DIDAKTIKA ASTROFYZIKY

Vladimír Štefl, Jiří Krtička

Brno 2003
Předmluva

V současné době ve vyspělých zemích pozorujeme zvyšování úrovni astrofyzikálního vzdělávání na základních a střední školách. Tento proces je doprovázen přiblížením obsahu učiva soudobé úrovni astrofyzikální vědy, ve které dochází k velkému růstu vědeckých poznatků a objevů bezprostředně spjatých s rozvojem teoretické a observační astrofyziky.

U nás je astrofyzikální učivo na základní škole i gymnáziu zařazeno na závěr učiva fyzikálního, čímž jsou vytvořeny předpoklady proto, aby pomocí již osvojených fyzikálních poznatků byl budován astrofyzikální obraz vesmíru.

Pomoci k naplňování tohoto cíle by měl posloužit předkládaný text, jenž je určen studentům vysokých škol učitelských kombinací s fyzikou, tedy budoucím učitelům. Vznikl na Přírodovědecké fakultě MU v Brně pro seminář Didaktika astrofyziky, vztahující se především k problematice výuky astrofyziky na střední škole.

Úvodní část studijního textu rozebírá postavení astrofyziky ve výuce, zejména podrobně jsou zpracovány náměty na procvičování a prověřování vědomostí i dovedností žáků. Následuje výkladový komentář k tradičním středoškolským tématickým celkům se zdůrazněním základních astrofyzikálních metod – určování vzdáleností a spektrální analýzy. Stručně jsou charakterizována jednotlivá tématu. Na závěr je připojen přehled doplňující literatury, kterou případně může učitel při přípravě na výuku využívat.

Brno, prosinec 2003

Vladimír Štefl a Jiří Krtička
1 Astrofyzika, její zařazení a postavení ve výuce

J. A. Komenský: „Chceme, aby universální knihy byly pravými a vzorně uspořádanými souhrny všeho, co lze vědět. Budou mít proto tři přednosti: úplnost, řád a pravdu. Úplnost, aby obsahovaly všechno, co přispívá k dočasnému a věčnému stavu, bez jakékoliv škodlivé mezery. Řád, aby všechno plynulo v úplné souvislosti od prvních věcí přes prostřední k posledním. Pravdu, aby všechno bylo vykládáno tak, jak to je či jak se to stalo nebo jak se to děje bez jakékoliv příměsi výmyslu a nepravdy.“

A. Einstein: „Jen dvě věci jsou nekonečné – vesmír a lidská hloupost. Tím prvním si ovšem nejsem tak jist“.

1.1 Přehled historického vývoje výuky astrofyziky druhé poloviny 20. století u nás

Historický vývoj výuky astronomie a astrofyziky na středních všeobecně vzdělávacích školách po roce 1945 byl těsně spjat s reformami školství.

Od roku 1957 mizí astronomie jako samostatný vyučovací předmět. Je přidělena k fyzice s poznámkou: Ve fyzice se pokud možno alespoň příležitostně věnuje pozornost poznatkům z astronomie při každém učivu, které s ní souvisí. Vzhledem k přemíře učební fyzikální látky se tak nestávalo téměř nikdy.

1 ASTROFYZIKA, JEJÍ ZAŘAŽENÍ A POSTAVENÍ VE VÝUCE

1. Gravitační pole
2. Orientace na obloze a měření času
3. Fyzikální metody užívané v astrofyzice
4. Fyzika sluneční soustavy
5. Hvězdy a hvězdné soustavy

První dvě kapitoly byly probírány v 1. ročníku, zbývající byly zařazeny do 4. ročníku. Celkem pro astronomii a astrofyziku bylo vymezeno v přírodovědné větvi 40 vyučovacích hodin. Astronomie a astrofyzika ve fyzikálním učivu byly rozděleny na dva v podstatě uzavřené celky:

I. Gravitační pole. Orientace na obloze a měření času.

II. Astrofyzika

1.2 Současný stav výuky astrofyziky na gymnáziu

V současné době je stále ještě na gymnáziích používána učebnice fyziky pro IV. ročník čtyřletého gymnázia, která byla zpracována v roce 1984 pod vedením J. Pišúta. Proto je účelné stručně charakterizovat její tematický celek Astrofyzika rozdělený takto:

Záření – zdroj informací o hvězdách a vesmíru 19 stran
Zdroje energie, stavba a vývoj hvězd 19 stran
Stavba a vývoj vesmíru 13 stran
Barevná příloha 2 strany, 11 obrázků
Témata začínají motivačně využitelnými úvody, následuje výkladový text a v závěru je vždy shrnutí podstatných myšlenek, souvislostí a vztahů. Přímo do výkladového textu jsou umístěny obrázky kosmických těles případně schémata. Pro tvorbu správných představ o fyzikálních vlastnostech a prostorovém rozložení jsou využitelné tabulky charakteristik Slunce, Galaxie či typických vzdáleností mezi strukturami ve vesmíru. Menší počet typických úloh doplňuje výkladový text.

I při omezeném rozsahu 51 stran textu byla vybrána témata podstatná, nezbytná pro stručný a ucelený astrofyzikální výklad, jehož styl navazuje na předcházející zpracování fyzikální části učebnice. Úroveň je přiměřená poslednímu ročníku gymnázia.

Samostatná učebnice Fyzika pro gymnázia – Astrofyzika autora M. Macháčka vyšla v Praze 1998 [21]. V posledním desetiletí probíhá výrazný rozvoj astrofyzikální vědy, který lze charakterizovat jako revoluční. Především využití nové pozorovací techniky umístěné mimo atmosféru Země umožňuje detekci celého rozsahu vlnových délek záření kosmických těles, což přináší nové a v řadě případů převratné objevy. Z tohoto moderního pohledu je třeba novou učebnici hodnotit, neboť její obsahová struktura by měla odrážet nejen stav současné vědy, ale i její předpokládaný vývoj. V učebnici by tedy největší pozornost měla být soustředěna na nejvýrazněji se vyvíjející astrofyzikální disciplíny, zabývající se hvězdami a vnějšími galaxiemi. Obsah učebnice vychází z principu od blízkého ke vzdálenějšímu:

Úvod	10 stran
Sluneční soustava	65 stran
Hvězdy a Galaxie	33 stran
Dodatky	34 stran
Barevná příloha	7 stran, 38 obrázků

Paradoxně málo je v obsahu zastoupena právě problematika hvězd i vnějších galaxií. Při detailnější analýze zjistíme, že v učebnici chybí závažná témata, např. III. Keplerův zákon v přesném tvaru, fyzikální podmínky v nitru hvězd, zdroje energie hvězd, vývojová interpretace H-R diagramu, vývoj galaxií. Právě prostřednictvím těchto témát se studenti seznamují s metodami určování charakteristik, fyzikálních a chemických vlastností kosmických těles, s fyzikálními zákony uplatňujícími se při vývoji těles. Souhrně se tak mohou přesvědčit o platnosti fyzikálních zákonů ve vesmíru. V obsahu zůstává nezachycena rovněž jedna z ústředních myšlenek současná astrofyziky – myšlenka vývoje, neboť kosmická télesa všech typů, jakož i vesmír jako celek, se neustále vyvíjejí. Proto jsou tato témata obsažena v středoškolských kurzech všeobecně vzdělávacích škol ve střední Evropě.

Jistě je vhodné připomenout různé širší souvislosti jako např. možnosti existence života ve vesmíru či poznatky z historie astronomie. Musí však být zařazeny promyšleným způsobem tak, aby podporovaly výklad ústředních astrofyzikálních témat.

Výkladový text gymnaziální učebnice vychází ze slovních úvah opírajících se především o fyzikální poznatky. Hlubšímu pochopení však brání skutečnost, že téměř neobsahuje vzorce a matematická odvození. Jejich umístění v převážně většině až za témata do úloh je dalším netradičním prvkem učebnice, který nemá u našich ostatních gymnaziálních učebnic fyziky či středoškolských astrofyzikálních učebnic ve střední Evropě analogii. Takové řešení nutně narušuje práci studentů s učebnicí.
Až za výkladový text je zařazen větší počet úloh, v řadě případů zajímavých námětů. Jsou pochopitelně různého stupně obtížnosti a jsou všechny nazývány problémy, přestože ty nejjednodušší jsou řešitelné prostým dosazováním do vztahů. Proto by stálo za úvahu oddělit numerické úlohy na prověřování vědomostí od skutečných problémových úloh. Za ně pokládám především takové, které umožňují rozvoj dovedností studentů a podporují jejich samostatnou činnost. Příkladně tak, že studenti proměňují obrázky kosmických těles či grafy umístěné v učebnici a tím získávají další nezbytné údaje k řešení problému.

Hloubka zpracování výkladu v učebnici je rozdílná v různých místech učebnice. Témata věnovaná planetám jsou probírána velmi detailně zatímco u hvězd a galaxií, které jsou předmětem největšího zájmu současně vědě, je podáván spíše informativní výklad. Styl vyjadřování, kterým se autor ve výkladovém textu obrací k studentům, je na některých místech, zřejmě pro zvýšení atraktivnosti a čitivostí popularizující, bez přesnějších formulací a vymezení pojmů. Zpracování textu je tak nutné pouze popisné a neodpovídá náročnosti posledního ročníku výběrové všeobecně vzdělávací školy – gymnázia.

Výklad se stává místo neurčitým a nepresným, ztrácí učebnicový charakter, který by se měl vyznačovat maximálně promyšleným vyjadřováním, jak je vlastní některým učebním fyziky u nás.

K větší přehlednosti a srozumitelnosti výkladového textu by nepochybně přispělo jeho strukturování a vhodné grafické úpravy, např. úvodní motivace, definice, základní pojmy a závěrečná shrnutí v textu by měly být zvýrazněny. Za úvahu by stálo zařazení tabulek, grafů či obrázků zachycujících charakteristiky jednotlivých typů kosmických těles, včetně jejich typických hodnot, což je důležité pro tvorbu správných prostorových a následně i fyzikálních představ, zpravidla v astrofyzikální výuce budovaných prostřednictvím srovnávacích metod.

Uplatnění principu názornosti lze v učebnici posílit tím, že kvalitní a nápadité svými náměty barevné fotografie kosmických těles z přílohy, budou včleněny do výkladového textu. K zvýšení názornosti a srozumitelnosti by bylo účelné zařadit do astrofyzikální části učebnice složitéjší a propracovanější obrázky, nikoliv pouze jednoduché náčrty, dokonce bez stupnic a jednotek na nich vynášených.

Nevýkladový text není v učebnici plně rozvinutý, je málo pestrý. Z procesuálního aparátu chybí větší zastoupení otázek na upevňování vědomostí. U orientačního aparátu jsou odkazy na fyzikální učebnice formální, neboť studenti v posledním ročníku nemají všechny učebnice od prvního ročníku u sebe k dispozici. Patřičný fyzikální vzorec, na který navazuje astrofyzika, by bylo lépe uvést. Ve větší míře jsou v textu postrádány aktivizační výzvy a pobídky např. formou vložených otázek, což je ponecháno na vlastní výuku.
V učebnici měl autor k dispozici velký prostor – 143 stran, čehož v řadě témat zdarně využil, za zajímavý a přitažlivý pokládám například výkladový text věnovaný tématům Země, Měsíc, Slunce.

Část učebnice věnovanou sluneční soustavě, lze doporučit k tématu „Sluneční soustava“ v nižších ročnících gymnázií. Pro výuku astrofyziky v závěrečném ročníku gymnázií však používání učebnice od učitelů fyziky vyžaduje zvýšenou obezřetnost a pečlivou přípravu obsahu výuky. Podrobnější rozbor učebnice je v článku [40].

V souvislosti s podstatnou redukcí povinné výuky fyziky zejména v posledních ročnících gymnázií, jsou nyní astrofyzikální poznatky společně s partii moderní fyziky často zcela opomíjeny.

1.3 Vztah astrofyziky a fyziky, chemie, matematiky

Pro výuku astrofyziky jsou důležité mezipředmětové vztahy mezi astrofyzikou a fyzikou, chemií, matematikou. Jejich účelné využívání vede k překonávání izolovaných struktur poznatků. Tím lze přispět k hlubšímu vědomostem žáka, ke zvýšení kvality myšlenkových procesů a dosažení zobecnění syntetického myšlení, které ve svých důsledcích podporuje samostatné řešení problémů.

Astrofyzika a fyzika

Vzájemná souvislost astrofyziky a fyziky vyplývá z těsného vztahu obou věd, které vycházejí ze společných výzkumných metod a prostředků stejného objektu svého zkoumání – hmoty, jejího rozložení a fyzikálního stavu. Při studiu hmoty ve vesmíru astrofyzika využívá objektivní zákonitosti – fyzikální zákony, jejichž použití umožňuje podávat informace o zkoumaných kosmických objektech a astrofyzikálních jevech.

Fyzikální pojetí výuky astrofyziky předpokládá návaznost jak na klasickou fyziku, tak především na moderní disciplíny fyziky. Již ve výuce fyziky je nutno uplatňovat aspekty astrofyzikálního vzdělávání. K dosažení leptšího celkového chápatí příslušných fyzikálních souvislostí a aplikace fyzikálních zákonitostí ve vesmíru je účelné volit demonstrace z astrofyziky. Například při probírání základních fyzikálních pojmů, jako jsou vzdálenost, čas, rychlost, hmotnost, teplota respektive aplikace fyzikálních zákonů – zákona všeobecné gravitace, zákon zachování mechanické energie, zákona zachování momentu hybnosti. Obdobně při demonstracích plat-
Astrofyzika, její zařazení a postavení ve výuce

Násti zákonů moderní fyziky lze využít příkladů z astrofyzikální tématikou – zákony záření černých těles, zákony přeměny prvků, Pauliho princip, souvislost hmotností a energie.

V astrofyzikální výuce o kosmických tělesech a jevech je pojednáváno důsledně z fyzikálního hlediska. Výklad pohybu planet, umělých družic a kosmických sond, stavby nitra hvězd, rotace Galaxie a stavby vesmíru jako celku nutně musí vycházet z fyzikálních poznatků a zákonů.

Astrofyzika a chemie

Ve vztazích mezi astrofyzikou a chemií lze vymezit tři okruhy témat. Nejprve několik poznámek k rozšířenosti chemických prvků a sloučenin na Zemi a ve vesmíru.

Zúžení uvedené problematiky pouze na Zemi vede k nesprávnému chápání rozšířenosti chemických prvků ve fyzikálním obrazu světa, neboť ten netvoří pouze Země, ale celý vesmír. Proto je nutné Žákům provést srovnání rozšířenosti chemických prvků na Zemi a ve vesmíru.

V závislosti na fyzikálních podmínkách, za kterých vznikaly a vyvíjely se galaxie, hvězdy, planety, je rozdílné složení chemických prvků v nich. Hvězdy a Slunce jako typická hvězda jsou složeny především z vodíku a helia, s nevelkou příměsí dalších prvků.

Nejrozšířenějším prvkem v mezihvězdném prostoru je vodík. Dále v něm bylo objeveno několik stovek až tisíců sloučenin, například CO, CH, CN, OH, H₂O a různé organické sloučeniny, složené především z vodíku, dusíku a uhličitou například HCN, CH₃C₂H, HCONH₂.

Problematická vzniku chemických prvků ve vesmíru lze rozdělit na vznik vodíku, deuteria, helia a lithium v raných fázích vývoje vesmíru a vznik dalších prvků v nitru hvězd. Důležité je seznámení Žáků s teoriemi o původu chemických prvků, které jsou těsně spojeny s kosmogtickými a kosmogonickými teoriemi.

Pro podložení výsledků chemického výzkumu ve vesmíru seznámíme Žáky se základními metodami používanými při studiu:

1. spektrální analýza v optickém oboru,
2. spektrální analýza v mimo optických oborech,
3. přímá analýza hornin Měsíce, Marsu a Venuše.

Kvalitativní a kvantitativní stanovení chemického složení kosmických těles umožňuje spektrální analýza. Radioastronomická metoda spočívá v detecci rádiového záření a identifikaci prvků respektive sloučenin především z mezihvězdného prostředí. Prostřednictvím kosmických sond je uskutečňována přímá chemická analýza hornin Měsíce, Marsu, Venuše i dalších těles sluneční soustavy a atmosféry planét.

Uvedenými metodami byla prokázána jednota chemických prvků ve vesmíru. Na styku astrofyziky a chemie vznikla nová vědní disciplína – astrochemie.

Astrofyzika a matematika

Jako metoda řešení problémů současná astrofyziky se používá matematika, ve formě vzorců, tabulek a grafů. Vědecká astrofyzika využívá důsledně matematický aparát, počínaje elementy trigonometrie především sférické, přes diferenciální a integrální počet až po tenzorovou analýzu. Ve výuce astrofyziky na gymnáziu vystačíme bez znalostí vysší matematiky, průprava žáků z matematiky je dostatečná k zabezpečení nezkresleného výkladu astrofyziky.
Dovednosti a návyky získané v matematice se uplatňují v astrofyzikální výuce především ve dvou oblastech.

1. Využití přibližných výpočtů při řešení úloh a provádění řádových odhadů.

2. Převod hodnot trigonometrických funkcí malých úhlov na hodnoty samotných úhlů vyjádřených v radiánech.

Vzhledem ke značnému rozsahu měřítek fyzikálních veličin popisujících studovaná kosmická tělesa není možné používat lineární stupnice a proto je v astrofyzice využívána logaritmická stupnice, například povrchových teplot, zářivých výkonů atd.

Zásadní význam má v astrofyzice používání vysoce výkonných počítačů. Například při výpočtech drah letu kosmických sond k tělesům sluneční soustavy, výpočtech modelů stavby nítra hvězd, atmosféry hvězd, modelů rotace galaxií atd. Řada zjednodušujících demonstračních modelů je již vytvořena pro počítače ve škole.

1.4 Metody výuky

Při volbě metod výuky astrofyzikálního učiva je třeba přihlížet k jednotě metod výuky a obsahu učiva, neboť právě metody výuky umožňují dosahování vytvářených vzdělávacích cílů se stanoveným obsahem učiva. Ten vymezuje okruh vhodných metod, v případě gymnaziálního astrofyzikálního obsahu učiva jde především o deduktivní, induktivní a srovnávací metody.

Deduktivní metoda postupuje od obecných principů směrem k individuálním jevům a vztahům. Pomocí této metody se žáci učí třídit jevy užší platnosti pod jevy širší platnosti. Metoda tak výrazně přispívá k formování hierarchie zákonností a pojmů. Je široce použitelná při výkladu astrofyziky, neboť řada astrofyzikálních jevů různých měřítek má společnou fyzikální podstatu. Například je vhodná při výkladu kosmogonie sluneční soustavy, hvězd a Galaxie.

Induktivní metoda se uplatňuje při postupném výkladu vlastností planet, hvězd a galaxií. Je účelné ji použít při výkladu tématu Galaxie. Obdobně jako ve fyzice tak i při výkladu astronomického učiva není vhodné deduktivní a induktivní postupy výkladu od sebe izolovat, obě metody se mohou vhodně vzájemně doplňovat.

Postupně jsou u žáků budovány trvalé vědomosti o velikostech kosmických těles a soustav, které vytvářejí. Názorná srovnání prostřednictvím číselných modelů, pokud nejsou k dispozici obrazová, přispívají k získání lepších představ a ve svých důsledcích usnadňují pochopení složitých astrofyzikálních jevů v nich probíhajících a celkovou správnou tvorbu prostorových
představ astrofyzikálního obrazu vesmíru. Zmenšený číselný model je pro žáky srozumitelnější a poskytuje názornější představu.

Při výkladu sluneční soustavy používáme model zachycený v tabulce, ve kterém si Slunce představíme jako těleso o průměru 1,4 m.

<table>
<thead>
<tr>
<th>Planeta</th>
<th>Průměr</th>
<th>Střední vzdálenost od Slunce</th>
</tr>
</thead>
<tbody>
<tr>
<td>Merkur</td>
<td>0,5 cm</td>
<td>58 m</td>
</tr>
<tr>
<td>Venuše</td>
<td>1,2 cm</td>
<td>108 m</td>
</tr>
<tr>
<td>Země</td>
<td>1,3 cm</td>
<td>150 m</td>
</tr>
<tr>
<td>Mars</td>
<td>0,7 cm</td>
<td>228 m</td>
</tr>
<tr>
<td>Jupiter</td>
<td>14,2 cm</td>
<td>778 m</td>
</tr>
<tr>
<td>Saturn</td>
<td>12,0 cm</td>
<td>1,43 km</td>
</tr>
<tr>
<td>Uran</td>
<td>5,1 cm</td>
<td>2,87 km</td>
</tr>
<tr>
<td>Neptun</td>
<td>4,9 cm</td>
<td>4,50 km</td>
</tr>
<tr>
<td>Pluto</td>
<td>0,2 cm</td>
<td>5,90 km</td>
</tr>
</tbody>
</table>

Při výkladu nejprve vytváříme znalosti o číselných hodnotách velikostí konkrétních kosmických těles (Slunce, Galaxie), které reprezentují určitý typ kosmických těles (hvězdy, galaxie). Následně vyjádíříme srovnávací metodou velikosti dalších kosmických těles stejného typu – u hvězd například poloměry obrů, veleobrů, bílých trpaslíků v relativních jednotkách poloměrů Slunce, viz následující tabulka.

<table>
<thead>
<tr>
<th>Hvězda hlavní posloupnosti</th>
<th>Obři, veleobři</th>
<th>Bílí trpaslíci</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procyon A</td>
<td>2</td>
<td>20 Procyon B 0,01</td>
</tr>
<tr>
<td>Sírůs A</td>
<td>2</td>
<td>30 Sírůs B 0,02</td>
</tr>
<tr>
<td>Vega</td>
<td>3</td>
<td>100 Eridanus B 0,02</td>
</tr>
</tbody>
</table>

K názornějšímu porovnání poloměrů hvězd použijeme následující tabulku, ve které jsou skutečné poloměry hvězd uvedeny v relativních jednotkách poloměrů Slunce, který je v číselném modelu zachycen velikostí úsečky 10 cm.

<table>
<thead>
<tr>
<th>Hvězda</th>
<th>Skutečný poloměr</th>
<th>Modelový poloměr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slunce</td>
<td>1R⊙</td>
<td>10 cm</td>
</tr>
<tr>
<td>Procyon A</td>
<td>2R⊙</td>
<td>20 cm</td>
</tr>
<tr>
<td>Arktur</td>
<td>30R⊙</td>
<td>300 cm</td>
</tr>
<tr>
<td>Rigel</td>
<td>100R⊙</td>
<td>10 m</td>
</tr>
<tr>
<td>Sírůs B</td>
<td>0,02R⊙</td>
<td>2 mm</td>
</tr>
</tbody>
</table>

Výklad vzdáleností mezi hvězdami v Galaxii zahájíme uvedením důležitého poznatku, že poměr středních vzdáleností mezi hvězdami a jejich velikostmi je $10^6 - 10^7$. K doložení tvrzení lze využít převodu průměrů hvězd a jejich vzájemných vzdáleností na astronomické jednotky. Připomínáme, že průměr Slunce je 0,01 AU a 1 pc = 206 265 AU.

K objasnění vzdáleností mezi hvězdami a rozměry Galaxie přispívá následující tabulka, ve které u modelových vzdáleností je použito měřítko 1 AU = 1 mm.
Objekt, rozměr	Skutečná vzdálenost	Modelová vzdálenost
α Centauri | 1,3 pc | 274 m
Deneb | 1 kpc | 200 km
střed Galaxie | 10 kpc | 2 000 km
průměr disku Galaxie | 30 kpc | 6 000 km

Na číselnou a prostorovou představitivost je obtížný pro žáky přechod k velikostem vnějších galaxií a vzdálenostem mezi nimi. K jeho usnadnění poslouží následující tabulka, ve které průměr Galaxie je v číselném modelu vyjádřen velikostí 12 cm. Z údajů v tabulce lze učinit zobecnující závěr, že poměr průměrných vzdáleností mezi galaxiemi a jejich velikostmi je přibližně 10 – 20.

<table>
<thead>
<tr>
<th>Objekt</th>
<th>Velikost</th>
<th>Vzdálenost</th>
<th>Skutečná</th>
<th>Modelová</th>
<th>Skutečná</th>
<th>Modelová</th>
</tr>
</thead>
<tbody>
<tr>
<td>průměr disku Galaxie</td>
<td>30 kpc</td>
<td>12 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Velké Magellanovo mračno – průměr</td>
<td>10 kpc</td>
<td>4 cm</td>
<td>48 kpc</td>
<td>19 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malé Magellanovo mračno – průměr</td>
<td>5 kpc</td>
<td>2 cm</td>
<td>57 kpc</td>
<td>23 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galaxie M 31 – průměr</td>
<td>50 kpc</td>
<td>20 cm</td>
<td>700 kpc</td>
<td>280 cm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.5 Prověřování vědomostí, testy

Úspěšnost výuky astrofyziky závisí mimo jiné na vhodně organizovaném prověřování vědomostí a dovedností, které mohou mít různé formy a metody. Přednost dáváme takovým formám, které žáky aktivizují.

Nejčastějším a nejrozšířenějším typem prověřování vědomostí i z astrofyziky je ústní zkouška, při které zadáváme žákům otázky konkrétního charakteru, jež vyžadují krátkou odpověď. Pro rozvoj myšlení žáků a získání představ o vědomostech je vhodná frontální orientační zkouška vedená metodou kontrolního rozhovoru učitele se žáky. Rozpracování této metody představují následující návrhy:

CÍL: Prověřování vědomostí o sluneční soustavě a Slunci

FORMA: Ústní orientační zkouška

METODA: Rozhovor učitele s žáky

OTÁZKY:

1. Jaké je složení sluneční soustavy?

2. Vysvětlete rozdílnost chemického složení terestrických a velkých planet.

3. Zkuste definovat hranice sluneční soustavy, kde se nachází?

4. Kde v Galaxii se nachází Slunce (sluneční soustava) a jak se v ní pohybuje?

5. Na základě jakých pozorování na obloze můžeme usuzovat, že Slunce je relativně mladou hvězdou?
6. Co můžeme říci o rozložení hmotnosti a momentu hybnosti ve sluneční soustavě?
7. Proč jsou sluneční skvry temnější než okolní povrch?
8. Proč můžeme ve sluneční skvře pozorovat hlubší atmosférické vrstvy než v okolní fotosféře?
9. Jak daleko sahá atmosféra Slunce?

CÍL: Prověřování vědomostí žáků o velikostech a vzdálenostech hvězd
FORMA: Ústní orientační zkouška
METODA: Rozhovor učitele s žáky
OTÁZKY:

1. Uveďte číselnou hodnotu poloměru Slunce.
2. Při znalosti poloměru Země stanovte, kolikrát je poloměr Slunce větší než poloměr Země.
3. Uveďte číselnou hodnotu astronomické jednotky AU!
4. Objasněte princip trigonometrické metody určování roční paralaxy u nejbližších hvězd.
5. Proč nebylo možné tuto metodu používat ve starověku a středověku?
6. U hvězdy byla naměřena roční paralaxa 0,5", jaká je její vzdálenost?
7. Roční paralaxa určité hvězdy je 0,125" ± 0,005". Co můžeme říci o vzdálenosti hvězdy?
8. Porovnejte velikosti poloměru Slunce a astronomické jednotky AU.
10. Jaký je vzájemný poměr průměrných vzdáleností mezi hvězdami v Galaxii a průměrů hvězd samotných?

CÍL: Prověřování vědomostí o nitru hvězd
FORMA: Ústní orientační zkouška
METODA: Rozhovor učitele s žáky
OTÁZKY:

1. Proč jsou hvězdy svou fyzikální podstatou shodné se Sluncem?
2. Charakterizujte fyzikální podmínky v nitru hvězdi.
3. Kterých fyzikálních zákonů použijete při přibližném odhadu centrálního tlaku a teploty v nitru Slunce, uveďte jejich číselné hodnoty.
4. V jakém stavu se nachází atomy v nitru hvězdi?
5. Jaké jsou současné představy o zdrojích energie Slunce?

6. Objasněte slovy fyzikální význam rovnice hydrostatické rovnováhy.

7. Jaké typy přenosu tepla z nitra Slunce směrem k povrchu se uplatňují?

8. Proč vytváříme modely nitra hvězd?

9. Pomocí kterých zákonů určujeme povrchovou teplotu hvězd?

CÍL: Prověřování vědomostí o Galaxii
FORMA: Ústní orientační zkouška
METODA: Rozhovor učitele s žáky
OTÁZKY:

1. Co pozorujeme na obloze např. v létě, jestliže se díváme na Mléčnou dráhu?

2. Jaký je průměr naší Galaxie?

3. Uveďte řádově hmotnost Galaxie.

4. Upřesněte polohu Slunce v Galaxii.

5. Co se nachází v jádře Galaxie?

6. Jakým způsobem jsou určovány vzdálenosti v rámci Galaxie?

7. Popište základní rozdíly mezi otevřenými a kulovými hvězdokupami.

8. Jak jsou rozloženy v Galaxii kulové hvězdokupy?

9. Kde nalezneme hvězdné asociace v Galaxii?

10. Kterou metodou byla objevena spirální struktura Galaxie?

Ústní individuální zkoušku ve výuce astrofyziky lze vést buď jako rozhovor učitele s žákem nebo jako jeho souvislý projev. Pro zvýšení objektivity zkoušení, které je spojeno většinou s klasifikací, je nutná předběžná příprava ústní individuální zkoušky. Vhodně předem připravený rozhovor učitele s žákem umožňuje posoudit osvojení astrofyzikálního učiva, schopnost samostatného myšlení. Následuje návrh scénáře zkoušky:

CÍL: Prověřování vědomostí o zdrojích energie hvězd
FORMA: Ústní individuální zkouška
METODA: Rozhovor učitele s žákem
OTÁZKY:

1. Jaké množství zářivé energie vyzáří Slunce za 1 sekundu?

2. Které jsou teoreticky možné zdroje energie Slunce a proč nemůže být hlavním zdrojem energie gravitační potenciální energie? Závěry doložte výpočtem!
3. Co je hlavním zdrojem energie Slunce (hvězd) a proč?
4. Jaké jsou fyzikální podmínky vzniku termojaderných reakcí?
5. Na kterém fyzikálním parametru a jak závisí množství uvolňované energie při termojaderných reakcích?
6. Popište možné způsoby průběhu termojaderné syntézy vodík → helium.
7. Známe zářivý výkon Slunce, jak stanovíme úbytek jeho hmotnosti za sekundu? Zkuste nejprve odhadnout!
8. Určete množství energie, které se uvolňuje při syntéze čtyř jader atomu vodíku na čtyři jádra atomu helia.
9. Jakým způsobem je odváděna uvolňovaná energie z nitra k povrchu hvězd?
10. Popište počáteční a závěrečné chemické složení nitrů hvězd při jejich vývoji.

