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ABSTRACT

In this publication, we focused on the numerical modeling of Cataclysmic Variables
(CV) and, in particular, the accretion system dynamics of these binary systems.
CVs are known to exhibit aperiodic highly aperiodic behavior in the light curve.
This phenomenon, called flickering, was first discovered by (Henize, 1949) and
(Lenouvel and Daguillon, 1954). To this day, its origins or the underlying mecha-
nism, which produces the brightness irregularities, are not well understood. First,
it was theorized that the flickering could be attributed to the highly turbulent na-
ture of the accretion disk region, where the gas stream from the secondary star,
also called the hot spot, meet the accretion disk’s body. Some observed systems
exhibit the flickering the most when the hot spot is not obscured from the ob-
server. However, later studies, like (Patterson, 1981) or (Wood et al., 1986), have
demonstrated that for other significant portion of CV systems, there is no correla-
tion between the orbital phase and the flickering levels. There were many models
created over the years, for example, (Dobrotka et al., 2012), (Kley and Papaloizou,
1997), (Lyubarskii, 1997), (Yonehara et al., 1997). However, none could provide
definitive explanations of the flickering’s origin.

As the first goal of our research, we implemented a custom numerical accretion
disk model, called Multilayer Dripping Handrail (MDH), which we use to study the
dynamics of matter distribution and extract light curves of different characteristics
depending or set simulation parameters and initial conditions. We provided a highly
customizable and well-optimized tool for accretion disk modeling, which does not
require a supercomputer.

The second goal we set up was to obtain the value of free parameter α from the
standard Shakura-Sunyaev α-disk model (see (Shakura et al., 1973)) for modeled
CV systems. We based the analysis on the numerical simulation results of MDH,
which are in good agreement with the analytical α-dics solution. Therefore, we can
accurately obtain the α parameter and pair it to the specific CV system parameters.

We start this publication’s text with a brief overview of different types of accret-
ing systems observable in the universe and the underlying theory. Then we go over
the theory behind the primary mechanism of MDH, which we use to trigger the
matter redistribution in the disk. The critical dripping mechanism is based on the
dripping faucet models and, specifically, the Mass-Spring Model first introduced
by (Shaw, 1984).

Then, we provide a definition and explanation of the theory behind our MDH
model, and also we go over the actual C++ code implementation, its concepts,
limitations, and used libraries.

In the end, we demonstrate our model’s capabilities and simulation results on
several different configurations for the same generic CV system and discuss the
characteristics of different outcomes. Also, we use the data obtained from the
aforementioned simulations to get the desired α parameter value.





ABSTRAKT

V této publikaci se soustřed́ıme na modelováńı Kataklyzmických proměnných hvězd
(CV - z angl. Cataclysmic Variables). Konkrétně na dynamiku akrece v těchto
binárńıch systémech. CV hvězdy jsou známé t́ım, že jejich světelné křivky mohou
vykazovat vysoce aperiodické chováńı. Tento fenomén, nazývaný flickering, poprvé
objevili (Henize, 1949) a (Lenouvel and Daguillon, 1954). Původ a vnitřńı mecha-
nizmy, které dávaj́ı vzniknout těmto nepravidelným změnám jasnosti, nejsou stále
dobře pochopeny. Prvńı teorie připisovaly vznik flickeringu vysoce turbuletńı po-
vaze mı́sta, kde se proud plynu ze sekundárńı hvězdy setkává s akrečńım diskem,
také nazývanému horká skvrna (angl. hot spot). Některé pozorované systémy
vykazuj́ı nejvyšš́ı urovně flickeringu v době, kdy horká skvrna neńı zakryta před
pozorovatelem. Pozděǰśı studie, např́ıklad (Patterson, 1981) nebo (Wood et al.,
1986), ale ukázaly, že pro značnnou část CV systémů neexistuje korelace mezi
orbitálńı fáźı a urovněmi flickeringu. Během let bylo vytvořeno mnoho model̊u,
např́ıklad (Dobrotka et al., 2012), (Kley and Papaloizou, 1997), (Lyubarskii, 1997)
nebo (Yonehara et al., 1997). Žádný ale zat́ım neposkytl definitivńı vysvětleńı
p̊uvodu flickeringu.

Jako prvńı ćıl našeho výzkumu jsme implementovali vlastńı numerický model
akrečńıho disku, nazývaný Multilayer Dripping Handrail (MDH - česky. Vı́cevrstvé
Kapaj́ıćı Zábradĺı), který jsme použili ke studiu dynamiky distribuce hmoty a
extrakci světelných křivek závislých na nastavených parametrech a počátečńıch
podmı́nkách. Poskytli jsme vysoce př́ızp̊usobitelný a dobře optimalizovaný nástroj
k modelováńı akrečńıho disku, který nav́ıc nevyžaduje superpoč́ıtač.

Za druhý ćıl jsme si stanovili źıskat hodnotu volného parametru α ze stan-
dardńıho Shakura-Sunyaevova α-disk modelu pro námi modelovaný CV systém.
Tuto analýzu jsme založili na výsledćıch numerických simulaćı MDH modelu, které
se ukázaly být v dobré shodě s analytickým řešeńım α-disk modelu. Proto jsme
schopni přesně určit parametr α a spárovat jej s CV systémem specifických parametr̊u.

Text této publikace zač́ınáme stručným přehledem r̊uzných typ̊u ve vesmı́ru
pozorovatelných akrečńıch systémů a navázané teorie. Poté se zaměřujeme na teorii
hlavńıho mechanizmu MDH, který využ́ıváme jako spouštěč redistribuce hmoty v
disku. Tento kritický mechanizmus je založen na modelech kapaj́ıćıho kohoutku,
konkrétně pružinového (MSM - angl. Mass-Spring Model), který zavedl (Shaw,
1984).

Dále předkládáme definice a podrobněǰśı vysvětleńı podkladové teorie našeho
MDH modelu, a také si procháźıme konkrétńı implementaci modelového kódu v
jazyce C++, jej́ı koncepce a použité knihovny.

V závěru demonstrujeme možnosti a výsledky simulaćı několika r̊uzných kon-
figuraćı modelu pro stejný generický CV systém a diskutujeme charakteristiky
r̊uzných výsledk̊u. Výsledná data ze zmı́něných simulaćı jsme poté využili k źıskáńı
požadovaného α parametru.
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1 INTRODUCTION

“The Universe is under no obligation to make sense to you.”
— Neil deGrasse Tyson —

Accretion of various types is one of the prevalent mechanisms by which matter
is distributed and mixed in the universe. The primary focus of this study is com-
puter modeling of accretion disks, and in particular, accretion disks of Cataclysmic
Variable stars.

In Chapter 2, we start by defining what we mean by the term accretion and the
different types of accreting systems, their basic characteristics, and a few notable
examples of such systems. We then discuss different types of accretion disk models
in relation to the Eddington luminosity limit, and an extra focus is given to the
Shakura-Sunyaev α-disk model, which is also referred to as the stardard thin model.
It is the α-disk model whose parameters, and primarily the free parameter α, that
we aim to obtain by utilizing our models discussed in the latter chapters.

Chapter 3 provides an overview of different types of dripping faucets models
and the theory behind them. There are also simulation results examples attached
that were made by the author and are based on the discussed theory and previous
work by (Květoň, 2014).

Chapter 4 focuses primarily on the definition of our Multilayer Dripping Handrail
model (MDH) and its parameters. This Chapter also aims to provide precise expla-
nations of algorithms and processes used to simulate this system and methods by
which we extract synthetic observations from the dynamical matter flow simulation
results.

In Chapter 5, we delve deeper into the technical side of the MDH model, discuss
the actual code implementation, and explain the concepts and technologies used
to construct the simulation code. Also, we discussed some hardware and software
limitations and obstacles we faced. This Chapter should serve as an overview of
our code and maybe an inspiration for similar experiments in the future.

The examples of MDH results are presented in Chapter 6, where we demonstrate
the behavior and customizability of MDH results by computing several edge cases
with combinations of high and low values of MDH’s free parameters.

In Chapter 7, we used the same MDH results to compute the mean area density
distribution of the simulated accretion disk, which we fitted with the Shakura-
Sunyaev α-disk model solution. The analytical solution of Shakura-Sunyaev’s
model agrees closely with our purely numerical approach. Therefore we can obtain
a very accurate value of the free parameter α.
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2 ACCRETION DISKS

“Science, my lad, is made up of mistakes, but they are mistakes which it is usefull to make,
because they lead little by little to the truth”

— Jules Verne —

The term accretion comes from a Latin word accrescere which literarily means
become larger, and in astrophysics, we refer exactly to that process. That is the
coming together and cohesion of matter under the influence of gravity to form larger
bodies (citace). One could easily argue that it is one of the most fundamental
processes in the universe. From the giant galaxies to the tiniest rocks floating
around in the solar system. All the stars, planets, and all there is were smashed
together by gravity at some point in the past. Atom by atom, piece by piece, to
form larger and larger structures. Even the dinosaurs probably met their fate by
a city-sized asteroid that accreted Earth some 65 million years ago.

2.1 Accreting systems

Accretion is not only the mass moving and colliding but also energy taking different
forms in the process. Depending on the nature of the accreting system and its
central object, radiation of various types is emitted by the accreted matter as
it loses energy. Under certain conditions, the matter flow forms an accretion disk
often closely confined to the orbital plane. If we sort accreting astrophysical systems
based on their size, radiation power, and a few other characteristics, we can devise
a crude classification of them. We will briefly describe the accreting system types
in the following sections.

2.1.1 Active galactic nuclei (AGN) and Quasar

The high-luminosity region containing a supermassive black hole in most galaxies’
centers is refered to as Active Galactic Nucleus. The radiative power of the AGN is
usually higher than that of the whole host galaxy, and the radiation characteristics
indicate that stars are not the primary source of this radiation. Instead, mass
accretion onto the central supermassive black hole is the more likely source of this
excess non-stellar power output.

The main distinguishing characteristic of AGNs is whether they are radio loud
or radio quiet, which depends on the existence of jets that are the source of radio
radiation. By jets, we mean relatively narrow streams of accreted mass ejected
from the black hole in both directions, roughly colinear with its axis of rotation.
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Figure 2.1: Multi-wavelength composition (left) and multiple narrow wavelength obser-
vations (right) of Centaurus A. Taken from (NASA, 2021)

These mass ejections can travel at relativistic speeds.

Figure 2.1 shows the Centaurus A (NGC 5128) galaxy with a supermassive
black hole in its center. This object is a typical radio loud AGN. We can see both
jets in the radio part of the spectrum and the accreted matter in other parts of the
spectrum. For example, the galaxy’s dust core is most apparent in visible light.

