Thus every level has its unique number
of excitation energy. The fully ionized ion contains only one energy level with the total ionization
energy and statistical weight equal to one. This definition is very useful for the macro atom scheme.

Levels and transitions are read separately, therefore, transitions have to be connected with corre-
sponding upper and lower levels. The format of the Opacity project data is strictly defined. Both files
include electron configurations of lower and upper levels, therefore the identification is processed
via a comparison of two arrays. In addition, the transition file contain Einstein values Alu, oscillator
strengths, and the transition wavelength in Angstroms.

It is not difficult to include atomic data from another source. In this terminology, difficult means
that the whole code structure has to be rewritten. The Kurucz atomic data (Kurucz & Bell, 1995)
source was used in the chapter 5.

3.2

Model grid
A spatial distribution of physical quantities of a continuum can be described with more less compli-
cated analytical functions. The numerical modelling allows using much more complicated distribu-
tions, however, defined only in discrete points.

Generally, models are calculated in three dimensions. The number of dimensions can be de-
creased by assuming a certain symmetry. A very common symmetry is the spherical symmetry; a
variable parameter is the radius. Every spherical shell represents an iso-area (all physical quantities
are constant on this surface). This model is designated 1-D model.

The general computational domain structure is depicted in Fig. 3.2. Three main radial zones
are labeled here. The stellar zone is r < R∗, the main computational domain is R∗ ≤ r ≤ R∞, and
zone beyond the computational domain is r > R∞. Packets are emitted from the lower boundary
independently of the propGrid cells. Packets propagate then through the computational domain until
they reach one of lower, or upper boundary.

As was mentioned above, the modGrid posses information about physical structure of the model.
Important physical variables, which modGrid must contain, are: temperature, density, chemical com-
position (abundances), ionization fractions and occupation numbers. These quantities are updated
before the packet propagation. Populations and ionization fractions can be read from a file, how-
ever, usually the occupation numbers are calculated from the temperature (LTE) or temperature and
radiation field (NLTE, not implemented yet).

Values are defined only for isolated modGrid points (area, etc.), although, the calculations are
processed in the continuum space and a quantity in every point must be known, hence a proper ap-
proximation must be chosen. We assume that every physical quantity in the propGrid cell is constant
in the whole cell volume. Although the velocity field, which is an exception; values must be inter-
polated from the values defined in discrete values, otherwise it will not be possible to calculate the
Sobolev resonance points. In the first approximation, the velocity can be described with an analytical
function. This description is independent of the propGrid.
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R∗

R∞

Figure 3.2: General model structure. Blue area represents the central star with radius R∗, the main computation
domain is yellow coloured, r ∈ (R∗,R∞) the black area represents zone beyond the model.

3.3

Propagation grid
The second grid is a propagation grid (propGrid) where the whole packet propagation is determined.
It is a Cartesian grid which creation is based on the modGrid. The advantage of Cartesian grid is
the independence on input model geometry during the calculations. There is only one transformation
between these geometries and the general procedure can be used independently of input modGrid
geometry.

The propGrid size must be large enough to include the whole modGrid. The star is placed in the
coordinates origin (0, 0, 0). The propGrid is defined by the interval coordinates: x ∈ (xmin,xmax),
y ∈ (ymin,ymax), z ∈ (zmin,zmax). The physical size of rectangular parallelepiped grid is then

(Lx,Ly,Lz) = (xmax− xmin,ymax− ymin,zmax− zmin) ,

furthermore, the grid is symmetric with respect to axes, which means xmin = −xmax, ymin = −ymax,
and zmin =−zmax. The propGrid is divided on (NB

x ,N
B
y ,N

B
z ) rectangular parallelepiped cells:

(wx,wy,wz) =

(
Lx

NB
x
,

Ly

NB
y
,

Lz

NB
z

)
.

One can see in Fig. 3.3 that every propagation basic cell has its integer indexes – one vector
(nx,ny,nz) and one scalar index N(nx,ny,nz) which is calculable from the vector. The vector indexes
are numbered in the interval (1,NB

i ) and the scalar index is equal to

N = nz +(ny−1) ·NB
z +(nx−1) ·NB

y ·NB
z , (3.1)

this index is defined because the cells are saved as an array of objects in the memory, N represents the
position index in the array. The nx,ny and nz represent the integer vector coordinates. The counting
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Figure 3.3: Layer ofpropGrid for nz = 1. The physical coordinates are between points given by x∈ (xmin,xmax),
y ∈ (ymin,ymax), z ∈ (zmin,zmax). Every cell is given by its position and width. The basic modGrids’ widths
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B
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z ). The maximal

scalar index is equal to NB
x ·NB

y .

order is obvious from the formula (3.1). One can calculate these indexes from the physical position
using the formula

ni =

⌊
ri

wi
+

NB
i

2

⌋
+1, (3.2)

where i ∈ {x,y,z}, ri is the position component and bc represents the floor of the number.
Every cubic cell has defined unequivocally wall labels. The label is based on a wall direction

(normal vector), i.e. (x,y,z) and a sign ‘+’ in the case the wall is in the positive direction, or ‘−’ the
wall is in the negative direction from the propGrid cell center, see Fig. 3.4.
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Figure 3.4: Propagation cell and its orientation to the coordinate system. The boundaries are signed as follows:
the blue x+, the red x−, the green y+, the yellow y−, the front z− and back z+. The colour cube was created
using the code from https://tex.stackexchange.com.

3.4

Adaptive grid
The modGrid is ball-shaped object closed in a cube. The volume of a sphere with a radius r is equal
to

V◦ =
4
3

πr3, (3.3)

and the volume of a cube with a size of edge is

Vs = a3 (3.4)

Let us assume the most efficient configuration a = 2r, then the volume ratio is equal to

Vs

V◦
=

6
π
≈ 1.91. (3.5)

Therefore the Vs ≈ 2V◦, and the third of the volume is located beyond the upper boundary. Hence a
choice of too dense regular propGrid leads to a large amount of propGrid cells with no computational
benefit. Moreover, the modGrid can be distributed inhomogeneously in the computation domain, as a
consequence, some regions must be described with a finer grid. The size of the propGrid cell should
be as small as the grid resolution. The regular grid can consume a large amount of memory. Our aim
is to develop a more efficient propGrid which covers small regions with a fine grid and other regions
do not consume a large amount of memory.

Therefore a development of a non-regular grid is advantageous. The non-regular grid is based on
set of regular grids in a tree structure. The basic cells can be divided by regular grids onto smaller
cells and these cells can be divided too, etc. There are two main grid types in the code,1 see Fig. 3.5.
The octgrid is defined in the following way:

• a cell is divided on 2×2×2 subgrid

• every subcell of an arbitrary subgrid can be divided

This kind of grid has been already developed (Kurosawa & Hillier (2001), Barnes & Hut (1986)), it
is very advantageous to use this kind of grid. A cell is divided into eight identical subcells (which is a
reason for naming it ‘octgrid’). Originally, the implementation of this grid into the code was inspired

1We have a plan to unify these types of grid.

https://tex.stackexchange.com
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Figure 3.5: Left: adaptive propGrid ’octgrid’. Every cell can be recursively divided into four (in a 2-D case) or
eight (in the 3-D case) cells until the predefined minimum cell limit is reached. Right: apg ’one-level subgrid’
type. in every basic cell (red color) a subcell with dimensions Nx,Ny,Nz and variable widths wx,wy,wz is
created.

by a lecture during the spring school at Les Houches in the May 2016. The principle is as the same
as in the cited papers, we did not copy any part of another code. The second adaptive propGrid type
is one-level subgrid, which is defined:

• a cell is divided to a subgrid Nx×Ny×Nz,

• a subcell cannot be divided.

This adaptive propGrid is depicted in the right panel of Fig. 3.5. The algebra connected with these
grids is similar to the basic grid. The calculation of a propGrid cell index is a simple application of
the Eq. (3.2). In the case of the octgrid, a simpler algorithm can be applied – only calculation of a
quadrant, which the point occupies.

A tricky part lies in the creation of the adaptive propGrid for a specific modGrid, because the
number of cells in a zone must be proportional to the number of modGrid points. Therefore so-called
virtual points are created. It is a representation of a modGrid; it is more easy to count number of
virtual points in a propGrid cell, than to measure an area of a modGrid cell. Every virtual point
posses an information about its position and the basic propGrid cell including this point. In addition,
a statistical weight can be defined, and a modGrid cell index can be calculated.

The simplest case is the 3-D model. The modGrid cells are represented by dimensionless points.
2-D and 1-D models are more complicated. Usually calculated 1-D cases are defined with spherical
shells, see Fig. 3.6. The virtual points are distributed among shells. The total number of virtual points
is defined by user. A local number of virtual points for a selected shell is proportional the area of the
shell. The azimuthal and polar coordinates are calculated randomly.

Once the virtual points are distributed, the adaptive propGrid can be created. The octgrid is
created as follows: a number of virtual points is counted in every basic propGrid cell. If a number of
virtual points is larger than a predefined number, N, the cell will be divided. The created subcells are
tested for the same condition and, again, the cell is divided, if the number >N, the division is repeated
again. Theoretically, the level of division is not defined, however, technically, a minimal propGrid cell
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Figure 3.6: Scheme of 1-D model consisted of spherical shells.

width is defined; if the divided cells would be smaller than this variable, then no division is processed.
The creation of one-level grid is less complicated. A subgrid division is proportional to a number of
virtual points located inside the current basic propGrid cell

(Nx,Ny,Nz) = (bNα
vpc,bNα

vpc,bNα
vpc), α ∈ R, (3.6)

Nvp denotes a number of virtual points in a propGrid cell. The choice of concrete α is more compli-
cated task and depends on concrete models. In the current version of code, every mpi process creates
a unique propGrid; this property may be changed in future.

3.5

The connection between the modGrid and the prop-
Grid
The propGrid is created alongside the modGrid, however, each propGrid cell does not contain any
information about the physical conditions. During the propagation, the program solves propagation
only in the propGrid, therefore, each propagation cell must be connected to some modGrid cell. Every
propGrid cell has saved an index of a modGrid cell and we can access important information about
physical conditions in this cell during the calculation.