CÍL: Prověřování vědomostí o charakteristikách hvězd
FORMA: Písemná zkouška
METODA: Didaktický test s volnou odpovědí
OTÁZKY:

1. Uveďte základní charakteristiky hvězd, které jsou absolutní a relativní?
2. Objasněte princip metody určování vzdáleností hvězd pomocí roční paralaxy, proč je použitelnost této metody omezena v současnosti přibližně do 1000 pc?
3. Jaký je rozdíl mezi pozorovanou a absolutní hvězdnou velikostí?
4. Které charakteristiky jsou rozhodujícími pro stavbu a vývoj hvězd a proč?
5. Jakými metodami určujeme hmotnost hvězd?
6. Jak je definován zářivý výkon hvězd a na čem závisí?
7. Popište metody určování poloměrů hvězd a objasněte jejich princip.
8. Jak je definována efektivní povrchová teplota hvězd a jak ji určujeme?
9. Co je to čárové spektrum hvězd a jakými metodami je v astrofyzice získáváno?
10. Na kterých parametrech závisí spektrum hvězd?

CÍL: Prověřování vědomostí o vývoji hvězd
FORMA: Písemná zkouška
METODA: Didaktický test s volnou odpovědí
OTÁZKY:

1. Jakým způsobem vznikají protohvězdy?
2. Popište přeměnu protohvězdy ve hvězdu hlavní posloupnosti.

3. Charakterizujte vývoj hvězdy na hlavní posloupnosti, co je příčinou vývoje?

4. Na kterých charakteristikách především závisí vnitřní stavba hvězد?

5. Zdůvodněte, proč hvězdy s větší hmotností setrvávají na hlavní posloupnosti kratší dobu.

6. Popište přechod hvězdy z hlavní posloupnosti do oblasti červených obrů, jaké změny přitom nastávají v nitru hvězد?

7. Jaké termojaderné reakce probíhají ve hvězdách po dosažení červených obrů?

8. Na které charakteristice především a jak závisí přechod do závěrečných stadií vývoje?

9. Popište stavbu bílých trpaslíků, co zabraňuje gravitačnímu zhroucení těchto hvězد?

10. Kde na H-R diagramu nalézámé bílé trpaslíky?

CÍL: Prověřování vědomostí o stavové a vývojové interpretaci H-R diagramu
FORMA: Ústní orientační zkouška
METODA: Rozhovor učitele s žáky
OTÁZKY:

1. Jaké existují základní oblasti rozložení hvězd na H-R diagramu?

2. V jakých vnějších charakteristikách se odlišují hvězdy hlavní posloupnosti a veleobří spektrální třídy K?

3. Kterými charakteristikami se liší hvězdy hlavní posloupnosti spektrálních tříd O a K?

4. K jakým typům patří hvězdy, jejichž povrchová teplota je větší než povrchová teplota Slunce a zářivý výkon je menší než zářivý výkon Slunce?

5. Co vytváří geometrické místo bodů odpovídající obrazům hvězد se stejným

6. Hvězdy jakých spektrálních tříd hlavní posloupnosti mají největší hmotnost?

7. Charakterizujte jednotlivé etapy vývoje hvězדy o hmotnosti 1 M⊙, jaký je jejich význam?

8. Které charakteristiky hvězד se mění při jejich vývoji?

9. Proč se mění poloha hvězد v H-R diagramu?

10. Čím je způsoben vývoj hvězد a na čem závisí tempo jejich vývoje?
Testy

METODY ASTROFYZIKÁLNÍHO VÝZKUMU

1. **Roční paralaxa je,**
 A. Úhel, pod kterým pozorujeme z hvězdy poloměr Slunce,
 B. Úhel, pod kterým pozorujeme z hvězdy kolmo na směr paprsků poloměr dráhy Země kolem Slunce,
 C. Úhel, pod kterým pozorujeme z hvězdy poloměr Země,
 D. Průměrná úhlová vzdálenost Slunce a dané hvězdy během roku.

2. **Roční paralaxa**
 A. Umožňuje určování vzdáleností blízkých hvězd,
 B. Umožňuje určování vzdáleností planet,
 C. Je vzdálenost, kterou Země urazí za rok,
 D. Je důkAZem konečné hodnoty rychlosti světla.

3. Největší vzdálenost, kterou můžeme v současnosti spolehlivě určovat metodou roční paralaxy je přibližně
 A. 10 pc,
 B. 50 pc,
 C. 1000 pc,
 D. Neexistuje žádné omezení.

4. U hvězdy byla určena roční paralaxa 0,5", její vzdálenost v pc je
 A. 0,5,
 B. 2,
 C. 4,
 D. 3,26.

5. Předpokládejme, že hvězda A se nachází ve 4krát větší vzdálenosti než hvězda B. Paralaxa hvězdy A je
 A. 4krát menší než paralaxa hvězdy B,
 B. 4krát větší než paralaxa hvězdy B,
 C. 2krát větší než paralaxa hvězdy B,
 D. Stejná jako paralaxa hvězdy B.

6. Jestliže vzdálenost hvězdy od nás narůstá, číselná hodnota její pozorované hvězdné velikosti
 A. Klesá,
 B. Narůstá,
 C. Nemění se,
 D. Mění se pouze absolutní hvězdná velikost.

7. Jasnost hvězdy šesté velikosti v porovnání s jasností hvězdy první velikosti je
 A. 100krát větší,
 B. 100krát menší,
8. Pozorovaná hvězdná velikost hvězdy je rovna její absolutní hvězdné velikosti. Její vzdálenost je
 A. 1 pc,
 B. 2 pc,
 C. 10 pc,
 D. 100 pc.

9. Cefeidy používáme ke stanovení vzdáleností, protože jejich
 A. Radiální rychlost závisí na hmotnosti,
 B. Periody pulsace závisí na radiální rychlosti,
 C. Hmotnost narůstá s rostoucí vzdáleností,
 D. Zářivý výkon závisí na periodě pulsace.

10. Vzdálenosti planet v současné době určujeme
 A. Geometrickým způsobem,
 B. Prostřednictvím analýzy pohybu jejich měsíců,
 C. Matematickými výpočty,
 D. Radarovou metodou.

11. K stanovení vzdáleností planet ve sluneční soustavě byla dříve používána metoda
 A. Roční paralaxy,
 B. III. Keplerova zákona,
 C. Supernov,
 D. Hubbleova zákona.

12. Aplikace III. Keplerova zákona v přesném tvaru u fyzických dvojhvězd umožňuje nalezení
 A. Hmotnosti,
 B. Poloměru,
 C. Hustoty,
 D. Zářivého výkonu.

13. Poměr druhých mocnin oběžných dob dvou planet kolem Slunce je roven 64. Poměr hlavních polouš drah planet je
 A. 4,
 B. 16,
 C. 32,
 D. 64.

14. Představte si, že byla nalezena hypotetická planeta ve vzdálenosti 3 AU od Slunce. Její předpokládaná siderická oběžná doba je
 A. 2,1 roků,
 B. 3 roky,
15. Efektivní povrchová teplota jedné ze dvou hvězd se stejnými poloměry je 2krát větší než druhé hvězdy. Poměr jejich zářivých výkonů je
 A. 0,5,
 B. 4,
 C. 16,
 D. 625.

16. Určete správné pořadí barev hvězd podle jejich narůstajících teplot od nejchladnější k nejteplejší
 A. Modrá, červená, bílá,
 B. Bílá, modrá, červená,
 C. Modrá, bílá, červená,
 D. Červená, bílá, modrá.

17. Wienův posunovací zákon má tvar
 A. $\lambda m T^4 = b$,
 B. $\lambda m T^2 = b$,
 C. $\lambda m T = b$,
 D. $\lambda m T^{-1} = b$.

18. Vlnová délka, na které hvězda vyzařuje největší množství zářivé energie, je závislá na
 A. Vzdálenosti od Země,
 B. Radiální rychlosti,
 C. Teplotě,
 D. Jasnosti hvězdy.

19. Předpokládejme, že hvězdy vyzařují jako absolutně černá tělesa. Maximum intenzity vyzařování ve spojitém spektru hvězdy Betelgeuze připadá na vlnovou délku 930 nm, její barva je
 A. Červená,
 B. Bílá,
 C. Žlutá,
 D. Modrá.

20. Nejvíce informací o kosmických tělesech získáváme prostřednictvím
 A. Fotometrie,
 B. Spektroskopie,
 C. Fotografie,
 D. Astrologie.

21. Spektrální analýzou zdroje zjišťujeme informace pouze o jeho
 A. Chemickém složení,
 B. Teplotě,
C. Tlaku,
D. Teplotě, tlaku i chemickém složení.

22. Pokles povrchové teploty hvězdy
 A. Nevyvolá žádné změny v čárovém spektru,
 B. Vyvolá změn poloh čar, nikoliv však jejich intenzit,
 C. Vyvolá změny intenzit různých čar, nikoliv však jejich poloh,
 D. Vyvolá změny intenzit i poloh všech čar.

23. Hlavní příčinou rozdílnosti čárových spekter hvězd je jejich rozdílné
 A. Chemické složení,
 B. Tlak,
 C. Teplota,
 D. Prostorová rychlost.

24. Analýzou spektra hvězdy neurčujeme její
 A. Radiální rychlost,
 B. Polohu na obloze,
 C. Teplotu,
 D. Chemické prvky přítomné v atmosféře hvězdy.

25. V atomu vodíku se viditelné světlo vyzáří při přechodu elektronu z energetické
 hladiny
 A. Čtvrté na třetí,
 B. Třetí na první,
 C. Čtvrté na druhou,
 D. Druhé na první.

26. Vlnová délka první čáry Balmerovy série odpovídající přechodu z energetické
 hladiny n = 3 na hladinu n = 2 je
 A. 410,2 nm,
 B. 434,0 nm,
 C. 486,1 nm,
 D. 656,3 nm.

27. Infračervené záření se odlišuje od ultrafialového záření
 A. Intenzitou,
 B. Vlnovou délkou,
 C. Rychlostí záření ve vakuu,
 D. Intenzitou i vlnovou délkou.

28. Vlnová délka záření v optickém intervalu leží mezi
 A. Infračerveným a rádiovým zářením,
 B. Ultrafialovým a rtg. zářením,
 C. Ultrafialovým a rádiovým zářením,
 D. Krátkým a dlouhým rádiovým zářením.
29. Spektrograf používáme v astrofyzice k
 A. Získávání spektér,
 B. Upřesnění astrologických předpovědí,
 C. Určování hvězdnych velikostí,
 D. Stanovení poloh.

30. Rozlišovací schopnost dalekohledu nezávisí na
 A. Vlnové délce,
 B. Průměru dalekohledu,
 C. Atmosférických podmínkách,
 D. Roční době.

Správné odpovědi:

SLUNEČNÍ SOUSTAVA
Země

1. Sférický tvar Země objasňujeme jako
 A. Důsledek podřízenosti se výchozímu principu starořecké filozofie, že koule je nejdokonal- lejší těleso,
 B. Tvar odpovídající podmínkám vzniku Země gravitačním smršťováním,
 C. Tvar formovaný dopady těles ze všech stran při vývoji planety,
 D. Výsledek rovnováhy všech fyzikálních interakcí na Zemi.

2. Poloměr Země v km je
 A. 538,
 B. 1 548,
 C. 6 378,
 D. 12 756.

3. K určení hmotnosti Země potřebujeme znát vedle zákona všeobecné gravitace také
 A. Poloměr Země, gravitační zrychlení a gravitační konstantu,
 B. Tvar Země a gravitační zrychlení,
 C. Chemické složení Země a gravitační zrychlení,
 D. Zemský poloměr a stavbu nitra.

4. Zemské jádro má vyšší hustotu než plášť a kůra, což svědčí o tom, že
 A. Kovy se hromadily jako první a teprve následně křemičitany,
 B. Gravitace je kompaktní v jádře a vytváří ho hustší,
 C. Celá planeta byla v minulosti v tekutém stavu,
 D. Slunce zahřívalo v minulosti Zemi mnohem více.

5. Hlavním určujícím zdrojem evoluce Země je
A. Život,
B. Meteoritické bombardování z kosmu,
C. Tok tepla z nitra,
D. Vliv zemského magnetického pole.

6. Zemská atmosféra se skládá podle objemu plynů z
A. 80% z kyslíku, 20% dusíku,
B. 50% kyslíku, 50% dusíku,
C. 20% kyslíku, z 80% dusíku,
D. 25% kyslíku, z 25% dusíku, z 25% vodíku a z 25% helia.

7. Kyslík v atmosféře Země vysvětlujeme
A. Uvolňováním sopečných plynů,
B. Fotosyntézou rostlin,
C. Uvolňováním plynů při pádech jader komet,
D. Úbytkem vodíku při zahřívání Země Sluncem.

8. Magnetické pole Země je v celkovém pohledu
A. Bodové v severním magnetickém pólu,
B. Dipólové s jižním a severním magnetickým pólem,
C. Difúzní bez magnetických pólů,
D. Bodové v jižním magnetickém pólu.

9. Polární záře jsou způsobeny
A. Fluktuacemi v zemské magnetosféře nedaleko pólů,
B. Průletem meteoritů zemskou atmosférou,
C. Dopadem nabitých částic do horních vrstev zemské atmosféry nedaleko pólů,
D. Rozptylem modrého světla v atmosféře Země.

10. Slunce není původním zdrojem energie na Zemi
A. Fotosyntézní,
B. Uložené v naftě a uhlí,
C. Vodní,
D. Atomové.

11. Stáří hornin Země stanovené radiometrickou metodou je
A. 4 600 roku,
B. 46 000 roku,
C. 4,6 milionů roku,
D. 4,6 miliard roku.

12. Voda se do pozemských oceánů dostala
A. Uvolňováním plynů z pod kůry Země při sopečných výbuších,
B. Prosakováním z jádra a pláště,
C. Při meteoritickém bombardování v minulosti Země,
D. Z mraků v atmosféře.
1. ASTROFYZIKA, JEJÍ ZAŘAZENÍ A POSTAVENÍ VE VÝUCE

13. Vrstvy atmosféry s rostoucí výškou nad Zemí jsou seřazeny takto:
 A. Troposféra, stratosféra, mezosféra, termosféra, exosféra,
 B. Stratosféra, troposféra, mezosféra, termosféra, exosféra,
 C. Troposféra, stratosféra, exosféra, mezosféra, termosféra,
 D. Troposféra, termosféra, stratosféra, exosféra, mezosféra.

14. Ozónosféra je součástí
 A. Troposféry,
 B. Stratosféry,
 C. Exosféry,
 D. Termosféry.

15. Teplota atmosféry Země s rostoucí výškou nad povrchem
 A. Klesá,
 B. Zůstává konstantní,
 C. Nejprve roste, následně klesá,
 D. Nejprve klesá, potom roste.

16. Střídání ročních období na Zemi je vyvoláno
 A. Změnami vzdálenosti Země od Slunce,
 B. Otáčením Země kolem Slunce,
 C. Sklonem zemské osy vzhledem k rovině oběžné dráhy Země,
 D. Periodickými změnami sluneční aktivity.

17. Jestliže by rotační osa Země byla kolmá k rovině oběžné dráhy kolem Slunce, znamenalo by to
 A. Nestejnou délku dne i noci, neexistenci ročních období,
 B. Stejnou délku dne i noci, neexistenci ročních období,
 C. Stejnou délku dne i noci, střídání ročních období,
 D. Nestejnou délku dne i noci, střídání ročních období.

18. Průměrná rychlost pohybu Země kolem Slunce činí
 A. 5 km·s⁻¹,
 B. 10 km·s⁻¹,
 C. 30 km·s⁻¹,
 D. 50 km·s⁻¹.

19. Za jakou dobu přibližně dorazí světlo ze Slunce na Zemi
 A. okamžitě,
 B. za 1 sekundu,
 C. za 8 minut,
 D. za 1 hodinu.

20. Slunce pozorujeme při západu načervenalé, protože
 A. Lidské oči jsou navelčitelné k červené barvě,
 B. Modré světlo je nejlépe rozptylováno prachem a molekulami vzduchu,
C. Záření všech vlnových délek vyjma červené je v atmosféře ohýbáno,
D. Světlo při úplňku Měsíce je také červené.

Správné odpovědi:

Měsíc

1. Střední vzdálenost Země a Měsíce je v km
 A. 1 032,
 B. 384 400,
 C. 512 000,
 D. 149 600 000.

2. Poloměr Měsíce v km je :
 A. 1 738,
 B. 782,
 C. 1 026,
 D. 5 412.

3. Nejpravděpodobnější teorie vzniku Měsíce objasňuje, že
 A. Měsíc byl gravitačně zachycen Zemí,
 B. Měsíc a Země vznikly současně,
 C. Měsíc se zformoval z materiálu vnější slupky Země uvolněného při šikmém dopadu tělesa
 o velikosti Marsu na Zemi,
 D. Měsíc vznikl současně s ostatními měsíci ve sluneční soustavě.

4. Tmavá místa na povrchu Měsíce, tzv. moře jsou
 A. Měsíční hory,
 B. Měsíční pohoří,
 C. Rovinné plány vzniklé ztuhnutím lávy,
 D. Optické klamy způsobené atmosférou Měsíce.

5. Zatmění Měsíce nenastává při každém úplňku, protože
 A. Vzdálenost Měsíce od Země se mění,
 B. Rovina měsíční dráhy je skloněna k dráhové rovině Země o úhel 5 stupňů,
 C. Měsíc není pozorovatelný v úplňku,
 D. Korán ani bible to nepřipouští.

6. Doba oběhu Měsíce kolem Země vzhledem ke hvězdám trvá 27,3 dne, zatímco vzhledem ke Slunci 29,5 dne. Tento rozdíl vyplývá z
 A. Nerovnoměrností pohybu Měsíce po jeho eliptické dráze,
 B. Eliptické dráhy Země při jejím pohybu kolem Slunce,
 C. Sklonu rotační osy Země a rovně, v níž obíhá Země kolem Slunce,
 D. Současného oběhu Země kolem Slunce.
7. Dva astronomové nacházející se na odlišných místech Země pozorují Měsíc na pozadí různých hvězd. Z měření mohou stanovit
 A. Vzdálenost Měsíce od Země,
 B. Dobu oběhu Měsíce,
 C. Hmotnost Měsíce,
 D. Úhlové rozměry Měsíce.

8. Slapové působení Měsíce zpomaluje zemskou rotaci, v důsledku platnosti zákona zachování momentu hybnosti v soustavě Země – Měsíce se Měsíc
 A. Vzdaluje od Země,
 B. Přibližuje k Zemi,
 C. Zpomaluje svoji vlastní rotaci,
 D. Zrychluje svoji vlastní rotaci.

9. Krátery na Měsíci mají původ
 A. Převážně vulkanický,
 B. Převážně impaktní, tedy dopady těles,
 C. Obojí uvedený, přibližně ve stejném zastoupení,
 D. Dosud neznámý.

10. Rozložení hmoty v nitru Měsíce můžeme zkoumat
 A. Studiem polarizace odraženého světla povrchu,
 B. Rozborem pohybu Země,
 C. Při seancích vědeckých astrologů zaměřených na Měsíc,
 D. Analýzou hodnoty koeficientu momentu setrvačnosti Měsíce.

11. Relativní výška nejvyšších hor na Měsíci dosahuje zhruba
 A. 0,5 km,
 B. 1,5 km,
 C. 10 km,
 D. 25 km.

12. Počet kráterů s průměrem větším nad 1 km je na přivrácené straně Měsíce odhadován na více než
 A. 3 000,
 B. 30 000,
 C. 300 000,
 D. 3 000 000.

13. Teplota na povrchu Měsíce se výrazně mění, neboť postrádá atmosféru. Ve středu pozorovaného disku v poledne dosahuje teplota až
 A. 300 K,
 B. 400 K,
 C. 500 K,
 D. 600 K.

14. V noci dosahuje teplota na povrchu Měsíce až
A. 300 K,
B. 200 K,
C. 100 K,
D. 1 K.

15. Intenzita gravitačního pole na Měsíci je slabá, protože
 A. Hmotnost a hustota Měsíce jsou menší než Země,
 B. Část gravitačního pole vyvolává slapy na Zemi,
 C. Měsíc je příliš vzdálený od Slunce,
 D. Měsíc nemá magnetické pole.

16. Na odvrácené straně Měsíce postrádáme
 A. Krátery,
 B. Moře,
 C. Údolí,
 D. Pohoří.

17. Menší kráter na povrchu Měsíce je položen na větším, odtud usuzujeme, že
 A. Menší kráter je mladší než větší,
 B. Menší kráter je starší než větší,
 C. Oba krátery jsou stejně staré,
 D. Oba krátery jsou velmi staré.

18. Expedice Apollo zjistily, že obecně nejstarší oblasti na povrchu Měsíce jsou
 A. Moře,
 B. V okolí rovníků,
 C. V okolí pólů,
 D. Světlé pevniny např. Jižní pahorkatina.

19. Analýza měsíčních hornin, získaných v rámci projektu Apollo a Luna, stanovila
 věk nejstarších vzorků přibližně na dobu
 A. 10 000 roků,
 B. 4,0 miliony roků,
 C. 4,6 miliard roků,
 D. 10 miliard roků.

20. Měsíc je přivrácen k Zemi stále stejnou stranou, protože
 A. NASA to potřebuje k provádění svých experimentů na povrchu Měsíce,
 B. Gravitační silové působení Marsu a Země je v rovnováze,
 C. Měsíc následuje svůj přirozený pohyb v prostoru,
 D. Rotační a oběžná perioda Měsíce jsou sobě rovny.

Správné odpovědi:
Planety obecně

1. Pro všechny planety platí
 A. Rotují kolem svých os a obíhají kolem Slunce,
 B. Rotují stejným směrem kolem svých os,
 C. Vyznačují se aspoň jedním měsícem,
 D. Jejich rotační osy míří k Polárci.

2. Zda planety a měsíce mají atmosféru, závisí na
 A. Oběžné rychlosti kolem centrálního tělesa,
 B. Na teplotě,
 C. Na únikové rychlosti,
 D. Na teplotě a únikové rychlosti.

3. Fáze můžeme pozorovat u
 A. Merkuru,
 B. Venuši,
 C. Marsu,
 D. Merkuru a Venuše.

4. Úniková rychlost je nejmenší u
 A. Merkuru,
 B. Venuši,
 C. Země,
 D. Marsu.

5. K planetám zemského typu (terestrickým) patří
 A. Merkur, Venuše, Země, Pluto,
 B. Merkur, Venuše, Země, Mars,
 C. Venuše, Země, Mars, Jupiter,
 D. Země, Mars, Jupiter, Saturn.

6. Pořadí terestrických planet podle rostoucího atmosférického tlaku je
 A. Venuše, Země, Mars,
 B. Země, Venuše, Mars,
 C. Mars, Země, Venuše,
 D. Mars, Venuše, Země.

7. Střední vzdálenost Země od Slunce astronomická jednotka – AU má v km číselnou hodnotu
 A. 384 400,
 B. 149 600 000,
 C. 150 000 000 000.
 D. 300 000 000 000.

8. Vzdálenost Jupitera od Slunce v astronomických jednotkách AU je
9. Která z navrhovaných posloupností planet seřazených podle narůstající vzdálenosti od Slunce je správná

A. Merkur, Venuše, Země, Mars, Jupiter, Saturn, Uran,
B. Merkur, Jupiter, Venuše, Země, Mars, Saturn, Uran,
C. Venuše, Merkur, Země, Saturn, Mars, Uran, Jupiter,
D. Merkur, Venuše, Mars, Země, Jupiter, Saturn, Uran.

10. Která z navrhovaných posloupností planet seřazených podle narůstající střední rychlosti oběžného pohybu kolem Slunce je správná

A. Mars, Země, Merkur, Venuše,
B. Země, Mars, Venuše, Merkur,
C. Mars, Země, Venuše, Merkur,
D. Mars, Venuše, Země, Merkur.

11. Která z navrhovaných posloupností planet seřazených podle rostoucí velikosti je správná

A. Merkur, Venuše, Země, Saturn, Jupiter,
B. Merkur, Země, Venuše, Saturn, Jupiter,
C. Merkur, Venuše, Země, Jupiter, Saturn,
D. Venuše, Merkur, Země, Saturn, Jupiter.

12. K velkým planetám patří

A. Země, Mars, Jupiter, Saturn,
B. Jupiter, Saturn, Uran, Pluto,
C. Venuše, Země, Mars, Jupiter,
D. Jupiter, Saturn, Uran, Neptun.

13. Jaký maximální počet planet můžeme pozorovat na obloze lidským zrakem

A. 2,
B. 3,
C. 4,
D. 6.

14. Zásadní rozdíl mezi planetami a hvězdami spočívá v tom, že

A. Planety jsou vždy menší než hvězdy,
B. Planety jsou po chemické stránce tvořeny těžšími prvky než hvězdy,
C. V nitru planet nemohou po dobu řádově miliardy let probíhat termojaderné reakce,
D. Planety se vždy nacházejí v menší vzdálenosti než jakakoliv hvězda.

15. Z planet více energie vyzařují než kolik jí přijímají od Slunce

A. Merkur, Mars,
1. **ASTROFYZIKA, JEJÍ ZAŘAZENÍ A POSTAVENÍ VE VÝUCE**

- B. Venuše, Země,
- C. Uran, Neptun,
- D. Jupiter, Saturn.

16. Nejvyšší teplotu povrchu z planet má
 - A. Merkur,
 - B. Venuše,
 - C. Země,
 - D. Mars.

17. Měsíc respektive měsíce pozorujeme u
 - A. Neptuna, Pluta,
 - B. Venuše, Marsu,
 - C. Merkuru, Venuše,
 - D. Merkuru, Marsu.

18. Prstenec z planet mají
 - A. Merkur, Venuše, Země, Mars,
 - B. Mars, Jupiter, Saturn, Uran,
 - C. Saturn, Uran, Neptun, Pluto,
 - D. Jupiter, Saturn, Uran, Neptun.

19. Sluneční vítr dosahuje svými účinky k dráze
 - A. Merkuru,
 - B. Venuše,
 - C. Pluta,
 - D. Země.

20. Proces vzniku a formování planet z prachových disků pozorujeme
 - A. V planetárních mlhovinách,
 - B. Kolem červených obrů např. Arktura,
 - C. Kolem mladých hvězd hlavní posloupnosti např. Vegy a β Pic,
 - D. Kolem bílých trpaslíků např. Síria B.

Správné odpovědi:

Planety jednotlivě

1. **Poloměr Merkuru je přibližně**
 - A. Stejný jako poloměr Země,
 - B. Větší jako poloměr Země,
 - C. Roven jedné třetině poloměru Země,
 - D. Stejný jako poloměr Pluta.

2. **Atmosféra Merkuru**
A. Je složena především z vodíku,
B. Je složena z vodíku a helia,
C. Je složena z dusíku a kyslíku,
D. Vlastně neexistuje.

3. U Merkuru existuje velký rozsah teplot mezi dnem a nocí. Hlavním důvodem tohoto intervalu je
 A. Malá hmotnost,
 B. Skalnatý povrch,
 C. Vzdálenost od Slunce,
 D. Neexistence atmosféry.

4. Kosmická sonda Mariner 10 zjistila, že Merkur má magnetické pole, z čehož usuzujeme na
 A. Rychlou rotaci planety,
 B. Pomalou rotaci planety,
 C. Kovové jádro planety,
 D. Vodíkové jádro planety.

5. Atmosféry dvou nejbližších planet od Země, Venuše a Marsu jsou nevhodné pro dýchání lidí, protože obsahují
 A. V převážné většině oxid uhličitý,
 B. Arzén,
 C. Stopové množství červené rtuti,
 D. Příliš mnoho kyslíku.

6. Pozorované světlo Venuše na obloze je odrazem slunečního záření od
 A. Oceánů,
 B. Horních vrstev mraků,
 C. Pevného vápencového povrchu,
 D. Světlých ploch kvetoucích rostlin.

7. Skleníkový efekt zahřívá atmosféru Venuše, protože
 A. Na povrch planety dopadá více slunečního záření než normálně,
 B. Povrch planety je tmavší než typický,
 C. Mračna pokrývají atmosféru a zabraňují úniku tepla,
 D. Záření povrchu v infračerveném oboru je zachycováno v atmosféře planety.