A particular sub-category of AGN is Quasars. The name Quasar is a con-
traction of the phrase quasi-stellar radio source because, in the 1950s, they were
detected as radio sources of unknown physical characteristics and also in visible
light as faint star-like sources. However, they are nothing like stars. These highly
luminous objects are observed to the highest values of redshift. The current record
holder for the most distant Quasar is the J0313-1806 detected at redshift z = 7.64
by (Wang et al., 2021).

Due to the extreme distance, it is impossible, at least with today’s methods,
to distinguish the active core (i.e., the supermassive black hole), whose mass can
range from 106M� to 109M�. To this day, more than a million quasars have
been discovered, with the closest known Markarian 231 (UGC 8058) at 581 million
light-years away (Gaia Collaboration, 2018).
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2.1.2 X-ray binaries (XB)

The main sequence star in orbit around a neutron star (NSB - Neutron Star Binary)
or a black hole (BHB - Black Hole Binary) is referred to as a X-ray binary (XRB).
The gravitational potential of these systems is strong enough that the accreted
matter produces energy output up to the X-rays. Based on the mass of the primary
component (i.e., the accretor), this class of binary stars is also usually split between
Low-mass X-ray binary (LXRB) and High-mass X-ray binary (HXRB).

Most XRB objects go through periods of high activity when they emit twin jets
at relativistic speed, not that dissimilar to AGN but at a smaller scale, and then a
period of relative quiescence.

In the special case, when the accretor is the strongly magnetized young neutron
star, the accretion disk is truncated by its magnetic field or not present at all, and
the matter transfers onto the neutron star by column accretion.

2.1.3 Young stellar objects (YSO)

When a proto-star is formed from a collapsing molecular cloud, the gas and solid
particles envelope forms a rotating protoplanetary accretion disk. Instabilities and
self-gravity in the disk’s body eventually lead to planets and other smaller objects
forming. The proto-star is only detectable in infrared due to the relatively dense
surrounding matter that obscures it.

The YSO classification consists of five classes (0-IV) based on the infrared and
visible spectral energy distribution. Class 0 is a collapsing molecular cloud. Classes
I to III are YSO with a formed proto-planetary disk in various stages of evolution,
and lastly, class IV refers to a fully formed zero-aged star.

As a side note, the James Webb Space Telescope (JWST) was released only a
year ago, on December 25, 2021. It is equipped with multiple near-infrared and
infrared instruments, so it is literarily able to see through the clouds of such objects
and uncover the stars being born. Due to JWST’s observational capabilities and the
sheer size of its primary mirror, we have something to look for in this particular field
of astrophysical research. The first glimpses of JWST observations demonstrate
the spectacular Figure 2.2, showing the proto-star L1527 captured by the Near-
Infrared-Camera (NIRCam).

2.1.4 Gamma-ray bursts (GRB)

Highly energetic, collimated flashes of γ-rays that can last tens of milliseconds up
to several hours are called Gamme-ray burts (GRB). These are considered the most
energetic events in the observable universe. In addition, GRBs are accompanied by
simultaneous radiation on longer wavelengths (e.g., X-ray) and a follow-up slowly
fading afterglow that may be observable for up to several years.

It is theorized that the possible origin of GRBs may be a compact object merger
or a collapsar (i.e., the failed supernovae). The observations indicate the formation
of a black hole with an accretion disk surrounding it and a high mass accretion
rate (Piran, 2005).

One of the brightest detected GRB 221009A (Swift J1913.1+1946) was detected
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Figure 2.2: Proto-star L1527 captured by Near-Infrared-Camera (NIRCam) onboard the
JWST. Taken from (NASA, 2022)

very recently on October 9, 2022, by the orbital Neil Gehrels Swift Observatory
(Dichiara et al., 2022). It is also one of the closest observed GRBs.

2.1.5 Cataclysmic variables (CV)

We are particularly interested in CVs in this study because our modeling efforts
in the latter chapters focus on generic CV systems. Unlike the LMXB or HMXB,
where the primary component is either a black hole or neutron star, the accretor
in CV is a White Dwarf (WD), and its companion is a late-type star. Due to its
nature, this system has a relatively weaker gravitational potential; therefore, its
radiation energy output is lower than that of the XRB and is comparable in size
to planetary or Earth-Moon-like systems.

The primary WD is a stellar core remnant composed of very dense electron-
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degenerate gas, and its size can be approximated by the mass-radius ratio (Shapiro
and Teukolsky, 1983)

rin ∼M−1/3
p , (2.1)

where Mp represents the WD’s mass and rin its radius, which also corresponds
to the inner boundary layer radius of the accretion disk.

The secondary component star fills its Roche lobe, and the overflowing matter
falls onto the WD through the Langrangian point L1 (Warner, 1995). If the WD
is not magnetized or weakly magnetized, the gas stream forms an accretion disk
around the WD that eventually reaches its surface. In the case of strongly magne-
tized WD, the accretion disk is truncated or non-existent, and the magnetic field
lines direct the accretion flow (citace).

Another important parameter of the CV binary system is its component sepa-
ration distance, closely related to individual component masses. It determines the
accretion disk size because the gravitational potential constrains its outer edge.
The outer disk radius is calculated

rout = d

[
Ms

3(Mp +Ms)

]1/3

, (2.2)

where Ms represents the secondary component’s mass and d is the distance
between the components. Equations (2.1) and (2.2) give us the inner and outer
constraints to define the geometry of the model, which we will define in the latter
chapters of this study.

2.2 Accretion disks models

For the accreting matter that dissipates energy and is not supported by internal
pressure, the matter will form an accretion disk, which is its minimal energy con-
figuration. The falling matter must lose angular momentum to reach the central
object. This process is done through a viscous disipation that is key in transporting
the angular momentum outward and heats the disk. The nature and magnitude
of the viscous processes are the questions of accretion disk modeling because they
are the critical factor determining the disk size, shape, optical dept, and radia-
tion properties. It still needs to be better understood in the case of accretion disk
matter flow because the disk’s body consists of a sheering, radiative, and super-
sonic medium with a high Reynold’s number (Pringle, 1981), and that is quite a
challenging problem to model.

Then there is a question of magnetic fields. The central object (i.e., WD or
NS) may or may not be magnetized. Some objects rotate very fast. For example,
NS rotation periods range from a couple of milliseconds to tens of seconds. The
temperature and composition of the material inflow can widely differ depending
on the characteristics of the secondary object. All those factors add up and create
a complex non-linear accretion environment. Therefore, when modeling such a
complex and dynamic astrophysical system, we are inevitably forced to make some
simplifications, neglections, and approximations.
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In many cases, the accretion disk is closely confined to an orbital plane, so in the
first approximation, we may regard the disk’s matter flow as two-dimensional, ad we
call this the thin disk approximation. This simple yet very effective simplification
enables the creation of a very elaborate accretion model’s theory, but with reduced
complexity, (Frank et al., 2002).

2.2.1 Sub-Eddington accretion disks

The standard vertically thin accretion disk is formed under the conditions of sub-
Eddington accretion rate and very high opacity. The Eddington limit

LE = 1.38 · 1038(M/M�) (2.3)

is the maximum luminosity of a radiating body in hydrostatic equilibrium,
which means the radiation and gravitational forces acting in opposite directions are
in balance. The accreting matter follows very tight spiraling orbits that are almost
Keplerian. Moreover, thin disks have a relatively high luminosity with spectral
energy distribution closely resembling a black body radiation. Thin disks theory
was devised almost independently by (Lynden-Bell and Pringle, 1974), (Pringle,
1981). Under the umbrella of standard thin disks is also the Shakura-Sunyaev
α-disk model, which is described more closely in Section 2.2.3. This model is
particularly interesting to us because part of our simulation efforts in the latter
chapters is focused on the α parameter modeling.

In the case of the central object in the thin disk system being a black hole, the
models need to deal with relativistic effects in its proximity. Researchers D. N.
Page and K. S. Thorne provided such a theory in (Page and Thorne, 1974), which
was later used by (Luminet, 1979) and (Marck, 1996) to generate synthetic images
of Keplerian disk around a black hole distorted by intense gravitational lensing.
Figure 2.3 shows a more recent simulation example of such a synthetic image.

As a side note, these simulated images found their way even to a broader audi-
ence through pop-cultural references. Professor Thorne himself worked as a science
advisor for Christopher Nolan’s 2014 movie Interstellar, in which very accurate
VFX renders of a supermassive black hole with an accretion disk were used.

The other type of sub-Eddington disk that, forms when the opacity is very
low, is called ADAF (Advection-Dominated Accretion Flows), and it was predicted
by (Ichimaru, 1977). ADAFs are radiatively very inefficient, because the cooling
is done dominantly by advection (i.e., heat capture in the matter) and not by
radiation. Therefore they are very hot, geometrically extended and more similar
in shape tho a sphere than a flat disk (Frank et al., 2002).

2.2.2 Super-Eddington accretion disks

Observations of higly luminous quasars at high values of redshift (z ∼ 7), like the
afformetioned J0313-1806, suggests that in order to grow s supermassive black hole
with mass MBH>109M� in under a billion years after the big-bang the accretion rate
of such object needs to break the Eddington limit. However, it is theorized that
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Figure 2.3: Visualization of a black hole accretion disk. The observer’s image is warped
by extreme gravitational lensing and highly depends on the observer’s inclination. Taken
from (NASA’s Goddard Space Flight Center, 2019)

the Eddington limit could be breaked by non-spherical geometry and instabilities
(Brightman et al., 2019).

As our technological capabilities progress and enables observations of these ex-
tremly distand and old objects, the details of super-Edington accretion mechanism
remain uncler. This topic is important for understanding the processes behing the
growt of first supermassive black holes and teir impact on their host galaxies.

2.2.3 Shakura-Sunyaev α-disk

In 1973, N. I. Shakura and R. Sunyaev proposed an accretion disk model whose
source of increased viscosity are the turbulent flow patterns in the disk’s body
(Shakura et al., 1973). This model applies if the modeled system is a thin disk,
and because of that, it is considered that all material in the disk’s body is near its
surface, allowing the thermal emission to escape freely. Therefore, self-absorption
processes are insignificant.

Utilizing equations of hydrostatic equilibrium and Kramer’s opacity law on the
two-dimensional disk, we can devise a set of equations that describe the local disk
structure (Frank et al., 2002)
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ρ = Σ/H,

H = csR
3/2/(GM)1/2,

c2
s = P/ρ,

P =
ρkTc

µmp
+

4σ

3c
T 4
c ,

aσT 4
c

3τ
=

3GMṀ

8πR3
,

τ = ΣκR(ρ, Tc) = τ(Σ, ρ, Tc),

νΣ =
Ṁ

3π

[
1−

(
R∗
R

)1/2
]
,

ν = ν(ρ, Tc,Σ, α, ...).