The first task is to map the apropriate modGrid cell to a given propagation cell. Let us consider
several cases. The simplest case is the regular modGrid – every point is on the regular net point of
intersection. Thus a regular propGrid can be created in the way that each modGrid point is in the
centre of the propagation cell. The problem is larger in the case of spherically symmetric modGrid.
Each modGrid cell is represented by its radial distance from the origin. We have to find the closest
modGrid cell for each propagation cell. Generally the distance between two sets is calculated using
the formula

l = min
√

(x− x0)
2 +(y− y0)

2 +(z− z0)
2, (3.7)

where (x0,y0,z0) represents the centre of the propagation cell and
{

x,y,z ∈ R3 : (x,y,z) ∈MC
}

. In
the case of spherically symmetric model, the point on the sphere with the shortest distance between
the propagation cell centre lies on the line connecting the origin and the propagation cell centre. Thus
the radial distance of the propagation cell center must be calculated and the distance between two
cells is equal to difference between its radial distances,

l = min{r− rI|I = 1, . . . ,nmg}. (3.8)
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Here, nmg (number of modGrid cells) distances.
It is obvious that the spherical shell is transformed to a different shape. One can imagine this

process as a pixel represenation of a picture on a screen. Thus circle is not an accurate circle. With
increasing density of propagation cells the shape is more circular. All physical variables are constant
in the whole volume of the propGrid cell except velocity, which must be continuous vector field, since
we must calculate resonance points of transitions.

A connection between propGrid and modGrid grid can lead to a following event: a propagation
cell is far away from any modGrid cell but still, it is connected to the cell – the closest cell. Another
condition must be added – a maximal distance between these two cells. We set up this distance as

lmax ≤ k ·
√

w2
x +w2

y +w2
z , (3.9)

where wi is the width of a propagation cell, and k > 1 is a model dependent constant defined by a
user.

The adaptive propGrid creation and its connection with the modGrid can be a numerically ex-
pensive task. The code offers an option to save modGrid and propGrid in a file with all information
including connection between these grids. This file can be read in another run of the program and
the calculations are proceed without modGrid reading and propGrid construction, therefore, packet
propagation can be studied for different set of parameters. Furthermore, the saved data are useful
source for the creating of figures of the grids.

3.6

The packet propagation through the propGrid
The packet propagation through the grid is a crucial part of the calculations. One task is to find out
which propGrid cell wall will be crossed by a packet. Since the packet trajectory is a straight line,
the solution is simple. The packet position and its direction is known and the current propGrid cell
is known too. Therefore, simple equations describing the path (a parametrization of a line) can be
written

~ri =~r0 +~nt, (3.10a)

~ri +~wi =~r0 +~nt, (3.10b)

where~ri is the position of a propGrid cell corner, ~wi is the width of the current cell,~r0 is the current
position of the packet, ~n is a propagation direction of the packet, and, finally, t is a curve parameter.
These six equations should be solved separately, we get six possible distances from the calculation of
the parameter t

t j =
(ri) j− (r0) j

n j
, j = 1,2,3, (3.11a)

t j+3 =
(ri) j +(wi) j− (r0) j

n j
, j = 1,2,3. (3.11b)

j represents the vector index. If a packet is located inside the propGrid cell, three values of t are
positive, and three values are negative. The smallest positive number is a distance to the nearest cell.

The next crossing cell is usually calculated for a packet located in the propGrid cell boundary.
One of calculated t j is equal to zero. However, because of numerical uncertainties, a position can
be slightly in front of or beyond a wall in specific cases. This causes problems during propagations,
hence, a packet must have saved its last (formally) crossed boundary to avoid a propagation to the
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boundary, which should have been already crossed. This case leads to an error in calculation of a
current propGrid cell index.

After a cross boundary calculation, a neighbour number must be obtained. In the case of regular
propGrid is the algebra simple. If a cell number is known, then the neighbour numbers are very easy
to determine from Eq. (3.1) because of strictly defined cell numbering. On the other hand the adaptive
propGrid is more complicated. Based on the adaption propGrid creation rules, the next propGrid cell
index can be obtained in the following way:

1. find next crossing with the propagation cell,

2. if the neighbour cell number is known we go to a step 4,

3. if the neighbour cell is not known, we will look to a lower cell level and its neighbour in the
given direction, we repeat this point until we find a neighbour cell (the lowest level is of course
the basic grid),

4. if the upper cell is non-zero, we will find out which cell it is, if the cell is divided, this procedure
is repeated until a top of the tree is reached.

This procedure is demonstrated in Fig. 3.7. The presented scheme represents a relative way to cal-
culate an index of a packet. It is possible to calculate a position independently of this scheme. The
equation (3.2) can be applied in all levels of grid, however, the corner and a width of the propGrid
cell, where is a subgrid located, must be taken into account.
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Figure 3.7: Scheme of the packet propagation through the grid. The bottom scheme shows a propagation grid.
The upper scheme shows the same grid, but expressed in a tree structure. The green line is an example of
packet’s path. It is simple to show this path on the lower graph. The upper graph explicitly shows the adaptive
propagation grid level structure including the illustration of cell indexing. The numbers in the figure describe
the logic of cell indexing in the code. First, the basic cells are indexed. Then the subcell of the basic cell with
the lowest number. First all cells of a given subgrid are numbered and after that the numbering continues with
subgrids of next cells (with an increasing index). Adopted from Fišák et al. (2022).



CHAPTER 4

Tests of the propGrid

The calculation of the spectra via the propGrid should give the consistent results. We show several
tests run with the different propGrid to show the difference among the output results based on the
propGrid properties.

4.1

The model setup
The model is assumed to be spherically symmetric and described with the homologous approximation.
We add a spherical clump – a steep increase of density which increases the opacity rapidly. The matter
is composed of the ions in the Tab. 4.1.

We created two different density profiles: single and double-peak-density spherical clump. The
density structure is the following

ρ(r) =



ρ0

(
r

R∗

)−2

R1 ≥ r > R∗,

ρ0

(
r

R∗

)−2

+ρcl(r) R2 > r ≥ R1,

ρ0

(
r

R∗

)−2

R∞ > r ≥ R2,

0 r ≥ R∞,

(4.1)

where R1, and R2 is predefined interval of a clump, ρ0 density at r = R∗, and the function ρcl(r) takes
the form

ρcl(r) = ρcl exp

−
(

r− R1 +R2

2

)2

(R2−R1)
2

 (4.2)

for a single-peak-density clump, and

ρcl(r) = ρcl

[
exp
(
−(r− r01)

2

σ2

)
+ exp

(
−(r− r02)

2

σ2

)]
(4.3)

for a double-peak-density clump. Here, σ is a half-width of the Gaussian profile, and r01 and r02 are
the centre of the Gaussian profiles. Parameters described in the equations are listed in Tab. 4.2.

39
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Ion Max. principal num. N of levels
HI 10 55
HII 1 1
HeI 6 53
HeII 10 55
HeIII 1 1

Table 4.1: The numbers of included levels

2 4 6 8 10
R/R *

0.0

0.2

0.4

0.6

0.8

1.0

de
ns
ity

/g
/c
m

3

1e−13

2 4 6 8 10
R/R *

0.0

0.2

0.4

0.6

0.8

1.0

de
ns
ity

/g
/c
m

3

1e−13

Figure 4.1: Density structure of the test wind model with a spherical single-peak-density clump (upper panel)
and double-peak-density clump (lower panel).

effective temperature Teff 14734 K
stellar radius R∗ 16145R�
parameter R1 6.0R∗
parameter R2 6.5R∗
outer boundary R∞ 10R∗
outer boundary velocity V∞ 2.875×109 cm · s−1

density in an initial time ρ0 10−14 g · cm−3

clump density ρcl 10−13 g · cm−3

double-peak-density clump
clump inner boundary r01 6.05R∗
clump inner boundary r02 6.45R∗
clump width σ 0.15R∗

Table 4.2: Parameters used in Eqs. (4.1), (4.2) and (4.3) as a testcase.

4.2

The tested properties
The propGrid has to be created during the computational domain setup, which includes the allocation
and reallocation of arrays. This procedure can be very time consuming. We compare times needed for
the grid creation and propagation of packets through the grid. Furthermore, the consumed memory
is important as well, we show the number of created basic propGrid cells and the adaptive propGrid
cells. Moreover, we define two variables expressing an accuracy of propGrid: the first variable com-
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pares the total volume of the propagation cells belonging to a model cell and volume of the model
cell itself. This quantity is defined

χI =

∑
PC→I

VPC

VI
, (4.4)

where VPC is volume of a propagation cell belonging to the modGrid cell I, and VI is a volume of
the model cell. The χI is equal to one in the ideal case, which corresponds to the case of equality of
propagation cells volume and the corresponding model cell. For a better characterization the whole
propagation grid accuracy, we define the mean value of χ

√
〈χ2〉=

√
1

NmodGrid

NmodGrid

∑
I=1

(χI−1)2, (4.5)

where NmodGrid denotes the total number of modGrid points. The value should be as close to zero as
possible.

The second parameter is a variable called ‘relative covering’. Every propGrid cell is associated
with a modGrid cell, however, not every modGrid cell can be associated to any propGrid cell (even
to one). This phenomena is described by a number of modGrid cells having associated at least one
propGrid cell and it is equal to

rc =
Nc

NmodGrid
, (4.6)

here, Nc is a number of modGrid cells associated to at least one propGrid cell and NmodGrid is the total
number of modGrid cells.

The main output of the calculation is a spectrum. The generation of spectra from packets is de-
scribed in the subsection 2.4.3. All spectra in this section are calculated from all packets from a
simulation. Spectra are very sensitive to the input model settings and they can be used as an indicator
of the propGrid accuracy. We show comparison of spectra for several cases of propGrid parametriza-
tion and we expect that the spectra converge to a final spectrum if the number propGrid cells is large
enough.