8. Výjimečnou vlastností Venuše je
 A. Opačná orientace rotace kolem vlastní osy než směr oběhu planety kolem Slunce,
 B. Oběh kolem Slunce opačným směrem než ostatní planety,
 C. Složení atmosféry převážně z helia,
 D. Neexistence magnetického pole.

9. Sezónní změny barev na Marsu jsou pravděpodobně výsledkem
 A. Vegetačních změn,
1. ASTROFYZIKA, JEJÍ ZAŘAZENÍ A POSTAVENÍ VE VÝUCE

B. Pohybu prachu,
C. Změn ledovců na povrchu,
D. Deště.

10. Polární čepičky na Marsu jsou
A. Složeny výhradně z vodního ledu H₂O,
B. Složeny výhradně ze zamrzlého CO₂,
C. Kombinací zamrzlého H₂O a CO₂,
D. Sezónní bílé kvetoucí rostliny.

11. Měsíce Marsu jsou
A. Svou velikostí srovnatelné s naším Měsícem,
B. Rozdílné velikosti, jeden je malý a druhý velký,
C. Malé oba dva o velikosti řádově 10 km,
D. Umělého původu, mění svoji velikost.

12. Měsíce Marsu nemají sférický tvar jako náš Měsíc, protože
A. Gravitační síla není převládající silou tvarující měsíce,
B. Jsou mnohem mladší než náš Měsíc,
C. Jsou mnohem starší než náš Měsíc,
D. Nemají krátery.

13. Kanály na Marsu, pozorované v 19. století, byly později objasněny jako
A. Optické klamy,
B. Zařízení na povrchu planety vybudovaná Martány,
C. Dlouhá pásma hor,
D. Zlomy v povrchové kůře.

14. Voda je v současnosti na Marsu přítomna
A. V polárních čepičkách,
B. Pod povrchem v permafrostu,
C. Pod povrchem v tekuté podobě,
D. Jak v polárních čepičkách, tak v permafrostu.

15. Planetou s největším poloměrem je
A. Saturn,
B. Jupiter,
C. Venuše,
D. Země.

16. Velká rudá skvrna na Jupiteru je
A. Kontinent,
B. Vír anticyklonální povahy,
C. Optická iluze,
D. Rotující stín Jupiterova měsíce Io.

17. Chemické složení Jupitera je nejvíce podobné
18. Energie vulkanické aktivity měsíce Io je výsledkem
 A. Slapových sil a radioaktivních rozpadů,
 B. Chemických reakcí,
 C. Vyzařování Jupitera a Slunce,
 D. Interakce silného magnetického pole Jupitera.

19. Tekutá voda byla zjištěna pod povrchem měsíce Jupitera
 A. Io,
 B. Europa,
 C. Ganymed,
 D. Kallisto.

20. Důkazem, že Jupiter se stále ještě vyvíjí je skutečnost, že
 A. Vyzařuje více energie, než kolik ji přijímá od Slunce,
 B. Má větší počet měsíce, které obíhají poměrně blízko jeho povrchu,
 C. Velká pestrost jeho barvy dokazuje, že v něm probíhají chemické reakce,
 D. Převážně je tvořen plynem, zatímco bychom předpokládali, že planety jsou vesměs z pevných látek.

21. Prstence Saturna
 A. Jsou složeny z ledu,
 B. Obíhají v rovině rovníku planety,
 C. Jsou položeny za Rocheovou mezní vzdáleností,
 D. Jsou optickým difrakčním jevem.

22. Saturn je výjimečný tím, že
 A. Má prstence,
 B. Je nejjasnější planetou na obloze,
 C. Má více než čtyři měsíce,
 D. Vyznačuje se nejnižší hustotou ze všech planet.

23. Atmosféra Titanu se převážně skládá z
 A. Dusíku,
 B. Methanu,
 C. Kyslíku,
 D. Vody.

24. Uran je výjimečný tím, že
 A. Rotační osa leží téměř v dráhové rovině planety,
 B. Oběžná dráha má největší excentricitu ze všech planet,
 C. Hustota planety je nejnižší ze všech planet,
D. Hustota atmosféry je největší ze všech planet.

25. Neptun byl objeven
 A. Pomocí fotografických desek,
 B. Z dráhových poruch Pluta,
 C. Z dráhových poruch Urana,
 D. Na základě Titušova-Bodeova zákona.

26. Hmotnost Neptuna je
 A. Srovnatelná s hmotností Marsu,
 B. Srovnatelná s hmotností Merkuru,
 C. Rovna 10násobku hmotnosti Merkuru,
 D. Rovna přibližně 20násobku hmotnosti Země.

27. Hmotnost Pluta byla určena z gravitačního vlivu na
 A. Halleyovu kometu,
 B. Charon,
 C. Kosmické sondy,
 D. Planetky.

28. Největší excentricitu dráhy z planet má
 A. Pluto,
 B. Saturn,
 C. Jupiter,
 D. Mars.

29. Jádro komet je velikostí
 A. Mnohem menší než Země,
 B. Nepatrně menší než Země,
 C. Mnohem větší než Země,
 D. Srovnatelné s Měsícem.

30. Komety se vyznačují největším ohonem v okamžiku
 A. Největší aktivity Slunce,
 B. Průchodu perihéliem,
 C. Následujícím po průchodu perihéliem,
 D. Průletu kolem Jupitera.

31. Z pozorování umělé družice Země byla zjištěna její oběžná doba 90 minut. Známe hmotnost \(M_Z \) a poloměr Země \(R_Z \) a hodnotu gravitační konstanty \(G \). Družice obíhá kolem Země ve výšce
 A. 28 km,
 B. 283 km,
 C. 2 830 km,
 D. 28 300 km.

32. Nejkratší možná doba oběhu umělé družice Země je
33. Známe hmotnost Slunce M_\odot a hodnotu gravitační konstanty G. Kometa prošla perihéliem ve vzdálenosti $87,8 \cdot 10^6$ km rychlostí $54,52 \cdot 10^6$ km·s$^{-1}$. Pohybuje se po dráze
A. Eliptické,
B. Přímkové,
C. Parabolické,
D. Hyperbolické.

34. Známe hmotnost Slunce M_\odot a hodnotu gravitační konstanty G. Kolem hvězdy 70 Virginis o hmotnosti $1,1 M_\odot$ obíhá planeta s oběžnou dobou 117 dnů. Její vzdálenost od hvězdy činí
A. 5,48 AU,
B. 1,48 AU,
C. 0,69 AU,
D. 0,48 AU.

35. Známe hodnotu gravitačního zrychlení u Země. Hmotnost Marsu je $0,107 M_Z$, jeho poloměr $0,53 R_Z$. Pro pohyb po jeho povrchu je nezbytná znalost gravitačního zrychlení, jehož hodnota činí
A. $3,70 \text{ m} \cdot \text{s}^{-2}$,
B. $8,87 \text{ m} \cdot \text{s}^{-2}$,
C. $9,81 \text{ m} \cdot \text{s}^{-2}$,
D. $274,00 \text{ m} \cdot \text{s}^{-2}$.

36. Země se pohybuje kolem Slunce průměrnou rychlostí $29,8 \text{ km} \cdot \text{s}^{-1}$ ve vzdálenosti 1 AU. Hodnota průměrné rychlosti Neptuna obíhajícího ve vzdálenosti 30 AU je
A. $0,5 \text{ km} \cdot \text{s}^{-1}$,
B. $5,4 \text{ km} \cdot \text{s}^{-1}$,
C. $7,6 \text{ km} \cdot \text{s}^{-1}$,
D. $54,0 \text{ km} \cdot \text{s}^{-1}$.

37. Hmotnost Venuše činí $0,8 M_Z$, její poloměr $0,95 R_Z$. Dále známe hodnotu únikové rychlosti u Země $11,2 \text{ km} \cdot \text{s}^{-1}$. Hodnota únikové rychlosti u povrchu Venuše je
A. $103,0 \text{ km} \cdot \text{s}^{-1}$,
B. $11,2 \text{ km} \cdot \text{s}^{-1}$,
C. $10,3 \text{ km} \cdot \text{s}^{-1}$,
D. $7,3 \text{ km} \cdot \text{s}^{-1}$.

38. Hmotnost Marsu je $0,107 M_Z$, jeho poloměr $0,53 R_Z$. Dále známe hodnotu I. kosmické rychlosti u Země $7,9 \text{ km} \cdot \text{s}^{-1}$. Hodnota I. kosmické rychlosti u Marsu je
A. 37,0 km·s⁻¹,
B. 7,9 km·s⁻¹,
C. 5,0 km·s⁻¹,
D. 3,5 km·s⁻¹.

39. Měsíc Io obíhá kolem Jupitera ve vzdálenosti 422 000 km s oběžnou dobou 1,77 dne. Dále známe hodnotu gravitační konstanty G. Hmotnost Jupitera je rovna
A. 2,0·10^{30} \text{ kg},
B. 1,9·10^{28} \text{ kg},
C. 1,9·10^{27} \text{ kg},
D. 6,0·10^{24} \text{ kg}.

40. Planeta Pluto obíhá kolem Slunce ve vzdálenosti 39,5 AU. Oběžná doba planety je
A. 26 000 roků,
B. 248 roků,
C. 76 roků,
D. 1 rok.

Správné odpovědi:

1. Poloměr Slunce v km je
A. 7 000,
B. 70 000,
C. 700 000,
D. 1 000 000.

2. Poměr poloměrů Slunce a Země je přibližně
A. 1,
B. 10,
C. 100,
D. 1 000.

3. Energie je v jádře Slunce uvolňována při
A. Termojaderné syntéze héliu,
B. Termojaderné syntéze vodíku,
C. Jaderném štěpení,
D. Gravitační kontrakci.

4. Energie produkovaná na Slunci pochází z
A. Absorpcí neutrin ve fotosféře,
B. Vazebné energie elektronů,
C. Interakcí molekul s magnetickým polem,
D. Přeměny hmotnostního úbytku v energii.

5. Astrofyzika se zabývá detekcí neutrín ze Slunce, neboť
 A. Nesou přímou informaci o jádře Slunce,
 B. Nesou přímou informaci o fotosféře,
 C. Odnášejí vyšší energii než fotony,
 D. Jsou snadněji detekovatelná než fotony.

6. Po chemické stránce je Slunce složeno především z
 A. Uhlíku, kyslíku,
 B. Helia, dusíku,
 C. Železa, kobaltu,
 D. Vodíku, helia.

7. Nejtenčí vrstvou atmosféry Slunce je
 A. Koróna,
 B. Fotosféra,
 C. Chromosféra,
 D. Fotosféra a chromosféra.

8. Vrstva atmosféry Slunce, která je za normálních podmínek pozorovatelná je
 A. Koróna,
 B. Chromosféra,
 C. Fotosféra,
 D. Jádro.

9. V průběhu úplného zatmění Slunce lze pozorovat
 A. Sluneční skvrny,
 B. Protuberance,
 C. Granulaci,
 D. Fotosféru.

10. Nejvyšší teplota na Slunci je v
 A. Jádře,
 B. Fotosféře,
 C. Chromosféře,
 D. Koróně.

11. Teplota v centrální části Slunce je
 A. 10^3 K,
 B. 10^4 K,
 C. 10^5 K,
 D. 1,5·10^7 K.

12. Přibližná teplota sluneční fotosféry je
1. ASTROFYZIKA, JEJÍ ZAŘAZENÍ A POSTAVENÍ VE VÝUCE

A. 3·10³ K,
B. 6·10³ K,
C. 10⁶ K,
D. 10⁷ K.

13. Přibližná teplota sluneční koróny je
A. 3·10³ K,
B. 6·10³ K,
C. 10⁶ K,
D. 10⁷ K.

14. Sluneční skvrny jsou místa na povrchu, která jsou
A. Teplejší než jejich okolí,
B. Chladnější než jejich okolí,
C. Tmavými víry vznikající při dopadu komet,
D. Vnější části černých děr v nitru Slunce.

15. Nejdůležitější charakteristiky slunečních skvrn jsou
A. Nízká teplota a intenzivní magnetické pole,
B. Vysoká teplota a intenzivní magnetické pole,
C. Vysoká teplota a slabé magnetické pole,
D. Nízká teplota a neexistence magnetického pole.

16. Protuberance jsou mračna relativně chladného a hustého plazmatu pohybujícího se nad fotosférou, což je způsobeno
A. Výrony látky vyvolané rychlou rotací Slunce,
B. Efekty magnetického pole v blízkosti aktivních oblastí,
C. Výrony látky vyvolané intenzivními konvektivními efekty,
D. Gravitační přitažlivostí Země každých 22 roků.

17. Jedenáctiletý cyklus slunečních skvrn odpovídá
A. Rotační periodě Slunce u pólu,
B. Oběžné době Jupitera kolem Slunce,
C. Rotační periodě Slunce na rovníku,
D. Periodě změn magnetického pole Slunce.

18. K určení hmotnosti Slunce využíváme
A. Trigonometrickou paralaxu,
B. Metodu extrapolace hodnoty hustoty chromosféry,
C. Zákon všeobecné gravitace a III. Keplerův zákon,
D. Spektrální analýzu.

19. Přes 99% hmotnosti sluneční soustavy je uloženo v
A. Jupiteru,
B. Jupiteru a Saturnu,
C. Planetkách mezi Marsem a Jupiterem,
20. Stáří Slunce odhadujeme v rocích na
 A. 4,7 tisíc,
 B. 4,7 milionů,
 C. 4,7 miliard,
 D. 47 miliard.

Správné odpovědi:

HVĚZDY

1. Většina hvězd se při pozorování v průběhu noci pohybuje od
 A. Západu k východu,
 B. Východu k západu,
 C. Severu k jihu,
 D. Jihu k severu.

2. Ve většině hvězd se energie uvolňuje
 A. Prudkou rotací hvězdy,
 B. Radioaktivními přeměnami v nitru hvězd,
 C. Termojadernou syntézou vodíku,
 D. Elektromagnetickou indukcí vznikající při působení silných magnetických polí.

3. Dlouhodobým zdrojem energie hvězd
 A. Jsou termojaderné reakce,
 B. Je gravitační potenciální energie,
 C. Jsou chemické reakce,
 D. Jsou dosud neznámé fyzikální procesy.

4. Doba pobytu hvězdy na hlavní posloupnosti je určována
 A. Množstvím uhlíku,
 B. Vzdáleností od středu Galaxie,
 C. Povrchovou teplotou,
 D. Hmotností.

5. Hvězdy s větší hmotností setrvávají na hlavní posloupnosti delší dobu než hvězdy s menší hmotností protože
 A. Mají větší zásoby vodíku,
 B. Hvězdy s větší hmotností spalují termojaderné palivo pomaleji,
 C. Hvězdy s větší hmotností procházejí více různými stadií vývoje,
 D. Tvrzení v textu položky je nepravdivé.

6. H-R diagram pro hvězdokupy je rozdílný od typického, protože všechny hvězdy hvězdokupy mají stejné
1. ASTROFYZIKA, JEJÍ ZAŘAZENÍ A POSTAVENÍ VE VÝUCE

A. Stáří,
B. Teploty,
C. Průměry,
D. Hmotnosti.

7. Základní chemické složení většiny hvězd je
A. Uhlík, dusík,
B. Železo, kobalt,
C. Vodík, helium,
D. Kyslík, křemík.

8. Ve hvězdách nevznikl prvek
A. Vodík,
B. Uhlík,
C. Kyslík,
D. Vápník.

9. Stavový H-R diagram hvězd představuje závislost
A. Hmotnosti hvězdy na její spektrální třídě,
B. Zářivého výkonu na efektivní povrchové teplotě,
C. Spektrální třídy na chemickém složení,
D. Hmotnosti hvězdy na jejím poloměru.

10. Porovnání třiceti nejbližších hvězd v okolí Slunce vedlo k závěru, že
A. Slunce má větší zářivý výkon než většina hvězd,
B. Slunce má menší zářivý výkon než většina hvězd,
C. Slunce má průměrný zářivý výkon,
D. Nelze hvězdy srovnávat, protože neumíme stanovit zářivé výkony.

11. Jestliže reprezentativní skupinu hvězd Galaxie naneseme na H-R diagram, bude se většina nacházet na hlavní posloupnosti, protože
A. Zde se nacházejí nejmladší hvězdy, kterých je nejvíce,
B. Doba existence hvězd zde převyšuje dobu života v ostatních stadiích vývoje,
C. Zde se nacházejí nejstarší hvězdy,
D. Mimo hlavní posloupnosti se seskupují hvězdy nepatřící do Galaxie.

12. Tlak a teplota v nitru hvězd jsou určovány především
A. Zářivým výkonem,
B. Chemickým složením,
C. Povrchovou teplotou,
D. Hmotností.

13. Kontrakce mezihvězdného mračna při vzniku hvězd je vyvolána
A. Magnetickými silami,
B. Elektrickými silami,
C. Jadernými silami,
D. Gravitačními silami.

14. Skupinový vznik hvězd v současné době pozorujeme v
 A. Orlí mlhovině v souhvězdí Hada,
 B. Blízkosti Polárky v souhvězdí Malé Medvědice,
 C. Prstencích Saturna,
 D. Oortově mračnu na okraji sluneční soustavy.

15. Hvězda začíná svůj pobyt na hlavní posloupnosti, jestliže
 A. Je podrobena kontrakci,
 B. Hvězda se přesouvá z hlavní posloupnosti,
 C. Se rozvinou termojaderné reakce syntézy vodíku,
 D. Planetární systém je zformován.

16. Tempo vývoje hvězdy závisí zejména na
 A. Poloměru,
 B. Hmotnosti,
 C. Zářivém výkonu,
 D. Hustotě.

17. Po přeměně vodíku na helium v centrálních oblastech hvězd se poloha obrazu hvězdy na H-R diagramu posune směrem
 A. K vyšším povrchovým teplotám,
 B. Po hlavní posloupnosti vzhůru,
 C. Po hlavní posloupnosti dolů,
 D. Od hlavní posloupnosti k červeným obrům.

18. Červení obři jsou hvězdy
 A. Malých zářivých výkonů a vysokých povrchových teplot,
 B. Velkých zářivých výkonů a vysokých povrchových teplot,
 C. Velkých zářivých výkonů a nízkých povrchových teplot,
 D. Velkých zářivých výkonů a malých poloměrů.

19. Červení obři mají větší zářivé výkony než bílí trpaslíci, protože
 A. Se vyznačují vyššími teplotami,
 B. Jsou hvězdami s vyššími hustotami,
 C. Mají větší poloměry,
 D. V nitru červených obrů se nachází silně vyzařující černá díra.

20. Planetární mlhovina je
 A. Expanduující obálka kolem bílého trpaslíka,
 B. Mračno chladného prachu v okolí hvězdy,
 C. Kruhový prstenec kolem černé díry,
 D. Mračno plynu, z kterého hvězda vznikla.

21. Hvězda o hmotnosti 1\(M_\odot\) prochází postupně následujícími stadii vývoje
 A. Hlavní posloupnost, protohvězda, bílý trpaslík, červený obr,
1 ASTROFYZIKA, JEJÍ ZAŘazení A POSTAVENí VE VÝUCE

B. Protohvězda, hlavní posloupnost, červený obr, bílý trpaslík,
C. Bílý trpaslík, červený obr, hlavní posloupnost, protohvězda,
D. Protohvězda, červený obr, hlavní posloupnost, bílý trpaslík.

22. Bílí trpaslíci jsou
A. Hvězdy spodní části hlavní posloupnosti,
B. Nejmladší hvězdy zobrazené na H-R diagramu,
C. Hvězdy s poloměry $\approx 10^{-2} R_\odot$ a s hmotnostmi $\approx 0,6 M_\odot$,
D. Pulsující proměnné hvězdy, tzv. cefeidy.

23. Bílí trpaslíci mají velikost srovnatelnou s
A. Prahou,
B. Zemí,
C. Jupiterem,
D. Sluncem.

24. Po výbuchu supernovy může vzniknout
A. Hvězda hlavní posloupnosti,
B. Bílý trpaslík,
C. Protohvězda,
D. Neutronová hvězda.

25. Při kolapsu supernovy během několika sekund vzniká v jádře
A. Helium,
B. Uhlík,
C. Železo,
D. Zlato.

26. Černé díry vznikající při explozích supernov se vyznačují řádově hmotností
A. Měsíce,
B. Jupitera,
C. Slunce,
D. Galaxie.

27. Závěrečným stadiem vývoje velké části hvězd je
A. Červený obr,
B. Bílý trpaslík,
C. Hvězda s velkou hmotností, neboť v procesu vývoje hmotnost narůstá,
D. Hnědý trpaslík.

28. Rotační perioda u pulsarů se zmenšuje, protože
A. Rotační energie se postupně přeměňuje na zářivou energii,
B. Rotaci zpravidla zpomaluje hvězda průvodce,
C. Rotaci zpomaluje tření s okolní mezihvězdnou látkou,
D. Dochází zásoby termojaderného paliva.

29. Které z tvrzení o Krabí mlhovině není pravdivé
A. Celá mlhovina stále expanduje,
B. V jejím středu leží pulsar,
C. V roce 1054 zde vybuchla supernova,
D. Pulsar rotuje stále rychleji v souvislosti s expanzí mlhoviny.

30. Hnědý trpaslík je
A. Hvězda s příliš malou hmotností, než aby v ní mohly dlouhodobě probíhat termojaderné reakce,
B. Poslední závěrečné stadium vývoje hvězd,
C. Stadium vývoje následující po bílém trpaslíkovi,
D. Závěrečné stadium vývoje hvězd s hmotnostmi stejnými a menšími než Slunce.

Správné odpovědi:
28. A 29. D 30. A

GALAXIE

1. Mléčná dráha, kterou na obloze pozorujeme lidským zrakem
A. Jsou zbytky po pohybu planetek,
B. Jsou zbytky těles pozůstalých po pohybu planet,
C. Jsou pozůstatky po pohybu komet po obloze,
D. Reprezentuje hvězdy v Galaxii, jejíž je Slunce součástí.

2. Většinu Galaxie nemůžeme pozorovat v optickém oboru, protože
A. V galaktické rovině je prach,
B. V halu existují černé díry,
C. Jádro vyvolává efekt gravitační čočky,
D. V Místní skupině galaxií existují hnědí trpaslíci.

3. Sluneční soustava je položena
A. V galaktickém halu,
B. Téměř v galaktické rovině,
C. V galaktickém jádře,
D. Mimo naší Galaxii.

4. Slunce se nachází
A. Vně Galaxie,
B. Ve středu Galaxie,
C. Ve středu vesmíru,
D. Přibližně ve vzdálenosti 8,5 kpc od středu Galaxie.

5. Spirální struktura naší Galaxie byla prokázána studiem
A. Záření neutrálního vodíku,
B. Dopplerovského posunu ve spektrech hvězd,
C. Kulových hvězdokup,
6. Ve spirálních ramenech Galaxie nenalezneme
 A. Oblasti neutrálního vodíku,
 B. Oblasti ionizovaného vodíku,
 C. Molekulární mračna,
 D. Kulové hvězdokupy.

7. Jádro Galaxie leží ve směru souhvězdí
 A. Labutě,
 B. Orionu,
 C. Střelce,
 D. Persea.

8. V jádře Galaxie se nachází černá díra, neboť
 A. K nám nepřichází z této oblasti žádné záření,
 B. Detekujeme v této oblasti uvolňování velkého množství energie,
 C. Pohyb objektů v blízkosti jádra indikuje existenci velkého množství hmoty,
 D. Platí možnosti B a C.

9. Pro jádro Galaxie není charakteristická
 A. Emise rtg. záření,
 B. Emise částic s vysokou energií,
 C. Velká jasnost v optickém oboru při pozorování ze Země,
 D. Černá díra s velkou hmotností.

10. Podle zvyšujícího se počtu hvězd lze seřadit soustavy hvězd následovně
 A. Otevřené hvězdokupy, kulové hvězdokupy, vnější galaxie, Místní soustava galaxií, kupy galaxií,
 B. Místní soustava galaxií, otevřené hvězdokupy, kulové hvězdokupy, vnější galaxie, kupy galaxií,
 C. Kulové hvězdokupy, otevřené hvězdokupy, vnější galaxie, Místní soustava galaxií, kupy galaxií,
 D. Otevřené hvězdokupy, kulové hvězdokupy, vnější galaxie, kupy galaxií, Místní soustava galaxií.

11. Průměr Galaxie je přibližně
 A. 30 pc,
 B. 300 pc,
 C. 3 kpc,
 D. 30 kpc.

12. Počet hvězd v Galaxii je odhadován na
 A. 1 000 000,
 B. 1 000 000 000,
 C. 100 000 000 000,
D. 1 000 000 000 000.

13. Plejády jsou
 A. Známé souhvězdí na zimní obloze,
 B. Otevřenou hvězdokupou fyzicky spolu souvisejících hvězd,
 C. Rozpadlou kulovou hvězdokupou,
 D. Náhodným shlukem hvězd na obloze.

14. V naší Galaxii se nachází
 A. Hvězdné asociace, otevřené a kulové hvězdokupy,
 B. Otevřené a kulové hvězdokupy, kvasary, kupy galaxií,
 C. Hvězdné asociace, otevřené a kulové hvězdokupy, kvasary,
 D. Hvězdné asociace, otevřené a kulové hvězdokupy, Místní soustava galaxií.

15. Hvězdy v současné době v Galaxii vznikají především v
 A. Spirálních ramenech,
 B. Kulových hvězdokupách,
 C. Emisních mlhovinách,
 D. Jádru Galaxie.

16. U hvězdných soustav (hvězdokup, asociací) je určujícím typem interakce
 A. Elektromagnetická,
 B. Gravitační,
 C. Jaderná,
 D. Astrologická.

17. Hvězdy v hvězdokupách se liší
 A. Vzdáleností,
 B. Stářím,
 C. Hmotností,
 D. Chemickým složením.

18. Hvězdy v hvězdokupách vznikly ve stejném čase, tudíž
 A. Mají stejnou hmotnost,
 B. Mají stejné chemické složení,
 C. Jsou velmi staré,
 D. Jsou velmi mladé.

19. Kulové hvězdokupy se nacházejí v halu Galaxie neboť
 A. Vznikly dříve a neztratily svůj moment hybnosti,
 B. Vznikly později z temné hmoty,
 C. Byly vyvrženy ze spirálních ramen,
 D. Byly zachyceny později až vznikla Galaxie.

20. Cefeidy jsou důležité pro studium Galaxie, protože jejich prostřednictvím určujeme
 A. Teplotu,
1 ASTROFYZIKA, JEJÍ ZAŘAZENÍ A POSTAVENÍ VE VÝUCE

B. Hmotnost,
C. Vzdálenost,
D. Chemické složení.

Správné odpovědi:

MIMOGALAKTICKÉ OBJEKTY

1. Magellanova mračna jsou
 A. Typická mračna vyskytující se nad jižními oblastmi Afriky a Jižní Ameriky,
 B. Mračna kondenzací vytvářených při průletu tryskových letadel nad Antarktidou,
 C. Nejблиžší vnější galaxie na jižní obloze,
 D. Sodíková mračna vypouštěná pro vědecké účely kosmickými sondami.

2. Velké Magellanovo mračno se nachází přibližně ve vzdálenosti
 A. 0,5 pc,
 B. 50 pc,
 C. 5 kpc,
 D. 50 kpc.

3. Nejблиžší vnější galaxie na severní obloze je
 A. Mléčná dráha,
 B. Galaxie (mlhovina) v souhvězdí Andromedy,
 C. Spirální galaxie M 100 v souhvězdí Panny,
 D. Rádiová galaxie Cygnus A v souhvězdí Labutě.

4. Galaxie M 31 v souhvězdí Andromedy je vzdálena
 A. 7,3 kpc,
 B. 73 kpc,
 C. 730 kpc,
 D. 7,3 Mpc.

5. Nárůst počtu pozorovatelných vnějších galaxií při vzdalování se od pásu Mléčné dráhy dosvědčuje
 A. Expanzi vesmíru,
 B. Existenci zvýšeného množství plynu a prachu v rovině Galaxie,
 C. Polohu naší Galaxie mezi dvěma supergalaxiemi,
 D. Nerovnoměrné rozložení galaxií v prostore.

6. Při pozorování vzdálených galaxií sledujeme
 A. Velmi mladé objekty,
 B. Velmi staré objekty,
 C. Objekty stejného věku jako naše Galaxie,
 D. Vzdálené objekty, o jejichž věku nelze činit žádné předpoklady.

7. Který z projevů vývoje vnějších galaxií nepozorujeme

48
A. Expanze plynných proudů z jader galaxií,
B. Vzájemné vzdalování kup galaxií,
C. Obohacování mezihvězdné látky těžšími prvky,
D. Rychlý rozpad samotných galaxií.

8. Ve spektrech vzdálených vnější galaxií pozorujeme
A. Modrý posuv,
B. Velký modrý posuv,
C. Kosmologický rudý posuv,
D. Gravitační rudý posuv.

9. Kosmologický rudý posuv naznačuje, že
A. Většina hvězd v Galaxii se pohybuje od nás,
B. Většina planet se pohybuje od nás,
C. Hvězdy ve větších vzdálenostech se vyznačují vyššími teplotami,
D. Expanduje prostor.

10. Hubbleův zákon vyjadřuje závislost mezi
A. Vzdálenosti a rudým posuvem,
B. Rudým posuvem a barvou galaxií,
C. Rudým posuvem a spektrální třídou,
D. Barvou a spektrální třídou.