(2.4)

The set of equations (2.4) contains eight unknowns: density ρ and temperature
Tc of disk’s mid-plane, scale height H of the disk, the speed of sound in the medium
cs, the sum of gas and radiation pressure P , area density Σ, optical depth τ ,
and viscosity ν. These unknowns are solved as functions of: accretion rate Ṁ ,
the central object’s mass M , the radius of a specific point in the disk R, and
free parameter α. Moreover, R∗ represents the radius where angular momentum
stops being transported outwards. Assuming that the values ρ and Tc enable the
approximation of Rosseland mean opacity using Kramer’s law

κR = 5 · 1024ρT−7/2
c cm2g−1, (2.5)

the viscosity of the disk’s medium is estimated

ν = αcsH, (2.6)

where cs represents the speed of sound in the medium. H represents the scale
height of the disk limiting the subsonic turbulent eddies size. The free parameter α
ranges between zero (no accretion) and approximately one. Solving the equations
(2.4) with the assumption µ = 0.615 (fully ionized gases), we get a set of relations
representing the Shakura-Sunyaev α-disk solution (Frank et al., 2002)

Σ = 5.2α−4/5Ṁ
7/10
16 m

1/4
1 R

−3/4
10 f14/5 g cm−2,

H = 1.7× 108α−1/10Ṁ
3/20
16 m

−3/8
1 R

9/8
10 f

3/5 cm,

ρ = 3.1× 10−8α−7/10Ṁ
11/20
16 m

5/8
1 R

−15/8
10 f11/5 g cm−3,

Tc = 1.4× 104α−1/5Ṁ
3/10
16 m

1/4
1 R

−3/4
10 f6/5 K,

τ = 190α−4/5Ṁ
1/5
16 f4/5,

ν = 1.8× 1014α4/5Ṁ
3/10
16 m

3/4
1 R

3/4
10 f

6/5 cm2 s−1,

vR = 2.7× 1014α4/5Ṁ
3/10
16 m

−1/4
1 R

−1/4
10 f−14/15 cm s−1,

with f =

[
1−

(
R∗
R

)1/2
]1/4

,

(2.7)
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where f represents the boundary layer function. Ṁ16, R10, and m1 are trans-
formed to be represented in typical sizes of disk quantities

Ṁ16 = Ṁ/1016g · s−1,

R10 = R/(1010cm),

m1 = M/M�.

(2.8)

Figure 2.4 shows Tc and H solution examples using different values of free
parameter α for the same accretion disk system.

0 1 2
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0
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4

6

T
c

[1
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4
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0 1 2

R10 [1010cm]
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0.5

1.0

1.5

2.0

2.5
H

[1
0

8
cm

]

α = 0.1 α = 0.5 α = 0.95

Figure 2.4: α-disk model solution examples. Chosen central object’s mass is m1 = 0.8.
Mid-plane temperatue Tc solution (left) and scale height H (right).
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3 DRIPPING FAUCET

“What we know is a drop, what we don’t know is an ocean.”
— Isaac Newton —

In the previous chapter, we discussed the possibility of swapping a complex
and often computationally demanding model for a simpler alternative that behaves
similarly. Because the accretion disk is an incredibly complex system, we must also
follow this approach and find a suitable and computationally manageable simplifi-
cation. We chose to employ a relatively simple model of a dripping faucet, which is
a reasonably well-understood system known to exhibit non-linear behavior under
certain conditions. There are two types of dripping faucet models.

For a better understanding of drop formation processes and a more detailed
study of fluid behavior, we can construct a model based on Navier-Stokes equations
or Lagrange equations. The key roles in such a model, which is referred to as Fluid
Dynamical Model (FDM), are played by surface tension, viscosity, and gravity
(Fuchikami et al., 1998).

The second type of dripping faucet model is called Mass-Spring Model, and as
its name suggests, it is based on the approximation of the forming drop as a mass
hanging on a spring (Shaw, 1984). It evolves through time, with the steady fluid
influx, until it reaches a predefined critical mass. At that moment, part of the drop
is separated, the system resets its parameters, and the cycle repeats.

Both types are highly sensitive to the amount of fluid that steadily flows in. This
parameter is the determining factor of the non-linear behavior of these systems.
Depending on the concrete value of inflow, the dripping intervals can be either
periodic or get through period-doubling stages to complete aperiodicity.

3.1 Drop equilibrum states

As a prerequisite for dynamical fluid simulations, we need to know the static equi-
librium states of hanging drops on a faucet and evaluate the stability of different
shapes and sizes.

Let us assume a statically hanging axisymmetrical drop with homogenous fluid
density ρ. According to (Fuchikami et al., 1998), the drop in equilibrium is defined
as follows. The pressure inside the drop is

P = ρgz, (3.1)

where z represents the vertical coordinate, and g is gravitaional acceleration.
The following expression describes the pressure difference between the inside and

13
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outside of the drop

P = Γ

(
1

R1
+

1

R2

)
, (3.2)

where the surface tension is represented by Γ. R1 and R2 are the curvature
radii of the drop’s surface that, for the axisymmetric drop, are

1

R1
= −dθ

ds
,

1

R2
=

cos θ

r
.

(3.3)

Figure 3.1 explains in detail the variables used to calculate the shape of the
hanging drop.

Figure 3.1: Definition of variables for the hanging drop system. Taken from (Fuchikami
et al., 1998)

m0 = ρl30 = 0.02g,

P0 =
√
ρgΓ = 270dyne · cm−2,

l0 =

√
Γ

ρg
= 0.27cm,

t0 = 0.017s.

(3.4)

Defined by equations (3.4) are the base units of mass, pressure, and length,
that sets Γ = ρ = g = 1; assuming the medium is water at 20◦C. The drop’s shape
is then described by a set of ODE’s (3.5), that are solved numerically, with the use
of the initial conditions: z(0) = Pb, θ(0) = π/2, and r(0) = 1 · 10−20
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dr

ds
= sin θ,

dz

ds
= − cos θ,

dθ

ds
=

cos θ

r
− z.

(3.5)

Figure 3.2 shows multiple equilibrium state solutions for different values of
pressure Pb at the bottom of the drop.
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Figure 3.2: Examples of unbounded static equilibrium drop states, which are solutions
of ODE’s (3.5) for different values of pressure Pb on the bottom of the drop.

Similarly to solutions shown in Figure 3.2, we can bound the equilibrium states
to a faucet of chosen radius ra. This is done by using the same solutions, finding a
point of the closest match with the chosen boundary (i.e., the faucet), and shifting
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z coordinates accordingly. Figure 3.3 shows drop solutions bounded to a faucet.
Both unbounded and bounded examples are done for the same initial conditions.
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Figure 3.3: Examples of static equilibrium drop states bounded to a faucet, which is
solutions of ODE’s (3.5) for different values of pressure Pb on the bottom of the drop.

We assume, as is also self-evident from Figures 3.2 and 3.3, that not all of these
solutions are stable and therefore usable as initial states of FDM. Stable, in this
sense, means that the drop shape (i.e., particular solution) stays statically hanging
on the faucet, assuming there is no fluid inflow. We can distinguish the stable and
unstable solutions based on the relation between drop’ volume Vd and the pressure
Pb

Vd = f(Pb) (3.6)
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Figure 3.4: Static equilibrium solutions of drop shapes hanging on a faucet or radius
ra = 0.952. Every point of the solutions curve represents one solution in the interval
Pb ∈ 〈1 · 10−20, 6.0〉.

As shown by (Padday and Pitt, 1973), there is only one stable solution for a
given value of the drop’s volume. Figure 3.4 demonstrates that for different initial
values of Pb ∈ 〈1·10−20, 6.0〉, there are multiple solutions of the same drop’s volume.
Only the solutions in the interval

Pb ∈ 〈1 · 10−20, 2.67〉, (3.7)

are the stable ones. Solutions shown in Figure 3.4 are all done assuming the
boundary to a faucet with radius ra. This interval of stable drop shapes also
provides us with the maximum stable volume of the hanging drop for a particular
faucet radius. In the case of ra = 0.952 the maximum stable volume is Vd = 4.95.

3.2 Fluid dynamical model (FDM)

The theory behind drop formation and breakup is a surprisingly recent invention,
even though it concerns an everyday phenomenon. However, J. Eggers’ scaling
theory is universally applicable for viscous axisymmetrical drop formation (Eggers,
1993), which was later used as a basis for dynamical drop simulations done by
(Fuchikami et al., 1998). In the following sections, we will go over the process of
modeling the process of FDM. Although this more complex dripping faucet model
is more suitable for studying short-term behavior and detailed shapes of forming
drops, it is also a precursor for a better understanding the spring-like MSM models
discussed later in this chapter.
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3.2.1 Diskretized FDM Lagrangian

The starting point of the simulation is the drop shape in the state of equilibrium
(see Section 3.1); in particular, the equilibrium solution with the highest stable
drop volume Vd for the chosen faucet radius ra. The reason is that as we add more
fluid to the system, its path to reaching the critical mass, and therefore the drop
breakup, will be the shortest.

Let us start by defining the Lagrangian for the drop system

L = Ek − Ug − UΓ, (3.8)

where Ek represents the total kinetic energy of the drop, Ug its total potential
energy and UΓ its total surface energy. Discretization of the system is done by
splitting the drop into M number of disks with equal length along drops surface
∆s (see. Figure 3.1). The disk has a mass

mj = ρ∆ξj , (3.9)

where ∆ξj is the volume of particular disk. Because the fluid density is defined
as ρ = 1, the mass of a single disk is simply

mj ≡ ∆ξj . (3.10)

Therefore the total kinetic energy of the drop system expressed as a sum of
individual disks is

Ek =
1

2

M∑
j=1

∆ξj ż
2
j . (3.11)

Similarly, the potential energy is a sum of its values for all disks

Ug = −g
M∑
j=1

∆ξjzj , (3.12)

where g is the gravitational acceleration. The expression for surface energy is
approximated by

UΓ = ΓS, (3.13)

where S represents the total surface area of the drop. The computation of the
surface energy comes down to determining the surface area S as a sum of individual
disk surfaces. We can approximate the surface area Sj of a single disk as the surface
area of the truncated cone’s outer shell in the interval 〈(zj+1 +zj)/2; (zj+zj−1)/2〉,
which then is

Sj = π(rj + rj+1)

√
1

4
(zj+1 − zj−1)2 + (rj − rj+1)2. (3.14)

Assuming the average radii of disks

rj =

√
∆ξj

π(zj − zj−1)
. (3.15)
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Therefore the surface energy is then expressed as

UΓ = Γ

M∑
j=1

Sj(zj−1, zj , zj+1), (3.16)

which gives us the final Lagrangian of the discretized drop system

L = Ek(ż1, ..., żM )− Ug(z1, ..., zM )− UΓ(z1, ..., zM ) (3.17)

To conduct the simulation, the equations of motion for the drop system are
calculated from

d

dt

∂L
∂żj

=
∂L
∂zj

+
1

2

∂Ėk

∂żj
(3.18)

where L is the previously obtained Langrangian of the drop as a sum of its disk
discretization in the interval j ∈ 〈1;M〉. Examples of the simulation results done
by (Fuchikami et al., 1998) are shown in Figure 3.5.