4.3

The basic propagation grid
The basic propGrid is a regular grid containing propGrid cells with identical size. The first simple
test was done with the single-peak-density clump density profile Eq. (4.2). The results of calculations
of relative covering for different propagation grids are listed in the Tab. 4.3. The variable

〈
χ2
〉1/2 is

decreasing for the increasing number of cells and the relative covering is equal to one hundred percent
for the case of 1003 propGrid cells. The calculated spectra are very intriguing. The plot of Lyα in the
upper panel Fig. 4.2 shows a profile belonging to a single-peak-density line. The red-shifted part is a
classical P Cyg profile created in an outflow, the blue-part absorption line around 1140 Å is created
in the spherical clump and its shift is caused by strong Doppler effect. Other lines are formed only
in the clump. Individual line profiles are shown in the Fig. 4.2 in the lower plots. The spectra with
clump can be compared with the spectrum with no clump added (ρcl.(r) = 0 in Eq. (4.2). The spectra
calculated from a single-peak-density profile for low propGrid resolution do not differ significantly
from a spectra calculated from a model with no clump. The reason of this phenomenon lies in the
propGrid, which does not include the clump density profile in a required detail. While increasing the
number of propagation cells, the number of cells connected to the density clump is increasing, and
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Figure 4.2: Comparison of spectral line profiles calculated with different basic propGrids in the case of the
single-peak-density clump model. Upper panel: hydrogen Lyα line with a P Cyg profile and the clump ab-
sorption component, lower panels: Hydrogen Balmer lines and neutral helium absorption lines. Line labels
correspond to their vacuum wavelengths.
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number of cells
〈
χ2
〉

rel. covering
%

53 5.77 8.2
103 3.86 15.3
203 4.07 40.0
503 1.29 63.5
1003 0.33 100.0
1503 0.15 100.0

Table 4.3: Parameters of the regular grids for the single-peak tests.
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Figure 4.3: Comparison of calculated spectra of models with different propGrid parameters and different
number of packets. Four different models, differ with NB = {103,503,1003,1503}

also the intensity of the absorption line profiles. The spectra seem to converge for the grids larger
than 1003 cells.

propGrid resolution and number of packets

The code creates the propGrid based on the modGrid, although many parameters are set before the
calculation. As a consequence, results can be affected significantly by a wrong choice of parameters.
We calculated several spectra with different parameters – total number of packets and size of basic
propGrid. The total numbers of packets were set to 2×105,2×106,2×107, and basic propGrid sizes
103, 503, 1003 and 1503. Spectra are plotted in the Fig. 4.3, moreover, the case calculated with 106

packets and four different propGrids is plotted in Fig. 4.4. The propGrid parameters affect spectra
significantly. The spectra calculated with a low resolution propGrid, such as NB = 103, include
shallow spectral lines. It is caused by insufficient ‘pixelization’ of the modGrid. The fit of propGrid
is described by parameters introduced in Eqs. (4.5) and (4.6). Other propGrids possessing larger
number of cells describe the modGrid much more sufficiently. The spectra are well converged for the
case NB = 503.
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Figure 4.4: Comparison of calculated spectra of models with different propGrid parameters and 106 packets.

1000 2000 3000 4000 5000 6000 7000
0

1

2

3

4

flu
x/
er
g/
s/
Å

1e39
2x105

2x106

2x107

2.8x107

1000 2000 3000 4000 5000 6000 7000
λ[Å]

−1.00
−0.75
−0.50
−0.25
0.00
0.25
0.50
0.75
1.00

(I 2
−
I 1
)/I

2

2x106−2x105

2x107−2x106

2.8x107−2x107
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plotted in the lower panel.

Number of packets affects the noise in the spectra. It is shown in the Fig. 4.5. The noise decreases
in a case with larger number of packets. Clearly, a larger number of packets do not create a better
spectrum if propGrid parameters are not chosen well. The line profiles fit better even for smaller
number of packets.
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num. of cells (NB) num. of subcells num. of virtual points time of calculation
〈
χ2
〉

rel. covering
(basic grid) creation pack. prop. %

relative to t1 relative to t2
t1 = 0.617s t2 = 267.18s

regular, see Fig. 4.7
103 – – 0.001 0.150 3.87 15.3
503 – – 0.1 0.380 1.03 63.5
1003 – – 0.7 0.680 0.33 100.0
1503 – – 1 1.00 0.15 100.0

octgrid
103 3760 103 0.06 0.178 1.97 92.9
103 40768 104 0.3 0.256 0.61 100
103 404788 105 3 0.452 0.11 100
103 4223624 106 231 0.908 0.06 100
503 424 103 1 0.396 1.02 100
503 18496 104 6 0.401 0.68 100
503 328720 105 60 0.484 0.17 100
503 899904 106 770 0.897 0.06 100

one-level subgrid
103 965 103 0.03 0.174 2.23 100
103 45956 104 0.2 0.289 0.45 100
103 1631479 105 10 0.809 0.07 100
103 54463204 106 483 2.426 0.06 100
503 0 103 0.5 0.393 1.30 63.5
503 1400 104 5 0.403 0.98 100
503 149804 105 47 0.443 0.15 100
503 6357511 106 3767 1.002 0.04 100
1003 0 103 4 0.749 0.33 100
1003 8 104 38 0.750 0.33 100
1003 27902 105 402 0.767 0.29 100
1003 1907557 106 3431 0.830 0.05 100

Table 4.4: Computational statistic of the propagation grids in several cases. We show the number of cells in
the basic grid (second column), the total number of subcells (if subgrids are present, third column), the relative
CPU time needed for grid creation (fourth column) and the relative CPU time of the packet propagation (fifth
column). The reference values are corresponding CPU times needed to create the regular grid 1503. For
each grid the standard deviation 〈χ2〉 (4.5) is shown. This quantity describes the quality of the modGrid cell
covering.

4.4

The adaptive propagation grid
The next test contained double-peak-density clump density profile, see Eq. (4.3). Three types of the
propGrid were tested: basic grid, octgrid and one-level subgrid. The results of the regular grid are
similar to the previous part. The octgrid is very efficient in the case of smaller propGrid cells. In
the Tab. 4.4, one can see that the octGrid with NB = 103 fits the modGrid better than the basic grid
with NB = 503; the total number of created cells is much larger in the second case and the values of〈
χ2
〉1/2 are equal. One-level subgrid is less effective because of long time needed for its creation,

which decreases with the increasing division of the basic grid. A slice of the octgrid and the one-level
subgrid for the double-peak-density clump case is depicted in the Fig. 4.6. One can see that the grid
is really denser in the area surrounding the double-peak-density clump. The one-level grid is less
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Figure 4.6: Adaptive propagation grids calculated for the double-peak-density clump spherically symmetrical
model. We have plotted only one quadrant in the zero plane. The red “circle” is the central star, blue circles
represent the model grid shells and the grey and the blue Cartesian grid represent propagation grid. It is clear
that in the area of the clump the density of the propGrid is much larger. Left: Octgrid, basic grid: 503, 106

virtual points, right: one-level subgrid, basic grid: 103, 106 virtual points.

efficient, since the size of a propGrid subcell is constant in the whole propGrid basic cell. Therefore,
a large volume is covered with a dense propGrid.

The spectra are shown in the Figs. 4.7 and 4.8. The characteristic hydrogen double-peak-density
absorption line can be seen. It is clear that the shape is caused by Doppler shift in the spherical
double-peak-density clump. The propagation cell input parameters must be chosen wisely. This can
be seen in the Fig. 4.6. The right figure shows the one-level subgrid based on the 10×10×10 regular
propagation grid. The high density of the subgrid is also located in the large area outside the spherical
clump. For the one-level subgrid the choice of denser basic grid is more appropriate. One can see that
in both cases the basic grid cells are divided even outside the clump, which is caused by the virtual
points distribution, see Section 3.4. The virtual points are not distributed in the clump only but also
among the other model cells.

The adaptive grid provides a more suitable approach for the modGrid representation. It does not
slow the packet propagation, however its creation is a time consuming task for some cases. This
problem can be partially eliminated by parallelization of the grid creation, which is a very difficult
task, or enable reading already created propagation grid, if the old one is sufficient enough.
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Figure 4.7: Comparison of spectra calculated with different propGrids in the case of the double-peak-density
clump density profile. Upper panels: with different number of cells in the basic propGrid. Middle panels: the
octgrid: with different number of the virtual points, basic grid size is 10×10×10. Lower panels: the octgrid:
with different number of virtual points, basic grid size is 50×50×50.
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Figure 4.8: Comparison of spectra calculated with different propGrids in the case of the double-peak-density
profile. Upper panels: the one-level type of the propagation grid with the number of the virtual points as a
parameter, 10×10×10 basic grid. Middle panels: one-level grid type, 50×50×50 basic grid. Lower panels:
one-level grid type, 100×100×100 basic grid.



CHAPTER 5

A comparison with the Tardis code

The interactions of packets and matter are crucial for the radiative transfer calculations. Therefore
a verification of implemented rates must be done. The most acceptable way is a comparison with
another code; assuming the same input model of an atmosphere, to calculate emergent spectra and
compare results by our MC code and results by the Tardis code.

The Tardis code (Kerzendorf & Sim, 2014, Vogl et al., 2019, Kerzendorf et al., 2019) is a su-
pernova spectrum synthesis code. Several simple test cases were chosen. The physical properties
of the model can be simply specified in a configuration file: the lower boundary conditions: stellar
luminosity (in log L∗); the structure of the model (velocity which give the model physical size, den-
sity structure, the chemical composition, matter properties (LTE, NLTE), line interaction type. The
characteristics of models are described in the following paragraphs.

The outflow properties are established via the standard Tardis input. It enables to choose physi-
cal characteristics defined with simple analytical formulae. The density profile is chosen in a form

ρ(v, t0, texpl) = ρ0

(
t0

texpl

)(
v

v0

)ζ

. (5.1)

In this equation, ρ0 is density in the lowest boundary shell (in a point v = v0) at an initial time t0,
texpl is a time parameter and the exponent ζ has to be chosen by a Tardis user. The Eq. (5.1) is
time dependent, but both Tardis and our code calculate a single time frame. We selected t0 = 1day,
texpl = 13days, and ζ = −2. The Tardis code assumes the homologous velocity field (i.e., Röpke,
2005, Kurfürst et al., 2020, Kurfürst & Krtička, 2019, Pejcha et al., 2022) which takes a form

v(r) =
r

R∞

V∞. (5.2)

Here, R∞ is the outer boundary, V∞ the terminal velocity and r an arbitrary radius. The excitation and
ionization equilibrium are calculated using the LTE approximation, see Appendix. B.