11. Hubbleův zákon vyjadřujeme ve tvaru
A. \[v = Hr, \]
B. \[v = Hr^{-1}, \]
C. \[v = Hr^2, \]
D. \[v = Hr^{-2}. \]

12. Jestliže galaxie A se nachází ve vzdálenosti 9krát větší než galaxie B, potom rychlost galaxie A je ... větší než galaxie B
A. 3,
B. 6,
C. 9,
D. 27.

13. Vnější galaxie se od nás vzdaluje rychlostí 3 000 km·s^{-1}. Při přijetí hodnoty Hubbleovy konstanty 75 km·s^{-1}·Mpc^{-1} je vzdálenost galaxie
A. 4 Mpc,
B. 10 Mpc,
C. 40 Mpc,
D. 400 Mpc.

14. Hubbleův zákon je založen na
A. Teorii velkého třesku,
B. Oscilační teorii,
C. Observačních údajů o rudém posuvu,
D. Inflační teorii.

15. Expanzi vesmíru mohou zastavit síly
A. Jaderné,
B. Gravitační,
C. Astrální,
D. Elektromagnetické.

16. Která z uvedených posloupností kosmických objektů odpovídá narůstání jejich vzdáleností od Země
A. Neptun, střed Galaxie, galaxie v souhvězdí Andromedy, kvasar 3C 273, Merkur,
B. Merkur, Neptun, střed Galaxie, kvasar 3C 273, galaxie v souhvězdí Andromedy,
C. Merkur, Neptun, střed Galaxie, galaxie v souhvězdí Andromedy, kvasar 3C 273,
D. Neptun, Merkur, střed Galaxie, galaxie v souhvězdí Andromedy, kvasar 3C 273.

17. Stáří vesmíru je odhadováno na přibližně
A. 100 biliónů roků,
B. 14 miliard roků,
C. 10 tisíc roků,
D. 2 tisíce roků.

18. Nejrozšířenějšími typy kosmických objektů ve vesmíru jsou
A. Hvězdy,
B. Planety,
C. Galaxie,
D. Plynné mlhoviny.

19. Ve vesmíru je převládajícím stavem viditelné látky skupenství
A. Pevné,
B. Kapalné,
C. Plynné,
D. Plazmové.

20. Naše Galaxie je typem galaxie
A. Eliptické,
B. Nepravidelné,
C. Spirální,
D. Nelze stanovit její typ.

21. Největším procentem plynu a prachu podle hmotnosti se vyznačují galaxie
A. Supergigantické eliptické,
B. Spirální,
C. Trpasličí eliptické,
D. Nepravidelné.

22. Největší hmotnost z galaxií mají
23. Místní skupina galaxií se skládá ze zhruba
 A. 100 nejbližších hvězd,
 B. 50 kulových hvězdokup,
 C. 30 nejbližších galaxií,
 D. 100 nejbližších galaxií.

24. V jádře galaxie M 87 byla zjištěna
 A. Černá díra,
 B. Cefeída,
 C. Nova,
 D. Supernova.

25. Aktivita jader vnějších galaxií se projevuje
 A. Výtrysky plynných proudů,
 B. Výraznou změnou polohy galaxie,
 C. Výrazným modrým posuva
 D. Velkým uvolňováním energie.

26. Z vyzařování synchrotronového polarizovaného záření v galaktických výtryscích usuzujeme, že jde o
 A. Proud relativistických neutrin,
 B. Proud relativistických neutronů,
 C. Proud relativistických protonů,
 D. Proud relativistických elektronů.

27. Většina záření z jader aktivních galaxií přichází z
 A. Hvězd,
 B. Plynných a prachových mračen,
 C. Elektronů pohybujících se vysokou rychlostí v magnetických polích,
 D. Supernov.

28. Kvasary zřejmě jsou
 A. Vybuchující superhvězdy,
 B. Jádra kulových hvězdokup,
 C. Vybuchující supernovy v těsných dvojhvězdách,
 D. Jádra vznikajících galaxií.

29. Široké emisní čáry ve spektrech kvasarů znamenají, že jejich centrální oblasti obsahují
 A. Horký, rychle se pohybující neprůhledný plyn,
 B. Horký, pomalu se pohybující neprůhledný plyn,
C. Horký, rychle se pohybující průhledný plyn,
D. Chladný, rychle se pohybující průhledný plyn.

30. Největší z následujících objektů podle velikosti je
A. Kupa galaxií,
B. Naše Galaxie,
C. Velké Magellanovo mračno,
D. Kulová hvězdokupa.

Správné odpovědi:

HISTORIE ASTRONOMIE

1. Babylónská astronomie neznala
A. Přesné tabulky poloh planet,
B. Změny v planetárních cyklech,
C. Aritmetické metody výpočtu poloh planet,
D. Geometrický model sluneční soustavy.

2. Poloměr Země po prvé určil
A. C. Ptolemaios,
B. Aristarchos ze Samu,
C. Eratosthenes,
D. M. Koperník.

3. První správné stanovení vzdálenosti Země – Měsíc pochází od
A. Hipparcha,
B. T. Brahe,
C. Aristacha ze Samu,
D. M. Koperníka,

4. První otevřenou hvězdokupu na obloze popsal
A. G. Galilei 1609,
B. C. Ptolemaios 138,
C. W. Herschel 1783,
D. Ch. Huygens 1665.

5. Propracovaný model vesmíru ve starověku poskytla
A. Babylónská astronomie,
B. Ptolemaiovská astronomie,
C. Egyptská astronomie,
D. Astronomie Mayů.

6. První geocentrickou soustavu vypracoval
A. Hipparchos,
B. Aristarchos,
C. Ptolemaios,
D. Tháles Milétský.

7. Prvním, kdo prokázal, že komety nejsou jevy v zemské atmosféře byl
A. Aristoteles 340 před n.l.,
B. C. Ptolemaios 145,
C. T. Brahe 1589,
D. I. Newton 1692.

8. Představy Aristotela o neměnnosti nebeské sféry vyvrátila pozorování Tychona Brahe
A. Planetárního pohybu,
B. Komet ve větší vzdálenosti než Měsíc,
C. Roční paralaxy,
D. Supernovy 1572.

9. Odlišení Koperníkovy heliocentrické soustavy oproti geocentrické Ptolemaiově spočívalo v poznatku
A. Země obíhá kolem Slunce,
B. Nebeské pohyby jsou rovnoměrné kruhové,
C. Měsíc obíhá kolem Slunce,
D. Země je sférická.

10. Heliocentrická soustava Koperníka umožňovala určování relativních vzdáleností Merkuru a Venuše od Slunce, jestliže byl(a) známa
A. Fáze planety v dalekohledu,
B. Okamžik začátku retrográdního pohybu planet,
C. Okamžik největší jasnosti planet,
D. Maximální úhlová vzdálenost od Slunce.

11. Prvním pozorovatelem kosmických těles dalekohledem byl
A. G. Galilei 1609,
B. M. Koperník 1497,
C. I. Newton 1666,
D. T. Brahe 1590.

12. I při použití dalekohledu se Galileovi nepodařilo objevit
A. Měsíce Jupitera,
B. Fáze Venuše,
C. Sluneční skvrny,
D. Paralaxy hvězd.

13. K odvození svých zákonů Kepler použil astronomická pozorování Marsu
A. M. Koperníka,
14. První stanovení astronomické jednotky, vzdálenosti Země – Slunce provedli
A. G. D. Casinni, J. Picard, J. Richer 1672,
B. Ch. Huygens, I. Newton 1666,
C. D. Novara, M. Koperník 1497,
D. V. J. Struve, F. W. Bessel, T. Henderson 1837.

15. Relativní hmotnost Jupitera byla poprvé propočítána Newtonem
A. Z III. Keplerova zákona v přesném tvaru,
B. Ze znalosti vzdálenosti od Slunce a doby oběhu,
C. Ze znalosti úhlové velikosti a vzdálenosti od Země,
D. Využitím údajů z letů kosmických sond.

16. Planetu Uran objevil
A. C. Adams 1946,
B. W. Herschel 1781,
C. T. Brahe 1584,
D. E. Hubble 1929.

17. Největší planetku ve sluneční soustavě Ceres objevil
A. G. Piazzi 1801,
B. J. Flamsteed 1710,
C. W. Herschel 1784,
D. J. G. Galle 1846.

18. Roční paralaxu hvězd stanovili jako první
A. G. D. Casinni, J. Picard, J. Richer 1672,
B. V. J. Struve, F. W. Bessell, T. Henderson 1837 – 39,
C. T. Brahe a J. Kepler 1600,

19. Planetu Pluto objevil
A. W. Herschell 1781,
B. J. Christy 1978,
C. C. Tombaugh 1930,
D. P. Lowell 1905.

20. Reliktní záření objevili
A. E. Hubble, A. Einstein 1929,
B. A. Penzias, R. Wilson 1965,
C. J. Bellová, A. Hewish 1968,

Správné odpovědi:
1.6 Úlohy

Ke zkvalitnění výukového procesu lze přispět vhodným výběrem úloh. Jejich zařazení do výuky umožňuje využití úloh při motivaci respektive procvičování či prověřování učiva. Zejména primární motivace opírající se o přirozené poznávací potřeby žáků je v astrofyzikální výuce široce využitelná.

Řešení úloh vede k rozvíjení vědomostí a dovedností, které vesměs žáci již získali v předcházející fyzikální výuce. Jak již bylo konstatováno, podstata stavby studovaných kosmických těles a astrofyzikálních jevů leží ve fyzikálních procesech. Proto při řešení vycházíme z matematického vyjádření fyzikálních zákonů. Je účelné vybírat taková zadání úloh, aby při jejich řešení nebyly matematické úpravy zdlouhavé a neztrácela se tak astrofyzikální podstata úloh.

Není třeba se omezovat pouze na numerické úlohy a procvičování matematických vztahů. Učitel může sám konstruovat úlohy, u nichž lze využít fotografie, obrázky, schémata vycházející z astrofyzikální praxe. Formu zadání lze volit tak, aby úlohy byly svým charakterem problémové. Takové úlohy významně napomáhají aktivitě ve výuce, umožňují rozvoj především dovedností a hlubší osvojení probíraných problémů.

Obsahem zadaných úloh je možno zvolit srovnávání, klasifikaci a systemizování, např. planet, hvězd, galaxií, což je důležité pro rozvoj abstraktní rozumové činnosti žáků. Lze přitom využít tabulek a diagramů, například klasifikace hvězd na H-R diagramu.

Úlohy podle způsobu zařazení do výuky rozdělujeme na ilustrující probírané učivo, procvičující učivo a úlohy na opakování.

První typ úloh umožňuje objasňovat nové pojmy, zákonitosti, v zadání úloh se používají definice a zejména vztahy z teoretické části obsahu učiva. Jejich úkolem je ukázat mimo jiné žákům praktické použití obsahu probíraného učiva.

V úlohách druhého typu si žáci osvojují a procvičují nové pojmy a vztahy, respektive uplatňují nově získané vědomosti v kombinaci s předchozími. Úlohy na procvičeční učiva slouží k upevnění nových pojmů, definic a vztahů, k objasnění souvislostí s předcházejícím učivem.

U třetího typu úloh na opakování si žáci upevňují probírané vztahy, prokazují jejich osvojení v souvislosti s předchozím učivem. Jsou rozvíjeny zejména rozumové schopnosti a matematické dovednosti.

Zásadní odlišení mezi jednotlivými typy úloh však neexistuje, určitou úlohu lze s menší obměnou zařadit do jiného typu úloh. Následující zadání a řešení úloh je rozčleněno podle předcházející klasifikace.
I. typ

Úloha 1 U hvězdy byla stanovena roční paralaxa \(\pi = (0,2859 \pm 0,0009)" \). Co můžeme říci o vzdálenosti hvězdy?

\[\text{řešení: } \text{Paralaxa je v rozmezí 0,2850" až 0,2868", tedy vzdálenost hvězdy leží v intervalu 3,509 pc až 3,487 pc.} \]

Úloha 2 Hvězda má paralaxu 0,01" a pozorovanou hvězdnou velikost 10 mag. Určete absolutní hvězdnou velikost.

\[\text{řešení: } \text{Vzdálenost hvězdy stanovíme ze vztahu } r = \frac{1}{\pi} = 100 \text{ pc. Následně dosadíme do vztahu } M = m + 5 - 5 \log r, \text{ obdržíme } M = 5 \text{ mag.} \]

II. typ

Úloha 1 Sirius je fyzickou dvojhvězdou s oběžnou dobovou 49,94 roků a roční paralaxou \(\pi = 0,379" \). Zjednodušeně předpokládejme, že dráhová rovina je kolmá k zornému paprsku. Úhlová velikost velké poloosy je \(a'' = 7,62" \). Poměr vzdáleností složek A a B od středu hmotnosti je \(a_A/a_B = 0,466 \). Nalezněte hmotnosti jednotlivých složek.

\[\text{řešení: } \text{Dosazením do III. Keplerova zákona stanovíme součet hmotností obou složek } M_A + M_B = \frac{a^3}{T^2} \frac{4\pi^2}{G} = 3,3 M_\odot, \text{ kde } a = \frac{a''}{\pi}. \text{ Ze vztahu } \frac{a_A}{a_B} = \frac{M_B}{M_A} \text{ nalezneme } M_A = 2,2 M_\odot \text{ a } M_B = 1,1 M_\odot. \]

Úloha 2 Jeden z nejintenzivnějších rádiových zdrojů na obloze, rádiová galaxie Cygnus A, se vyznačuje rudým posuvem \(z = 0,057 \). Určete její vzdálenost.

\[\text{řešení: } \text{Při } H = 75 \text{ km} \cdot \text{s}^{-1} \cdot \text{Mpc}^{-1} \text{ určíme vzdálenost galaxie } r = \frac{cz}{H} = 230 \text{ Mpc.} \]
III. typ

Úloha 1

Výtrysk z galaxie o z = 1 směřuje k nám rychlostí 20 000 km·s\(^{-1}\). Na jaké vlnové délce budeme pozorovat čáru vodíku H\(\alpha\), která má v laboratoři vlnovou délku \(\lambda_l = 656,3\) nm.

Řešení: Využijeme vztahu \((z + 1)\lambda_l = \lambda_p\), obdržíme \(\lambda_p = 1268,7\) nm. Pozorování záření této vlnové délky je možné mimo atmosféru Země v infračerveném oboru.

Úloha 2

Ve spektru kvasaru 3C 273 se nachází jasné emisní čáry o vlnových délkách \(\lambda_1 = 754,6\) nm a \(\lambda_2 = 559,0\) nm. Ověřte, zda úvaha Schmidta z Caltechu o tom, že se jedná o čáry H\(\alpha\) a H\(\beta\) Balmerovy série vodíku, které jsou posunuty v důsledku pohybu kvasaru od nás, je správná!

Řešení: K ověření úvahy využijeme vztah \((z + 1)\lambda_l = \lambda_p\). Při znalosti \(\lambda_{1l} = 656,3\) nm a \(\lambda_{2l} = 486,1\) nm v obou případech určíme \(z = 0,150\).

Úloha 3

Ve spektru kvasaru byl optickou spektroskopii zjištěn rudý posuv \(z = 2,5\). Které emisní čáry byly při tomto zjištění použity?

Řešení: Využijeme opět vztah \((z + 1)\lambda_l = \lambda_p\). Na základě tohoto vztahu a znalosti o chemickém složení kvasarů lze uvést čáru L\(\alpha\), pro kterou \(\lambda_l = 121,6\) nm.

Úloha 4

Kolikrát je poloměr Arktura větší než poloměr Slunce, jestliže zářivý výkon Arktura je 120 \(L_\odot\) a efektivní povrchová teplota je 4 000 K. Povrchovou teplotu Slunce zvolte zaokrouhleně 6 000 K.

Řešení: Pro poloměr Arktura v relativních jednotkách poloměru Slunce dostaneme ze Stefanova-Boltzmannova zákona vztah\(r = \frac{L^{1/2}}{T^2} = 25 R_\odot\).

Úloha 5

Určete charakteristiky hvězdy Altair, (jméno pochází z arabského Al Nasr al Tair, tedy letící orel). Pozorovaná bolometrická hvězdná velikost je 0,67 mag, spektrální třída A7, tedy teplota 8 100 K, roční paralaxa \(\pi = (194,44 \pm 0,94)\)" . Nalezněte zářivý výkon a poloměr hvězdy.

Řešení: Nejprve určíme vzdálenost hvězdy \(r = 1/\pi = 5,14\) pc. Následně ze vztahu \(M_{bol} - M_{bol} = 5 \log r - 5\) určíme \(M_{bol} = 2,12\) mag. Dosazením do vztahu \(\log L = 0,4(4,75 - M_{bol})\) získáme \(L = 11,3 L_\odot\), tedy \(4,35 \cdot 10^{27}\) W. Poloměr obdržíme ze Stefanova-Boltzmannova zákona \(R = 1,210^9\) m, tudíž \(1,7 R_\odot\).

Sbírku úloh naleznete na adrese http://www.issp.ac.ru/iao/, kde jsou shromážděny složitéjší úlohy z mezinárodních astronomických olympiád.

Úlohy z astrofyziky pro budoucí učitele fyziky na ZŠ a SŠ lze najít na adrese http://www.physics.muni.cz/astroulohy/.

Vedle úloh vycházejících z numerických výpočtů, tedy úloh kvantitativních, jsou v astrofyzice používány rovněž tzv. úlohy kvalitativní, které mohou mít při promyšleném zadání výrazný astrofyzikální podtext. Uvedeme některé náměty, další může učitel vytvářet sám.

Země
1 ASTROFYZIKA, JEJÍ ZAŘAZENÍ A POSTAVENÍ VE VÝUCE

1. Jaké astronomické jevy prokazují oběh Země kolem Slunce?
2. Která pozorování dokazují, že tvar dráhy Země není kruhový?
3. Je rotační Země rovnoměrná?
4. Jaký závěr lze učinout o hustotě nitra Země, jestliže průměrná hustota Země je \(5,5 \times 10^5\) kg·m\(^{-3}\) a hustota povrchových vrstev \(3,5 \times 10^3\) kg·m\(^{-3}\)?
5. Proč v zemské atmosféře chybí ve větší míře oxid uhličitý a kde je zdroj kyslíku?

Umělé družice Země

1. Nejnižší výška dráhy umělých družic kolem Země je přibližně 200 km, zatímco umělé družice Měsíce se pohybovaly ve výšce kolem 15 km. Vysvětlete rozdíl výšek!
2. Může mít umělá družice Země takovou dráhu, že se pohybuje pouze nad Evropou a Afrikou?
3. Diskutujte platnost zákona zachování mechanické energie pro družici, pohybující se po eliptické dráze. Jaké přeměny energie probíhají při pohybu družice z apogea do perigea?
4. Po oddělení družice od posledního stupně rakety–nosiče se posledně uvedená část pohybující se nejprve za družicí a později ji předhoní. Proč?
5. Platí Pascalův a Archimédův zákon uvnitř družice?

Měsíc

1. Jak ovlivňuje Měsíc atmosféru, hydrosféru a litosféru Země?
2. Jaký má vliv Měsíc na osu rotace Země v prostoru?
3. Proč se Měsíc pozvolna vzdaluje od Země?
4. Proč na Měsíci neexistuje atmosféra zatímco na Titanu ano?
5. Objasněte původ kráterů na Měsíci.

Malá tělesa sluneční soustavy

1. Po jakých drahách se pohybují komety?
2. V jaké vzdálenosti od Slunce se nachází pás planetek?
3. Jakým směrem a proč jsou orientovány ohony komet?
4. Můžeme pozorovat meteory na obloze z povrchu Měsíce?
5. Odkud se berou komety ve sluneční soustavě?

Sluneční soustava

1. Z čeho je složena sluneční soustava a kde jsou její hranice?
2. Kde se nacházejí a proč nejvyšší hory ve sluneční soustavě?
3. Na jakých tělesech sluneční soustavy probíhá aktivní vulkanická činnost?
4. Které planety mají prstence a jak vysvětlujeme jejich vznik?
5. Na kterou planetu by jste cestovali, jestliže si chcete udělat osobní rekord ve skoku do výšky?

Slunce

1. Proč má disk Slunce tak ostrý okraj?
2. Co je teplotní inverze v atmosféře Slunce a proč vzniká?
3. Proč jsou skvrny na Slunci temné?
4. Co je to sluneční vítr a jak daleko od Slunce sahá?
5. Kde se v láte Slunce vzaly těžší chemické prvky (uhlík, kyslík, železo)?

Planety

1. Jaké jsou společné a rozdílné vlastnosti planet zemského typu a velkých planet?
2. Které z planet byly známy ve starověku?
3. Povrch kterých planet můžeme pozorovat optickými prostředky?
4. Co je to skleníkový efekt, jak vzniká a u kterých planet ho můžeme pozorovat?
5. Jak jsou objevovány planety u hvězd?

Hvězdy

1. Co jsou souhvězdí, kolik jich na severní a jižní obloze můžeme pozorovat?
2. Která je nejjasnější hvězda na obloze a která nejlépe k Slunci?
3. V které fázi vývoje je zdrojem energie hvězda: gravitační potenciální energie, termojaderná syntéza, radioaktivní rozpad, vnitřní tepelná energie?
4. Co jsou to novy a supernovy a jak vznikají?
5. Co jsou pulsary a proč rychle rotují?

Galaxie a vnější galaxie

1. Čím se odlišují galaxie od hvězd, jestliže oba systémy zkoumáme jako gravitačně vázané soustavy částic?
2. Proč staré hvězdy Galaxie vytvořily sférický podsystém a mladé hvězdy diskový podsystém?
3. Jak se projevuje aktivita galaktických jader?
4. Proč jsou čáry ve spektrech vzdálených galaxií posunuty k červenému konci spektra?
5. Co jsou kvasary?

1.7 Výuka astrofyziky podporovaná počítačem

Jednou z nových forem výuky je počítačem podporovaná výuka astrofyziky. Může doplňovat jiné metody, umožňuje každému žákovi postupovat individuálním tempem, provádět analýzu klíčových obtížných bodů výkladu, sledovat pozorování kosmických těles a jevů, a v neposlední řadě ji lze využít k motivaci. Z obecného pohledu můžeme problematiku rozdělit na tři okruhy:

1. Počítačem řízené pozorování dalekohledem, sběr pozorovacích dat, jejich zpracování, analýza a vyhodnocování.
2. Využití vytvořených matematických programů, numerické výpočty, modelování, simulace. Umožňují podrobně zkoumat astrofyzikální podstatu jevu, provádět jeho analýzu např. změnou parametrů sledovaného systému a zkoumat změnu jeho vlastností.
3. Internet a multimedia, výukové programy, včetně např. simulace pozorování na observatoři, www zdroje.

59
Astrofyzika je zdrojem hlubokých a nevyčerpatelných estetických zážitků. Ač již přímé pozorování kosmických objektů pouhým okem či prostřednictvím dalekohledu nebo zprostředkováno pomocí obrázků získaných kosmickými sondami či největšími dalekohledy. Na elektronické síti na adresách následně uvedených lze nalézt nepřeberné množství snímků respектив animací jevů, včetně i aktuálních novinek. Částečnou (ne)výhodou je anglický text. Uvádíme některé vybrané adresy:

The Nine Planets
http://seds.lpl.arizona.edu/nineplanets/nineplanets/nineplanets.html

Multimedia Tour of the Solar System
Stránky dávají přehled těles sluneční soustavy, o Slunci, planetách, jejích měsících, kometách, planetární linguistice, astronomických jménech atd. Obsahují rovněž slovník výkladových pojmů.

Views of the Solar System
http://solarviews.com/eng/homepage.htm
Podobné stránky shrnují informace o tělesech sluneční soustavy.

NASA a její vzdělávací stránka
http://ssdoo.gsfc.nasa.gov/astro/education

Mapky hvězdných souhvězdí
http://www.astro.wisc.edu/dolan/constellations/

Astronomická pacifická společnost
http://www.aspsky.org/

Příkladně v úloze Spektrální klasifikace hvězd se žáci postupně naučí, jak získávat spektra hvězd v digitální podobě, při využití dalekohledů až různého průměru v kombinaci se spektrografem vybaveným CCD technikou v rozsahu expozic od několika sekund až po hodiny. V paměti úlohy je uloženo přes 200 spekter hvězd včetně spektrálních standardů v podobě intenzitních záznamů. Výklad vede žáky k seznámení s teplotní podstatou spektrální klasifikace hvězd, s demonstrací jednotlivých spektrálních tříd. Sami provádějí klasifikační proces získaných spekter hvězd podle relativní mohutnosti vybraných čar. Vyspělejší žáci se mohou seznámit s metodou určování vzdáleností hvězd z spektroออน pozorované hvězdné velikosti, tedy s metodou spektrální paralaxy.

Obdobně evropská mezinárodní astronomická organizace ESO na svých webovských stránkách průběžně připravuje aktuální materiály pro výuky astronomie. Zajímavý je soubor úloh na adrese http://www.astroex.org/english, s tématy například Určování vzdálenosti supernovy 1987A, Stanovení vzdálenosti galaxie M 100 pomocí cefeid, Určování vzdálenosti a stáří kulové hvězdokupy. Motivačně velmi přitažlivá pro žáky je úloha Stanovení vzdálenosti galaxie M 100 pomocí cefeid, která vychází z pozorovacích údajů získaných v devadesátých letech minulého století organizacemi NASA/ESO prostřednictvím HST. V klíčovém projektu kosmologického výzkumu na 30 nově objevených klasických cefeid se změnou jasnosti až 2 mag umožnilo stanovení jejich vzdáleností a tím galaxie M 100, jejíž součástí jsou. Žáci reprodukují postup původní vědecké práce z roku 1994 – 1996. Mají k dispozici snímky hvězdného pole s cefeidami, demonstrující změnu jejich jasnosti. Dále proměřené světelné křivky 12 vybraných cefeid z nichž mohou určit periodu pulsace P a ze známého vztahu $M = -2.78 \log P - 1.35$ určí absolutní hvězdnou velikost M a následně vzdálenost vnější galaxie M 100 a tím celé kupy galaxií v souhvězdí Panny. Stanovení vzdáleností mělo zcela zásadní význam pro rozvoj znalostí o vesmíru, neboť upřesnění vzdálenosti kupy galaxií v Panně je důležité pro budování celkového žebříku vzdáleností ve vesmíru.

V ČR na PeF ZČU v Plzni byly vytvořeny výborné webové stránky na adrese http://www.astro.pef.zcu.cz/, kde jsou zatím zpracována tématata Sluneční soustava a Mlhoviny, hvězdokupy, galaxie. Stránky jsou cenné zejména tím, že vedle rozsáhlého obrazového materiálu a řady katalogů, obsahují výkladový text, který je průběžně aktualizován!

Úlohy z astrofyziky pro budoucí učitele fyziky na ZŠ a SŠ lze najít na adrese http://www.physics.muni.cz/astroulohy/.

1.8 Pedagogicko–psychologické aspekty výuky

Vědecké astrofyzikální poznatky musí být upraveny pro výuku tak, aby mohly plnit svoji funkci v oblasti vzdělávací a výchovné, při tom se vychází z didaktických zásad.

Didaktické zásady

Výuka astrofyziky má své specifické zvláštnosti, jež jsou dány jejím charakterem jako vědního oboru. Obsah učiva pojednává o vzdálených kosmických tělesech velkých rozměrů, které se
nacházejí v extrémních fyzikálních podmínkách. Z didaktických principů je proto třeba klást
zvýšený důraz na principy přiměřenosti, vědeckosti a názornosti.

Princip přiměřenosti vyžaduje, aby astrofyzikální učivo přestože se jeho obsah vyznačuje
abstraktností a nenázorností, bylo přístupné a přiměřené schopnostem žáků a rozvoji jejich
myšlení, dosažené matematické a fyzikální přípravě.

Současně s uplatňováním principu přiměřenosti, který má žákům umožnit porozumění
odborné stránce obsahu učiva je nutno zachovávat princip vědeckosti. Podle tohoto principu
všechy poznatky musí být žákům podávány na přísném vědeckém základě, i když jsou sdě-
lovány v pedagogicky zpracované a v případě astrofyziky v elementarizované podobě. Musí
vytvářet objektivní pravdivou představu o fyzikálních a chemických vlastnostech kosmických
těles. Všechny použité pojmy musí být přesně vymezeny a definovány.

Rozepřesme uplatňování didaktických zásad na příkladu tématu Spektra hvězd. Pro splnění
cíle výkladu tématu, objasnění astrofyzikálních základů kvalitativní a některých závěrů kva-
nitativních, je nezbytný důsledný výklad všech použitých pojmů, jejich přesná návaznost na již
zavedené pojmě z fyziky případně jejich další upřesnění a rozvíjení. Vedle již pojmů známých
žákům z fyziky jsou zaváděny pojmě zcela nové, nemající v předcházející fyzikální výuce ana-
logii, např. spektrální třída, spektrální posloupnost, pojmě označující různé typy kosmických
těles atd.

V astrofyzikální výuce zpravidla nepostačuje výklad obsahu pojmě pouhou definicí nebo
popisem. Obsah většiny pojmů je při postupném objasňování upřesňován a rozvíjen. Zejména
k tomu dochází při výkladu vnitřních relací mezi pojmí, které je žádoucí procházet ve vhod-
ných souvislostech, např. barva hvězdy – efektivní povrchová teplota nebo efektivní povrchová
teplota – spektrální třída – spektrální posloupnost.