Figure 3.5: Time development of drop shape for the faucet radius ra = 0.952. Taken
from (Fuchikami et al., 1998).

3.3 Mass-spring model (MSM)

The less complex counterpart to the Fluid Dynamical model is the Mass-Spring
model, which is more suitable for studying the long-term behavior of the dripping
faucet system. This model was first proposed by (Shaw, 1984) and later modified
by (Kiyono and Fuchikami, 1999). The forming drop on a faucet is modeled using
a one-dimensional spring system with variable stiffness k and a mass m attached.
As the simulation progresses, the spring elongation z (i.e., the position of hanging
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mass) is monitored. If the critical value of elongation zc is reached, the predefined
part of the drop breaks out, the system parameters reset, and the cycle continues.

The original version defined by (Shaw, 1984) is described by a set of ODE’s

d

dt

(
m

dz

dt

)
= −kz − γdz

dt
+mg,

dm

dt
= Q,

(3.19)

where z represents the spring elongation, m mass of the hanging drop. The
constant damping ratio is γ = 0.05, Q represents the constant mass inflow from
the faucet, and the spring stiffness k, depending on the current mass of the drop,
is defined as

k =

{
−11.4 m+ 52.5 (m < 4.61)

0 (m ≥ 4.61).
(3.20)

Relations expressed by (3.20) and the value of γ were obtained experimentally
by (Shaw, 1984) and provide a good description for the real-world behavior of drops
and leaky faucets.

Based on (3.19), (Kiyono and Fuchikami, 1999) proposed an improved version
of MSM that is expressed by following set of ODE’s

dp

dt
= −kz − γdz

dt
+mg,

dp

dt
= m

d2z

dt2
+

(
dz

dt

)
dm

dt
.

(3.21)

Equations (3.21) are then converted to a form suitable for numerical solution
by an appropriate method (e.g., methods from the Runge-Kutta family)

ż = v

v̇ = g − 1

m
[kz + γv + (v − v0)Q]

(3.22)

where Q is the inflow to the faucet, that is defined as

dm

dt
= Q = πr2

av0. (3.23)

The value v0 represents the fluid flow velocity from the faucet, which is a con-
stant value. By choosing different velocities v0, we can drastically alter the system’s
behavior, from periodic through period-doubling stages to complete aperiodicity.

An important aspect of the simulation is, monitoring the critical value of elon-
gation zc. The drop breaks out when the condition is met and model parameters
are reset. The precise value of zc according to (Kiyono and Fuchikami, 1999) is

zc = 5.5. (3.24)

The amount of mass mr that remains on the faucet after the breakup is
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mr = 0.2m+ 0.3, (3.25)

which is also an experimentally obtained relation that corresponds well with
observations of real dripping faucets. As a demonstration, we have done many
simulations for the same arbitrary faucet radius ra = 0.916, with the individual
simulation with different inflow velocity in the interval v0 = 〈0.13; 0.18〉, and ve-
locity value increment ∆v0 = 5.0 · 10−5. One result example for v0 = 0.146 plotted
as projections of phase space is shown in Figure 3.6.
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Figure 3.6: Phase space portrait projections of MSM, where ra = 0.916, v0 = 0.146.

A good demonstration of the non-linear behavior of the MSM system is the
bifurcation diagram, which is constructed by plotting the periods between two
consecutive drop breakups Tn in relation to the inflow velocity v0. For example, in
the bifurcation diagram shown in Figure 3.7, we can see inflow velocity intervals of
periodic dripping and total aperiodic behavior.



22 3. DRIPPING FAUCET

0.13
0.14

0
.15

0
.16

0
.17

0.18

v
0

8 9 10 11 12 13

T
n

F
ig

u
re

3
.7

:
B

ifu
rca

tio
n

d
ia

g
ra

m
o
f

M
S

M
in

th
e



4 MULTILAYER DRIPPING HANDRAL

“Essentially, all models are wrong, but some are useful.”
— George E. P. Box —

Models of complex of physical systems can be very computationally demanding,
so a simpler and manageable model analogy is often needed. For example, if we
wanted to simulate the accretion disk system without simplification, it would be
almost impossible to compute in the authors’ lifetime. Such a model would be
composed of individual and interacting gas particles. It would require either plasma
physics equations or Navier-Stokes equations with a magnetic field; at that point,
it is not a model but a perfect analogy.

The model developed for this study provides a manageable and reasonably
complex tool for accretion disk simulation. Based upon its apparent characteristics,
we call it Multilayer Dripping Handrail (MDH) because it is an arrangement of
concentric rings (i.e., layers). Each layer consists of up to several hundred cells, and
each behaves as a dripping faucet. The dripping mechanism drives the distribution
of matter through the layers until they reach the central object.

4.1 The model

The MDH model is inspired by the model created by (Yonehara et al., 1997).
However, our model takes this concept much further. Instead of a simple mass
limit condition, we use a slightly modified implementation of the Mass-Spring model
(MSM) as a means of non-linear matter redistribution. We discussed the original
MSM in detail in Chapter 3.

4.1.1 The cellular accretion disk model

The concept of cellular automaton (CA) is quite an old idea in computer science
that Stanislaw Ulam and John von Neuman first discovered at Los Alamos National
Laboratory. However, it gained wider popularity after the publishing of Conway’s
Game of Life (Gardner, 1970) and also extensive studies done by Stephen Wolfram
starting in the 1980s.

CA definition provided by (Wolfram, 2002) states that: Cellular automaton is
a collection of cells on a grid of specified shape that evolves through a number of
discrete time steps according to a predefined set of rules based on neighboring cells.
In our case, this set of rules mainly deals with distributing matter between the cells
and throughout the accretion disk body.
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MDH is a cellular automaton that arranges I times J cells in a concentric ring
(i.e., layers) grid pattern. The layers a denoted by

i ∈ [0; I − 1]. (4.1)

The layer i = 0 represents the outer edge layer of the disk. Each layer contains
J individual cells denoted by

j ∈ [0; J − 1]. (4.2)

Because the orbital angular velocities of individual layers differ, the simulation
grid naturally shifts over time. Figure 4.1 demonstrates the possible simulation grid
states. On the left, we see the non-shifted initial state of the simulation. On the
right, the layers of cells are slightly shifted after an arbitrary number of simulation
steps.

Figure 4.1: Grid states. Initial grid state (left) and shifted state after some arbitrary
number of simulation steps (right).
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In the original MSM defined by (3.19), gravitational acceleration is a constant
value. In our modification, it is substituted by fg. We call this layer-dependent
function the gravity profile

fg(i) =
gi
gout

, (4.3)

where gout represents the gravitational acceleration in the outer layer i = 0,
and gi in ith layer, and its value is fg(i = 0) = 1 (same as the original MSM). In
any layer, the gi value is

gi =
GMp

r2
i

, (4.4)

where G is the universal gravitational constant, and Mp is the mass of the
primary component (i.e., the white dwarf). We substitute (4.4) into (4.3) the GMp

components cancels out, and the resulting gravity profile function depends only on
layer index i

fg(i) =

(
rout

ri

)2

. (4.5)

Because the orbits are considered Keplerian, angular velocities also differ be-
tween layers. Therefore, a function similar to gravity profile is needed to correctly
handle the rotation of individual layers throughout the simulation. The assumption
is that if the outer layer moves by one angular cell length in one step, then any
subsequent layer moves by some more. This function fω is referred to as angular
velocity profile

fω(i) =
ωi
ωout

, (4.6)

where ωout is the outhermost layer’s angular velocity and ωi of an arbitrary
layer, which is

ωi =
vi
ri
, (4.7)

where vi is the orbital velocity, which we get from the relation

v2
i =

GMp

ri
. (4.8)

Substitution of (4.8) into (4.7) and than into (4.6) gives us the angular velocity
profile function

fω(i) =

(
rout

ri

)3/2

. (4.9)

To get the change of cell’s angular position θ (i.e., the azimuth) we apply the
function fω(i) in conjuction with grid’s dimension J

∆θ(i) = fω
2π

J
. (4.10)
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The expression (4.10) fully describes the angular shift of arbitrary cells in be-
tween simulation steps. Figure 4.2 shows examples of both aforementioned profiles.
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Figure 4.2: Gravity (left) and angular velocity (right) profiles examples computed for a
modeled system with radial dimension I = 25. The y-axis units are arbitrary because the
profiles are computed relative to the outermost layer i = 0, where fg=1 and fω = 1.

Lastly, in our modification, Q depends on the specific behavior of neighboring
cells, unlike the original value defined by (3.19). Each cell essentially contains its
leaky faucet, taking the mass from other cells and redistributing it further into
lower cells upon reaching the critical condition. This critical condition zc is the
same as the original MSM and is defined by (3.24).

To summarize our modification to the original MSM, the following modified
ODE system server a mechanism by which the matter redistribution is triggered
inside simulation cells of the MDH model

d

dt

(
m

dz

dt

)
= −kz − γdz

dt
+mfg,

dm

dt
= Q(i, j, ...),

(4.11)

4.1.2 Modeled system geometry and grid dimensions

Our primary focus is modeling an accretion disk of a typical cataclysmic variable
star, where the primary component would be a WD. Mass of the WD Mp can range
from 0.15M� up to 1.44M�, and the heaviest observed white dwarf has a mass of
1.35M� (Caiazzo et al., 2021), therefore we are limited to this range when choosing
primary component’s mass Mp.