The Tardis atomic data for hydrogen and helium are sourced from the Kurucz database. They
differ from the atomic data in the Chapter 4. This database contains hydrogen and helium atoms.
Table 5.1 provides basic informations about number of included levels.

The calculated input models are based on the standard model properties of the Tardis code. Both
the Tardis and our code assume the Sobolev approximation, therefore, all line profiles are assumed
to be delta functions

φi(ν) ∝ δ (ν−νi), (5.3)

where i denotes the i-th line and νi is the transition frequency.
We focused on the line interaction firstly. There are three possible approximations of the line

interactions in the Tardis code. The most simple approximation is denoted as ‘scattering’; coherent

49
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Ion Max. principal quant. num. N of levels N of transitions
HI 10 55 75
HII 1 1 0
HeI 6 53 175
HeII 10 55 67
HeIII 1 1 0

Table 5.1: Numbers of atomic levels and atomic transitions included.

number of packets 4×107

propagation grid regular, 1503

input luminosity 109.44L�
velocity start (v0) 5000 km/s
velocity end (v∞) 30000 km/s
inner boundary 8072.4R�
outer boundary 48434.6R�
uniform abundances ab.(H) = 0.89, ab.(He) = 0.11

Table 5.2: Set of parameters used for the test case spectra calculation.

scattering is enabled, a packet is re-emitted without any other inter-processes included. More complex
approximation, ‘the downbranch’ mode, enables fluorescence. Re-emission in the same frequency is
enabled, in addition any other radiative transition from an upper level to lower level is possible as
well. The last but not least approximation is the ‘macro atom’ mode, enabling internal transitions
among levels.

The concrete values of parameters are listed in the Tab. 5.2. It was chosen to create as simple
model as possible. The procedure of calculation is following. First of all a Tardis model was calcu-
lated with the parameters in Tab. 5.2. The Tardis code provides two main output files: the calculated
model and the emergent spectrum. The model should contain as many common input parameters as
possible. Our case include following informations for each radial shell: radius, velocity, temperature,
density and electron density. Those data are loaded by our code and a spectrum is calculated. Then,
the output spectrum from our code is compared with the output spectrum from the Tardis code. The
compared spectra are plotted in Fig. 5.1, 5.2, and Fig. 5.3.

Analyzing differences between our code and the Tardis code one can see, that strong Lyman
lines and weaker Balmer lines are present. Flux in continuum does not differ, however, flux in lines is
more pronounced, which is visible in the plots of relative differences (lower panels of Figs. 5.1, 5.2,
and 5.3).

Spectra of our code and the Tardis code are relatively shifted, which is visible in the blue wing of
the hydrogen Lyα , therefore a large difference peak in fluxes is visible close to the wing wavelength,
however, this difference disappear whilst our spectrum is corrected. Spectra before shift are plotted in
the lower panel of Fig. 5.3. Hα changes due to velocity shift as well, furthermore the differences in
flux increases with more complex line treatment, whilst differences are small in the case of resonance
scattering included, the macro atom case provides larger differences in the calculated line profiles.
Several possibilities can explain these differences. The Tardis code calculates the propagation of
packets in spherical coordinates, whilst our code makes calculations in the Cartesian grid which
‘pixelizes’ the input model of an atmosphere. To check this sensitivity of our calculations to a grid
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Figure 5.1: Comparison of spectra calculated by our MC code and by Tardis code. Upper panel: spectra
comparison, Lower panel: relative difference between spectra and fluxes. Model in the ‘scattering’ mode.
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Figure 5.2: Comparison of spectra calculated by our MC code and by Tardis code. Upper panel: spectra
comparison, Lower panel: relative difference between spectra and fluxes. Model in the ‘downbranch’ mode.
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Figure 5.3: Comparison of spectra calculated by our MC code and by Tardis code. Upper panel: spectra
comparison, Lower panel: relative difference between spectra and fluxes. Model in the ‘macro-atom’ mode.



CHAPTER 5. A COMPARISON WITH THE TARDIS CODE 53

resolution, we calculated several spectra with different propGrids. The spectra do not significantly
change for basic propGrid division above NB > 50.

We calculated additional tests to understand the differences better, along with runs a sensitivity
of spectra changes on several parameters was investigated. The largest changes were observed whilst
parameters V∞ and R∞ were changed causing large shifts of Lyα and the other Lyman lines. Other
lines, such as Balmer lines were not that sensitive, which means their shifts were not as significant
as the Lyman series lines. The lower boundary condition was tested, concretely the temperature of
Planck radiation of the lower boundary condition, therefore the whole continuum was changed and
no better agreement was observed. Another lower boundary condition is a stellar radius which affects
the effective temperature and did not explain any differences. The tests including the input supernova
model change did not bring a significant change.

There are observed differences between matter physical properties, such as electron densities,
which differ by 0.7% in maximum, and ionization factions which differ about 1%. This affects the
opacity structure and, consequently, the Monte Carlo rates.



CHAPTER 6

Basic applications in multidimensional
cases

This chapter presents basic applications of our code in the 3-D input hydrodynamical models. A
calculation of radiative transfer through a 3-D environment is the main goal of the whole code de-
velopment. We will be able to figure out importance of 3-D structures and their contribution to the
calculated emergent spectra.

Although an adaption of our MC code into multidimensional models is not as difficult as in the
case of classical case of radiative transfer methods, 3-D model calculations bring new complications
and challenges. The main challenge lies in a large amount of modGrid points, consequently, longer
time needed to read input file and more memory to save modGrid. The most consuming part is
a connection between modGrid and propGrid; the closest modGrid cell must be found for every
propagation cell which means to check every modGrid cell and find out the one cell with the shortest
distance. The number of cycles is enormous even for smaller sized grids. Furhtermore, the calculation
of ionization fractions and electron density is time consuming too. This problem can be partially
solved with parallelization or by using mentioned propGrid, with well defined associated cells, which
means that indexes of cells are the same in both cases, this is applied in the first test case.

The first section of this chapter describes an artificial 3-D model. This model is created to be
numerical efficient and to find out any numerical uncertanities which could have been developed be-
cause of transformation into the 3-D. The second section describes a calculation of radiative transfer
in a 3-D hydrodynamical model. Problems connected to implementations are included as well.

6.1

A simple testing 3-D model
A step between 1-D (input) models and 3-D input models is a pseudo 3-D model. It is a 1-D model
defined in a 3-D grid input file. This arrangement simulates some parts of 3-D input models: very
large input files which prolong the time needed for a connection between these two grids, however
our test grid is simple enough since our input modGrid points are regularly distributed in space. This
fact prevents long calculations of associated modGrid cells for each propGrid cell because it is created
and numbered with same indexes in both cases.

Physical properties of the model are following. Velocity field is described with homologous ex-
pansion (linear function), see Eq. (5.2) and density profile is ρ(r) ∝ ρ0r−2. The ejecta are isothermal
with temperature T = 15500K in every modGrid cell. Ejecta are composed of hydrogen (number
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number of packets 2×107

grid size NB 50×50×50

effective temperature Teff 14734 K
stellar radius R∗ 8R�
outer boundary R∞ 10R∗
outer boundary velocity V∞ 2.875×109 cm · s−1

density ρ0 10−14 g · cm−3

isothermal matter temperature 15500 K

Table 6.1: Numerical parameters of calculated testing model.

fraction 0.89037) and helium (number fraction 0.10963) with constant abundance in the whole com-
putational domain.

6.1.1

Velocity calculation

Velocity field should be described by a continuous function, since the Sobolev resonance points are
calculated. If the field was constant in a propGrid cell, it would be impossible to calculate whether a
packet can interact in a line or not. More complicated 3-D models supply complicated velocity fields
without a possibility of use of an analytical formula. However, the velocity in every point is needed
to calculate based on the closest modGrid points with known velocity.

One method is called the Trilinear interpolation, see Press et al. (1992). Let us consider an
arbitrary point inside the propGrid. Eight points with defined velocity vectors are chosen; it creates a
hexahedron, in general case, non-regular shaped. The point must be located inside this hexahedron.
Linear interpolation is calculated three times between doublets of points in each step. Interpolation
points are chosen to be equal to one of the point coordinates each step. The first step will create four
points with a common x = x0 coordinate. Two points with x = x0 and y = y0 are created and the last
step the resulting velocity for the point is finally calculated. This procedure is displayed in Fig. 6.1.

A non-trivial task is a choice of eight points for the trilinear interpolation. There are two possibil-
ities in our code. The first possibility is the regular propGrid. The points are located in geometrical
centers of eight propGrid cells. The propGrid cells are chosen with a respect to the current cell. The
first point lies in the centre of the current cell. Others are chosen in respect to a relative position of the
point – a corresponding quadrant which contains the point. Another case – adaptive propGrid is not
as simple as the previous case. The points are created respectless on neighboring propGrid cells. The
points lie in corners of a cube which width is the same as the width of the current cell. One corner is
in the center of the current propGrid cell, other corners are located in a quadrant which contains the
point. Velocities in the points are the modGrid velocities, basicly, velocities of associated modGrid
cells for a propGrid cell. If the cell is located outside the modGrid the velocity is set to zero.

As a first step to test an implementation of this method, we calculated a 1-D1 model with a velocity
field generated with an analytical function. In the positions of interpolation points velocity vectors
were calculated:

~v(r) = v(I)
~r
|r| , (6.1)

1The physical parameters are as the same as described above, except points are defined as a function of radius, instead
of a general coordinates x, y, and z.
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Figure 6.1: Procedure of the trilinear interpolation based on known velocity vectors in eight points. We are
calculating a velocity in the green point. The first step is a calculation of linear interpolation between each two
red points to obtain the purple points. The second step is calculation of interpolation beween the purple points,
which calculate values in the orange points, and, finally, the last linear interpolation between the orange points,
which calculates a vector in the green point.

where v(I) is the velocity magnitude in the I-th modGrid cell (in this specific case, sinus is the source
function),~r position of the point. Compared values are plotted in the Fig. 6.2 for the regular propGrid
case. A calculation was done with fifty packets.2 Every point corresponds a velocity determination,
generally, in a position~r; the points were plotted as a function of radius, since the model is spherically
symmetric. There are two cases differing in a number of modGrid points. The first (upper two panels)
model consists of 36 model points, the second one consists of 475 model points. The radial distance
between neighbour shells is equal and it is equal to 0.25R∗ (the first case) and 0.02R∗ (the second
case). The modGrid is spherically symmetric, however the procedure of interpolation of velocity is as
the same as in general 3-D case. The propGrid consists of cells with widths: 503: w = 0.4R∗, 1003:
w = 0.2R∗ and 2003: w = 0.1R∗. Spectra are plotted in Fig. 6.3. Spectra do not differ significantly,
especially the cases NB = 1003 and NB = 2003 are almost identical.