Upřesňování principu přiměřenosti ve výuce astrofyziky není zdáleka omezeno pouze na
přímý kontakt s materiálními tělesy – hvězdičkami například prostřednictvím pozorování spek-
ter hvězd v spektroskopu, případně s jejich kopiemi – fotografiemi, obrázky či získanými
intenzitními záznamy. Názornost je žádoucí uplatňovat také při matematickém vyjadřování
např. vlivu teploty na stav excitace a ionizace atomů v podmínkách atmosféry hvězdy a od-
tud vyvozování závěrů pro změnu intenzity vybraných spektrálních čar, což je nezbytné pro
výklad klasifikačních znaků spektrální klasifikace.

Pro značnou obtížnost a časovou náročnost nelze s žáky provádět detailní matematicky
analýzu astrofyzikálních závěrů pro různé teploty, hustoty a větší počet prvků vyplývající
z Boltzmannovy a Sahovy rovnic. Žáky však lze kvalitativně seznámit se závěry výše nazna-
čené analýzy u dvou nejrozšířenějších prvků v hvězdách – vodíku a helia.

Na úrovni přiměřené žáků, lze rozvíjet dovednost analýzy změny intenzity některé vybrané
spektrální čár např. Hβ Balmerovy série vodíku v závislosti na teplotě. Jde o kvalitativní
rozbor jednoho jevu spektrální analýzy, výklad kvantitativní závislosti je pro žáky nepřimě-
řený.

Přestože je „Spektrální analýza“ svým obsahem abstraktní a obtížné téma, jsou v něm
podmínky pro rozvinutí aktivní činnosti žáků. Vhodným a pro žáky přitažlivým námětem
je v tomto smyslu provádění klasifikace spekter hvězd na základě prohlídky spekter a jej-
jich porovnání se standardy – spektry známých spektrálních tříd. Čárová spektra získaná
spektrografem s objektivním hranolem zachycují pouze několik výrazných čar a při vlastní
prací žáků se snímké takových spekter velmi záleží na pečlivosti provádění klasifikace spekter.
Zkušenosti ukazují, že i přes obtížnost se u žáků zvyšuje aktivita a narůstá u nich výrazně
motivace k samostatné činnosti, neboť v podstatě reprodukují původní postup prováděný při
klasifikování spekter podle harvardské klasifikace. V závěru činnosti je důležité z pedagogických a psychologických důvodů žákům uvést zdůvodnění správného řešení a seznámit je s výsledky jejich práce.

Z metod výkladu je účelné při výkladu tématu kombinovat obě základní metody, jak induktivní tak deduktivní metodu. Prvně jmenovaná se uplatňuje při zavádění spektrální klasifikace hvězd, popisu jednotlivých spektrálních tříd a naopak deduktivní metoda je vhodná pro výklad teplotní závislosti čárového spektra hvězd.

1.9 Historické aspekty výuky

Časová historická osa vývoje astronomie a astrofyziky:
11. stol. př.n.l. – první určení sklonu ekliptiky k rovníku v Číně
6. stol. př.n.l. – Thálés Milétský, vznik astronomie z geometrie, matematiky, optiky
3. stol. př.n.l. – Aristarchos ze Samu, určování vzdáleností, heliocentrická soustava
2. stol. př.n.l. – Hipparchos, pozorování hvězd, katalog
150 – Ptolemaios, geocentrická soustava
1543 – Koperník, relativní rozměry ve sluneční soustavě, heliocentrická soustava
1609 – Galileo, pozorování kosmických těles dalekohledem
1609 – Kepler, I. a II. zákon pohybu planet
1619 – Kepler, III. zákon pohybu planet
1672 – Cassini, Picard, Richer, absolutní rozměry ve sluneční soustavě
1687 – Newton, zákon všeobecné gravitace
1705 – Halley, předpověď periodické komety
1784 – Lagrange, Laplace, dokázání stability sluneční soustavy
1814 – Fraunhofer, absorpční čáry ve spektru Slunce
1838 – Bessel, Struve, Henderson, stanovení paralaxy hvězd
1846 – Leverrier, Galle, objev Neptuna na základě výpočtu
1872 – Draper, fotografická spektroskopie
1901 – Pickering, Cannonová, harvardská spektrální klasifikace
1913 – Russell, H-R diagram
1918 – Shapley, stavba a tvar Galaxie
1926 – Eddington, stavba útra hvězd
1929 – Hubble, rozpínání vesmíru
1931 – Chandrasekhar stavba bílých trpaslíků
1938 – Bethe, Weizsäcker, termojaderné reakce ve hvězdách
1947 – Ambarcumjan, hvězdné asociace
1965 – Penzias, Wilson, reliktní záření
1968 – Bellowá, Hewish, pulsary
1987 – detekce neutrin supernovy 1987A v Japonsku, USA
1990 – vynesení na oběžnou dráhu kolem Země Hubbleova dalekohledu
1995 – Mayer, Queloz, objev první planety kolem hvězdy sluneční typu 51 Peg
1997 – katalog Hipparcos a Tycho

Historický vývoj můžeme sledovat ve dvou základních liniích:

1. Rozvoj astrofyzikálních teorií o kosmických tělesech, jejich soustavách, prostorovém uspořádání a jevech mezi nimi (sluneční soustava, Galaxie, vesmír).

63
2. Rozvoj pozorovacích metod: optická (oko, dalekohled), fotometrická, spektrální analýza, rádióvá, infračervená a ultrafialová pozorování, detekce γ záření.

Obě vývojové linie jsou bezprostředně spjaty, např. zdokonalování optických metod pozorování dalekohledem umožnilo rozvoj astronomie a metod určování vzdáleností v 17. – 19. století. Ve svých důsledcích to vedlo k dalšímu upřesňování představ o prostorovém uspořádání kosmických těles.

Poznávání vesmíru je možné demonstrovat na vybraných historických příkladech. Určení relativních rozměrů ve sluneční soustavě Koperníkem, stanovení výšky hor na Měsíce Galileim, absolutních rozměrů ve sluneční soustavě Cassini, Picardem a Richerem, určení konečné hodnoty rychlosti světla Römerem.

Astronomie má svoji logiku historického vývoje, která se realizuje prostřednictvím činnosti jednotlivců. Příkladně rozvoj metod určování vzdálenosti je spjat se jmény Aristarchos ze Samu, Hipparchos, Koperník, Kepler, Cassini, Picard, Richer, Bessel, Struve, Henderson, Leavittová, Shapley a Hubble.

Lze vyzdvihnout morální a pracovní příklad osobností historie, Koperníka, Galilea či Keplera. Příkladně posledně jmenovaný při zpracování pozorovacích údajů o pohybu Marsu Tycho Brahe a jejich matematické interpretaci se snažil zpřesnit Koperníkovo schéma založené na kombinaci deferentů a epicyklů. Kepler dosáhl souladu matematické teorie s pozorováním na 8', protože však byl přesvědčen, že Tycho Brahe se při svých pozorováních nedopustil tak velkých nepřesností, později se ukázalo, že přesnost jeho pozorování byla 2', celou Koperníkovu teorii v zájmu vědecké pravdy opustil. Znovu podstoupil několikateleté výpočetní úsilí, než vytvořil vlastní teorii eliptické dráhy, která již souhlasila s hodnotami pozorovacích údajů.

Jak již bylo uvedeno, je vhodné demonstrovat historické souvislosti vývoje teorií o kosmických tělesech s rozvojem astrofyzikálních výzkumných metod. Konkrétní ukázkou je historie astrofyziky v druhé polovině 19. století a počátkem 20. století, kdy rozvoj fyziky a chemie vedl k rozpracování nových výzkumných metod, jejichž aplikace v astrofyzice umožnila studium fyzikálních a chemických vlastností kosmických těles. Byl to především rozvoj spektroskopie, fotometrie a aplikace zákona záření černých těles. Přitom bylo navazováno na fyzikální zákony objevené Dopplerem, Kirchhoffem, Bunsenem, Stefanem, Boltzmannem, Planckem a dalšími.

Stanovení povrchové teploty hvězd umožnila znalost zákonů záření černých těles, zejména Stefanova-Boltzmannova zákona z let 1879 a 1884.

Rozvoj teorie hvězdých atmosfér byl podložen vývojem atomové fyziky, Bohrovy teorie atomu, Boltzmannovy teorie excitace a Sahovy teorie ionizace plynů, které byly aplikovány při studiu hvězdých atmosfér. Takto byla teoreticky objasněna spektrální posloupnost hvězd jako jednodimenzionální teplotní posloupnost atmosférické výšky hvězd, kde vznikají charakteristické čáry.

Počátkem 20. století K. Schwarzschild vytvořil teorii stavby atmosfér a původu absorpčního čárového spektra hvězd, ve které vyšel z předpokladu platnosti zářivé rovnováhy v atmosférách hvězd.

Následující odstavce podrobněji shrnují problematiku jednoho z nejdůležitějších objevů astronomie v celé její historii, heliocentrické teorie. Tématu Mikuláš Koperník lze využít ve výuce na základních a středních školách. Do výuky vybereme textové ukázky z Koperníkových děl – Malého komentáře a Oběhů, ve kterých můžeme demonstrovat jeho názory jak astronomické, tak i osobní lidské.

Přibližně kolem roku 1508 Koperník sepsal a rozeslal svým přátelům po Evropě dílo úplným názvem Nicolai Copernici de hypothesibus motuum caelestium a se constitutis commentariolus, česky Mikuláše Koperníka malý komentář o jím vypracovaných hypotézách nebeských pohybů, pro které se u nás vžil zkrácený název Commentariolus – Malý komentár.

Tato několikastránková rozprava uváděla sedm stručných principů heliocentrismu, v nichž se Koperník přidržoval výkladu pohybů planet prostřednictvím skladání rovnoměrných kruhových pohybů, obdobně jak to činila starořecká astronomie.

1. Není jednoho bodu, který by byl středem všech nebeských drah nebo sfér.
2. Střed Země není středem světa, je pouze středem tíže a středem měsíční dráhy.
3. Všechny sféry obíhají kolem Slunce jako svého středu, proto je Slunce položeno v blízkosti středu světa.

Již při psaní Malého komentáře Koperník uvažoval o sepsání systematického výkladu heliocentrické teorie, opírajícího se o astronomická měření a jejich matematické zpracování. Zamýšlenou velkou knihou se stal spis Nicolai Copernici Torinensis De Revolutionibus Orbium
coelestium Libri sex (Mikuláše Koperníka Toruňského šest knih o obězích nebeských sfér), který vyšel z roku 1543. Titulní strana rukopisu se nezachovala, je velmi pravděpodobné, že Koperník spis nazval kratším způsobem, například De Revolutionibus sphaerarum mundi respektive pouze De Revolutionibus.

V předmluvě díla Koperník, vysvětlil vznik heliocentrické teorie a předvídal názorovou revoluci: „Zajisté s určitostí mohu počítat s tím, Svatý Otče, že někteří jakmile se doslechnou, že jsem v těchto knihách, které jsem napsal o obězích sfér světa, přisoudil Zemi některé pohyby, ihned strhnou pokřik, že si zasloužím, abych byl pro takovou domněnku různě umlčen. Nejsem totiž zdaleka natolik zahleděn do svých názorů, abych pečlivě nevážil, co o nich budou soudit jiní…“

Jednu ze základních myšlenek své teorie, řečeno současnou terminologií, kinematický princip relativity, popisuje Koperník následujícím způsobem: „A tak já při tom uspořádání pohybů, které Zemi dále ve svém díle připsuji, jsem konečně po mnohém a dlouhém pozorování shledal, že jestliže se pohyby ostatních planet přenesou na oběh Země a to se stane základem pro oběh kterékoli planety, nejen že tak vyjdu jejich zdánlivé pohyby, ale i pořád a velikosti všech planet a sfér a celé nebe se tak dokonale navzájem propojí, že v žádného jeho části není možno cokoliv přemístit, aniž by se uvědly v nepořádek všechny ostatní části a celý svět. “

Dále Koperník uvádí: „všechna změna místa totiž, která se jeví, se děje buď proto, že se pohybuje pozorovaná věc nebo pozorovatel, nebo že se různým způsobem pohybují oba. “

Významným byl pro Koperníka argument estetický, vyzdvihující harmonii heliocentrického celku i jednotlivých částí: „Avšak uprostřed všech spočívá Slunce. Vždyť kdo by v tomto překrásném chrámu vložil tuto svítidlo do jiného a lepšího místa, než odkud by zároveň všechno mohlo osvětlovat? Jistě nikoliv nevhodně některé nazývají Slunce lucernou světa, jiní jeho mysli, jiní jeho vládci…“ „Shledáváme tedy v tomto uspořádání podivuhodnou symetrií světa a pravé harmonické spojení pohybu sfér s jejich velikostí, jaké žádným jiným způsobem nemůže být nalezeno. “

Jako astronom se Koperník zamýšlel nad nenalezením paralaktických posuvů hvězd, což komentoval slovy: „Přestože poloměr zemské dráhy je velký, přesto je nicotně malý ve srovnání
se vzdáleností nehybných hvězd.” Úvědomoval si, že tehdejší přesnost pozorování lidským okem, dnes víme že nejméně zhruba 5’, nedovolovala stanovení malých paralax.

Hlavní pracovním nástrojem Koperníka bylo lidské oko a primitivní přístroje, které si sám zhotovil. Z toho důvodu nám zřejmě Koperník zanechal přesné popisy svých observačních přístrojů v Obězích. Prvním a největším z používaných přístrojů byl paralaktický instrument tzv. trikvetrum. Skládal se ze tří dlouhých latí, z nichž všeliké zavěšené na stojanovém sloupu byla otáčecí. Lat – rameno bylo dlouhá 1,6 m, centrální sloup měl výšku 2,5 m. Popsaný paralaktický přístroj sloužil k určování paralaxy Měsíce a tedy vzdálenosti Měsíce od Země a dále k určování vzdáleností hvězd od zenitu. Přesnost měření odhaduji na 5’.

Pro určování úhlově výšky Slunce, zeměpisné šířky a úhlu sklonu ekliptiky Koperník užíval ptolemaiovský kvadrant. Napříč vodorovnou cihlovou plošinou – pavimentem probíhal kovový poledník pevně do ní zasazený. Na tento pás se upevňoval a zaměřoval v poledníkovém směru tzv. sluneční kvadrant. Skládal se z větší čtvercové desky o výšce 1,7 m, na kterou byla vyryta úhlová stupnice od 0 do 90 stupňů, každý stupeň byl dále ještě rozdělen na šest dílků. Do středního bodu tohoto stupnice byl vložen sloupek, přičemž vznikl název sluneční hodiny. Sluneční hodiny sloupek ukazoval svým stínem výšku Slunce v poledne, což umožňovalo Koperníkovi stanovit zeměpisnou šířku např. Fromborku jakož i sklon ekliptiky vzhledem k rovníku, přesnost přístroje dosahovala zhruba 5’.

Nejsložitějším používaným pozorovacím přístrojem Koperníka byl astroláb, který umožňoval pozorování objektů na obloze v libovolné poloze a měření úhlové vzdálenosti dvou objektů. Jednalo se o armilární sféru s vizíry pro pozorování, otvory v kovových destičkách zasažených na pohyblivou liště. Skládal se z šesti soustředných dřevěných kruhů – obrůcí opatřených úhlovými měřítky a průzory. Každý z kruhů odpovídal určitém kruhu nebeské sféry, jednom odpovídal ekliptice, tudíž tak bylo možné určovat ekliptická dělí dělí případně i šířku. Průměr největšího kruhu byl 0,7 m. Určování souřadnice hvězdy tímto přístrojem bylo nepřesné, přesnost odhaduji na asi 10’.

Koperník byl pečlivým pozorovatelem, jeho pozorovací program však spíše doplňoval údaje jiných starších astronomů, rozsáhlejší soubory pozorování nezískal. Na druhé straně si však byl vědom významu pozorování, což v rukopise Obězů charakterizoval takto: „Kdo chce sledovat pomocí číslných výpočtů charakter pohybů a rotací, říkám nezíská nic.“

Výsledkem přijetí heliocentrismu bylo zavedení pojmu siderické oběžné doby planety a stanovení její hodnoty ze synodické oběžné doby určené z pozorování a ze známé siderické oběžné doby Země. Ještě významnější bylo Koperníkovo stanovení relativních vzdáleností planet od Slunce, vyjádřených v jednotkách vzdálenosti Země – Slunce. Celková heliocentrická teorie zmenšila téměř dvojnásobně chyby efemerid planety v důsledku upřesnění siderických oběžných dob planet a pohybu Slunce. Avšak chyby spojené s odchylkami tvarů drah zůstaly.

Oběhy nebeských sfér můžeme považovat za první „vědeckou“ knihu, Koperník v ni důsledně vychází z objektivních údajů, astronomických pozorování a jejich matematického zpracování. Stručně shrnuto složitě pozorované přímé a zpětné pohyby planet objasnil jako výsledek skládání dvou skutečných pohybů, planet a Země po jejích dráhách kolem Slunce. Denní pohyb kosmických těles po obloze interpretoval jako rotaci Země kolem vlastní osy, roční pohyb Slunce po ekliptice pokládal za zdánlivý, vyvolaný skutečným pohybem Země v prostoru kolem Slunce. Pro zařazení do výuky na základní či střední škole lze použít následující úlohy:

Úloha 1 Určete poloměr dráhy Venuše, vyjádřený v jednotkách vzdálenosti Země – Slunce jestliže víme, že u vnitřní planet Venuše Koperník stanovil z pozorování maximální elongaci
\(\varphi_e = 46^\circ \). Naleznete rověž poloměr dráhy vnější planety Marsu, u které Koperník zjistil, že nastává kvadratura \(Z_2M_2 \) průměrně 106 dní po opozici \(Z_1M_1 \). Při znalosti siderické oběžné doby Země 365 dní a Marsu 687 dní znal střední úhlový pohyb obou planet, Země za 106 dní urazila úhel \(\alpha = 104,5^\circ \), Mars úhel \(\beta = 55,5^\circ \).

Řešení: V případě a) \(r = \sin \varphi_e ZS = 0,72 ZS \), b) \(r = \frac{1}{\cos(\alpha-\beta)} ZS = \frac{1}{\cos 49^\circ} ZS = 1,25 ZS \).

Úloha 2 V jedné z věží opevněného kláštera ve Fromborku je dnes zavěšeno Foucaltovo kyvadlo s délkou závěsu 28 m a hmotností kyvadla 46,5 kg, demonstrující i Koperníkem hlásanou rotaci Země kolem vlastní osy. Zjištěná doba úplné otočky roviny kmitu kyvadla o 360° činí zhruba \(T = 29 \) hodin 27 minut. Pomocí vztahu \(T = \frac{T_p \sin \varphi}{\sin \varphi} \), kde \(T_p = 23 \) hodin 56 minut tak lze ověřit, že Koperník správně určil astronomickým měřením pomocí kvadrantu zeměpisnou šířku Fromborku \(\varphi = 54^\circ 21'34" \).

Úloha 3 Mikuláš Koperník soudil, že všechny hvězdy jsou od nás vzdáleny asi 40 milionů průměrů Země. Vypočtěte: a) vzdálenost hvězdy v AU a pc, b) jakou by měly tyto hvězdy paralaxu. Byla by měřitelná bez dalekohledu?

Řešení: a) \(5,1 \cdot 10^{14} m = 3400 \) AU = 0,016 pc, b) 1', což by bylo na hranici měřitelnosti.
2 Sluneční soustava

I. Newton: „Přitažlivost k Slunci se skládá z přitažlivostí k jednotlivým částicím Slunce a klesá se vzdalováním od Slunce přesně s druhou mocninou vzdálenosti až k oběžné dráze Saturna, jak je zřejmé z klidu afélií planet, a až k nejzazším aféliím komet, jestliže jen jsou ona afélia v klidu“.

Uvedené téma je tradičně zařazováno do tematického celku Gravitační pole. Proto i nás výklad se bude přidržovat tohoto zaměření.

2.1 Keplerovy zákony

Odvození přesného tvaru III. Keplerova zákona pro kruhové dráhy lze provést následovně: Nechť dva hmotné body s hmotnostmi \(m_1 \) a \(m_2 \) se vzájemně přitahují a obíhají kolem společného hmotného středu soustavy po kružnicích o poloměrech \(r_1 \) a \(r_2 \), platí \(r_1 + r_2 = R \). Podle zákona všeobecné gravitace můžeme napsat zrychlení značené \(\chi \) každého z obou hmotných bodů takto:

\[
\chi_1 = \frac{G m_2}{R^2}, \quad \chi_2 = \frac{G m_1}{R^2}.
\]

Úhlová rychlost rotace soustavy kolem hmotného středu je \(\omega = \frac{2\pi}{T} \), \(T \) je perioda rotace. Dostředivé zrychlení píšeme ve tvaru

\[
\alpha_1 = \frac{4\pi^2}{T^2} r_1, \quad \alpha_2 = \frac{4\pi^2}{T^2} r_2.
\]

Srovnáme oba výrazy získané pro zrychlení:

\[
G m_1 = \frac{4\pi^2}{T^2} r_1, \quad G m_2 = \frac{4\pi^2}{T^2} r_2.
\]

Sečtením výrazů na pravých a levých stranách rovnic dostáváme

\[
\frac{R^3}{T^2} = \frac{G}{4\pi^2} (m_1 + m_2).
\]

Na pravé straně rovnice je konstanta, tedy výraz na levé straně platí pro libovolnou soustavu dvou hmotných bodů, které se vzájemně přitahují podle zákona všeobecné gravitace a obíhají rovnoměrným pohybem po kruhových drahách kolem společného hmotného středu. Vztah platí i obecně, pro pohyb po eliptických drahách.

Uvažujme dvě takové dvojice hmotných bodů, nechť \(a_1, T_1, M_1, m_1 \) jsou parametry první dvojice a \(a_2, T_2, M_2, m_2 \) druhé dvojice.

III. Keplerův zákon spojuje dvě nezávislé dvojice soustavy, z nichž každá se skládá z centrálního a druhého tělesa (družice, měsíce) obíhajícího kolem.

Přesný tvar III. Keplerova zákona má pro obě dvojice hmotných bodů tvar

\[
a_1^3 T_1^2 = k (M_1 + m_1), \quad a_2^3 T_2^2 = k (M_2 + m_2).
\]

Podělením rovnic získáme používaný vztah pro přesný tvar III. Keplerova zákona

\[
\frac{a_1^3}{a_2^3} = \frac{T_1^2 M_1 + m_1}{T_2^2 M_2 + m_2}.
\]

Připomínáme, že v uvedeném vztahu hmotnost centrálního tělesa je \(M_1 \), hmotnost družice \(m_1 \), velká poloosa dráhy družice je \(a_1 \), její oběžná doba \(T_1 \). Analogické veličiny druhé soustavy jsou označeny indexem 2.

V astronomických měřítcích lze hvězdy a planety považovat za hmotné body s dostatečnou přesností, proto odvozené vztahy platí obecně pro pohyb těchto těles v kosmickém prostoru.

Vhodné úlohy jsou následující:

Úloha 1 Oběžná doba Měsíce kolem Země je přibližně $2,35 \cdot 10^6$ s, zhruba 27,3 dne. Určete poloměr dráhy a oběžnou rychlost pohybu Měsíce kolem Země. Známe $M_Z = 5,98 \cdot 10^{24}$ kg, $R_Z = 6,37 \cdot 10^6$ m.

Řešení: Poloměr dráhy určíme ze vztahu $r_M^3 = G M_Z T_M^2$, odtud $r_M = 3,82 \cdot 10^8$ m. Oběžnou rychlost stanovíme ze vztahu $v_M = \left(\frac{G M_Z}{r_M^2}\right)^{\frac{1}{2}}$, tedy $v_M = 1,02 \cdot 10^3$ m·s$^{-1}$.

III. Keplerův zákon v jednoduchém tvaru $a^3 T^2 = \text{konst.}$ lze aplikovat na různé soustavy s odlišnými centrálními tělesy, např. Sluncem, planetami, Zemí. Hodnota konstanty je tudíž pro různé soustavy odlišná.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Merkur</td>
<td>0,387</td>
<td>57,909</td>
<td>0,241</td>
<td>87,97</td>
</tr>
<tr>
<td>Venuše</td>
<td>0,723</td>
<td>108,209</td>
<td>0,615</td>
<td>224,70</td>
</tr>
<tr>
<td>Země</td>
<td>1,000</td>
<td>149,598</td>
<td>1,000</td>
<td>365,26</td>
</tr>
<tr>
<td>Mars</td>
<td>1,524</td>
<td>227,937</td>
<td>1,881</td>
<td>686,98</td>
</tr>
<tr>
<td>Jupiter</td>
<td>5,203</td>
<td>778,412</td>
<td>11,857</td>
<td>4332,59</td>
</tr>
<tr>
<td>Saturn</td>
<td>9,537</td>
<td>1426,725</td>
<td>29,423</td>
<td>10759,22</td>
</tr>
<tr>
<td>Uran</td>
<td>19,191</td>
<td>2870,972</td>
<td>83,747</td>
<td>30685,4</td>
</tr>
<tr>
<td>Neptun</td>
<td>30,069</td>
<td>4498,253</td>
<td>163,723</td>
<td>59800</td>
</tr>
<tr>
<td>Pluto</td>
<td>39,481</td>
<td>5906,376</td>
<td>248,021</td>
<td>90584</td>
</tr>
</tbody>
</table>

Na adrese http://www.star.ucl.ac.uk/~idh/1B11/kepler/kepler.html lze nalézt demonstraci Keplerových zákonů.

Vypočtěme hodnotu $\frac{a^3}{T^2}$ například pro Zemi a Mars. V obou případech obdržíme po převedení do SI přibližně hodnotu $3,36 \cdot 10^{18}$ m3·s$^{-2}$. Ověřte výpočtem u jednotlivých planet platnost vztahu $\frac{a^3}{T^2} = \text{konst.}$

Soustava galileovských měsíců Jupitera

<table>
<thead>
<tr>
<th>Měsíc</th>
<th>a [109 km]</th>
<th>T [dny]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Io</td>
<td>422</td>
<td>1,769</td>
</tr>
<tr>
<td>Europa</td>
<td>671</td>
<td>3,551</td>
</tr>
<tr>
<td>Ganymede</td>
<td>1 070</td>
<td>7,155</td>
</tr>
<tr>
<td>Kallisto</td>
<td>1 883</td>
<td>16,689</td>
</tr>
</tbody>
</table>

V případě soustavy měsíců Jupitera obdržíme po převedení do SI hodnotu $\frac{a^3}{T^2}$ přibližně $3,21 \cdot 10^{15}$ m3·s$^{-2}$.

Soustava vybraných měsíců Saturna

<table>
<thead>
<tr>
<th>Měsíc</th>
<th>a [109 km]</th>
<th>T [dny]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tethys</td>
<td>294,66</td>
<td>1,888</td>
</tr>
<tr>
<td>Rhea</td>
<td>527,04</td>
<td>4,517</td>
</tr>
<tr>
<td>Titan</td>
<td>1 221,83</td>
<td>15,945</td>
</tr>
</tbody>
</table>

V případě soustavy měsíců Saturna obdržíme po převedení do SI hodnotu $\frac{a^3}{T^2}$ přibližně $9,60 \cdot 10^8$ m3·s$^{-2}$.
2.2 Pohyb umělé družice Země

Vypouštění umělých družic se v současné době provádí prostřednictvím vícestupňových raket, jejichž poslední stupeň obsahuje družici. Po startu se raketa pohybuje několik minut tahem raketového motoru, v tzv. aktivní části letu. Z počátku kolmo vzhůru, aby se co nejrychleji dostala z nejhustších vrstev atmosféry. Postupně se družíka zakřivuje a raketa se natáčí stále více k horizontálnímu směru, přičemž získává větší rychlost. Při horizontálním letu potřebuje ke zvýšení rychlosti na danou hodnotu nejméně energie a tudíž má nejmenší spotřebu paliva. Vyplývá to z faktu, že při tomto pohybu je síla přitažlivosti kolmá na směr pohybu rakety. Pokud by se teoreticky pohybovala neustále vertikálním směrem, energie rakety by se nelostila pouze na zvýšení rychlosti, ale také na překonávání zemské přitažlivosti.

Po vyčerpání paliva motorem posledního stupně začíná pasivní pohyb po dráze kolem Země. Obvykle se družice odděluje od nosné rakety a tento moment je pokládán za vstup umělé družice na oběžnou dráhu kolem Země. Družice se pohybuje podle zákonů kosmické mechaniky pod vlivem přitažlivosti Země a druhých kosmických těles, pouze na úkor energie získané při aktivní části letu.

V prvním přiblížení se družice pohybuje po eliptické dráze, jež nemění svou polohu v prostoru, ohnisko elipsy je ve středu Země. Jde o tzv. ideální pohyb družice, při kterém předpokládáme, že na pohybujuící se družici působí pouze přitažlivá centrální síla gravitačního pole Země.

Pro družici pohybující se rychlostí \(v \) po elipse ve vzdálenosti \(r \) od středu Země, jestliže zanedbáme ztráty vlivem tření, platí zákon zachování mechanické energie

\[
W_m = W_k + W_p = \frac{1}{2} m_d v^2 - G \frac{M m_d}{r} = \text{konst.,}
\]

kde \(W_m \) je mechanická energie, \(W_k \) je kinetická energie, \(W_p \) je potenciální energie, \(m_d \) je hmotnost družice, \(M \) je hmotnost Země a \(G \) je gravitační konstanta.