The inner disk radius rin is set equal to the white dwarf’s radius, which accord-
ing to (Shapiro and Teukolsky, 1983), can be approximated by the mass to radius
ratio previously defined by (2.1).
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The Roche lobe of the primary component contains the outer edge of the ac-
cretion disk. Therefore the outer radius rout is set to correspond with the binary
system’s Lagrange point L1 and is calculated by (2.2). Mass of the donor compo-
nent Ms, which also plays a role in determining the accretion disk’s outer radius
through its influence on Roche potential, ranges between 0.3M� and 8M� because
the secondary star is considered to be a red-giant.

Having the inner and outer disk boundaries defined enables the discretization
of the intermediate space into regular intervals, and the remaining parameter in-
fluencing the layer-specific radius ri is the disk’s dimension I

ri = rin +
rout − rin

I − 1
(I − i− 1). (4.12)

On a Keplerian orbit, the particle’s orbital period, assuming there is no self-
gravity interaction in the disk, is given only by the parameters Mp and ri.

We also assume that the outermost layer of MDH shifts by exactly one angular
cell length between simulation steps. Therefore the J dimension (i.e., the number
of cells in one layer) and primary component’s parameters provide us with the
shortest producible flickering time.

We aim to extract flickering light curves with a time scale of variability compa-
rable to real-world observational data. Observations suggest that we need to push
this time limit ∆t at least to the order minutes. To get relate the dimension J and
the minimal time ∆t, the orbital period τ0 for the layer i = 0 is needed

τ0 =

√
4π2r3

out

GMp
, (4.13)

where G represents the gravitational constant. So the optimal J dimension is
calculated

J =
τ0

∆t
. (4.14)

Rounding the result of (4.14) to integer gets us the J dimension for chosen
minimal time ∆t. Alternatively, there is a possibility of using the expression (4.14)
in reverse, starting with the chosen dimension, and the relation will give the time
scale for the particular arrangement.

The I dimension is either set to a fixed chosen value or is related to the J
dimension. Choosing a relation that produces, at least to some degree, a spatially
consistent grid of cells is advised. Throughout this study, we use the following
relation, which is, again, rounded to an integer

I =
J

2π
. (4.15)

4.1.3 The cellular automaton algorithm

The algorithm that performs the MDH simulations is a series of simple operations,
including matter redistribution (i.e., the dripping mechanism), orbital movement
of its layers, and thermal processes, which are the prerequisite for light curves
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extraction. The algorithmic structure overview of MDH simulation is defined on
the flowchart shown in figure 4.3.

Certain parts of the algorithm are relatively easy to parallelize, most notably the
numerical solution of the ODE system (4.11). Parallelization is almost a necessity
because the number of cells for which we need to solve these equations quickly goes
to thousands, even when using modest I and J dimensions of tens or a few hundreds
of cells per dimension. Thankfully the MSM equations in individual cells are not
dependent on other cells’ states, so splitting the grid of solutions into multiple
smaller sub-grids of tasks per step is relatively straightforward.

Start

Rotate all layers ac-
cording to (4.10).

Find the cell closest to cho-
sen value of θ (e.g., θ = 0)
in the outer layer i = 0,
and add the q amount of
matter to it; see (4.17).

Solve the ODE system
(4.11) for all cells using

an iterative method out of
the Runge-Kutta family.

If particular cell reaches
the critical condition

(3.24), the mass outflow
is triggered in that cell.

Calculate temperature
changes for all cells ac-
cording to the processes
described in Section 4.2

Save all cell’s states.

End simulation?

Perform mass outflow of
triggered cells; see (4.19).

Stop

yes

no

no

yes

Figure 4.3: The algorithmic structure overview of MDH simulation.
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The discrepancy needed to be dealt with when simulation MDH is that MSM’s
mass scale is different from the global (i.e., real-world) mass scale of the accretion
disk. However, it is not a big problem. MSM is used only as the critical condition
because of its qualitative and not quantitative properties. Nevertheless, we need
to know the real amount of accreted matter. For a typical CV, the accretion rate
is assumed (Meintjes et al., 2015)

Ṁ ∼ 1014 g · s−1, (4.16)

and the value of a according to (Kiyono and Fuchikami, 1999) is

q ∼ 10−1 g, (4.17)

so, we can easilly relate the real accretion rate Ṁ to the internaly defined q

q ∝ Ṁ ·∆t. (4.18)

The mass addition to the outer layer i = 0 that models the matter accretion
through the Lagrange point L1 would fill up only the outer layer. Therefore the
subsequent layers are filled from the adjacent cells above when they reach the
critical condition (3.24).

Part of the mass is separated from the source cell as the moment of dripping
and transfers into lower cells. The amount of mass ∆m that breaks is

∆m = ψ ·mij (4.19)

where the value of ψ ∈ [0; 1] is the drop breakout ratio, which serves as another
free parameter of the simulation. The numerical stability of the simulation is
ensured by introducing a low-value cut-off for the cell’s mass mij . The following
formula is used to compute the cell’s remaining mass after the breakout

mij =

{
mij −∆m (mij ≥ 10−8)

0 (mij < 10−8).
(4.20)

There are always no more than two lower layer cells in contact with the source
cell, as evident from Figure 4.1. Therefore, the redistribution algorithm finds the
two closest cells and splits the mass ∆m between the two receiving cells. The mass
split is directly proportional to the relative length of contact the adjacent cells have
with the source cell.

4.2 Thermal processes

The crucial quantity for our model’s evaluation is the extracted synthetic light
curve, which we derive from the disk’s radiation properties, primarily the tempera-
ture. The temperature must be known for all cells at any moment of the simulation.
We assume that the cells exhibit black-body radiation and are optically thin.

The cell temperature continuously changes and depends on the previous states
rather than being a function of only current internal and external parameters.
Because of the matter redistribution processes (i.e., the dripping and rotational
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mixing), the temperature changes are carried throughout the disk’s body. The
starting point of this chain of changes is matter inflow in the outer layer i = 0.
The given parameters of the donor star determine the inflow temperature. For the
late-type star, according to (Allen, 1973), it is estimated

Tout ∼ 103 K. (4.21)

We identified three processes influencing the cell’s temperature. In the following
sections, we will describe those in detail and get the final cell’s temperature as their
summary.

4.2.1 Free-Free emission heating

The matter that beaks out by dripping losses a part of its potential energy, which,
according to (Yonehara et al., 1997), is calculated by

∆Eij =
1

2
GMp∆r

∆mij

r2
i

, (4.22)

where the amount of falling mass is represented by ∆mij and ∆r is the layer
width (i.e., the distance traveled by the mass). This energy is released by the
process of free-free emission (i.e. bremsstrahlung); with some efficiency ε is trans-
formed into internal energy U of the receiving cell

∆Ui+1,j = ε∆Eij , (4.23)

where ∆Ui+1,j represents the change of receiving cell’s internal energy that
heats the cell. For the sake of simplicity, we consider the heating efficiency to be
ε = 1, then

∆Ui+1,j ≡ ∆Eij . (4.24)

Internal energy changes in relation to the temperature according to

∆Uij =
3

2
nijR∆Tij , (4.25)

where R represents the ideal gas constant, and nij is the number of gas moles
in the cell. We assume the gas mostly consists of hydrogen, whose molar mass is
MH ≈ 1; therefore, the mass mij and the number of moles nij are interchangeable.
Substitution of (4.25) and (4.22) into (4.24), and a bit of rearrangement, yields the
relation of cell’s temperature change in layer i+ 1, and the amount of mass falling
from the donor cell

∆Ti+1,j =
1

3

GMp∆mij∆r

r2
iRmi+1,j

. (4.26)

4.2.2 Gas mixing

The second mechanism concerns mixing different temperatures and amounts of
gases when dripping happens. We need to describe the donor cell’s temperature
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change Tij and the receiving cell’s Ti+1,j . We get both by utilizing changes in the
cell’s internal energy. The resulting expression for the donor cells is simply

T ′ij = Tij , (4.27)

where Tij and T ′ij are the temperatures before and after the mass outflow, re-
spectively. The mixing of two different amounts of gas at two different temperatures
is happening on the receiving cell’s side. The expression for the receiving cell is

T ′i+1,j =
mi+1,jTi+1,j + ∆mijTij

mi+1,j + ∆mij
. (4.28)

4.2.3 Radiative cooling

The last mechanism taking part in the cell’s temperature changes is radiative cool-
ing. The cell’s radiation of optically thin disk is approximated as black-body ra-
diation that emits through the top and bottom facets of each cell, and one facet
having the area

Sij =
2πri∆r

J
, (4.29)

where the layer width is represented by ∆r. Therefore cell’s internal energy
conversion to its black-body radiation is

3

2
mijR

dTij
dt

= σT 4
ijSij , (4.30)

where σ is the Stefan-Boltzman constant. Integration of (4.30) and yields
the expression for the cell’s temperature, which is in the local thermodynamic
equilibrium of the radiative cooling

T ′ij =

(
2σSijt

mijR
+

1

T 3
ij

)−1/3

. (4.31)

4.3 Synthetic light curves

Synthetic light curve extraction starts with the full knowledge of temperatures
throughout the simulation as a product of previously defined thermal processes.
This information enables us to extract simulated spectra from the disk’s radiation.
Wavelength-specific radiation power of individual cells is given by

Lλ,ij = 4π · Sij ·Bλ,ij(λ, Tij), (4.32)

where Bλ(λ, Ti,j) represents flux density in the given point by Planck’s func-
tion. Single radiating facet area Sij is defined by (4.29), and the accretion disk,
considered optically thin, radiates through a single face into the solid angle of 2π.
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4.3.1 Light curves in a photometric filter

To achieve a closer observational data analogy, we use analytic approximations of
Johnson-Cousins UBVRI filters that are applied to the wavelength-specific total
power output of the disk. This filtering process produces the synthetic light curve
as it would be observed through the chosen filter. The approximation is expressed
by

g(λ) ∝ exp

[
−1

2

(
λ− λc

λw

)2
]
, (4.33)

where filter-specifig effective central wavelength is λc, and λw sets the effective
filter width. Johnson-Cousins approximative values are listed in Table 4.1.

Filter λc [Å] λw [Å]

U 3663 650
B 4361 890
V 5448 840
R 6407 1580
I 7980 1540

Table 4.1: Parameters of Johnson-Cousins UBVRI filters approximation. (Bessell, 2005)

We calculate every cell’s radiation power step by step. Using (4.32) and (4.33)
and summing up all the cells, we get filtered power output LF from both accretion
disk’s sides

LF = 4πSij∆λ
I−1∑
i=0

J−1∑
j=0

∞∑
λ=0

Bλ,ij(λ, Tij) g(λ), (4.34)

where ∆λ is the wavelength integration step.
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“Computer science is no more about computers than astronomy is about telescopes.”
— Edsger Dijkstra —

This chapter will focus on the technical side of our accretion disk modeling
efforts. Because incomparably more time was spent on implementing, testing, and
debugging the code than developing the underlying theory; we are talking orders
of magnitude more.