A good agreement between numerical and analytical magnitude of velocities can be clearly seen.
The largest differences are close to both modGrid boundaries, lower and upper. The velocities outside
the modGrid grid are set to zero by default and clearly, if an interpolation is calculated among points
outside the modGrid domain, at least at one point velocity is equal to zero. As a consequence, a
neighbouring zone to the lower or upper boundary converges to the analytical value gradually. The
size of the zone depends on the propGrid cells width. The convergence towards the analytical function
is steeper in the case of smaller propGrid cells, since the propGrid cells beyond the numerical domain
are used for the trilinear interpolation in significantly smaller area. Another effect can be seen in
Fig. 6.2. In the case of too dense propGrid, a relative error seems to be staircase shaped. This effect
is caused by several propGrid cells belonging to the same modGrid cell, therefore with the same
magnitude of velocity. The velocity field seems to be constant among those cells. It is not better to
calculate with a finer propGrid in general, it is limited by the modGrid as well.

2During every packet propagation is velocity calculated many times alongside the whole packet trajectory; as a result,
even for fifty packets the total number of velocity points is sufficient.
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Figure 6.2: A comparison of velocity calculated with the trilinear interpolation and an analytical function
for several basic propGrid resolutions. Two upper panels: modGrid with 36 model points, Two lower panels:
modGrid with 475 model points.
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The staircase profile of velocity magnitudes is more clear in the case of one-level adaptive prop-
Grid, the bottom panel in Fig. 6.2. The main reason is the method of the velocity interpolation
depicted in Fig. 6.4. An error is reduced with a higher number of virtual points; this type of adaptive
propGrid seems does not to be efficient in the case of spherically symmetric models of winds.

6.1.2

Emergent spectra

We calculated spectra for two cases: the first one homological velocity field is calculated as an ana-
lytical function of radius, see Eq. (5.2). In the second case, the same model with velocity interpolated
from discrete points was calculated, therefore, the same spectra should be produced. The results are
ploted in the Fig. 6.5. The spectra fit perfectly, which implies that procedures containing velocity
interpolation seem to work properly. We can test more complex models.

We can test spectra sensitivity based on the density of modGrid points (cells). Calculated spectra
are plotted in the Fig. 6.6. The line profiles are changing similarly to the tests in the Chapter 4;
shallow line profiles occur for a low resolution grid, deeper profiles occur for increasing resolution of
modGrid. In comparison to the referenced chapter, the modGrid parameters are changed and a finer
resolution in the propGrid is not capable to achieve emergent spectra as good as in the cases of better
modGrid.

6.1.3

Computational details

3-D models are very computational expensive – both time and memory consuming. It is a consid-
erable problem for every method and the Monte Carlo method is not an exception.3 The physical
variables must be saved for every grid point (modGrid cell).

This section is assuming the most simple case of a 3-D model – grid points create a regular grid.
Furthermore it is created in the same order as the propGrid and the connection between modGrid and
propGrid is quite simple – an index of modGrid cell is equal to the propGrid index. A number of
data depends on the third power of a grid resolution (in a direction x, y or z) therefore the amount of
consumed memory increased rapidly in case of large grid resolution.

6.1.4

Results

This model was created to detect any problem resulting from the transition from 1-D model to mul-
tidimensional models. The efficiency was achieved by using a regular modGrid. This modGrid was
very simply fitted by the propGrid which reduced the computational time significantly.

Non-trivial part of the transition is the trilinear interpolation of a velocity field. Velocity fields are
complicated and it is not possible to use an analytical formula. Consequently, we must use velocity
vectors saved in discrete points. Furthermore we still need semi-continuous velocity field, since we
calculate Doppler shift in an arbitrary point of the propGrid cell to determine whether a line interaction
is possible or not. The test case was chosen to be spherically symmetric but velocity values were
determined by using the trilinear interpolation among eight points. The accuracy of this method is
satisfactory, a relative error is not larger than 5% in the inner parts of computational domain. The
edge parts are affected with boundary conditions – velocity in zones r < R∗ and r > R∞ is set to zero

3I can compare possible calculated models on a laptop with AMD processor (3.5 GHz) and RAM 5.7 GB. It is possible
to calculate 1-D model with NB = 3003. In contrast to this case, a 3-D model was possible to calculate only up to NB = 753.
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Figure 6.3: Comparison among three spectra in a case of three different basic propGrid resolutions.

Figure 6.4: Illustration of a choice of the eight points for the trilinear interpolation, in a case of the nested-
propGrid type. Velocities assumed in the corner points are considered to be modGrid velocities. In the case,
the propGrid subcells do not differ substantially, no large difference occurs. If an interpolation starts in a large
propGrid subcell and other corners are placed in a different propGrid subgrid with significantly finer division,
a difference may occur. However, it is not an usual case, see the next section.
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Figure 6.5: A simple test to compare spectra calculated with pure analytical velocity field and velocity field
read from a file.
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and as a result of this choice the trilinear interpolation starts from/converges to zero in neighboring
propGrid cells. This effect can be minimized using denser propGrid, on the other hand too dense
propGrid creates zones with constant velocity fields, since the values are not interpolated, only taken
over from the closest modGrid cell. Too dense propGrid creates a step function, which is visible in
Fig. 6.2.

The emergent spectra of 1-D model and pseudo 3-D model were compared. The agreement
between spectra is excellent; it seems that the only differences are caused by random noise.

This pseudo model is a bridge between 1-D models and full 3-D models. It is usable to quickly
trace problems occurring during calculations with much more complicated 3-D models and quickly
debug incriminated parts of the code, if necessary.

6.2

Hydrodynamical model MPI-AMRVAC
The following application is a solution of radiative transfer with an input model calculated with a
code MPI-AMRVAC: a flexible (magneto-) hydrodynamics code (Xia et al., 2018, Keppens et al., 2021,
Moens et al., 2022a,b). The computation domain is a block-shaped volume named ‘box-inwind’
approach (e.g., Sundqvist et al., 2018, Moens et al., 2022b). The lower boundary is located deeply
inside the stellar atmosphere; matter is optically thick – mainly because of free electron scattering
opacity. The computation domain upper boundary is located in the zone of a supersonic wind.

The model couples hydrodynamics with a simple radiation model. The hydrodynamical equa-
tions: the conservation of mass (1.4), the conservation of momentum (1.5) and the conservation of
energy (1.6). This set of equations is closed by equation

e =
p

γ−1
+

1
2

ρv2, (6.2)

where γ = cp/cv is an adiabatic coefficient defined via heat capacities. The gravitational force per a
mass unit is assumed in a form

~g = G
ρM∗

r3 ~̂r, (6.3)

ρ is mass density, G is the gravitational constant, M∗ the core mass, and ~̂r a vector, with a magnitude
r. It is assumed that the mass is concentrated in the stellar core, while the mass inside the atmosphere
and wind is several orders lower. The coupling of gas and radiation is described by the equation

∂E
∂ t

+∇ · (E~v+~F) =−q̇−∇~v�P. (6.4)

Here, E is the frequency-integrated radiation energy density, P is the frequency-integrated radiation
pressure tensor, q̇ includes heat and cooling terms, and, finally, ~F is the frequency-integrated radiation
flux. The operator ‘�’ is a scalar dot of two tensors (∇~v�P = ∂iv j pi j). Since the environment is
optically thick, the nonequilibrium flux-limited diffusion approach is used, see Moens et al. (2022a),
the vector ~F becomes:

~F =−cλ

χ
∇E. (6.5)

A variable λ is the flux limiter. The flux limiter is a leading parameter for a radiative transfer treat-
ment: standard Monte Carlo, or a ‘semi-diffusion’ method. Opacity χ is assumed in the form

χ = χ
OPAL +χ

line, (6.6)
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Figure 6.7: Input physical quantities calculated with the hydro-model. From the top to below: temperature,
density and velocity magnitude as a function of radius.

χOPAL is opacity obtained from the OPAL tables (Iglesias & Rogers, 1996); since this term does not
describe opacity of a supersonic medium accurately, (e.g., Poniatowski et al., 2021), the term χ line

is the total contribution from all lines computed for a supersonic medium, (e.g., Poniatowski et al.,
2022, Pauldrach et al., 1998, 2001). However, it is still not full radiative transfer treatment. This is the
main reason to use our code to calculate radiative transfer and emergent spectra for this hydro-model.

6.2.1

Set up of model

A model was set up according to Moens et al. (2022a); since an original version of the hydrodynamical
model is defined inside a box, an input must be defined in the whole space between R∗ and R∞.

The input temperature structure is depicted in Fig. 6.7 and 6.8, where the temperature range starts
at the values around 300000K in deep layers; decreases to temperatures 50000K. The density values
fit into a range starting at 10−7 g · cm−3 and reaching 10−12 g · cm−3 at the upper boundary. Finally,
velocity magnitude is significantly dispersed, large values can be found inside the photosphere; the
upper limit is 1.75× 108 cm · s−1, however, the terminal velocity is around 1.15× 108 cm · s−1. Fur-
thermore, all important values are listed in the Table 6.2 The atmosphere is composed of helium and
carbon, concretely, a helium abundance is assumed to be 0.98 and a carbon abundance 0.02. Atomic
data are implemented from the Opacity project (Delahaye et al. (2016)) with detailed informations in
Tab. 6.3.