Rovnice platí v libovolném bodě dráhy družice, tedy i v apogeu a perigeu.

\[
\frac{1}{2} m_d v_a^2 - G \frac{M m_d}{a + e} = \frac{1}{2} m_d v_p^2 - G \frac{M m_d}{a - e},
\]

kde \(v_a \) je rychlost v apogeu, \(v_p \) je rychlost v perigeu, \(a \) je velikost hlavní poloosy, \(e \) je excentricita elipsy, \(r_a \) je vzdálenost družice od středu Země v apogeu, \(r_p \) je vzdálenost v perigeu. Podle II. Keplerova zákona platí \(\frac{v_a}{v_p} = \frac{r_p}{r_a} = \frac{a - e}{a + e} \). Dosadíme a upravíme \(\frac{1}{2} m_d v_p^2 - G \frac{M m_d}{2a} \frac{a + e}{a - e} = G \frac{M m_d}{2a} \). Zobecněný vztah má tvar \(\frac{1}{2} m_d v^2 - G \frac{M m_d}{r} = -G \frac{M m_d}{2a} \). Odtud dostáváme důležitý vztah pro rychlost pohybu družice \(v = \left[G M \left(\frac{2}{r} - \frac{1}{a} \right) \right]^{\frac{1}{2}} \). Rychlost družice při dané vzdálenosti \(r \) od středu Země závisí pouze na velikosti hlavní poloosy dráhy, nikoliv na jejím tvaru. Provedeme diskusi vztahu vzhledem k možným tvarům dráhy a rychlosti pohybu.

1. Pro \(a = r \) je dráha kruhová a pro její rychlost platí \(v_k = \left(G \frac{M}{r} \right)^{\frac{1}{2}} \). Jestliže položíme \(r = R_Z \) dostaneme hodnotu I. kosmické rychlosti 7,9 km·s\(^{-1}\).
2. Pro $r \in (a-e, a+e)$ je dráha družice eliptická a její rychlost je dána vztahem $v_e = \left[GM \left(\frac{2}{r} - \frac{1}{a} \right) \right]^{\frac{1}{2}}$.

3. Pro $a \to \infty$ se družice pohybuje po parabolické dráze a pro její rychlost platí $v_p = \left(\frac{2GM}{r} \right)^{\frac{1}{2}}$. Položíme-li $r = R_Z$ obdržíme hodnotu II. kosmické rychlosti $11,2 \text{ km}\cdot\text{s}^{-1}$.

Důležitá je také sestupná fáze pohybu družice, kdy se pohybuje v zemské atmosféře. Největší odpor klade atmosféra v perigeu, což vede ke snížení rychlosti v_p. V důsledku toho družice snižuje výšku apogea, tudíž je relativně vyšší hodnota rychlosti v_a. Při snižování výšky dráhy zvětšuje družice svoji průměrnou rychlost a pohybuje se neustále rychleji. V sestupné fázi letu při přechodu do relativně hustší vrstvy atmosféry v důsledku odporu atmosféry paradoxně narůstá průměrná rychlost na oběžné dráze. Výklad paradoxu lze vést ze zákona zachování mechanické energie

$$W_m = -G \frac{M m_d}{r} + \frac{1}{2} m_d v^2.$$

Pro zjednodušení dalších úvah, nechť se pohyb družice děje po kruhové dráze s rychlostí $v = \left(\frac{GM}{r} \right)^{\frac{1}{2}}$. Po dosazení do vztahu pro mechanickou energii obdržíme $W_m = -G \frac{M m_d}{r} + \frac{G M m_d}{2r} = -G \frac{M m_d}{r}$. Brzděním v atmosféře dochází k přeměně části mechanické energie na teplo, velikost mechanické energie klesá. Vzhledem k tomu, že v absolutní hodnotě je kinetická energie 2krát menší než potenciální energie, dochází k růstu kinetické energie a tedy narůstá průměrná rychlost pohybu družice. Po poloměru r družice klesá, družice postupně sestupuje do stále hustších vrstev atmosféry. Ve výšce zhruba 160 km je odpor atmosféry již takový, že družice nemůže vykonat více než jeden oběh kolem Země a shoří. Pro pochopení problematiky navádění družic na eliptickou dráhu je vhodná úloha:

Úloha 2 Umělá družice se pohybuje po kruhové dráze nad Zemí ve výšce $h = 760$ km. Je třeba ji převést na eliptickou dráhu s maximální vzdáleností od povrchu $H_a = 40 000$ km a minimální vzdáleností $H_p = 760$ km. Stanovte hodnotu nezbytné změny rychlosti družice při jejím převedení na zamýšlenou dráhu. Určete velikost oběžné doby družice na nové dráze.

Řešení: Předpokládejme, že změna rychlosti družice proběhne za velmi krátký časový interval ve srovnání s velikostí oběžné doby. Nalezneme $v_k = \left(G \frac{M}{R_Z + h} \right)^{\frac{1}{2}} = 7,48 \text{ km}\cdot\text{s}^{-1}$, dále $a = \frac{H_a + H_p + 2R_Z}{2} = 26 754$ km. Rychlost na eliptické dráze je $v_p = \left[GM \left(\frac{2}{r} - \frac{1}{a} \right) \right]^{\frac{1}{2}} = 9,84 \text{ km}\cdot\text{s}^{-1}$, $r_p = R_Z + H_p$. Tudíž $\Delta v = v_p - v_k = 2,36 \text{ km}\cdot\text{s}^{-1}$. Velikost oběžné doby na eliptické dráze je rovna $T_p = T_k \left[\frac{2R_Z + H_p + H_a}{2 (R_Z + H_p)} \right]^{\frac{3}{2}} = 12,1$ hod.
2.3 Let Země – Měsíc

Nejjednodušším z mimozemských letů je let na Měsíc, kdy kosmická sonda či loď s lidskou posádkou po výstupu z oblasti přitažlivosti Země ihned vstupuje do oblasti přitažlivosti Měsíce.

Teoreticky za zjednodušujícího předpokladu oběžné kruhové dráhy Měsíce můžeme rozdělit možné dráhy k dosažení Měsíce na tři základní typy podle směru startovací rychlosti:

1. Vertikální směr vektoru startovací rychlosti odpovídá drahám přímkovým.

2. Druhý typ dráhy dostaneme v případě, jestliže vektor startovací rychlosti svírá určitý úhel s horizontem.

3. Při horizontálním směru vektoru startovací rychlosti obdržíme třetí typ drah.

Pro všechny uvedené typy dráh je prakticky stejná startovací rychlost $11,1 \text{ km} \cdot \text{s}^{-1}$. Z výpočtů vyplývá, že doba letu na Měsíc závisí pouze na velikosti vektoru startovací rychlosti, nikoliv na jeho směru.

V praxi se nejprve vypouští raketa na kruhovou parkovací dráhu kolem Země, ze které následně startuje kosmická sonda k Měsíci.

V dalším výkladu je účelné seznámit žáky s významem rychlosti kosmické sondy pro dosažení Měsíce respektive jejím přistáním na povrchu Měsíce případně vytvoření umělé družice tohoto tělesa.

Pro žáky je pochopitelné, že pro dosažení Měsíce jsou použitelné rychlosti větší než II. kosmická rychlost. Lety k Měsíci jsou však možné i s menšími rychlostmi $(10,9 - 11,1) \text{ km} \cdot \text{s}^{-1}$, při kterých se kosmické sondy pohybují po eliptických drahách s velkými excentricitami. Rovněž je nutné vyvrátit žákům nesprávnou domněnku, že kosmická sonda celou dráhu k Měsíci proletí startovací rychlostí, tj. zhruba $11 \text{ km} \cdot \text{s}^{-1}$.

Při vyvedení kosmické sondy na kruhovou dráhu kolem Měsíce se rychlost kosmické sondy, jejíž hodnota při vstupu do oblasti přitažlivosti Měsíce se snížuje na $(0,2 - 0,5) \text{ km} \cdot \text{s}^{-1}$. Po překročení oblasti přitažlivosti Měsíce se obvykle za vztaznou soustavu bere soustava spojená s Měsícem, takže jde o geocentrické rychlosti sondy vektorově odcisť geocentrickou rychlost Měsíce, tj. zhruba $1 \text{ km} \cdot \text{s}^{-1}$. Při měkkém přistání na Měsíci se tato rychlost vzhledem k povrchu Měsíce musí anulovat brzdícím motorem. Z výše uvedených důvodů proto doba letu Země – Měsíc není 10 hodin, jak by tomu bylo při konstantní rychlosti kosmické sondy $11 \text{ km} \cdot \text{s}^{-1}$, ale přibližně 3 dny.

Při vyvedení kosmické sondy na kruhovou dráhu kolem Měsíce se rychlost musí snížit brzdícím motorem na $(1,6 - 2,0) \text{ km} \cdot \text{s}^{-1}$, v závislosti na vybrané dráze.

Na Měsíci, jehož hmotnost je zhruba 81krát menší než hmotnost Země a jehož poloměr je asi 3,7krát menší než poloměr Země, je gravitační zrychlení $g = G\frac{M_{M}}{R_{M}^{2}} = 1,7 \text{ m} \cdot \text{s}^{-2}$. Pro I. kosmickou rychlost na Měsíce dostaneme $v_{IM} = \left(G\frac{M_{M}}{R_{M}}\right)^{\frac{1}{2}} = 1,7 \text{ km} \cdot \text{s}^{-1}$. II. kosmická rychlost má hodnotu $v_{II} = \left(2G\frac{M_{M}}{R_{M}}\right)^{\frac{1}{2}} = 2,4 \text{ km} \cdot \text{s}^{-1}$.

2.4 Let Země – Mars

V současné době jsme svědky intenzivního průzkumu Marsu, jehož strategickým cílem je příprava budoucího přistání lidské posádky. Proto jsou v současné době získávány informace
2 SLUNEČNÍ SOUSTAVA

o fyzikálních a chemických podmínkách v atmosféře i na povrchu Marsu. Cílem následujícího výkladu je žákům odpovědět na otázku, jak se kosmické sondy k Marsu dostávají.

Jednoduchá novinářská odpověď je nasnadě – po meziplanetárním letu, který trvá zpravidla osm až devět měsíců. Žákům je však účelné podat hlubší fyzikální vysvětlení. Především je třeba objasnit principiální rozdílnost pohybu v meziplanetárním prostoru od pohybu v zemském ovzduší, který znají z mechaniky či běžného občanského života. Stručně proto budeme základní rozdíly charakterizovat na jednoduchých příkladech.

První a nejpodstatnější odlišnost je v použití a spotřebě energie. Při letu v kosmickém prostoru téměř neexistuje odpor prostředí a spotřeba energie závisí prakticky pouze na směru startu ze Země a úpravách dráhy v meziplanetárním prostoru. Provedeme přibližné srovnání: U letu letadla zemskou atmosférou nezáleží na směru, kterým se pohybuje, spotřeba energie je stále stejná, za předpokladu konstantních podmínek v atmosféře. Naopak kosmické sondy vypouštěné ve směru pohybu Země kolem Slunce spotřebují přibližně 3krát méně energie než při vypouštění proti směru pohybu Země. Poněvadž planety včetně Země obíhají kolem Slunce ve stejném smyslu, většina klasických kosmických sond letící k jiným planetám se z tohoto důvodu pohybuje v tomtéž smyslu.

Setkání kosmické sondy s cílovou planetou, v našem případě s Marsem, dovolí pouze takový termín startu, kdy polož Země při startu a Marsu při setkání spojuje realizovatelná, v zásadě poloeliptická, dráha. To je velmi obtížné, jestliže si uvědomíme, že jak město startu – Země, tak i cíl – Mars jsou v pohybu. Vlivem rozdílného střední oběžné rychlosti pohybu Země 29,8 km·s⁻¹ a Marsu 24,1 km·s⁻¹ a jejich odlišné vzdálenosti od Slunce, se nepřetržitě mění i jejich vzájemná poloha v prostoru.

Podmínka jednoznačného určení poloh Země a Marsu dává vhodný okruh dat startu a setkání výhodných z hlediska spotřeby energie kosmické sondy. Optimální doba pro start k letu na Mars je během každých dvou let zhruba 50 dnů.

Dráhy v meziplanetárním prostoru se rozprostírají na stovky milionů kilometrů, což vyžaduje speciální požadavky na velikost a směr při navenění na meziplanetární dráhu. Velká vzdálenost planet a jejich relativně malé rozměry ztěžují přesné přílety kosmických sond.
k planetám. Jak jsme se již zmínovali, jsou nutné korekční manévry, které jsou nezbytné pro přesný let sondy. Tak například v případě letu kosmické sondy Mars Pathfinder byly provedeny v lednu, únoru, květnu a červnu 1997 čtyři korekční manévry. Bez přesné znalosti mechaniky kosmického letu by nebylo možné realizovat rozsáhlý a náročný program, kterým nesporně celý projekt výzkumu Marsu je.

Přejděme nyní k rozboru konkrétního letu ze Země na Mars. Vyjde tome ze zjednodušujícího předpokladu, že dráhy Země i Marsu kolem Slunce jsou kruhové a leží v jedné rovině. Nejpře je třeba určit minimální rychlost, kterou kosmická sonda musí dosáhnout, aby se vzdálila z oblasti aktivity Země a směrovala po dráze směrem k Marsu.

Pojem oblast aktivity planety, v našem případě Země, je pro žáky poměrně obtížný, matematické odvození definiční nerovnice je uváděno až na vysoškolské úrovni. Oblastí aktivity, u nás nepřesně nazývané sférou aktivity, ale o sférický tvar jde pouze přibližně, nazýváme množinu všech bodů v prostoru kolem planety, pro které platí, že poměr rušícího zrychlení udílenému kosmické sondě a_{Pr} ku zrychlení udílenému Sluncem a_S je větší než poměr rušícího zrychlení udílenému Sluncem sondě a_{Sr} ku zrychlení, udílenému sondě planetou a_P, tedy $\frac{a_{Pr}}{a_S} > \frac{a_{Sr}}{a_P}$.

Vraťme se k našemu výkladu. Heliocentrická rychlost k dosažení Marsu má hodnotu 32.7 km·s$^{-1}$. Země se pohybuje po dráze střední oběžnou rychlostí 29.8 km·s$^{-1}$, nutná rychlost kosmické sondy při opouštění oblasti aktivity Země, sahající do vzdálenosti přibližně 930 000 km, je dána rozdílem obou rychlostí, tedy 2.9 km·s$^{-1}$. Minimální počáteční tzv. startovací rychlost z povrchu Země je určena vztahem $v = \sqrt{11.2^2 + 2.9^2}$ km·s$^{-1} = 11.6$ km·s$^{-1}$, kde 11.2 km·s$^{-1}$ je hodnota druhé kosmické rychlosti.

Dráhy s potřebnou minimální energií jsou tzv. hohmannovské dráhy, nazývané na počest německého matematika a fyzika Waltera Hohmanna (1880–1943). Přechod ze Země (A)
k Marsu \((B) \) se uskutečňuje po poloeliptické přechodové dráze, velikost jejíž velké poloosy vypočítáme v souladu s předchozím obrázkem takto:

\[
a_{s} = \frac{a_{2} - a_{1}}{a_{2} + a_{1}}.
\]

Dobu letu získáme z III. Keplerova zákona

\[
\frac{T_{s}^{2}}{T_{1}^{2}} = \frac{a_{s}^{3}}{a_{1}^{3}},
\]

což po dosazení dá hodnotu \(\frac{T_{s}^{2}}{T_{1}^{2}} = 0.7 \) roku.

Heliocentrickou rychlost kosmické sondy obdržíme výpočtem

\[
v = 29.8 \sqrt{\frac{2}{a_{1}} - \frac{1}{a_{2}}} \text{ km·s}^{-1},
\]

vzdálenosti \(a_{1}, a_{2} \) dosazujeme v astronomických jednotkách.

Přejděme od zjednodušeného idealizovaného letu k reálnému, při kterém přiňžíme k eliptičnosti dráh planet. V tom případě je vhodné, aby se v okamžiku startu nacházela Země v perihéliu své dráhy, kde je rychlost planety asi o 1 km·s\(^{-1}\) vyšší než v aféliu a má hodnotu 30,4 km·s\(^{-1}\). Výšší startovací rychlost umožňuje zkrácení dráhy letu a také výhodnější kratší rádiové spojení s případnými přistávacími moduly v okamžiku přiblížení a přistání kosmických lodí, neboť Mars je v menší vzdálenosti od Země.

Na ukázku uvedeme údaje z letu kosmické sondy nesoucí na palubě Mars Pathfinder. Přechodová dráha, blížící se hohmannovské, měla následující hodnoty oskulačních elementů:

- velká poloosa dráhy \(a = 1.292 \text{ AU} \);
- numerická excentricita \(e = 0.236 \);
- sklon dráhy \(i = 23,455^\circ \);
- oběžná doba \(T = 536,137 \text{ dne} \).

Připomínáme, že oskulačními elementy rozumíme elementy propočítané pro oskulační dráhu v daný časový okamžik. Oskulační dráha je trajektorie, po níž by se kosmická sonda pohybovala, pokud bychom uvažovali od daného časového okamžiku pouze gravitační vliv Slunce.

Pro detailnější demonstraci průběhu letu uvádíme hodnoty heliocentrické rychlosti a vzdálenosti výše uvedené kosmické sondy, je patrný pokles rychlosti při přibližování k Marsu:

<table>
<thead>
<tr>
<th>Datum</th>
<th>Heliocentrická vzdálenost [km]</th>
<th>Heliocentrická rychlost [km·s(^{-1})]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 1. 1997</td>
<td>151 896 996</td>
<td>32 583</td>
</tr>
<tr>
<td>1. 2. 1997</td>
<td>164 374 506</td>
<td>30 462</td>
</tr>
<tr>
<td>1. 3. 1997</td>
<td>179 121 651</td>
<td>28 195</td>
</tr>
<tr>
<td>1. 4. 1997</td>
<td>195 985 854</td>
<td>25 835</td>
</tr>
<tr>
<td>1. 5. 1997</td>
<td>210 771 423</td>
<td>23 926</td>
</tr>
<tr>
<td>1. 6. 1997</td>
<td>223 251 712</td>
<td>22 406</td>
</tr>
<tr>
<td>1. 7. 1997</td>
<td>232 723 381</td>
<td>21 377</td>
</tr>
</tbody>
</table>

Kosmická sonda nesoucí na palubě Mars Pathfinder uletěla na své dráze od 3. prosince 1996 do 4. července 1997, kdy přistála na Marsu, 203 miliónů kilometrů. V okamžiku přistání v oblasti Ares Vallis byla její vzdálenost od Slunce 233 milionů km a od Země 191 milionů km. Její heliocentrická rychlost před přistávacím manévrarem byla 21,27 km·s\(^{-1}\).

Výstižně J. Grygar v roce 2001 shrnul, že Mars je planeta se záhadnou minulostí a perspektivní budoucností. Ta je spojena s předpokládanou existencí vody, nalézající se s velkou
3 Záření – zdroj informací o tělesech ve vesmíru

R. P. Feynman: „Fyzikální zákony platí i tam, kam jste se ještě nedívali“

3.1 Určování vzdáleností

Určování vzdáleností je jedna z nejdůležitějších astrofyzikálních metod, neboť znalost vzdáleností je nezbytná pro pochopení fyzikální podstaty kosmických těles a jevů na nich probíhajících. Například je nutná pro studium rozložení hvězd v prostoru, které následně umožnilo odhalit stavbu a velikost Galaxie. Z řady metod určování vzdáleností uvedeme tři vybrané, které svou použitelností pokrývají rozsah hodnot vzdáleností všech dosud známých kosmických těles. Mezi metodami existuje podmíněná závislost přesnosti, která má svoji vnitřní příčinu v jejich vzájemné návaznosti. Bylo velmi důležité, že sonda HIPPARCOS při stanovení vzdáleností blízkých hvězd do zhruba 1 kpc rovněž určila vzdálenost několika cefeid. Studium cefeid v galaxii M 100 prostřednictvím HST umožnilo upřesnit vzdálenost této významné galaxie a tím celé kupy Galaxií v souhvězdí Panny na \(r \approx 17 \text{ Mpc} \). To mělo zcela zásadní význam pro rozvoj znalostí o vesmíru, neboť upřesnění vzdálenosti této kupy galaxií je podstatné pro budování celkového řezu vzdáleností ve vesmíru.

Metoda roční paralaxy

Tato metoda svým principem trigonometrická, je shodná s metodou užívanou v geodézii při určování vzdáleností nedostupného bodu. Za základnu trojúhelníka bereme v astrofyzice položení dráhy Země kolem Slunce. Roční paralaxa \(\pi \) hvězdy, obvykle se používá pouze zkrácený termín \(\text{paralaxa} \), je úhel, pod kterým bychom pozorovali z hvězdy velkou poloosu zemské dráhy kolem Slunce – 1 AU. S rostoucí vzdáleností hvězd paralaxa klesá, u všech hvězd je menší než 1". Jednotka vzdálenosti \(\text{parsec} \) pc je definována jako vzdálenost, ze které bychom pozorovali velkou poloosu zemské dráhy pod úhlem jedné obloukové vteřiny. Mezi vzdáleností \(r \) v pc a paralaxou \(\pi \) v obloukových vteřinách platí vztah \(r = \frac{1}{\pi} \). Nejjíležší hvězda Proxima Centauri má paralaxu \(\pi = 0,7723" \), její vzdálenost je \(r = \frac{1}{\pi} = 1,295 \) pc. V následující tabulce jsou shrnuty paralaxy vybraných nejjíležších hvězd:

<table>
<thead>
<tr>
<th>Hvězda</th>
<th>(\pi) ["]</th>
<th>(r) [pc]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha) Centauri C (Proxima)</td>
<td>0,7723</td>
<td>1,295</td>
</tr>
<tr>
<td>(\beta) Centauri</td>
<td>0,7421</td>
<td>1,348</td>
</tr>
<tr>
<td>(\alpha) Centauri</td>
<td>0,7421</td>
<td>1,348</td>
</tr>
<tr>
<td>Barnardova hvězda</td>
<td>0,5490</td>
<td>1,821</td>
</tr>
<tr>
<td>HIP 54035</td>
<td>0,3924</td>
<td>2,548</td>
</tr>
<tr>
<td>Sírius</td>
<td>0,3792</td>
<td>2,637</td>
</tr>
<tr>
<td>HIP 92403</td>
<td>0,3365</td>
<td>2,972</td>
</tr>
<tr>
<td>(\epsilon) Eridani</td>
<td>0,3108</td>
<td>3,218</td>
</tr>
<tr>
<td>HIP 114046</td>
<td>0,3039</td>
<td>3,291</td>
</tr>
<tr>
<td>HIP 57548</td>
<td>0,2996</td>
<td>3,338</td>
</tr>
<tr>
<td>61 Cygni A</td>
<td>0,2871</td>
<td>3,483</td>
</tr>
<tr>
<td>Procyon</td>
<td>0,2859</td>
<td>3,498</td>
</tr>
</tbody>
</table>

Starořecký astronom Hipparchos, který žil v 2. století před naším letopočtem, sestavil první astronomický katalog hvězd. Na jeho počest družice vypuštěná v srpnu 1989 nesla jméno HIP-

<table>
<thead>
<tr>
<th>Přesnost</th>
<th>Pozemská měření</th>
<th>Katalog Hipparcos</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 %</td>
<td>50 hvězd</td>
<td>3 pc</td>
</tr>
<tr>
<td>5 %</td>
<td>100 hvězd</td>
<td>6 pc</td>
</tr>
<tr>
<td>10 %</td>
<td>1000 hvězd</td>
<td>15 pc</td>
</tr>
</tbody>
</table>

Přímá metoda určování vzdáleností hvězd pomocí paralaxy je použitelná u hvězd nejbližších, zhruba do vzdálenosti 1000 pc = 1 kpc. Přesnost stanovení paralaxy 120 000 hvězd do 12,5 mag podle katalogu Hipparcos je 0,001”.

Použitelnost paralaktické metody pro větší vzdálenosti je nutně omezena maximální možnou přesností, kterou lze danou měřicí aparaturou dosáhnout. Pro stanovení větších vzdáleností je proto nezbytné používat nepřímé metody, založené na statistických závislostech charakteristik hvězdy.

Metoda fotometrická pomocí cefeid

Při určování vzdáleností kulových hvězdokup a vnějších galaxií je používána jedna z nejpřesnějších metod prostřednictvím cefeid.

![Period-Luminosity Relationship](image.png)

Konkrétně prostřednictvím fotometrického pozorování cefeid stanovujeme pozorovanou hvězdnou velikost m a periodu pulsace P cefeid. Z empiricky získané závislosti obecně zapsané ve tvaru $M = a + b \log P$ je určována absolutní hvězdná velikost M. Dosazením do vzorce $\log r = 1 + 0,2(m − M)$ stanovíme vzdálenost r cefeidy a tím i hvězdného systému, jehož je součástí.

79
Metoda rudého posuvu spektrálních čar, Dopplerův jev a Hubbleův zákon

Pro nejvzdálenější dosud známá kosmická tělesa (vnější galaxie, kvasary) je používán k určování vzdáleností Hubbleův zákon, statisticky stanovená závislost rudého posuvu z spektrálních čar v jejich spektech a jejich vzdáleností \(r \). Čáry jsou posunuty k dlouhovlnnému rudému konci spektra vzhledem ke stejným čáram ve spektech laboratorních zdrojů, které jsou vzhledem k pozorovateli v klidu. Posuv spektrálních čar \(\Delta \lambda \) k vlnové délce \(\lambda \) je stejný pro všechny spektrální čáry ve spektrech a nazývá se rudý posuv \(z \), \(z = \frac{\Delta \lambda}{\lambda} = \frac{\lambda_p - \lambda_l}{\lambda_l} \). Interpretujeme-li posuv spektrálních čar pomocí Dopplerova jevu, potom pro radiální rychlost kosmického tělesa platí \(v = c \frac{\Delta \lambda}{\lambda} = cz \). Při vzdalování kosmického tělesa nastává rudý posuv znaménka +, při přibližování fialový posuv −. Přesněji v prvním případě hovoříme o kosmologickém rudém posuvu, chceme tím charakterizovat skutečnost, že se rozpíná celý vesmír společně s v něm umístěnými galaxiemi a kvasary.

Studium spekter ukázalo, že čím jsou kosmická tělesa vzdálenější, tím více jsou spektrální čáry ve spektrech posunuty k rudému konci. Podíl \(\frac{\Delta \lambda}{\lambda} \sim r \). Závislost mezi radiální rychlostí \(v \) a vzdáleností \(r \) je dána vztahem \(v = cz = H r \), kde \(H \) je Hubbleova konstanta, jejíž velikost je přibližně 75 km·s\(^{-1}\)·Mpc\(^{-1}\). Vzdálenost \(r \) je dána vztahem \(r = \frac{c}{H} z \). Poslední měření sondy WMAP dalo hodnotu \(H = (71 \pm 4) \text{ km} \cdot \text{s}^{-1} \cdot \text{Mpc}^{-1} \).

Závislost platí pouze statisticky, lineární vztah je narušen nepřesnostmi při určování velkých vzdáleností a vlastními pohyby kosmických těles, které například u galaxií mohou dosahovat stovky až tisíce km·s\(^{-1}\).

Výše uvedený vztah pro radiální rychlost kosmického tělesa platí radiální rychlosti za podmínky \(v \ll c \). Při rychlostech \(v \approx c \) je nutné použít pro určení radiální rychlosti kosmického tělesa relativistický vztah \(v = c \frac{(1 + z)^2 - 1}{(1 + z)^2 + 1} \).

V připojeném schématu je podáván přehled výše uvedených metod určování vzdáleností, s vyznačením principu metody a použitelnosti pro daný rozsah vzdáleností.

![Schéma metod určování vzdáleností](image-url)
3.2 Spektrální analýza

Je nejdůležitější astrofyzikální metoda, umožňuje získat ze slabého toku elektromagnetického záření kosmických těles velké množství informací zásadního významu. Řada objevů v astrofyzice, například H-R diagram, Hubbleův zákon atd. je těsně spjata se zdokonalováním způsobů získávání informací, které o zdroji dává jeho spektrum. Poznatky získávané spektrální analýzou, zvláště znalost chemického složení a fyzikálních vlastností kosmických těles, umožnily například vytvořit teorie vzniku a vývoje hvězd, pomohly odhalit úlohu mezihvězdění látky ve vývoji Galaxie. Studium spektar vnějších galaxií a kvasarů pomáhá řešit otázky kosmologie. V poslední době se rozvíjí studium spektar záření prakticky všech vlnových délek, od záření \(\gamma \) až po rádiové vlny, které dává v mnoha případech kvalitativně nový pohled na kosmická tělesa. Omezíme se v další výkladu na viditelný obor spektr záření (400 – 780) nm, které není pohlcováno zemskou atmosférou a je detekovatelné na povrchu Země.

V gymnaziální výuce se budeme zabývat základními typy spektar, jejich vznikem a informacemi, které poskytuje. Nejčastějším typem spektar je absorpční čárové spektrum, jehož zdrojem je převážná většina hvězd a vnějších galaxií. Emisní čárové spektrum poskytuje plynné mlhoviny, hvězdy s rozsáhlými atmosférami, například Wolfovy-Rayetovy hvězdy s povrchovými teplotami až 100 000 K, dále také kvasary.

Výklad vzniku absorpčního čárového spektra typického pro většinu hvězd opíráme o zjednodušujícím schematickém model založeném na předpokladu, že absorpční čárové spektrum vzniká u hvězd tak, že z hvězdých fotosfér vychází směrem k povrchu spojité záření. Při průchodu relativně chladnějšími vrstvami dochází k selektivní absorpcí a tím ke vzniku absorpčních čar. Podrobnější výklad přičin absorpce vede k uvedení všech tří principiálních složek absorpc: především vzniká při každé ionizaci atomů, dále při rozptylu záření na atomech a volných elektronech a také čárovou absorpcí, při níž se pohlcená energie vyzáří na jiných vlnových délkách. Podíl jednotlivých složek na celkové absorpcí je závislý na teplotě, hustotě a chemickém složení hvězdnych atmosfer.