There were four consecutive versions of the code. Each is improving the previous
and fixing its errors while introducing new challenges. The version presented in
this study is the last iteration so far, and as with any other software, whether the
scientific or commercial application, it is never finished. There is still room for
improvement and new ideas. However, we can confidently say that this version of
MDH implementation can model accretion disk dynamics and power output with
a good mix of robustness and customizability.

We knew from the start that modeling such a complex, inherently non-linear
system would be a challenge, first and foremost hardware-wise. Because for one,
as shown in Chapter 4, the number of individual cells, each holding its system of
ODEs, can quickly go up to thousands. Second, each cell holds 13 state values
(i.e., coordinates, temperature, compute flags, etc.). For example, a moderate
simulation run of 105 steps produces over a 100GB of data, and that is just the
dynamical simulation part. When we start radiation extraction out of these results,
we face several TB datasets because, for every cell, we need to compute a spectral
energy distribution of a few hundred values (depending on the chosen range and
granularity). Therefore, two challenges were presented from the get-go:

a) Solving a large number of ODE sets.

b) Handling a large amount of data.

While a) is achievable to some degree by parallelization and good optimization,
the b) is just a matter of having enough data storage; there is no way around it.
Ultimately, we created a simulation code that is usable even on computer systems
with relatively modest hardware specifications. For reference, simulation examples
presented in this study were done on a personal desktop computer with Intel’s Core
i7-4790k CPU, 32GB of memory, and large enough storage to accommodate the
simulation data output. With this configuration, every presented simulation took
several hours at most.

MDH is implemented as purely CLI (Command Line Interface) application
because there is no need for GUI (Graphical User Interface). It runs under the
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Linux operating system (currently tested with kernel versions 5.0 and higher). A
detailed description of command line arguments can be found in the documentation
available at https://github.com/Preqsis/multilayer-dripping-handrail

5.1 Algorythmic overview

All the core simulation code is implemented in C++. There are also supporting
scripts for visualization, input preparation, data sorting, and extraction written in
Python 3.9+.

5.1.1 Model’s subtasks

The model’s codebase is split, based on the logic of consequent operations, into
three parts that, for the sake of simplicity and ease of use are:

1. SIMULATION (SIM) - performs the dynamical simulation of matter flow
and temperature changes in the accretion disk.

2. RADIATION (RAD) - takes the dynamical simulation results and com-
putes the disk’s power output spectral distribution over the predefined range
of wavelengths.

3. OBSERVATION (OBS) - performs a synthetic observation, with the use
of analytical approximations of Johnson-Cousins UBVRI photometric filters,
and extracts a flickering light curve.

All these subtasks employ parallelization, but each in a slightly different fashion.
SIM and RAD are parallelized spatially, which means that the disk’s cells are split
into same-sized groups, and these groups are computed separately by individual
processes. OBS is parallelized in the time domain because the computation of an
individual light curve’s data point is not dependent on previous or following data
points.

The subtasks can be run separately or pass over its result to the next subtask.
Also, in the case of SIM, it is possible to run it either as a clean simulation or as
a continuation of previous results. The ability to start the SIM from a predefined
point in another run is particularly important in cases where we need to simulate
multiple parameter variations with the same initial conditions. It might seem easy,
but re-initializing such a complex and large data structure is not trivial.

5.1.2 Open MPI paralelization

Open MPI (Message Passing Interface) is an open-source, high-performance message-
passing library that serves as a communication protocol in distributed parallel
computing (The Open MPI Project, 2022). It is widely used, but not limited to,
by many supercomputers. In addition, its ease of use, good documentation, and

https://github.com/Preqsis/multilayer-dripping-handrail
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large community of developers make it relatively straightforward, even on smaller
projects like ours.

We use a simple approach of running one MASTER process and multiple
SLAVE processes. The MASTER is the primary handler of the distributed compu-
tation that sends instructions to the SLAVES and then collects, sorts, and outputs
the results. The SLAVE performs most of the computations based on the data and
instructions received from the MASTER, for example, a subset of MDH cells. For
reference, for the results presented in this study, that usually means one MASTER
plus seven SLAVES.

One downside, or rather a complication when using MPI, is that the data
types need to be explicitly defined and precisely allocated because each end of
MPI communication expects the same predefined data type with uniform memory
allocation. For MDH implementation, it means, in some cases, a four-dimensional
array of pointers.

5.1.3 MASTER processes

The algorithm of the MASTER process is very similar for all three MDH sub-
tasks, there are slight differences, but the set of operations and their order is the
same. The generalized overview of the MASTER process’s algorithm is shown in
Figure 5.1.

Start Stop

Save initial data.

End simulation?

Create computation subsets.

Send subsets to
SLAVE processes.

Receive results from SLAVES.

Save data.

YES

NO

Figure 5.1: Overview of the generalized MASTER process’s algorithm.
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5.1.4 SLAVE processes

The SLAVE process structure also follows the same basic order of operations for
all three MDH subtasks, differing mainly in the performed computations. A gen-
eralized overview of the SLAVE process’s algorithm is shown in Figure 5.2.

Start Stop

Receive instruc-
tions and/or data.

Compute?

Perform computations.Send results to MASTER.

NO

YES

Figure 5.2: Overview of the generalized SLAVE process’s algorithm.

5.1.5 Data output

To store a large amount of data that MDH simulation produces, we use HDF5
(Hierarchical Data Formats), which is an open-source file format that can store
complex and heterogeneous data (The HDF Group, 2006). Furthermore, HDF5
supports very fast IO (Input/Output), so it enables us to store every simulation
frame (i.e., the state in time) in full without the need for data truncation or frame
skipping. At the same time, the simulation performance, at least with our example
hardware configuration, is not limited by the IO but only by the CPU.

Every data frame, whether SIM, RAD, or OBS data, is stored as a multidimen-
sional array with the same structure used in computations, making re-initializing
the simulation run easier. HDF5 also can store meta-data, which means we can
also store the global simulation parameters (e.g., disk’s geometry, central object’s
mass, size of the timestep, etc.) alongside the actual data; therefore, the whole sim-
ulation is reproducible with just one file, without the need for additional meta-data
or configuration files.

HDF5 was an excellent fit for our model’s needs because it solved significant
IO limitations in the first version of MDH.

5.1.6 ODE solver

We use a numerical integrator out of the Runge-Kutta family to solve the MSM’s
ODE system. By default, it uses Fehlberg’s seventh and eighth-order method,
which is implemented by the boost::numeric::odeint module (Boost Collaboration,
2007). The selected stepper method can be changed using the dedicated CLI pa-
rameter of the MDH application.
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5.2 SIM - dynamical simulation subtask

The SIMULATION subtask is the starting point of the model’s computational
pipeline and the algorithmically most complex part of the code. It performs the
dynamical matter redistribution simulation based on predefined MDH rules and
geometry (see. Chapter 4). Solving the MSM ODE system is essential because
it is the crucial mechanism triggering the matter accretion to lower layers. This
subtask is spatially parallelized and uses the MASTER/SLAVE process paradigm.

The MASTER process of SIM subtasks performs the data handling and in-
struction distribution role. First, it splits the accretion disk into n− 1 cell subsets,
where n is the total number of running MDH processes, and then the subsets are
distributed into the running SLAVE processes.

When the SLAVE processes are done with their calculations, the MASTER
collects and combines the results. Also, the check for MSM critical dripping con-
ditions must be done in MASTER because the matter redistribution happens all
over the disk’s body, across and between all the subsets of cells. Lastly, it saves
the completed frame results into the HDF5 (*.h5) data file.

The SLAVE processes of SIM are the actual simulation part of this subtask.
They receive the cell subsets, carry out the MSM’s ODE system solution over those
subsets, and return the results to MASTER.

This back-and-forth communication between the processes and data saving is
repeated step by step for the whole simulation run.

5.2.1 Disturbing the simulation by matter outburts

We implemented a possibility to disturb the MDH’s SIM computation by a sudden
targeted matter addition, which is supposed to model the situation when a matter
outburst from the system’s secondary component falls onto the accretion disk’s
body.

The disturbance is done by supplying a *.json blob definition file, which defines
the position, size, and timing for the matter addition to the disk. We generally use
a spherical blob of predefined total mass and gradually increasing density towards
its center. The blob is divided into slices that are deposited onto the disk.

5.3 RAD - radiation extraction subtask

The RADIATION subtask takes the results of the SIMULATION subtask, and per-
cell basis computes the spectral energy distribution on a predefined wavelength in-
terval, using black-body approximation for disk’s cells. This subtask is also spatially
parallelized and employs the MASTER and SLAVES process model.

The structure and order of operations are the same as for SIM. However, the
RAD’s SLAVE processes compute the spectral energy distribution for each cell,
which means a lot more values per single cell than SIM; therefore, the HDF5 output
is drastically bigger. For reference, the RAD results from which we extracted the
light curves in Chapter 6 are done for the interval of 2880 steps (i.e., 48 hours in
the real world), and the single RAD HDF5 data file is over 600 GB.
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5.4 OBS - synthetic observation subtask

Third and last in the MDH computation pipeline is the OBSERVATION subtask,
which serves as a synthetic light curve extractor. It takes the results of RAD and
applies analytical approximations of Johnson-Cousins UBVRI photometric filters.
This subtask is also parallelized similarly to RAD and OBS and uses the same
MASTER/SLAVE approach, but in this case, the data subsets are defined in the
time domain.

It is almost ironic that the output of OBS is only a few hunderd kB HDF5 data
file, considering the input is the RAD data file, which is the multi-hunderd GB
behemoth. The reason is that the output data are just a few simple time series of
several thousand steps for each Johnson-Cousins photometric filter approximation
(i.e., the light curves).

5.5 Source code and documentation

Our goal when composing this Chapter and Chapter 4 was to provide sort of a
guide or, let us say, an operational manual. Anyone interested should be able to
use, repeat or improve our research. Also, the full source code of MDH is available
alongside the documentation at

https://github.com/Preqsis/multilayer-dripping-handrail

where you will find a more detailed description of MDH’s CLI parameters and
examples, please feel free to examine, comment or even contribute to our codebase.

https://github.com/Preqsis/multilayer-dripping-handrail
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“640K ought to be enough for anybody”
— Bill Gattes —

In this Chapter, we will present several examples of MDH results. The MDH
has two free parameters to alter the outcome of SIM:

1. The local MSM inflow q ∼ 10−1.

2. The drop breakout ratio ψ ∈ 〈0; 1〉.
The q controls the relationship between real-world accretion disk mass inflow Q

and MSM’s development toward drop breakout. The lower value of q means that
it takes longer for the MSM ODE system to reach its critical condition, therefore,
how often the individual cells drip. The breakout ratio ψ controls the amount
of mass that breaks out from the cell at the moment of dripping. Both of these
parameters control the mass flow rate in the disk’s body and could be considered
a viscosity model of the accreted medium.