6.2.2

Numerical grids

Mapping of the modGrid onto propGrid is not straightforward, since the modGrid points are dis-
tributed irregularly in the computational domain. Not every propGrid cell contains any modGrid
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Figure 6.8: Temperature structure in radial slices from the input model.

number of packets 1×107

grid size NB 100×100×100
size of computation domain 6.085R�

effective temperature Teff 44891 K
stellar radius R∗ 0.707R�
outer boundary R∞ 5.966R∗
outer boundary velocity V∞ 1.74413586×108 cm · s−1

temperature range (50000, 300000) K
density range (10−12,10−8) g·cm−3

Table 6.2: Numerical parameters of calculated testing model.
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Ion Max. principal quant. num. N of levels N of transitions
HeI 10 54 315
HeII 10 55 285
HeIII 1 1 0
CI 10 361 4158
CII 10 184 396
CIII 10 137 830
CIV 10 25 153
CV 10 55 315
CVI 10 54 285
CVII 1 1 0

Table 6.3: Numbers of atomic levels and atomic transitions included.

point. A direct connection between modGrid and propGrid leads to a situation shown in the Fig. 6.9.
propGrid cell index is calculated for every propGrid cell using the equation (3.2).

A tricky problem lies in the velocity interpolation. The interpolation is tightly connected to the
propGrid: the velocity vector connected to the current propGrid centre. It is clear, that in the slice
shown in Fig. 6.9 (a velocity vector is defined only for yellow labelled cells) a large amount of non-
connected cells occurs, furthermore, a large resolution of the grid leads to more isolated islands of
connected propGrid cells, however the propGrid choice cannot affect the propagation and interaction
of packets. The whole machinery must be tested to discover all possible disadvantages.

The main problem of vacuum cells(a propGrid cell R∗ < r < R∞ without a connected modGrid
cell). is a destroying the velocity structure – the neighbouring cell do not posses an information about
velocity, therefore a linear interpolation is not possible. If the velocity in the neighbouring cell is set
to zero, then an artificial velocity gradient is created, see Fig. 6.10. The number of those cells must
be reduced. A dummy solution in 1-D was simple: finding the closest model point to every propGrid
point. 3-D model provides significantly larger number of modGrid points, hence this algorithm is
numerically expensive, in the 3-D practically inapplicable. A different approach must be developed
in this case, hence a copying of associated cells to the neighbour cells is processed until all propGrid
cells have associated cells, see, lower panel of Fig. 6.9.

The adaptive grid offers more efficient solution. The basic propGrid can be chosen significantly
less denser in comparison to a case without adaptive grid. Therefore every propGrid basic cell in-
cludes modGrid points which are used for the connection the correct modGrid cell to propGrid cell.
If the basic propGrid cell do not posses any modGrid point, all cells will be treated as vacuum. How-
ever, this methods still depends on the choice of the basic propGrid. Another approach can be a
simple copy of associated cell from a neighbour propGrid cell. Another improvements are possible
due to the velocity interpolation.

6.2.3

A treatment of high-opacity domains

Since the lower parts of model (points with lower radii) are placed deeply in the stellar photosphere,
the continuum opacity is dominant in comparison to other opacities. It leads to a large number of
scattering processes during the MC calculations, furthermore, the propagation of packets is computa-
tionally expensive and inefficient. There are several methods to avoid this problem. One of possible
method is a diffusion approximation combined with the MC method, (i.e., Noebauer & Sim, 2019,
Fleck & Cummings, 1971, Fleck & Canfield, 1984, Densmore et al., 2007).
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Figure 6.9: Mapping between modGrid and propGrid. A slice in z-plane in a distance 4.78R�, hence the
propGrid cells corresponding to the central star are not located here. Black cells represent propGrid cells
beyond the computation domain r > R∞, grey cells represent vacuum, only yellow cells represent associated
propGrid cells, Upper left panel: NB = 1003, upper right panel: NB = 2003. Lower panel: full connected
propGrid.
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Figure 6.10: Scheme of non-valid velocity interpolation. A packet is propagating from the left propGrid cell
to the right, while the middle cell is the vacuum cell. If a velocity in the vacuum cell were treated as zero,
an artificial velocity gradient is created (red line). Hence two possible solutions are possible: remember the
last velocity vector and calculate the interpolation only between second and third propGrid cell, or interpolate
straightly between the right and left cell, which causes less steep velocity function.

In our code, we have implemented the simplest method, which is an acceptable basement for
later improvements described in the citations above. The main idea is to avoid the MC calculations
inside high-opacity cells with moving the lower boundary upwards. This boundary radial position is
dependent on azimuth and declination, hence it is not efficient to set a global lower boundary to be
an arbitrary r > R∗. First of all, the conditions are chosen appropriately; based on those conditions
(which are connected to the modGrid cells) is every modGrid cell labelled as ‘diffusive’ 4 or ‘non-
diffusive’.

The ‘non-diffusive’ modGrid cells are treated as normal cells. Otherwise, the ‘diffusive’ process
is activated. A d-packet is created. The d-packet posses informations about a current propGrid cell
it is located in, current energy which does not change. It does not posses a frequency, nor a precise
position. The only process allowed is a change of a propGrid cell. The following procedure depends
on the next propGrid cell:

• the next cell is also diffusive – the same procedure is repeated again,

• the next cell is not diffusive – a packet changes into an r-packet with a frequency randomly
generated from the Planck’s law and a random direction outwardly from the current propGrid
cell,

• the next cell is below lower boundary – a choice is repeated again.

The main parameter is the λ parameter introduced in the Eq. (6.5). Another parameter may be the
absorption coefficient. Based on the values, a modGrid cell is labelled before the packet propagation.
This parameter does not change during a single iteration. An edge value can be chosen freely and
tests are shown in the section below.

4In the later context, the title ‘diffusive’ is misleading. This title is held because of future improvements which will lead
to a real diffusive approximation.
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6.2.4

Preliminary results

We present preliminary results. Many computational aspects will be tested and improved, see the
forthcoming section. The presented results are calculated in the LTE approximation and the spectrum
is created from all propagated packets. First of all, we present calculated matter properties, and the
calculated spectra for simplified model parameters.

Calculated ionization fractions are plotted in Fig. 6.11. The largest ionization fraction is fully
ionized. Carbon ionization fraction is more complicated. Fully ionized carbon and five-times ionized
carbon dominates in the deepest layers, its value decreases rapidly with radius. The most dominant
ion is CIV, other fractions of the ions increase slightly.

We present very first spectra obtained with our code. The first spectra on the Fig. 6.12 are calcu-
lated for several values of Planck distribution effective temperatures defined at the lower boundary of
the model. The only resonant scattering was allowed, hence every line is P Cygni type. The values
of effective temperatures were chosen to be in a standard range of Wolf-Rayet stars. The spectrum
consists of several lines, mainly HeII, weaker lines CIV. Line profiles are deeper in the case of large
effective temperatures.

The second case includes a propagation of packet allowing a d-packet machinery. The d-packet
is activated for modGrid cells with λ > 0.3. A propagation of a packet is plotted in Fig. 6.13 and
the spectrum in Fig. 6.14. The path is not yet efficient, however, no Monte Carlo propagation
is being calculated in the d-pack cells. The effective temperature is not constant as well as lower
boundary radius depends on the azimuthal and polar angle. The temperature of emitted r-packet (in
Planck distribution) depends on the current cell the packet is emitted from. The energy fraction lost
in photosphere is zero, furthermore, the energy loss via Thomson scattering is not significant. This
approach is a reliable starting point to further improvements, see forthcoming section.

6.2.5

Further improvements

The presented results are preliminary. Many improvements are planned to be done and published in
the next paper. The spectra will be calculated in the adaptive propGrid, since its potential to cover the
modGrid is larger than the case of regular propGrid.

Two possible ways to prevent unwanted velocity gradients are possible, see Fig. 6.10. The first
one is to save the last velocity vector of non-vacuum cell; a velocity in next vacuum cell is treated as
a transfer into the propGrid cell with the identical associated modGrid cell (dotted line). A transfer
from vacuum cell into the non-vacuum cell: the velocity interpolation can be done between the saved
velocity vector and a velocity vector inside the next cell (and a vector from the other propGrid cells
needed to calculate interpolation).

The d-packet dynamics will be improved. The diffusive approximation is much more appropriate
approach, since the current solution lies in changing of lower boundary condition. Therefore the
combination of diffusive and Monte Carlo approach is more efficient than the Monte Carlo approach
lone standing. Other improvements are described in the chapter 7.
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Figure 6.11: Ionization fractions calculated in LTE approximation from the input model. Upper panel: Helium
ions, Lower panel: Carbon ion.
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Figure 6.12: Calculated spectra for several effective temperatures of star (lower boundary equilibrium temper-
ature of radiation field).
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Figure 6.13: Path of a packet consisted of d-pack parts and Monte Carlo parts. The cells represent d-packet
cells and blue line represents a path of r-packets.
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Figure 6.14: Spectrum calculated of a case with d-packets machinery enabled.



CHAPTER 7

Summary

Firstly, we briefly described our code, a method of solving radiative transfer equation, and numerical
grids. Several tests were made to figure out the precision of our numerical implementations. To test
interaction between packets and matter, we compared our results with results calculated with Tardis
code. Finally, first calculations of 3-D models were introduced.

The code starts with reading the input model and creates the model grid (modGrid), which con-
tains physical properties of the circumstellar outflow. Currently we use a precalculated hydrodynam-
ical (or pure analytical) model of stellar outflow. Then a computation domain is created; the prop-
agation of radiative energy packets (which describe radiation) is processed. This domain is called
propGrid. Every packet represents an energy which propagates and changes its state until it reaches
the outer boundary. The inner and outer boundaries are set up to be consistent with the modGrid.

The modGrid is the input model of atmosphere. It consists of necessary physical data: size
of computation domain (lower and upper boundary); boundary conditions: effective temperature;
physical values for modGrid points: velocity, density, temperature. The code is not restricted to one
input geometry; an implementation of reading a datafile is not a difficult task. The code supports 1-D
models, 3-D models (which are not difficult to read) and some 2-D models (not fully implemented
yet). The propGrid has to be constructed alongside the modGrid.

The propGrid is a Cartesian grid, where the whole propagation of radiation is processed. The
main advantage of using a Cartesian grid is working with one version of geometry implemented into
subroutines, therefore, conversion has to be done only during the reading of modGrid data. The
propGrid can be regular or adaptive. The numerics in regular grid is easy to implement, however, it is
not efficient. To describe the spatial changes, the propGrid cells have to be small enough; including
the zones beyond the upper boundary and below the lower boundary. Therefore a large amount of
memory is wasted. The efficiency problem is solved with adaptive grid, see 3.4. Two types of the
adaptive propGrid are created: octgrid and one-level grid. Both of them are advantageous in different
input models.