Zákum je třeba zdůraznit hranice použitelnosti zvoleného modelu, neboť schematický model vycházející z dělení atmosféry hvězd na jednotlivé vrstvy je příliš zjednodušený. Ve skutečnosti spojité záření a absorpční čáry vznikají přibližně ve stejně oblasti atmosféry, ve fotosféře. Pochopitelně spojité záření vychází z hlubších vrstev atmosféry než absorpční čary, ale ostré ohraničení mezi fotosfou a převracenou vrstvou neexistuje.

Emisní spektrum vytváří oblaka horkého plynu, v jejichž blízkosti jsou velmi žhavé hvězdy s povrchovými teplotami nad 30 000 K. Tyto hvězdy jsou zdrojem silného záření zejména v ultrafialové oblasti spektra, jež je v mračnách plynu pohlcováno. Záření pak buď v dlouhovlnné oblasti viditelného spektra vlastně září jako plynu. Tento proces nazýváme fluorescencí, která probíhá například v rozsáhlých a řídkých atmosférách žhavých veleobrů spektrálních tříd W až B. Vlastní záření plynu vytváří na spojitém spektru emisní čáry.

Ze zkušeností z praktické výuky vyplývá, že žáci nemají správné představy o závislosti charakteru čárových spektar hvězd na fyzikálních a chemických podmínkách v atmosférách při jejich vzniku. Zejména nechápou rozhodující závislost spektra na teplotě.

Správný postup předpokládá kvalitativní výklad teplotních závislostí u spojitého spektra hvězd, zhledu čárového spektra, intenzity vybraných spektrálních čar a harvardské spektrální klasifikace.

Již fyzikální výklad učiva o spektrech a spektrální analýze musí u žáků vybudovat základní správné představy o fyzikálních principcích této metody, včetně osvojení obou Bunsenových-
Kirchhoffových zákonů, na jejichž znalost je navazováno v astrofyzikální výuce. Optimální je zavedení těchto zákonů ve znění:

1. Jednotlivé prvky v plynném stavu poskytují čárové spektrum složené z čar, jejichž počet a vlnové délky jsou za všech fyzikálních podmínek (teploty, hustoty, tlaku) stejné, mění se pouze intenzita čar.

2. Spektrální čáry plynu umístěného mezi zdrojem spojitého záření a pozorovatelem se jeví jako absorpční, jestliže plyn má nižší teplotu než zdroj, nebo jako emisní, má-li plyn teplotu vyšší než zdroj.

Ve výkladu učiva o spektrech ve fyzice žákům zdůrazníme závislost zhlédnutí čárového spektra na fyzikálních vlastnostech zdroje, především na teplotě a tlaku. Při tradičních školních demonstracích emisních spekter plynových trubic různých prvků za odlišných tlaků, je třeba žákům alespoň slovní způsobem zdůraznit, že zhlédnutí čárového spektra je závislé především na teplotě. Změnu zhlédnutí spektra, tedy výskytu a případně i intenzity vybraných čar, při výrazných změnách teploty plynu v trubicích nelze u nás žákům demonstrovat s ohledem na technické možnosti demonstračních přístrojů zmiňovaného experimentu. V zahraničí však již podobné přístroje existují.

Jev změny spektra s teplotou je podstatný pro astrofyziku, neboť právě u kosmických těles složených z plazmatu (hvězda, plynné mlhoviny), které se nacházejí v extrémních podmínkách (vysokých a nízkých teplotách respektive tlaků), jsou rozhodujícím faktorem ovlivňujícím zhlédnutí jejich čárového spektra fyzikální podmínky, u atmosféry hvězdy především teploty.

Objašnění vzniku čárových spekter ve fyzikální výuce vychází z představ o energetických hladinách atomů, ve kterých změna kvantové stavu je doprovázena změnou energie. Na tyto znalosti je navazováno v astrofyzikálních výkladu spektrální analýzy a spektre hvězd.

Samotný pojem spektrální analýza je třeba v úvodu definovat co nejobecněji, tak jak je chápán v současné astrofyzikální praxi. Prostřednictvím mimo atmosférických pozorování je prováděna detekce a analýza prakticky celého rozsahu vlnových délek od záření γ až po rádiové vlhy.

V soudobé astrofyzikální výuce je spektrální analýza dosud chápána omezeněji, jako analýza oblasti viditelného záření případně přilehlých oblastí – ultrafialového a infračerveného záření.

Již z fyzikální výuky optiky mají žáci znalosti o základních metodách získávání spekter, především o hranolovém spektrografu případně o štěrbinovém mřížkovém spektrografu. Znají, že zobrazení spektra lze v optické soustavě získat rozdílnými podmínkami při průchodu světelných paprsků různých vlnových délek. Je vhodné žákům připomenout, s odvoláním na jejich vědomosti z optiky, opačnost pořadí uspořádání spektrálních barev u obou výše zmiňovaných metod.

Při vlastním astrofyzikálním výkladu upřesníme, že pro získávání podrobnějších spekter s vysokou disperzí, například při určování chemického složení a fyzikálních podmínek v atmosféřích hvězd, se používají štěrbinové spektrográfy. V současné době se v nich dává přednost mřížkám, ve kterých jsou ztráty světelné energie menší než v hranolech. Objeviv dalekohledu vytváří zobrazení sledované hvězdy v rovině štěrbin, která omezuje okolní oblohu. Samotná štěrba dále slouží jako zdroj světla se spektrálními charakteristikami shodnými se sledovanou hvězdou.

Následuje výklad pojetí spojitého spektre umístěného mezi zdrojem spojitého záření a podmínek jeho vzniku. V návaznosti na již probrané fyzikální učivo připomeneme, že hvězdy vysílají záření, jehož rozdělení intenzity

Porovnáním křivek intenzit vyzařování hvězd o různých povrchových teplotách, zachycujících průběh spojitých spektrej, dospějeme k závěru: Charakter spojitého spektra hvězd je závislý na teplotě, neboť na ni závisí rozdělení energie podle vlnových délek.

Celkový zářivý výkon hvězdy vyjadřujeme pomocí Stefanova-Boltzmannova zákona.

Následně při výkladu připomeneme, že na základě dohody považujeme atmosférickou vrstvu, z níž vychází spojité záření, za povrch hvězdy. V prvním přiblížení teplotou hvězdy rozumíme teplotu její fotosféry. Pojem efektivní povrchová teplota zavádíme k vytišení skutečnosti, že spojité záření může vycházet z různých vrstev hvězdné atmosféry o rozdílných hloubkách a tudíž i teplotách. Rozložení intenzity vyzařování ve spojitém spektru v závislosti na hloubce lze demonstrovat schematickými grafy pro různé teploty, ve kterých na křivkách vymezíme oblast viditelného záření, v níž zachytíme vybrané barvy viz vyvážený obrázek.

Poznámka: Barvy hvězd nejsou příliš výrazné, jde spíše o odstíny. Můžeme je sledovat pouze u hvězd dostatečně jasných, tedy blízkých s velkými zářivými výkony. Čípky na sítnici lidského oka, které detekují barevný vjem tří různých vlnových délek, vyžadují pro svoji činnost vyšší úroveň osvětlení.

Skutečné spojité spektrum tepelného záření hvězd se odlišuje od ideálního spektra záření černého tělesa, neboť je narušeno jak fotoionizačními skoky (Lymanovým, Balmerovým, Paschenovým), tak i absorpcí v čarách.
Záření – zdroj informací o tělesech ve vesmíru

S prvně uvedenými skoky ve spojitém spektru není nutno žáky v posledním ročníku gymnázie seznamovat, ale na absorpční čáry upozorníme. Mají nezanedbatelný význam při přenosu zářivé energie v atmosférách a především spadají do rámce tradičního obsahu středoškolského učiva fyziky. Výše popsaným způsobem dochází v astrofyzikální výuce k aplikaci rozměrného původu ve fyzice zavedeného pojmu spojité spektrum záření, na pojem spojité spektrum záření hvězd. To se však částečně odlišuje od ideální teoretické závislosti intenzity vyzařování na hvězdné délce platící pro tepelné záření černých těles.

Spojité spektrum lze nejvhodněji demonstrovat u hvězdy spektrálních tříd blízkých A0, která jsou přehledná a jsou v nich zvláště výrazné absorpční čáry Balmerovy série vodíku. Prostřednictvím této demonstrace u žáků dovršujeme proces vytváření pojmu spojitého spektru záření hvězd a zároveň poskytujeme první představy o absorpčním čárovém spektru hvězd.

Následující graf zachycuje závislost intenzity vyzařování na hvězdné délce pro hvězdu spektrální třídy A0.

vlastnímu záření prvků absorbováno ve vnějších atmosférických vrstvách s menší hustotou a teplotou.

Základem lze na gymnaziální úrovni shrnout, že intenzitu spektrální čáry (emisní respektive absorpční) rozumíme energii záření vztahující se k této čáře. V případě emisní čáry jde přesněji o energii vyzařovanou za časovou jednotku na dané frekvenci v systému atomů, který pozorujeme. Velikost energie uvolňovaných atomů je velmi citlivá na změny fyzikálních podmínek vyzařující látky. Intenzita spektrálních čar závisí především na pravděpodobnosti přechodů elektronů z jedné hladiny na druhou a na počtu atomů nacházejících se v excitedovém stavu, t.j. na obsazení různých energetických hladin, tedy je závislá zejména na teplotě, což je obsaženo v Boltzmannově a Sahově rovnici, jejichž matematický tvar do obsahu výuky nezavádíme. Konkrétním přechodem mezi energetickými hladinami odpovídá určitá energie a tudy i teplota. Intenzita čar nezávisí pouze na četnosti prvků v atmosféře, ale také na tom, zda teplota atmosféry je právě taková, aby tyto přechody umožňovala.

Pojem intenzita spektrální čáry a s ním související spektroskopický pojem šířka čáry (případně rozšíření přirozené, srážkami, teplotní, elektrickým a magnetickým polem, rotací hvězdy) jsou pojmy obsahové pro gymnaziální výuku obtížné, na evropských všeobecně vzdělávacích středních školách nejsou zaváděny.

Po vymezení základních používaných pojmů ve spektroskopii přejdeme k výkladu podstaty spektrální klasifikace hvězd. Účelná je úvodní motivační demonstrace některých vybraných spektér hvězd, nejvhodnější jsou spektrální tridy B, G a M. Žáky upozorníme na jejich odlišný vzhled (přítomnost a intenzita spektrálních čar). V návaznosti na již vybudované vědomosti z fyziky připomeneme, co ovlivňuje vzhled čárových spektér. V případě zdrojů spektér – hvězdy jde o teplotu, tlak a tepve na třetím místě je chemické složení hvězdných atmosfér. Historicky až v průběhu první poloviny 20. století bylo dokázáno, že chemické složení hvězdných atmosfér je téměř stejné u většiny hvězd. Z aplikace metody spektrální analýzy v astrofyzice vyplývá poznanek, že čárové spektrum poskytuje pouze pozitivní informaci o přítomnosti prvků v atmosféře hvězdy. Neexistence čar určitého prvku v oblasti viditelného záření však ještě neznamená, že se čáry tohoto prvku nevyvíjí v oblastech ultrafialového respektive infračerveného záření a tedy skutečnost, že se prvek v atmosféře nenachází. Může nastat paradoxní situace, že v čárovém spektru hvězdy složené především z vodíku nemusíme dokonce v oblasti viditelného záření spektrální čáry tohoto prvku pozorovat vůbec. Tato situ-
ace vznikne v důsledku vysoké respektive nízké teploty v atmosféře hvězdy. Při vysoké teplotě bude již veškerý vodík ionizován, při nízké teplotě se nebudou elektrony nacházet na druhé energetické hladině.

Upřesníme pojem chemické složení atmosféry hvězdy, pod kterým budeme rozumět procentuální hmotnostní zastoupení jednotlivých prvků. Atmosféra našeho Slunce je tvořena ze 73 % vodíkem, 25 % heliem a pouze 2 % ostatních prvků. Názornější představu dává číselně vyjádření počtu atomů jednotlivých prvků ve Slunci: na každý 1 milion atomů vodíku připadá 63 tisíc atomů helia, 600 atomů kyslíku, 420 atomů uhlíku, 87 atomů dusíku, 45 atomů křemíku atd. Zásadní význam má shrnující poznatek vyplývající z analýzy spektr hvězd, že prakticky u všech hvězd je chemické složení přibližně stejné.

Učebnice astronomie respektive fyziky všeobecně vzdělávacích středních škol zpravidla používají převážně termín chemické složení atmosféry hvězdy. Přesněji jde o chemické složení fotosféry hvězdy, neboť právě v této atmosférické vrstvě vzniká spojité záření jakož i většina spektrálních čár. Provedeme výklad čárového spektra nejrozšířenějšího prvku ve hvězdách – vodíku. Jeho čáry pozorujeme, což lze žákům demonstrovat na snímcích spektre hvězd, nejintenzivnější ve spektrech hvězd s povrchovými teplotami přibližně 9 500 K. U chladnějších hvězd s povrchovými teplotami 3 000 K – 4 000 K nebo u velmi horkých hvězd s povrchovými teplotami 15 000 K – 35 000 K spektrální čáry vodíku nejsou zdaleka tak výrazné. Zdůvodnění spočívá v tom, že v atmosféřích chladných hvězd je energie záření a částic nedostatečná proto, aby stimulovala přechod elektronů v atomech vodíku z jedné energetické hladiny na druhou. Nedochází proto k absorpci či emisí záření. Naopak u horkých hvězd je energie částic a fotonů záření tak velká, že nastává úplná ionizace všech elektronů. Holá jádra atomů vodíku nemohou absorbovat ani emitovat záření. Optimální podmínky pro vznik intenzivních spektrálních čar vodíku tak existují přibližně při teplotě asi 9 500 K, kdy počet neionizovaných atomů vodíku a energie fotonů záření jsou dostatečné k tomu, aby vyvolaly četné přechody elektronů mezi druhou a výšší energetickými hladinami.

V případě druhého nejčetnějšího prvku hélia se ve výkladu omezíme na objasnění existence absorpčních čar ionizovaného hélia ve spektrech horkých hvězd. Hélium se vyznačuje ze všech prvků největším ionizačním potenciálem – 24,6 eV, proto jsou elektrony hélia velmi těsně vázány k jádru. K ionizaci je tudíž zapotřebí vysoké energie respektive teplota teplota. Proto se absorpcí čáry ionizovaného hélia vyskytují ve spektrech horkých hvězd z různých důvodů. Protok absorpční čáry ionizovaného hélia vyskytují ve spektrech horkých hvězd, výrazným způsobem se stávají až od povrchových teplot 35 000 K, od spektrální třídy O. Obdobnou úvahu lze aplikovat i k ostatním prvkům, namísto vodíku a helia. Při přechodu od chladných hvězd k horkým se intenzita čar neutrálních atomů postupně zalesňuje a jsou zaměňovány čarami ionizovaných prvků. Pro ilustraci objasníme žákům známý příklad vápníku. V nejchladnějších hvězdách se nachází převažně ve neutrálním stavu, rezonanční čára Ca I 422,7 nm je velmi intenzivní. S růstem teploty se začíná projevovat ionizace, čára Ca I 422,7 nm postupně slábne. Naopak rezonanční čáry K a H Ca II 393,4 nm a 396,9 nm se zalesňují a ve spektrální třídě G jsou dominantními ve spektru. Při dalším zvyšování teploty nastupuje druží ionizace vápníku a čáry Ca II K a H se zalesňují.

Podrobný výklad změn intenzity spektrálních čar Balmerovy série vodíku na gymnaziální úrovni výcházející z Boltzmannovy a Sahovy rovnice nelze provádět. Je možné žákům seznámit se závěry vyplývající z analýzy teplotní závislosti hvězd u obou rovic. Počet atomů vodíku excitovaných na druhou energetickou hladinu je velmi malý, ale s rostoucí teplotou se zvyšuje. Záci znají skutečnost, že čáry Balmerovy série vodíku vznikají při přechodech z druhé energetické
hladiny na vyšší. Tedy aby atomy vodíku mohly vyvolat absorpci čar Balmerovy série, musí již být excitovány na druhou energetickou hladinu.

Dále seznámíme žáky pouze se závěry vyplývajícími z výše prováděných detailních analýz. Excitační energie a tudíž i teplota narůstá od spektrální třídy M k třídě O. Intenzita vodíkových čar se zvětšuje při přechodu od spektrální třídy M přes K, G a F ke třídě A, kde dosahuje svého maxima, kdy je nejvíce atomů vodíku excitováno na druhé energetické hladině. Při dalším růstu teploty intenzita čar Balmerovy série klesá, neboť ionizace zmenšuje počet neutrálních atomů. Tento poznatek žáci pochopí i bez explicitního zavedení Sahovy rovnice. Původní harvardská klasifikace byla jednorozměrná, byla spojena s teplotou vrstev hvězdnej atmosféry, kde spektrální čáry vznikají. Základní závislost je tedy teplotní, neboť na teplotě závisí rozdělení energie ve spektrech podle vlnových délek jakož i výskyt a intenzita vybraných spektrálních čar. Princip spektrální klasifikace hvězd se opírá o přítomnost výrazných spektrálně závislých vesměs absorpčních čar ve spektrech a velikost jejich intenzity. Především jde o čáry Balmerovy série vodíku, čáry vápníku, čáry kovů a také molekulární pásy. Stanovení spektrálních tříd vychází především z čar s nízkým ionizačním potenciálem.

Při dalším výkladu je účelné využít graf (viz následující obrázek) závislosti relativní intenzity spektrálních čar na teplotě, ve kterém je intenzita absorpčních čar pro vybrané prvky vynesena proti excitačně-ionizační teplotě, jak vyplývá z kombinované Boltzmannovy-Sahovy rovnice.

![Spectral Classification Graph](image)

Pro každý prvek, iont existuje určité rozmezí teplot, ve kterém jsou jeho spektrální čáry zvláště výrazné. To lze řádně demonstrovat na zjednodušeném schematickém grafu, který zachycuje závislost intenzity spektrálních čar vybraných atomů a iontů na teplotě. Vzhledem k větší přehlednosti pro žáky vybereme pouze nejdůležitější atomy respektive ionty, použijeme zjednodušený předcházející obrázek.

K němu lze připojit tabulku, uvádějící hodnoty excitačního respektive ionizačního potenciálu vybraných prvků ve hvězdách:
Excitační potenciál uvádíme ze základního do prvního excitovaného stavu. Ionizační potenciál je definován ze základního stavu neutrálního atomu. Z tabulky je zřejmé, že nejmenší ionizační potenciál je u kovů, které se ve hvězdných atmosférách ionizují již při teplotách asi 5 000 K. Při zvyšování teploty se projeví výrazná ionizace vodíku, ještě vyšší teploty jsou potřebné pro ionizaci helia.

V tomto místě výkladu je vhodné ukázat žákům (na obrázcích či na monitoru počítače) spektra nejčastěji se vyskytujících prvků ve vesmíru – vodíku, helia, vápníku a železa. Následně po těchto demonstracích lze žákům ukázat postupně i vlastní spektra hvězd, nejprve spektrální třídy A, kde jsou zvláště výrazné čáry Balmerovy série nejrozšířenějšího prvku ve hvězdách vodíku. Teprve na závěru ukáže spekter je možné předvěst složité spektrum Slunce, kde se vyskytuje velký počet Čár. Až přesné porovnání poloh a v některých případech i intenzity vybraných Čár umožňuje provedení identifikace Čár ve slunečním spektru a vyloučení telurických Čár.

Celkovým účelem výkladu čárových spekter hvězd je, aby žáci pochopili různorodost vzhledu spekter a její závislost na teplotě.

Kritériem harvardské spektrální posloupnosti je existence a intenzita vybraných spektrálních Čár.

Při provádění *spektrální klasifikace* spekter hvězd postupujeme pomocí následujícího postupu:

1. Existují ve spektru hvězdy spektrální Čár?
2. Jsou pozorovatelné Čár helia?
3. Jsou pozorovatelné Čár ionizovaného helia?
4. Jaká je mohutnost vápníkové Čár Ca I 422,6 nm?
5. Existují ve spektru molekulární Čár?
6. Jsou pozorovatelné Čár CH₄?

Přibližné schéma spektrální klasifikace

<table>
<thead>
<tr>
<th>Heliové čár ano</th>
<th>Ionizované helium ano</th>
<th>O třída</th>
</tr>
</thead>
<tbody>
<tr>
<td>Několik čár ve spektru ano</td>
<td>Ionizované helium ne</td>
<td>B třída</td>
</tr>
<tr>
<td>Heliové čár ne</td>
<td>Slabá čára K Ca II ano</td>
<td>A třída</td>
</tr>
</tbody>
</table>
Slabá čára K Ca II ne F třída
Slabá čára Ca I 422,6 nm ano G třída
Slabá čára Ca I 422,6 nm ne K třída

Molekulární pásy ne

Několik čar ve spektru ne

Molekulární pásy ano – TiO, ZrO
Molekulární pásy ano – FeH, CrH, CO₂, CH₄
Molekulární pásy výrazné – CH₄

Pro žáky je užitečný přehled informací o fyzikálním stavu zkoumaných kosmických těles získávaných ze spektra:

Hvězdy

1. Teplota a tlak (z intenzity a šířky spektrálních čar různých prvků).
2. Chemické složení (z šířky spektrálních čar s přihlédnutím k teplotě).
3. Zářivý výkon (z spektrálních čar obvykle vodíkových nebo ze srovnání intenzity některých spektrálních čar).
4. Rotace hvězdy a turbulentní pohyby plynů v horních vrstvách atmosféry (z Dopplerova jevu, tyto pohyby rozšiřují čary a současně zplošťují jejich profil).
5. Radiální pohyb hvězdy (z Dopplerova jevu).
7. Přítomnost případné polarita magnetického pole (vede k rozštěpení čar, u silných polí k rozštěpení, ze Zeemanova jevu).

Plynné mlhoviny

1. Teplota, hustota, chemické složení (z relativní intenzity čar různých prvků)
2. Koncentrace elektronů a hmotnost mlhoviny (z jasnosti mlhoviny ve spojitém spektru).
3. Pohyby mlhoviny jako celku, případně vnitřní pohyby (z Dopplerova jevu).

Vnější galaxie

1. Hvězdné složení (z čar v absorpčním spektru a jejich intenzity).
2. Vzdálenost galaxie (z posuvu čar ve spektru a Hubbleova zákona).
3. Vnitřní pohyby v galaxiích (z radiálních rychlostí jednotlivých oddělených oblastí uvnitř galaxie určených z Dopplerova jevu).
4. Množství horkého plynu v galaxiích a zvláštnosti jeho rozdělení (z intenzity emisních čar ve spektru různých oblastí galaxie, zejména v aktivních jádrcích galaxií).
Přehled metod určování charakteristik hvězd ze záření

Přehled základních charakteristik hvězd získávaných ze spekter hvězd demonstruje důležitost metody spektrální analýzy.

Vnitřní – centrální teplota T_c, centrální tlak p_c
Vnější – hmotnost M poloměr R
chemické složení ChC povrchová teplota T
spektrální třída Sp
zářivý výkon L
vzdálenost r
pozorovaná hvězdná velikost m

Vymezení hvězdných charakteristik a metody jejich určování

Hmotnost M
Hvězdy jsou největší jednoduchá tělesa, reprezentují základní strukturní stavební jednotku ve vesmírné hierarchii. Jde o plazmatická kosmická tělesa, složená z $10^{56} - 10^{58}$ částeč,
především elektronů, protonů a jader hélia. Příkladně počet částic v nitru Slunce je zachycen v tabulce:

<table>
<thead>
<tr>
<th>částice</th>
<th>počet částic</th>
</tr>
</thead>
<tbody>
<tr>
<td>elektronů</td>
<td>$1 \cdot 10^{37}$ částic</td>
</tr>
<tr>
<td>protonů</td>
<td>$8,2 \cdot 10^{56}$ částic</td>
</tr>
<tr>
<td>jader hélia</td>
<td>$8,7 \cdot 10^{55}$ částic</td>
</tr>
<tr>
<td>ostatních jader</td>
<td>$1,4 \cdot 10^{55}$ částic</td>
</tr>
<tr>
<td>fotonů</td>
<td>$1,1 \cdot 10^{54}$ částic</td>
</tr>
<tr>
<td>celkem</td>
<td>$1,9 \cdot 10^{57}$ částic</td>
</tr>
</tbody>
</table>

Hmotnost – nejdůležitější charakteristika hvězdy, předurčuje stavbu a vývoj hvězdy. Zjišťujeme ji na základě gravitačních účinků na druhé hvězdy případně na fotony.

- III. Keplerův zákon v přesném tvaru (fyzikální dvojhvězdy)

$$\frac{a^3}{T^2} = \frac{G}{4\pi^2} (M_1 + M_2)$$

po dosazení a v AU, T v rocích a M_1, M_2 v M_\odot platí $\frac{a^3}{T^2} = (M_1 + M_2)$

$$\frac{M_1}{M_2} = \frac{a_2}{a_1}, \quad a = a_1 + a_2, \quad a = \frac{a''}{\pi''}$$

- Gravitační rudý posuv (bílí trpaslíci)

$$M = \frac{\Delta \lambda \ c^2 R}{\lambda_1 \ G}, \quad \frac{\Delta \lambda}{\lambda_1} \approx 10^{-4} - 10^{-5}, \quad \text{pro obor viditelného záření } \Delta \lambda \approx 10^{-11} \text{ m}$$

Slunce – $2 \cdot 10^{30}$ kg

Poloměr R

- Stefanův-Boltzmannův zákon $L = 4\pi R^2 \sigma T^4$, známe-li efektivní povrchovou teplotu a zářivý výkon

- u blízkých a jasných hvězd interferometricky

- zákryt hvězdy Měsícem

Slunce – $7 \cdot 10^8$ m

Povrchová teplota T

- efektivní povrchová teplota

- souvislost zabarvení hvězdy s jejich povrchovými teplotami

Slunce – 5 780 K

Spektrální třída Sp
Spojité spektrum hvězd

Absorpční čárové spektrum hvězd

Slunce – d G2 V

Současná podoba harvardské spektrální klasifikace

![Schematic diagram of spectral classification](image)

Spektrální třída – charakteristický výskyt a intenzita teplotně závislých čar

U původní harvardské klasifikace byly jako klasifikační znaky použity především čáry Balmerovy série vodíku, čáry vápníku, kovů a také čáry molekulárních pásů.

Schéma struktury spektrální klasifikace je následující:

Chemické složení ChC

Procentuální hmotnostní zastoupení jednotlivých prvků v atmosférách hvězd. Atmosféra Slunce je tvořena ze 73 % vodíkem, 25 % héliem a pouze 2 % tvoří ostatní prvky. Prakticky u všech hvězd je chemické složení přibližně stejné.

- určováním kvalitativní a kvantitativní spektrální analýzou

Zářivý výkon L

- měřením hustoty toku záření u blízkých hvězd

Za solární konstantu u Slunce

Slunce – 3,8 · 10^{26} W

Vzdálenost r

- princip měření úholměrný, fotometrický, spektroskopický

\[r = \frac{1}{\pi}, \quad r = 10^{1+0.2(m-M)}, \quad r = \frac{c \Delta \lambda}{H \lambda_i}. \]

Pozorovaná hvězdná velikost v mag

- Pogsonova rovnice \(\frac{\phi_1}{\phi_2} = 2,512^{m_2-m_1} \)
Vzájemné vztahy hvězdných charakteristik, jejich význam pro stavbu a vývoj hvězd

Rozsah charakteristik hvězd vyjádřený v odpovídajících jednotkách Slunce

<table>
<thead>
<tr>
<th>povrchové teploty</th>
<th>hmotnosti</th>
<th>poloměry</th>
<th>zářivé výkony</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pro hvězdy střední části HP platí vztah hmotnost-zářivý výkon

\[L \sim M^3, \]

odvozený Eddingtonem 1926.

Vztah mezi zářivým výkonem, poloměrem a efektivní povrchovou teplotou je dán Stefanovým-Boltzmannovým zákonem

\[L = 4\pi R^2 \sigma T^4_{\text{ef}}, \]

který je zachycen v H-R diagramu v jeho stavové interpetaci.

Souvislost vnějších a vnitřních charakteristik hvězd

Tlak v nitru hvězd vyjádříme \(p_c \sim \frac{M^2}{R^1} \), teplotu \(T_c \) dostaneme z upravené stavové rovnice

\[p \sim \frac{\rho}{T}, \] \[\rho \sim \frac{M}{R^3}, \] \[T_c \sim \mu \frac{M}{R}. \]

Centrální tlak a teplota v nitru hvězd jsou závislé především na hmotnosti hvězd. Hmotnost společně s chemickým složením předurčuje typ a průběh termojaderných reakcí, hlavních zdrojů energie hvězd.

Nejdelší doba života hvězd je na hlavní posloupnosti, tzv. charakteristická doba pobytu je vyjádřena v tzv. nukleární škále, \(t_{\text{HP}} = 9 \cdot 10^9 \frac{M}{L} \) [roku]. Za předpokladu vztahu hmotnost-zářivý výkon \(M \sim L^3 \) obdržíme \(t_{\text{HP}} \sim M^{-2} \).
Souvislosti stavby hvězd jsou zachyceny na schématu:
4 Stavba a vývoj hvězد

I. S. Šklovskij: „Abychom do určité míry pochopili, co představuje vesmír, musíme přede-vším vědět, co jsou hvězdy a jak probíhá jejich vývoj“.