As a demonstration, we ran simulations with multiple q and ψ variations with
relatively high and low values for both parameters. Furthermore, we conducted
undisturbed and disturbed SIM for each specific combination of parameters. By
disturbed, we mean a dynamical flow simulation with a sudden mass outburst from
the secondary component (see Section 5.2.1).

All SIM runs used the same CV system parameters

Mp = 0.63M�,

rin = 0.01R�,

rout = 1.16R�,

Ṁ = 1014g · s−1,

Tout = 4500K,

(6.1)

where Mp represents the mass of the CV’s primary component (i.e., the white
dwarf). Radii rin and rout correspond to the inner and outer edge of the accre-
tion disk, respectively. The accretion rate is represented by Ṁ , and the initial
temperature of the accreted matter is Tout.

6.1 Undisturbed SIM

We choose four combinations of q and ψ to conduct the SIM runs. Table 6.1 lists
the specific details of each SIM run.
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SIM run q ψ n[steps] I J

C1 0.1 0.1 2880 42 265
C2 0.1 0.9 2880 42 265
C3 0.9 0.1 2880 42 265
C4 0.9 0.9 2880 42 265

Table 6.1: Undisturbed SIM runs parameter variations.

We designate the individual SIM runs as C1 through C4 for easier orientation.
All runs are done using the same grid dimensions I and J , for the same time
duration of 2880 simulation steps and are started after the initial filling state of
2 · 105 steps.

6.1.1 C1 - unstable filling stage

In this case, when both q and ψ are set to be relatively low values (i.e., very viscous
medium), the MDH does not produce a stable accretion disk. Instead, there is a
limiting inner radius of the stable accretion flow, and unstable matter outbursts fill
the inner regions through individual cells on the inner edge of the stable accretion
ring. Figure 6.1 show the occurrence of such outburst at approximately 7 · 104

steps into the initial filling SIM run, where on the left, we see the area density
distribution and on the right, the corresponding temperature of individual cells.

Due to its instability, the C1 SIM run is omitted from the synthetic observations.
However, it would undoubtedly require more investigation into this high-viscosity
case.

6.1.2 C2 - gradual density increase and uniform temperature

C2 SIM run demonstrates the case when the MSM’s flow parameter q = 0.1 is set
relatively low, and the breakout ratio ψ = 0.9 is set relatively high. Figure 6.2
shows that this combination produces a gradual increase in area density towards
the center of the disk and uniform temperature distribution with typical values
from T ∼ 102K to T ∼ 103K.

This outcome could be explained by the higher value of ψ moving the matter
inward more quickly by breaking out larger parts of matter by dripping. At the
same, the low value of q means that the total amount of accreted matter is relatively
low; therefore, its cooling rate is higher when it loses energy during the fall inward.

6.1.3 C3 - density bump and temperature waves

C3 SIM run is particularly interesting because the bump in the area density close
to the center of the accretion disk but not at the very inner edge is especially
pronounced. However, this feature is present in other SIM run results too. Also,
the temperatures throughout the disk are considerably higher than C2, with values
ranging from T ∼ 103K to T ∼ 104K. C3 results are shown in Figure 6.3.
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An interesting feature of C3 is the temperature waves visible in the tempera-
ture distribution plot. Furthermore, there are highly localized temperature spikes
several orders of magnitudes higher than the surrounding matter.

6.1.4 C4 - density spikes and colder inner regions

C4 SIM run shown in Figure 6.4 produce mostly uniform area density distribution
with localized increases grouped around a relatively narrow range of radii. The
temperature distribution exhibits higher temperatures closer to the accretion disk’s
edge, while the inner regions are about one order of magnitude colder.

The low, uniform area density and the higher temperatures on the outer edge
could be explained by high values of both q = 0.9 and ψ = 0.9 (i.e., low viscosity
medium) because the MSM ODE system reaches the critical condition relatively
quickly. The high breakout ratio ψ ensures that a large portion of cells’ content
is carried away by dripping. Therefore at the edge, the temperature could be a
product of slow radiative cooling of the medium at the original inflow temperature
carried in from the secondary star. The high matter flow enables rapid cooling and
produces a temperature decrease in the inner regions.

6.2 Disturbed simulations

For the SIM runs disturbed by the blob impacts, we used the same initial conditions
and parameter variations as for the undisturbed runs. Table 6.2 lists the used
parameter settings.

SIM run q ψ n[steps] I J

C5 0.1 0.9 2880 42 265
C6 0.9 0.1 2880 42 265
C7 0.9 0.9 2880 42 265

Table 6.2

The SIM run C5 uses the same initial condition as C2, C6 as C3, and C7 initial
conditions are equivalent to C4. The blobs’ size, shape, and timing were identical
between all three runs. There were three blob impacts per run in short succession
of similar sizes Mblob ∼ 1017g. Figures 6.5, 6.6, and 6.7 show the C5, C6 and C7
results, respectivelly.

It is most apparent from C5 and C7 that the blob impacts induce localized
high-temperature spikes along the path of newly added matter. At the same time,
the blob matter increases the disk’s temperature due to the higher temperature
carried in from the secondary star. Figures 6.5 through 6.7 all depict the exact
moment in their respective SIM runs.
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6.3 Synthetic light curves

We also computed the synthetic light curves for all simulation cases C2 through
C7. Figures 6.8 and 6.9 demonstrate that, depending on the chosen combination
of free parameters, we get vastly different light curves.

The undisturbed cases are shown in Figure 6.8. For the C2 SIM run, we see
relatively low power output with very short brightness spikes. The C3 light curve
exhibits active aperiodic flickering, while the C4 shows periodic longer-lasting in-
creases in power output.

Similarly, for the disturbed cases C5, C6, and C7, we see that the high value
of ψ = 0.9 produces a significantly shorter stage of increased brightness due to the
blob impacts (see Figure 6.9 a) and c)) because the high breakout ratio speeds up
the mass accretion.



6. CV MODELS 43

0.
0

0
.2

0.
4

0
.6

0
.8

1.
0

Σ
[g
·c

m
−

2
]

10
1

10
2

1
0

3
10

4
10

5

T
[K

]

F
ig

u
re

6
.1

:
C

1
(q

=
0.

1,
ψ

=
0.

1)
-

S
n

ap
sh

ot
of

th
e

o
u

tb
u

rs
t

fr
o
m

th
e

o
u

te
r

st
a
b

le
a
cc

re
ti

o
n

re
g
io

n
a
t

7
·1

04
st

ep
s

in
to

th
e

S
IM

ru
n

.



44 6. CV MODELS

0.0
0
.2

0
.4

0
.6

0
.8

1.0

Σ
[g·cm

−
2]

10
1

10
2

1
0

3
10

4
10

5

T
[K

]

F
ig

u
re

6
.2

:
C

2
(q

=
0.1

,
ψ

=
0.9

)
-

A
rb

itra
ry

step
in

th
e

S
IM

ru
n

of
2880

step
s.



6. CV MODELS 45

0.
0

0
.2

0.
4

0
.6

0
.8

1.
0

Σ
[g
·c

m
−

2
]

10
1

10
2

1
0

3
10

4
10

5

T
[K

]

F
ig

u
re

6
.3

:
C

3
(q

=
0.

9
,
ψ

=
0.

1
)

-
A

rb
it

ra
ry

st
ep

in
th

e
S

IM
ru

n
o
f

2
8
8
0

st
ep

s.



46 6. CV MODELS

0.0
0
.2

0
.4

0
.6

0
.8

1.0

Σ
[g·cm

−
2]

10
1

10
2

1
0

3
10

4
10

5

T
[K

]

F
ig

u
re

6
.4

:
C

4
(q

=
0.9

,
ψ

=
0.9

)
-

A
rb

itra
ry

step
in

th
e

S
IM

ru
n

of
2880

step
s.



6. CV MODELS 47

0.
0

0
.2

0.
4

0
.6

0
.8

1.
0

Σ
[g
·c

m
−

2
]

10
1

10
2

1
0

3
10

4
10

5

T
[K

]

F
ig

u
re

6
.5

:
C

5
(q

=
0.

1,
ψ

=
0.

9)
-

S
n

ap
sh

o
t

sh
o
rt

ly
a
ft

er
th

e
b

lo
b

im
p

a
ct

in
th

e
d

is
tu

rb
ed

S
IM

ru
n

o
f

2
8
8
0

st
ep

s.



48 6. CV MODELS

0.0
0
.2

0
.4

0
.6

0
.8

1.0

Σ
[g·cm

−
2]

10
1

10
2

1
0

3
10

4
10

5

T
[K

]

F
ig

u
re

6
.6

:
C

6
(q

=
0.9

,
ψ

=
0.1

)
-

S
n

a
p

sh
o
t

sh
o
rtly

a
fter

th
e

b
lo

b
im

p
a
ct

in
th

e
d

istu
rb

ed
S

IM
ru

n
of

2880
step

s.



6. CV MODELS 49

0.
0

0
.2

0.
4

0
.6

0
.8

1.
0

Σ
[g
·c

m
−

2
]

10
1

10
2

1
0

3
10

4
10

5

T
[K

]

F
ig

u
re

6
.7

:
C

7
(q

=
0.

9,
ψ

=
0.

9)
-

S
n

ap
sh

o
t

sh
o
rt

ly
a
ft

er
th

e
b

lo
b

im
p

a
ct

in
th

e
d

is
tu

rb
ed

S
IM

ru
n

o
f

2
8
8
0

st
ep

s.