The propGrid is created on a base of modGrid, however, individual propGrid cells have to be
connected with modGrid cells. A connection in 1-D model is quite simple, the 3-D case is more
complicated, since the number of modGrid points can be significantly larger, therefore the consumed
time increases rapidly. On the other hand, the propGrid and modGrid can be saved and loaded for
another run again, including their connection.

Plasma is still treated in LTE approximation, it means that ionization and excitation balance is
treated with Saha and Boltzmann equation, see B. It is much more simple; more accurate solution–
statistical equilibrium equations are planned to be implemented in the nearest future. A simple recal-
culation of the temperature structure is already implemented into the code; the calculation is based on

71
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a simple model of radiation field and depends on a number of propagated packets. This improvement
will be tested and published in forthcoming publications.

The radiation field is quantized into packets, the matter is quantized into macro-atoms, accord-
ing to Lucy (2002, 2003). The interactions are probabilistic and depend on implemented rates. The
verification of implementation was tested via a comparison of emergent spectra calculated with the
same input models with another program, the Tardis code, which is a supernova spectrum synthesis
code. Three basic modes of line interactions were tested: pure scattering (scattering mode), scattering
and fluorescence (downbranch mode), and scattering, fluorescence, and internal transitions within a
ionization state (macro-atom mode). The agreement between emergent spectra is satisfactory. Differ-
ences in continua are negligible, although the differences in lines are more significant.

The Monte Carlo method yields a large advantage for 3-D models calculations. Our code is cur-
rently capable to calculate radiative transfer through full 3-D models. These models were presented
in the Chapter 6. In the first part, pseudo 3-D models were presented. A transformation from 1-D to
3-D is not straightforward, therefore we discussed several aspect of this transformation. The second
section, 6.2, describes the very first implementation of 3-D hydrodynamical model. The brief de-
scription of the code is followed by parameters. The input model of atmosphere contains very optical
thick domains, which should be avoided with the Monte Carlo solution.

7.1

Future work
The code provides many options to calculate radiative transfer in wide range of input models of
atmospheres. In the following list, the major the future improvements are listed. Some of these
improvements are crucial for good results, others are optional.

Full Macro-atom approximation

The Macro-atom approximation includes a large amount of transitions. Line interactions were tested,
including radiative deexcitation and internal downward and upward jumps in the internal packet mode.
A large number of processes is included, however, no tests have been done yet. The tests will be done
comparing emergent spectra against another radiation transfer code, similarly to the Chapter 5.

Bound-free processes The bound-free processes are not straightforward to be implemented into the
code. The photoionization cross sections are read from files from Opacity

project and saved into a table including the cross sections for ion levels as a function of frequency.
The bound-free processes are both time and memory consuming. The cross section is calculated with
the linear interpolation, furthermore, the tables including cross sections have to be stored during the
whole calculation.

k-packets The kinetic energy packets represent the collisional processes in the matter. These pack-
ets contribute to the matter emissivity, therefore it is important to calculate the cooling

rates. In addition, cooling (and heating) rates are necessary to calculate the thermal balance, therefore
the gas temperature.

The calculation of rates have to be proceed for every included transitions in each modGrid cell.
This procedure becomes very computational expensive for the case of large number of included tran-
sitions. There are methods to save computation time. One possibility is to save rates of the last
modGrid cell to save computing time, for a case, whether a packet returns back.
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i-packets Several i-packet processes have been already tested, such as radiative excitation, internal
upward and downward jumps within a ionization state. Nevertheless, there is a large

amount of rates which have not been tested yet: internal upward and downward jumps to higher and
lower ionization state, collisional deexcitation, and radiative deexcitation. The main challenge lies in
consistent1 inclusion of van Regemorter approximation.

Calculation of recombination rates are time consuming. Mainly because of linear interpolation
of the photoionization cross section. CPU time is partially reduced by precalculation of integrals
and creating tables; the integral values are function of temperature. The temperature grid is regular
(in a form T (i) = T0 + i∆T , i is an index of an interval, T0 initial temperature and ∆T a difference
between temperatures), therefore, for a given temperature is index i calculable directly. When the
corresponding interval is determined a linear interpolation can be calculated. The tables are calculated
before the packet propagation, thus the calculations of integral (over an exponential function) is not
calculated during the i-packet machinery, which saves time.

More precise physical approximations

Several approximations are used during the code development. It is a natural phenomenon, since it
is more advantageous to test implemented code on simple case. The reality is usually much more
complicated, consequently, laws of physics are equally complicated. We present several aspects of
our code, which will be developed in the nearest future.

Ionization and excitation
balance

Ionization and excitation balance is currently treated in the LTE approx-
imation. It is assumed that certain level of thermodynamic equilibrium
is satisfied in short distances, therefore the ionization balance can be

calculated only with the Saha equation and a concrete level populations with the Boltzmann equation.
This condition is more-less satisfied in the large optical depths. The accuracy of this approximation
decreases rapidly in the case of stellar winds, hence NLTE approximation should be used instead.
However, we were focused mainly on the implementation of radiative transfer and packet interac-
tions, hence this approximation is acceptable. The NLTE is partially assumed via the Macro-atom
approximation implementation, however, the ionization fractions and level populations play crucial
role for the rates calculations.

The main task is to implement the NLTE rates calculation, furthermore, new Monte Carlo estima-
tors have to be implemented into the code. The NLTE approximation will enable us to calculate more
precise models comparable with observations.

Beyond the Sobolev
approximation

The Sobolev approximation is held in the current equations implemented into
the code. This approximation is valid in the case of large gradient outflows,
such as supernova ejecta. It is less valid in the case of stellar winds.

The Sobolev approximation is connected to the profiles of lines. Line profiles are assumed to
be delta functions, which is satisfactory condition in the Sobolev approximation. In further develop-
ments, more realistic line profiles inclusion is inevitable, since the Sobolev approximation is not valid
in every case.

1Rates are dependent on the change orbital quantum number, which is not straightforward to find whether this number
change or from a comparison of two arrays of electronic configuration.



CHAPTER 7. SUMMARY 74

Full diffusion approximation The Monte Carlo method is inefficient in the optically thick zones.
A kind of semi-diffusive approximation was already implemented

into the code, however full diffusive approximation is capable to calculate more accurate electron
temperature and other radiation and matter parameters.

More various boundary
conditions

The current boundary conditions assume homogeneous surface. These
conditions can be changed; the initial distribution function can depend
on the surface position.

Spectra of full 3-D models

The current emergent spectra are created out of all propagated packets (through the outer boundary).
This procedure is acceptable in the case of spherically symmetric models. In future, this method will
not be satisfying enough and we will need spectra calculated for a given direction. Mainly in the case
of non-symmetric objects. The backward-ray tracing method will be implemented into the code, the
current method is inefficient – much larger number of packets (by several orders) would be needed in
the current method.

More various types of objects

It is clear that our code is not bound only to the case of stellar winds. Many tests were processed
on supernova ejecta. Other circumstellar objects can be included too. Circumstellar discs are great
candidates for an implementation into our code. The implementation has already been done and very
first spectra were calculated. This is the main promising part of our project.

Numerical efficiency

The code is developed to be efficient, however, the efficiency does not reach its maximum. Several
procedures can be run more optimally, other processes should be parallelized.

Adaptive propGrid properties The results in the Chapter 4 show that the adaptive propGrid is not
effective enough; mainly its creation is time consuming. Several

steps have been already done: both, propGrid and modGrid can be stored into a file and loaded in
another calculation without a calculation, which saves a plenty of time. The connection between the
grids has been accelerated. However it is still not efficient enough and more work has to be done in
this aspect of the code.

Plasma state calculation The calculation of ionization fractions has to be done for every included
modGrid cell. Since the program is parallelized, every core can calculate

a different part of model. While LTE approximation is the only possibility, the efficiency would not
large, although it increases significantly in the case of NLTE approximation – the ionization balance
is solved with the statistical equilibrium equations.



Conclusions

We presented our new MCRT code. This code is being developed to calculate the radiative transfer
in 3-D circumstellar outflows and it is still a work in process. We summarize implemented properties
and tests which were done. This code is capable to solve multiline radiative transfer in a precalculated
hydrodynamical model, which can be 1-D, 2-D, or 3-D. The implemented utilities are: opacity project
atomic data, adaptive propGrid, full Lucy Macro atom approach. Furthermore, 3-D models can be
calculated with full general velocity field saved in an input file.

The propGrid and its connection to the modGrid was tested in the 4; a simple model with a
spherical (single and double) clump was created. A comparison of regular grid, octgrid, and one-
level subgrid was done. We tested efficiency of covering modGrid by propGrid, a relative covering,
timing and calculated spectra. Firstly the regular propGrid was tested on single spherical clump. Even
very dense propGrid does not cover modGrid better than

〈
χ2
〉
= 0.15 (definition is in the equation

(4.5)). Secondly the double clump model was tested. The octgrid seems to be most advantageous in
this case. If the basic propGrid is divided sparsely, the creation times are reasonable. The one-level
subgrid is efficient too, however, the creation times exceed the octgrid creation times significantly.
There is still a large space to improve both of the adaptive propGrids used, which is planned to be
done in future.

The main goal of this thesis was to present radiative transfer through the first full 3-D models,
therefore, a testing of procedures for the 3-D case had to be done, especially an interpolation of
the general velocity field via the trilinear interpolation. Accuracy of this implemented method was
discussed; we show that errors are not significant in the case of regular propGrid, and the trilinear
interpolation is implemented correctly. Algorithms for the case of adaptive grid have to be further
developed.

Radiative transfer through the hydrodynamical model was discussed. The main problem lies in
high continuum opacity domains in the lower parts of the model. Since it is not efficient to calculate
Monte Carlo radiative transfer in these zones, a method to avoid Monte Carlo calculations was devel-
oped. A simple solution was done using d-packets, which move a lower boundary condition to the
optically thin zones, which is better to solve with Monte Carlo method.

Two simple test case were calculated. The first case includes different lower boundary effective
temperature, the second test case was done with the electron scattering and diffusion approximation
included. There are plenty of helium and carbon lines in the spectra. These first results are quite
promising, furthermore, a wide range of the future applications of this code are possible, which
creates many opportunities to use it.
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APPENDIX A

Radiative and collisional rates used in the
code

Here we specify detailed expressions for rates used in our calculations. Copied from Fišák et al.
(2022).

A.1

Radiative rates

Bound-bound rates The radiative rate for an upward bound-bound transition from the level i to the
level u (excitation) is equal to

Riu = Biu

∫
dν φiu(ν)J(ν). (A.1)

The inverse rate (deexcitation from the level i to the level l) is

Ril = Ail +Bil

∫
dν φil(ν)J(ν), (A.2)

In these equations, Ail , Bil and Biu represent the Einstein coefficients, φiu(ν) is the line profile of a
transition between levels i and u, and J(ν) the mean radiation field intensity.

For the case of the Sobolev approximation we approximate the line profile by a delta function,

φ(ν) = δ (ν−νlu), (A.3)

where νlu denotes the line centre frequency. Then the absorption rate for transitions from the level i
to the level u simplifies to (for derivation see Klein & Castor, 1978)

RS
iu = βiuBiuJlu, (A.4)

where the upper index S stands for Sobolev,

Jlu =
∫

dν ·φ(ν)J(ν) =
∫

dν ·δ (ν−νlu)J(ν) = J(νlu), (A.5)

and
βiu =

1
τs

iu
[1− exp(−τ

s
iu)] . (A.6)
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denotes a probability that a scattered photon escapes. The quantity τs
iu is the Sobolev optical depth

for the transition between levels i and u. Similarly, the emission rate from the level i to the level l is

RS
il = βil (Ail +BilJil) . (A.7)

where βil is defined similarly to the Eq. (A.6).
If we treat stimulated emission as negative absorption the absorption and emission rates become

R̃S
iu =

(
Biu−

nu

ni
Bui

)
βiuJiu (A.8)

and
R̃S

il = βliAil, (A.9)

respectively.

A.1.1

Bound-free and free-bound rates

The radiative ionization rate from the level i to the level p (here the ground level of the next higher
ion)

Rip = 4π

∞∫
νi

dν
αip(ν)

hν
J(ν), (A.10)

and the radiative recombination rate (i is the ground level of an ion here, the corresponding population
is denoted as nil0

), m corresponds to a level in the next lower ion:

Rim =

(
nm

nil0

)∗
×4π

∞∫
νm

dν
αmi(ν)

hν

(
2hν3

c2 + J(ν)
)

exp
(
− hν

kBTe

)
, (A.11)

where αmi(ν) is the photoionization cross section from the level m to the level i. The equation consists
of two terms: spontaneous (Rspont

im ) and stimulated (Rstim
im ) recombination rate,

Rspont
im =

nil0
ni

neφi(Te)4π

∞∫
νi

dν
αmi(ν)

hν

2hν3

c2 exp
(
− hν

kBTe

)
, (A.12)

and

Rstim
im =

nmL0

ni
neφi(Te)4π

∞∫
νi

dν
αmi(ν)

hν
J(ν)exp

(
− hν

kBTe

)
. (A.13)

Here
φi(Te) =

ni

n∗m(0)ne
. (A.14)

is the Saha-Boltzmann factor.
If we assume that the stimulated recombination is negative photoionization, the photoionization

rate is given by

R̃ip = γi−
npL0

ni
neα

stim
i , (A.15)

where

γi−
npL0

ne

ni
α

stim
i = 4π

∞∫
νi

dν

(
1−

npL0

ni

n∗i
n∗pl0

exp
(
− hν

kBTe

))
J(ν). (A.16)
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A.2

Collisional rates
For collisional rates from the level i to the level e (which may be l, u, m, or p, see section 2.5.2) the
expressions of Cie for bound-bound and bound-free transitions are given below. The inverse rates are
calculated using n∗i Cie = n∗eCei (see Hubeny & Mihalas, 2015, Eq. 9.52).

A.2.1

Bound-bound transitions

The bound-bound collisional rates are calculated using the van Regemorter (1962) approximation

Ciu = 14.5 ·nec0T
1
2

(
IH

hνiu

)
fiu

hνiu

kBTe
exp
(
− hνiu

kBTe

)
Γ

(
hνiu

kBTe

)
, (A.17)

(see also Hubeny & Mihalas, 2015, Eq. 9.58), here c0 = 5.46510 · 10−11 is a constant, IH = 13.6eV
is ionization potential of hydrogen and hνiu = εu− εi is the transition energy between levels i and u.
The function Γ is defined as

Γ(x) = max(ḡ,0.276 · exp(x)E1(x)) , (A.18)

ḡ is given by (here n,n′ denote principal quantum number, l, l′ the orbital quantum number)

ḡ∼
{

0.7, for transitions < n, l >→< n, l′ >,

0.2, for transitions < n, l >→< n′, l′ >,
(A.19)

and E1(x) is the exponential integral function.

A.2.2

Bound-free transitions

The collisional bound-free rates are calculated using an approximate formula (see Hubeny & Mihalas,
2015, Eq. 9.60)

Cip = ne
1.55 ·1013

T
1
2

e

ḡi
αip
hνi

kBTe

exp
(
− hνi

kBTe

)
, (A.20)

where ḡi is equal to

ḡi ∼


1 charge of ionization state of level i is 0,
2 charge of ionization state of level i is 1,
3 charge of ionization state of level i is≥ 2.

A.2.3

Free-bound transitions

The cross section for the spontaneous free-bound transition from the level i to the level m is

α
E, spont
i = φi(Te)4π

∞∫
νi

dν
αim(ν)

hνi

2hν3

c2 exp
(
− hν

kBTe

)
(A.21)

where the Saha-Boltzmann factor is defined in (A.14).
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A.3

Emissivities
The free-bound emissivity

η
bf
ip(ν) = n∗i αip(ν)

2hν3

c2 exp
(
− hν

kBTe

)
. (A.22)

where αip(ν) is the photoionization cross-section for a transition from the level i to the level p.
The free-free emissivity

η
ff
i = neN jα

ff
i (ν ,Te)

2hν3

c2 exp
(
− hν

kBTe

)
, (A.23)

N j represents the population of the ion j, the free-free cross-section, see (Kromer, 2009, Eq. (3.46))

α
ff
iIk
(ν ,T ) =

4e6

3hc

(
2π

3m2
ekB

)1/2 (k−1)2

T 1/2

gff( j)
ν3

= 3.69255×108 · (k−1)2gff( j) ·T−1/2×ν
−3. (A.24)

If we put the Eq. (A.23) into Eq. (2.56) we can find easily an analytic formula

ν =
kBT

h
log(z). (A.25)

where z ∈ (0,1) is a random number.



APPENDIX B

Ionisation and excitation equilibrium

The occupation numbers are in the LTE approximation calculated via the Boltzmann excitation for-
mula, which we use in the form

nu

nl
=

gu

gl
exp
(
−εu− εl

kBTe

)
, (B.1)

where n denotes the atomic level number densities, g is the statistical weight, ε is the level energy,
and the indexes l and u denote lower and upper level of the transition, respectively. The ionization
balance follows the Saha equation, here in the form

N j

Npne
=

U j

Up

C

T 3/2
e

exp
(

εpL0
− ε jL0

kBTe

)
, (B.2)

where C is the Saha constant

C =
1
2

(
2π h̄2

mekB

) 3
2

, (B.3)

N denotes ion number densities, U denotes the partition function, ε denotes energies, and the indexes
p and j denote atomic states. The partition function of the ion i is

Ui (Te) =
~NL

∑
j=1

g j exp
(
− ε j

kBTe

)
, (B.4)

where ~NL is the total number of included levels for ion i. The sum runs only over the levels included
in the calculation.

80



Bibliography

Adam, J. 1990, A&A, 240, 541

Baes, M., Verstappen, J., De Looze, I., et al. 2011, ApJS, 196, 22

Barlow, M. J. & Cohen, M. 1977, ApJ, 213, 737

Barnes, J. & Hut, P. 1986, Nature, 324, 446

Bieging, J. H., Abbott, D. C., & Churchwell, E. B. 1989, ApJ, 340, 518

Bjorkman, J. E. & Cassinelli, J. P. 1993, ApJ, 409, 429

Blondin, J. M., Kallman, T. R., Fryxell, B. A., & Taam, R. E. 1990, ApJ, 356, 591

Bulla, M., Sim, S. A., & Kromer, M. 2015, MNRAS, 450, 967

Carciofi, A. C. & Bjorkman, J. E. 2006, ApJ, 639, 1081

Carciofi, A. C., Bjorkman, J. E., & Magalhães, A. M. 2004, ApJ, 604, 238

Carciofi, A. C., Bjorkman, J. E., & Zsargó, J. 2017, in The Lives and Death-Throes of Massive Stars,
ed. J. J. Eldridge, J. C. Bray, L. A. S. McClelland, & L. Xiao, Vol. 329, 390–390

Carlberg, R. G. 1980, ApJ, 241, 1131

Carroll, B. W. & Ostlie, D. A. 2017, An introduction to modern astrophysics, Second Edition (Weber
State University)

Castor, J. I. 1974, ApJ, 189, 273

Castor, J. I., Abbott, D. C., & Klein, R. I. 1975, ApJ, 195, 157

Chandrasekhar, S. 1934, MNRAS, 94, 522

Delahaye, F., Zwölf, C. M., Zeippen, C. J., & Mendoza, C. 2016, Journal of Quantitative Spectroscopy
and Radiative Transfer, 171, 66

Densmore, J. D., Urbatsch, T. J., Evans, T. M., & Buksas, M. W. 2007, Journal of Computational
Physics, 222, 485

Dessart, L. & Owocki, S. P. 2003, A&A, 406, L1

Dessart, L. & Owocki, S. P. 2005, A&A, 437, 657

Driessen, F. A., Kee, N. D., & Sundqvist, J. O. 2021, A&A, 656, A131

81



BIBLIOGRAPHY 82

Feldmeier, A., Puls, J., & Pauldrach, A. W. A. 1997, A&A, 322, 878

Feldmeier, A., Puls, J., Reile, C., et al. 233, Astrophysics and Space Science, 233, 293

Feldmeier, A., Shlosman, I., & Vitello, P. 1999, ApJ, 526, 357

Fišák, J., Kubát, J., Kubátová, B., Kromer, M., & Krtička, J. 2022, A&A, in press
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