50 6. CV MODELS

0.0

0.5

1.0

1.5

2.0
L

b
o
l

[e
rg
·s
−

1
]

×1024 a)

5.0

5.5

6.0

6.5

7.0

L
b

o
l

[e
rg
·s
−

1
]

×1023 b)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

t [s] ×105

0

1

2

3

4

L
b

o
l

[e
rg
·s
−

1
]

×1025 c)

Figure 6.8: Synthetic light curves extracted from the undisturbed SIM runs:
a) C2 (q = 0.1; ψ = 0.9), b) C3 (q = 0.9; ψ = 0.1), c) C4 (q = 0.9; ψ = 0.9). Data are
processed using analytical approximation of Jonhson-Cousins R filter (see Section 5.4).
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Figure 6.9: Synthetic light curves extracted from the undisturbed SIM runs:
a) C5 (q = 0.1; ψ = 0.9), b) C6 (q = 0.9; ψ = 0.1), c) C7 (q = 0.9; ψ = 0.9). Data are
processed using analytical approximation of Jonhson-Cousins R filter (see Section 5.4).
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7 α-DISK MODEL FITTING

“I’m your density.”
— George McFly —

In this relatively short Chapter, we use the results of undisturbed SIM runs
presented in Chapter 6 to obtain the free parameter α of Shakura-Sunyaev’s α-disk
model. To do that, we utilize the area density solution in the Shakura-Sunyaev
solution set (2.7), for which we will find the best α parameter fit for SIM cases C2,
C3, and C5.

7.1 Fitting the area density distribution

The Shakura-Sunyaev α-disk solution for the area density profile is

Σ = 5.2α−4/5Ṁ
7/10
16 m

1/4
1 R

−3/4
10 f14/5 g cm−2, (7.1)

where we will threat the Ṁ16 and m1 values as constats, and the boundary
layer function f will have the radius R∗ fixed to the value of inner radius of the
disk rin

Ṁ16 = 0.01,

m1 = 0.63M�,

f =

[
1−

(rin

R

)1/2
]1/4

.

(7.2)

Therefore, the only remaining variable to optimize the function (7.1) for (i.e.,
the response variable) is the parameter α, while the independent variable (i.e., the
predictor) is the radius R10. Figure 7.1 shows several examples of dependencies for
equation (7.1) using different values of α parameter.

The density data used for fitting we get from the SIM runs C2, C4, and C5 by
transforming the individual cell masses into densities with the use of the known
surface area of the disk’s cells. The second step is to calculate the mean area
density Σ̄(R10) by averaging the cell’s densities ring-wise and also over several
hundred simulation steps (200 steps, in this case, to be precise).
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Figure 7.1: Examples of Shakura-Sunyaev analytical area density solution.

Figure 7.2 shows the Shakura-Sunyaev α-disk area density Σ solution (7.1) fited
to mean area density data Σ̄ extracted from C2, C3, and C4 SIM runs, respectivelly.
The edge data (i.e., the inner and outer edge of the disk) were omitted from the
fit because the irregular local conditions squee these data points. The outer edge’s
temperature and mass content are mostly a product of steady mass influx from the
secondary component. To ensure numerical stability, the inner edge often triggers
the low-value mass cut-off (see equation (4.20)).

We can see that the MSH model produces a distribution that closely agrees with
the analytical α-disk solution. Therefore we can reliably obtain the value of the α
parameter for specific MDH configurations. The particular value of α alpha could
then be used to compute the distribution of other variables in the Shakura-Sunyaev
solution set (see. equations (2.7)).
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Figure 7.2: Shakura-Sunyaev α-parameter fits (dotted blue curves) for mean area density
Σ̄ extracted from C2 (q = 0.1, ψ = 0.9), C3 (q = 0.9, ψ = 0.1), and C4 (q = 0.9, ψ = 0.9)
SIM runs.
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8 CONCLUSION

“The greatest teacher, failure is.”
— Master Yoda —

Throughout this publication, we provided a detailed description of our Multi-
layer Accretion Disc model (MDH) (see Chapter 4), did an overview of its specific
code implementation (see Chapter 5), and demonstrated its capabilities on chosen
generic CV system using several model configurations (see Chapter 6). We then
used these results to obtain specific values of the Shakura-Sunyaev α parameter for
each configuration (see Chapter 7).

In this last Chapter, we would like to discuss the successes and limitations
regarding the specific topics of our research journey with the MDH model. Also,
we want to provide some questions, ideas, or inspirations for our future research or
the related research of others.

8.1 Simulations results

In Chapter 6, we presented a few result examples of MDH with different free param-
eters q (local MSM mass inflow) and ψ (the drop breakout ratio). We intentionally
chose the extreme combinations of high a low values to demonstrate the dependence
of MDH behavior on free parameter values.

Figures 6.1 through 6.7 demonstrate perfectly the possible result alterations by
the use of different free parameters. However, one crucial feature is more or less
prevalent in all results, and that is the radial mass distribution in the accretion
disk’s body.

In the extracted area density Σ and the mean area density Σ̄, we can see a
gradual increase towards the center and a sudden drop in the amount of mass
contained within the cells. This drop in mass density happens relatively close to
the inner edge of the accretion disk but not at the very edge of it, which is in good
agreement with the Shakura-Sunyaev α-disk solutions. Also, the numeric levels of
area density do agree with the analytical solutions. This could be considered a
good indication that our simulation results are not far-off. Alternatively, let us say
a mutual confirmation of ours and Shakura-Sunyaev’s models because we arrived
at a very similar result by a completely different way of pure numerical simulation.

We also extracted synthetic light curves for all presented SIM runs (see Fig-
ures 6.8 and 6.9). Each of these light curves exhibits vastly different characteristics,
from the periodic brightening visible in C4 to the aperiodic C3 and C2 light curves.

Unfortunately, we are limited by this publication’s written format, forcing us
to present only still visualizations of specific simulation frames. Therefore, we also
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created video visualizations for all SIM runs presented in this study. These should
provide a better insight into the MDH’s dynamic nature. The videos are available
at

https://monoceros.physics.muni.cz/~kveton/

And again, please feel free to examine, comment, and share any insight or
suggestions on the video visualizations of our results.

8.2 Determining the Shakura-Sunyaev α parameter

One of our research’s main goals was to devise a method for determining the value
of the free α parameter in the standard Shakura-Sunyaev accretion disk model.
Our MDH model gave us the tools to do exactly that because we can run a highly
customizable accretion disk simulation. By iterative process of varying MDH’s free
parameters for specific CV systems and analyzing the results, it is possible to get
to a tailored model configuration for that specific accretion system. Therefore, the
results of such simulation will give us the data from which we can obtain the α
parameter for the analyzed real-world system (see Chapter 7).

We analyzed three different extreme cases of free parameter variations. A sum-
mary of the α parameter results, with the used free parameters and other initial
conditions, is listed in Table 8.1 (see also Figure 7.2).

SIM run q ψ Ṁ [g · s−1] α α std. dev.

C2 0.1 0.9 1014 0.067 0.003
C3 0.9 0.1 1014 0.254 0.008
C4 0.9 0.9 1014 0.994 0.036

Table 8.1: Summary of Shakura-Sunyaev’s α parameter values for MDH free parameter
variations. All results are based on MDH simulations with CV system parameters: Mp =
0.63M�, rin = 0.01R�, rout = 1.16R, Tout = 4500K.

8.3 Blob impacts experiments

Another feature of our MDH code is the ability to disturb the simulation mid-run
by a blob impact onto the accretion disk’s body. Conceptually, it is a relatively
straightforward operation but a very powerful feature. We can add any size or shape
of irregular mass accretion at any point during the simulation, and it opens up a
whole new range of simulation cases. Starting with irregular mass ejections from
the secondary component, through interfering with the steady accretion stream,
to studies of accretion disk reactions on different blob configurations. Moreover,
it offers endless possibilities for altering the accretion disk’s power output and the
light curve.

The part of MDH’s code responsible for handling the matter blob addition is
implemented so the user can define any shape and size configuration and supply it
as an easily readable and editable JSON file.

https://monoceros.physics.muni.cz/~kveton/


We did three SIM runs C5, C6, and C7, with the same free parameters settings
as C2, C3, and C4. The results of these disturbed SIM runs demonstrate the
different effects that the variations of MDH’s free parameters have on the simulation
outcome (see Figure 6.9).

8.4 Future research

As any other research is never finished, so is ours. In our case, this is slightly exag-
gerated because a significant portion of work done on MDH is actually a software
development project with its own quirks and challenges. We, or anyone interested,
can always add, improve or extend the capabilities of our model. Therefore, we
want to offer suggestions and inspiration for future research.

The first idea that comes to mind is testing more critical dripping mechanisms
other than MSM. The MSM turned out to be a good choice because MDH, in its
current implementation, produces results that are in very good agreement with
Shakura-Sunyaev α-disk solutions. It would also be helpful and practical if the
dripping mechanism code could be plugged-in to the main simulation code for even
higher customizability. Currently, the MSM code is part of the main codebase.

The MDH underlying theory and definitions, as described in Chapter 4, could
undoubtedly be extended. For example, we could introduce magnetic fields or
relativistic effects into the mix. This would make the MDH code more usable for
other types of accreting systems.

Also, the parallelization of MDH uses a relatively basic approach. We could
rework certain parts of the code to utilize more specialized hardware, like GPUs.
The downside of this is that it would also require the usage of such hardware.
Therefore the code would be more limited. We consider the ability to run on
common hardware a plus, but the more specialized hardware would certainly extend
the simulation capabilities.
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LIST OF ABBREVIATIONS

CV cataclysmic variable star

WD white dwarf star

NS neutron star

BH black hole

YSO young stelar object

AGN active galactic nuclei

XB X-ray binary

NSB Neutron star binary

BSB Black hole binary

HMXB high-mass X-ray binary

LMXB low-mass X-ray binary

JWST James Webb Space Telescope

GRB Gamma ray burst

VFX Visual Effects

ADAF Advection-dominated accretion flows

FDM fluid dynamical model

MSM mass-spring model

MSMM mass-spring model modified

CA cellular automaton

ODE ordinary differential equation

MPI Message Passing Interface

HDF5 Hierarchical Data Formats 5

IO Input / Output

CPU Central Processing Unit

GPU Graphics Processing Unit
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LIST OF CONSTANTS

Symbol Value [units] Meaning

G
6.67430 · 10−11 [N ·m2 · kg−2]

6.67430 · 10−8 [dyne · cm2 · g−1]
Gravitational const.

h
6.6260755 · 10−34 [m2 · kg · s−1]

6.6260755 · 10−27 [cm2 · g · s−1]
Planck’s const.

k
1.380658 · 10−23 [m2 · kg · s−2 ·K−1]

1.380658 · 10−16 [erg ·K−1]
Boltzmann’s const.

σ
5.670374 · 10−8 [W ·m−2 ·K−4]

5.670374 · 10−5 [erg · cm−2 · g−1 · s−2]
Stefan-Boltzmann’s const.

c
2.99792458 · 108 [m · s−1]

2.99792458 · 1010 [cm · s−1]
Speed of light

M�
1.98847 · 1030 [kg]

1.98847 · 1033 [g]
Solar mass

R�
6.957 · 108 [m]

6.957 · 1010 [cm]
Solar radius
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