Základní strukturální jednotkou ve stavební hierarchii vesmíru jsou hvězdy, v nich je sou-středěna podstatná část hmoty a zdrojů energie vesmíru. V nitru hvězd dochází v současné době k základnímu chemickému vývoji látky. Oprávněně je proto učivo astrofyziky soustře-děno na tato kosmická tělesa.

Výklad fyzikální podstaty hvězد ve výuce astrofyziky zahrnuje problematiku stavby hvězد, fyzikálních podmínek v nitru a zdrojů hvězdné energie. S uvedeným těsně souvisí základní hvězdné charakteristiky a jejich změny při vývoji, což lze zachytit prostřednictvím stavové a vývojové interpretace H-R diagramu.

Při výkladu hvězد hlavní posloupnosti zdůrazníme tyto souvislosti.

1. Charakteristiky hvězد, především hmotnost a chemické složení, určují fyzikální pod-mínky v nitru hvězد.

2. Teplota, tlak a chemické složení v nitru hvězد předurčují typ a průběh termojaderných reakcí, hlavních zdrojů energie.

4. Vývoj hvězد je důsledkem nevratných změn chemického složení probíhajících při termo-jaderných reakcích v nitru hvězد.

4.1 Fyzikální podmínky v nitru Slunce a hvězد

Hvězدy si můžeme představit jako sférickosymetrické plynné koule v rovnovážném stavu, které se skládají z velkého počtu částíc, především elektronů, protonů a α částíc. Například počet částíc v Slunci je vyjádřen číslem 10^{56} částic.

Všechny se vzájemně přitahují podle zákona všeobecné gravitace. Pro každou dvojici částic je přitažlivá síla malá, ale celkově velký počet částíc způsobuje, že výsledná síla vzájemné přitažlivosti je dostatečně veliká, aby udržela všechny částice plynné koule pohromadě.

Hvězدy jsou ve stavu hydrostatické rovnováhy, což znamená, že síly působící na každý objemový element jsou v rovnováze. Tímu elementu kompenzuje vztlaková síla vznikající tím, že tlak směřuje ke středu hvězد roste. Představme si válec se základnou S, výškou Δr, osa válec směřuje radiačně ke středu hvězدy. Sladké síly působící na plášť válce se vyrovnávají. Na spodní podstavu působící síla je rovna pS, na horní podstavu $(p + \Delta p)S$. Rozdíl těchto sil ΔpS označme F_1. Válec má třeď $F_2 = \rho S\Delta rg$. Platí $F_1 + F_2 = 0$. Odtud vyplývá rovnice hydrostatické rovnováhy $\Delta p = -\rho g\Delta r$. Protože ρ a g jsou kladné veličiny, platí $\frac{\Delta p}{\Delta r} < 0$, tedy tlak od středu hvězدy monotónně klesá. Ve hvězدě působí tlak p_g plynu $p_g = \frac{A}{\mu} \rho T$, kde A je plynová konstanta $A = 8,31 \cdot 10^{3}$ J · kg · K$^{-1}$, μ je střední hmotnost připadající
4 STAVBA A VÝVOJ HVĚZD

na jednu částici. U hvězd horní části hlavní posloupnosti působí tlak záření \(p_r = \frac{aT^4}{3} \), kde \(a = 7,55 \times 10^{-16} \text{ J} \cdot \text{m}^{-3} \cdot \text{K}^{-4} \).

Úvodem je účelné zdůraznit, že přes velké vzdálenosti hvězd od nás a nemožnost přímého pozorování nutra hvězd, existují metody studia fyzikálních a chemických podmínek v nutří hvězd, založené na fyzikálních zákonech. Pro vytvoření nezkreslených a podložených představ o fyzikálních podmínkách v nutří hvězd lze prostřednictvím zákona všeobecné gravitace a stavové rovnice plynů zjednodušeným způsobem provést odhad centrálního tlaku a teploty v nutří Slunce.

Nejprve provedeme odhad centrálního tlaku \(p_c \). Tlak záření \(p_r \) je pro hvězdy s hmotnostmi srovnatelnými s hmotností Slunce mnohem menší než tlak plynu \(p_g \) a proto budeme tlak záření zanedbát. Vyjdeme z rovnice hydrostatické rovnováhy zapsané zjednodušeně \(p = p_g \). Tuto podmínku si můžeme názorně představit tak, že tlak plynu v blízkosti středu plynné koule se musí rovnat tlaku vytvářenému tíhou sloupce plynu s příčným průřezem 1 m² a výškou rovnou poloměru koule – hvězdy. Tíha sloupce plynu je rovna síle, kterou je přitahována ke středu koule. Dosadíme do zákona všeobecné gravitace \(F = \frac{GMm}{R^2} \), kde \(M \) je hmotnost celé koule a \(m \) je hmotnost výše definovaného sloupce plynu. Označíme-li symbolem \(\rho \) průměrnou hustotu plynu v sloupci, pak \(m = \rho R^2 \), kde \(R \) je poloměr koule. Vzdálenost mezi středy koule a sloupce plynu je \(r = R/2 \). Za těchto podmínek je tíha vytyčeného sloupce plynu na 1 m² obdržíme \(p_c = \frac{GM}{R} = \frac{4G\rho M}{R} \). Po dosazení základních charakteristik Slunce, \(M = 2 \times 10^{30} \text{ kg}, R = 7 \times 10^8 \text{ m}, \rho = 1,4 \times 10^3 \text{ kg} \cdot \text{m}^{-3} \) obdržíme \(p_c \approx 10^{15} \text{ N} \cdot \text{m}^{-2} \).

Dále provedeme výpočet průměrné teploty v nutří Slunce \(T \). Budeme předpokládat, že přibližně platí \(p = p_c/2 \), kde \(p \) je průměrný tlak ve vzdálenosti \(r = R/2 \) od středu Slunce. Dosazením do vztahu pro tlak obdržíme \(p = 2G\rho M/R \). Ze stavové rovnice vyjádříme \(T = \frac{\mu G\rho M}{R} \). Odtud po dosazení, při \(\mu = 0,6 \) získáme \(T \approx 10^7 \text{ K} \).

4.2 Zdroje energie hvězd

Hvězdy nepřetržitě vyzařují do kosmického prostoru zářivou energii. Jejími možnými zdroji jsou termojaderná energie uvolňovaná při termojaderných reakcích a gravitační potenciální energie uvolněné při gravitačním smršťování.

Posledně uvedená se uplatňuje jak zdroj energie v některých stadiích vývoje hvězd, například při počátečním smršťování. Pro gravitační potenciální energii hvězdy sférického tvaru při \(\rho = \text{konst.} \) platí vztah \(W_p = -\frac{3}{5}G\frac{M^2}{R} \). Po dosažení číselných hodnot pro Slunce obdržíme \(W_p \approx -10^{41} \text{ J} \).

Základním zdrojem energie hvězd jsou termojaderné reakce, které vedou k přestavbě atomových jader. Při syntéze lehkých prvků na těžší se v důsledku existujícího hmotnostního úbytku uvolňuje vazebná energie.

Hmotnostní úbytek z termojaderné syntézy jader atomu vodíku – protonů na jádra atomu helia určíme jako rozdíl klidové hmotnosti čtyř protonů a jádra helia \(\Delta m = (4 \cdot 1,67 - 6,63) \times 10^{-27} \text{ kg} = 5 \times 10^{-29} \text{ kg} \). Dosazením obdržíme energetický zisk \(\Delta m^2 = 4,3 \times 10^{-12} \text{ J} \). Vzhledem k velkému počtu protonů ve hvězdách, například u Slunce je jejich počet odhadován na \(\approx 10^{56} \).
uvolněná energie odpovídá zářivému výkonu hvězd, i když termojaderné reakce probíhají velmi pomalu.

Známe dva základní řetězce termojaderných reakcí syntézy vodíku na helium. Při relativně nižších teplotách, přibližně \((5-15) \cdot 10^6 \text{ K}\), se uplatňuje u hvězd spodní části hlavní posloupnosti pp řetězec, jehož posloupnost reakcí lze zapsat

\[
\begin{align*}
&\frac{1}{1}\text{H} + \frac{1}{1}\text{H} \rightarrow \frac{3}{2}\text{H} + e^+ + \nu_e, \\
&\frac{1}{1}\text{H} + \frac{2}{1}\text{H} \rightarrow \frac{3}{2}\text{He} + \gamma, \\
&\frac{3}{2}\text{He} + \frac{3}{2}\text{He} \rightarrow \frac{3}{2}\text{He} + 2\frac{1}{1}\text{H}.
\end{align*}
\]

U hvězd horní části hlavní posloupnosti, s centrálními teplotami zhruba \((16 - 50) \cdot 10^6 \text{ K}\), se uplatňuje CNO cyklus. Sled reakcí tohoto cyklu je následující

\[
\begin{align*}
&\frac{12}{6}\text{C} + \frac{1}{1}\text{H} \rightarrow \frac{13}{7}\text{N} + \gamma, \\
&\frac{13}{7}\text{N} \rightarrow \frac{13}{6}\text{C} + e^+ + \nu_e, \\
&\frac{13}{7}\text{N} + \frac{1}{1}\text{H} \rightarrow \frac{14}{8}\text{O} + \gamma, \\
&\frac{14}{8}\text{O} \rightarrow \frac{15}{7}\text{N} + e^+ + \nu_e, \\
&\frac{15}{7}\text{N} + \frac{1}{1}\text{H} \rightarrow \frac{12}{6}\text{C} + \frac{4}{2}\text{He}.
\end{align*}
\]

Při reakcích se opět vytvoří jádro atomu helia, jádra atomů uhlíku, dusíku a kyslíku vystupují v reakcích jako katalyzátory.

Celková uvolněná energie při reakcích pp řetězce a CNO cyklu je téměř stejná, zhruba 26 MeV na jeden vzniklý atom helia. Vodíkové reakce jsou nejefektivnějším způsobem uvolňování hvězdné energie a jsou hlavním zdrojem jejich energie po celou dobu aktivního života.
Po vyčerpání zásob helia proběhne smršťování a zahřívání centrálních oblastí hvězdy, až jsou nastoleny vhodné fyzikální podmínky, centrální teplota řádově 10^8 K a hustota řádově 10^6 kg·m$^{-3}$, pro uskutečnění další termojaderné přeměny jader atomu helia na jádra atomu uhlíku 3

He \rightarrow 12C + γ.

Pokračující jadernou exotermickou syntézou vznikají těžší prvky až po skupinu železa včetně. Vznik dalších prvků vyžaduje naopak dodání energie do endotermické reakce, například při explozích supernov.

4.3 Stavová a vývojová interpretace H-R diagramu

Je vhodné zařadit téma H-R diagram na závěr problematiky hvězd, neboť osvojení astrofyzikálního smyslu diagramu lze dosáhnout zobecnujícím pohledem na souvislost fyzikálních podmínek v nitru hvězd, zdrojů hvězděné energie – termojaderných reakcí a vnitřní stavby hvězd, které rozhodujícím způsobem ovlivňují charakteristiky hvězd a jejich změny při vývoji.

Vzájemné závislosti charakteristik hvězd – zářivého výkonu, poloměru, efektivní povrchové teploty, spektrální třídy a jejich změny při vývoji hvězd lze názorným způsobem demonstrovat na H-R diagramu. Při jeho výkladu tak dochází k prohloubení a zevšeobecnění již dříve osvojených poznatků o zákonitostech ve hvězdách.

Zářivý výkon (absolutní bolometrickou hvězdnou velikost) a efektivní povrchovou teplotu (spektrální třídu) můžeme stanovit z pozorování hvězd. Pro žáky, při znalostí Štefanova-Boltzmannova zákona, je srozumitelnější interpretace H-R diagramu jako závislosti mezi zářivým výkonem a efektivní povrchovou teplotou $L = 4\pi R^2 \sigma T^4_{\text{ef}}$. Odtud pomocí kvalitativních úvah, opírajících se o výše uvedené matematické vyjádření, lze na H-R diagramu demonstrovat, že jestliže dvě hvězdy mají stejné efektivní povrchové teploty a rozdílné zářivé výkony, musí mít hvězda s větším zářivým výkonem větší poloměr. Obři a veleobři proto mají značně větší poloměry než hvězdy hlavní posloupnosti se stejnými efektivními povrchovými teplotami. Obdobně lze dovodit, že bílí trpaslíci mají mnohem menší poloměry než hvězdy hlavní posloupnosti stejných efektivních povrchových teplot. Pro každou oblast H-R diagramu můžeme
stanovit závislost mezi zářivým výkonem a poloměrem hvězd. Poloměry rozdílných hvězd se mění v širokém intervalu zhruba od $10^2 \, R_\odot$ u obrů respektive veleobrů až do $10^{-2} \, R_\odot$ u bílých trpaslíků. Takto vedený výklad podporuje osvojení stavové interpretace H-R diagramu a zároveň vytváří předpoklady pro pochopení vývojové interpretace.

Vedle stavové interpretace H-R diagramu, sloužící k určování fyzikálního stavu hvězd, je na gymnáziu žákům účelné objasnit i jeho vývojovou interpretaci. Shromáždění velkého statistického souboru hvězdných charakteristik, teoretické rozpracování vývojových modelů hvězd a jejich zpracování na počítačích v posledních desetiletích umožnily vytvořit ucelené teorie celkového vývoje hvězd a rozvinout vývojovou interpretaci H-R diagramu.

Cílem výkladu je demonstrovat vývoj hvězd pomocí vzájemně souvisejících změn charakteristik hvězd na H-R diagramu. Žáky vedeme k pochopení, že na základě fyzikálních a chemických procesů v nitru hvězd při jejich vývoji hvězdy mění svůj zářivý výkon, poloměr, efektivní povrchovou teplotu i spektrální třídu.

http://www.go.ednet.ns.ca/ larry/astro/HR_diag.html
http://www.astro.ubc.ca/ scharein/a311/Sim/hr/HRdiagram.htm
http://www.smv.org/jims/l6a.html

Vývoj hvězd nemůžeme pozorovat přímo, různost stáří hvězd ve vesmíru lze doložit rozdílným chemickým složením, neboť u hvězd vzniklých v pozdějším vývojovém období je větší zastoupení prvků s větším protonovým číslem.

Hvězdy vznikají podle soudobých představ gravitačním smršťováním velmi chladných mlhovin (\approx desítky kelvinů), tvořených plynem a prachovými částicemi. Vznikne-li v mlhovině zhuštění, dochází ke gravitačnímu smršťování okolní hmoty, k přeměně gravitační potenciální energie ve vnitřní. Narůstá postupně vnitřní tlak, hustota a teplota, budoucí hvězda zmenšuje gravitační kontrakcí dále svůj poloměr. Smršťování se postupně zpomaluje, pokračuje však tak dlouho, pokud v dané hvězdě při centrální teplotě zhruba $8 \cdot 10^6 \, K$ se nezapálí termojaderné reakce. Tím se vytvoří dostatečně velká tlaková síla, která udržuje v rovnováze gravitační sílu. Přítom hvězda vyzařuje zářivou energii a stává se „viditelnou“. Celý proces probíhá relativně velmi rychle, pro hmotnosti $\approx 1 \, M_\odot$, v době řádově 10^6 letů. Při uvolňování zářivé energie roste povrchová teplota hvězdy, poloha jejího obrazu na H-R diagramu se přesouvá doleva dolů na hlavní posloupnost.
Po rozvinutí termojaderných reakcí, které jsou hlavním zdrojem energie, se obraz hvězdy v H-R diagramu usadí na hlavní posloupnosti. Zde začíná její relativně nejdelší vývojové stadium, kdy zdrojem energie je syntéza jader atomu vodíku na jádra atomu helia (pp řetězec, CNO cyklus). Doba setrvační hvězdy na hlavní posloupnosti je dána její hmotností. Hvězdy s větší hmotností zajišťují obrovský výkon a brzy spotřebují zásoby vodíkového paliva. Pro hvězdy s hmotností řádově 10 M⊙ vychází doba pobytu na hlavní posloupnosti několik milionů roků, zatímco hvězdy s hmotností Slunce setrvační na hlavní posloupnosti asi 10 miliard roků. Postupnou syntézou jader atomu vodíku na jádra helia v centrální oblasti hvězdy dochází ke změnám vnitřní struktury hvězdy. Jádro se smršťuje, roste jeho teplota, vnější oblasti hvězdy expandují a klesá efektivní povrchová teplota. Hvězda zvětšuje svůj polomer a vzhledem ke zvětšení objemu roste zářivý výkon hvězdy, barva se mění na červenou a obraz hvězdy se přesouvá do oblasti červených obrů. Poloha obrazu hvězdy na H-R diagramu se posouvá doplňku nahu. Rychleji probíhá tento vývoj pro hvězdy s větší hmotností a tedy i zářivým výkonem.

Poslední vývojové stadium závisí především na hmotnosti jádra, které ještě hvězda má. Může vzniknout bílý trpaslík, neutronová hvězda či černá díra.

Novy a supernovy

Objasnění tohoto jevu je spojené s modely těsně dvojhvězdy, což jsou hvězdy přibližně průměrně vzdálené Země – Měsíc, s oběžnou dobou několik hodin. První hvězdou – složkou fyzického dvojhvězda je bílý trpaslík, druhá složka se vyznačuje obrovské hmotnosti, je ve stádiu rozpínání, zpravidla při odchodu z hlavní posloupnosti. Z ní začíná přetekat vodíkové plazma na bílého trpaslíka, na kterém se postupně vytváří plynná slupka. Po zvýšení tlaku a teploty se zavádí termojaderné reakce přeměny vodíku na helium, vnější obal expanduje rychlostí ~ 3 · 10³ km·s⁻¹. Celková uvolněná energie dosahuje přibližně 6 · 10³⁷ J. Celý jev se může opakovat v případě rekurentních nov.

Obdobným mechanismem vysvětluje vznik supernov I. typu. Přenos hmoty z normální hvězdy na bílého trpaslíka vyústí přesunutí meze jeho maximální možné hmotnosti, dojde ke gravitačnímu kolapsu objektu. Uvolněná energie je doprovázena zvýšením zářivého výkonu hvězdy na ~ 10⁹ L☉. Plyn expanduje rychlostí až ~ 2,5 · 10⁴ km·s⁻¹. Ve spektru supernovy nepozorujeme vodíkové čáry.
Odlišný je scénář vzniku supernov II. typu. V tomto případě jde o samostatnou hvězdu, která má při přechodu do závěrečných stadií vývoje hmotnost $(10 - 25) \, M_\odot$. Po vzniku nesvazivého stavu se jádro složené z degenerované látky začne při gravitačním smršťování hroutit. Podstatná část uvolněné energie odnáší neutrina. Zářivý výkon supernov II. typu je $\sim 10^8 \, L_\odot$. Rychlost expandujícího plynu je přibližně $(6 - 20) \cdot 10^3 \, \text{km} \cdot \text{s}^{-1}$. Ve spektru pozorujeme intenzivní vodíkové čáry. Příkladem supernovy II. typu byla supernova 1987A.
5 Stavba vesmíru

J. H. Oort: „Strukturu vesmíru, tak jak nám ji odhaluje rozložení galaxií, je velmi těžké popsat v několika větách; je to nepopsatelný chaos, ale přesto chaos značně odlišný od situace, již bychom pozorovali, kdyby byly galaxie rozmístěny v prostoru nahodilé“.

5.1 Galaxie

V úvodu výkladu připomeneme Galaxii jako základní prvek stavební struktury vesmíru. Následně rozvíjíme představy o stavbě a rozměrech Galaxie, o rozložení jednotlivých objektů, o poloze sluneční soustavy. U žáků postupně vytváříme představu, že celá Galaxie a všechny její objekty jsou v neustálém vývoji.

Dále přecházíme k pojmu vnější galaxie. Je účelné porovnat velikosti kosmických objektů se vzdálenostmi mezi nimi. Hustota rozložení galaxií v mezigalaktickém prostoru se liší od hustoty rozložení hvězd v mezihvězdném prostoru v galaxiích. Průměrné vzdálenosti mezi galaxiemi převyšují řádově 20krát rozmery galaxií, zatímco průměrné vzdálenosti mezi hvězdami převyšují $(10^6 - 10^7)$ krát jejich velikosti.

Následuje seznámení s pojmem kupa galaxií. Žáci jsou seznamováni s typickými vzdálenostmi jednotlivých struktur vesmíru a následně s kosmologickým principem.

Lze uvést observační a teoretické důkazy potvrzující rozpínání vesmíru, kosmologický rudý posuv, Hubbleův zákon a jeho důsledky. Je vhodné připomenout, že současné vývojové modely vesmíru vycházejí z rovnic obecné teorie relativity.

Podrobně se objasňuje původ reliktního záření. Shrnutí představ o vývoji vesmíru vyhlašuje z rámce horkého modelu vesmíru. Jsou diskutovány důsledky velkého třesku pro vznik elementárních částic a chemického složení vesmíru.

Galaxie

Cílem je dát žákům jasnou představu o stavbě a rozměrech Galaxie, o rozdělení jednotlivých objektů v prostoru, o poloze Slunce. Jen komplexní pohled na Galaxii, neizolující jednotlivé objekty a jevy umožňuje žákům pochopit, že celá Galaxie i objekty v ní jsou ve vývoji, vzájemných interakcích a v důsledku toho v určitém vztahu.

Z vlastního pozorování oblohy si žáci pamatují na seskupení hvězd v oblasti Mléčné dráhy a její blízkosti. Pruh Mléčné dráhy na noční obloze svítí proto, že se v něm soustředí ohromné množství hvězd. Ty jsou základní součástí naší silně zploštělé hvězdné soustavy – Galaxie. Do ní patří vedle všech hvězd pozorovatelných na obloze také hvězdné soustavy – hvězdokupy a hvězdné asociace, dále mezihvězdná látku (plyn a prach) a kosmické záření. Hmotnost plynu a prachu mezihvězdného prostředí tvoří asi 10 % celkové hmotnosti hvězd. Interakce mezi hvězdami a mezihvězdným prostředím je velmi komplikovaná, z mezihvězdného prostředí se tvoří hvězdy a naopak hvězdy ovlivňují mezihvězdný plyn respektive obohacují hvězdným větrem toto prostředí.

Nezanedbatelnou část tvoří temná hmota, odhady uvádějí několik desítek procent, až 50 % z celkové hmotnosti Galaxie. Celkový počet hvězd v Galaxii je odhadován na 10^{11} hvězd, ale jen zhruba 3 % galaktického osídlení je dostupných pozorování. Galaxie má tvar disku (čočky, viz následující obrázek) o průměru 30 kpc. Tento tvar je důsledkem rotace galaktického disku kolem jeho osy (odstředivá síla brání gravitačnímu smrštění celého disku směrem do

Hvězdy se v Galaxii seskupují do hvězdných soustav zvaných hvězdokupy a hvězdné asociace. Základní znaky těchto soustav, tvořených fyzikálně souvisejícími hvězdami, jsou následující.

3. **Hvězdné asociace** jsou soustavy velmi mladých hvězd, několik milionů roků starých, ve kterých i v současnosti pokračuje proces vzniku hvězd. Základní ohniska vzniku hvězd jsou ve spirálních ramenech Galaxie.

Strukturální a vnější rozdíly uvedených objektů ilustrujeme pomocí následujícího snímku.

Při výkladu tématu „Rotace Galaxie“ objasňujeme fyzikální stránku rotace, která závisí především na rozložení hmoty v Galaxii. Vycházíme ze dvou odlišných modelů, spočívajících v odlišném rozložení hmoty v galaxiích – centrálním a rovnoměrném. Tato představa je dále zpřesňována složeným souhrnným modelem, až výklad dospívá ke skutečné pozorovatelné rotaci Galaxie. Osnovu výkladu lze uspořádat takto:
1. Rotační model galaxie s rovnoměrným rozložením hmoty.

2. Rotační model galaxie s koncentrací hmoty v centrální oblasti.

3. Diferenciální rotace Galaxie.

4. Určení hmotnosti Galaxie.

V prvním modelu předpokládáme, že prostorová hustota rozložení hvězd ρ je konstantní v celém galaktickém prostoru. Žákům přiblížíme, že nejvíce se tomuto modelu přibližuje situace v blízkosti galaktického jádra. Za předpokladu kruhových drah hvězd výklad závislosti rotační rychlosti v na vzdálenosti r od osy rotace vedeme takto: Na libovolný bod A uvnitř galaxie působí odstředivá síla $F_1 = \frac{mv^2}{r}$, kde m je hmotnost hvězdy, r její vzdálenost od osy rotace, v její rotační rychlost. Vedle síly F_1 na bod A působí také přitažlivá síla F_2 jejímž zdrojem je hmotnost vnitřního elipsoidu. Přitažlivou sílu F_2 vypočítáme ze vztahu

$$F_2 = G\rho r^3 m = krm,$$

kde k je koeficient úměrnosti, objem elipsoidu závisí na r^3. Z rovnosti $F_1 = F_2$ vyplývá, že $v = \sqrt{k}r$, tedy rotuje jako tuhé těleso.

Druhý model vychází z předpokladu, že hmotnost jádra galaxie je velká ve srovnání s hmotností všech hvězd. Tomuto modelu se nejvíce přiblížuje rotace ve spirálních galaxiích. Pro větší názornost výkladu lze žákům uvést analogii se sluneční soustavou, ve které je hmotnost planety zanedbatelná ve srovnání s hmotností Slunce. Pohyb planet vyjadřuje III. Keplerův zákon $r^3T^2 = \text{konst.}$ Za zjednodušujícího předpokladu, že hvězdy se pohybují v galaxii po kruhové dráze, platí tento zákon pro pohyb hvězd v druhém modelu. Úpravou vztahu pro III. Keplerův zákon dostáváme $v^2r = \text{konst.}$, $v = \text{konst.}/\sqrt{r}$. Rotační rychlost je tedy nepřímo úměrná \sqrt{r}.

Ve vztazích pro rychlost v není v prvním ani v druhém modelu galaxie obsažena hmotnost hvězd. Odhodláme závěr, že pohyb hvězd uvnitř galaxie, podobně jako pohyb planet v naší sluneční soustavě, nezávisí na jejích hmotnosti.

Rotace skutečných spirálních galaxií, jako je například naše Galaxie, je složitější. Při studiu tzv. diferenciální rotace Galaxie se vychází z principu obou výše uvedených teoretických modelů.

V oblastech rozložených v blízkosti jádra spirální galaxie, je prostorová hustota rozložených hvězd prakticky konstantní, tudíž jejich rotační rychlost $v \sim r$. Od určité vzdálenosti od jádra galaxie hustota hvězd prudce klesá, takže jejich pohyb se stává keplerovským, vnější okrajové oblasti galaxie rotační křivky u spirálních galaxií tak jsou výsledkem složení obou typů rotací uvedených výše. Z pozorovacích údajů zjištěné grafy závislosti $v = f(r)$ se u skutečných spirálních galaxií blíží tomuto souhrnnému schematickému grafu. V okrajových oblastech galaxií je však rotační rychlost přibližně konstantní. Tuto skutečnost vysvětlujeme přítomností nezářící skryté hmoty.
Ze znalosti průběhu rotačních křivek galaxií je možno stanovovat jednu ze základních charakteristik galaxií – hmotnost. Tyto metody jsou složité a přesahují svým obsahem rámec gymnaziální výuky fyziky.

Lze pouze uvést metodu přibližného určení hmotnosti galaxií. Vychází v ní ze znalosti rotační rychlosti a vzdálenosti od osy rotace určité hvězdy a z předpokladu, že galaxie je symetrická vzhledem k ose rotace. Ze známé žákům rovnosti velikostí sil – dostředivé síly působící na hvězdu o hmotnosti \(m \) a známé rotační (oběžné) rychlosti \(v \) a gravitační přitažlivé síly galaxie obdržíme úpravou vztah pro hmotnost galaxie \(M \)

\[
\frac{mv^2}{r} = G \frac{mM}{r^2}, \quad M = \frac{rv^2}{G}.
\]

Pro názornou představu určování hmotnosti galaxie uvedeme číselné hodnoty vztahující se k oběhu Slunce kolem hmotného středu naší Galaxie: \(v = 2,5 \cdot 10^5 \text{ m} \cdot \text{s}^{-1} \), \(r = 3,1 \cdot 10^{20} \text{ m} \). Po dosazení do výše uvedeného vztahu obdržíme řádově přibližnou hodnotu hmotnosti Galaxie \(M = 3 \cdot 10^{41} \text{ kg} \).

5.2 Vnější galaxie, jejich aktivita

Cílem je vytvoření u žáků správných představ o explozivních procesech i číselných představách velikostí energií a zářivých výkonů ve vesmíru na základě zjednodušených kvalitativních úvah, vystihujících fyzikální podstatu jevů. Přitom je vycházeno pouze z gymnaziálních znalostí žáků.

Nejvíce energie k nám přichází z explozivních procesů probíhajících na hvězdách a mmoogalaktických objektech – aktivních galaxiích, kvasarech a zdrojích \(\gamma \) záblesků, proto jim budeme věnovat nejvíce pozornosti. Zpravidla jsou doprovázeny výrony plynu od rychlostí řádově km \cdot s^{-1} až do několika desítek tisíc km \cdot s^{-1}. Podstatná část uvolňované energie při explozích je předávána protonům, elektronům respektive dalším částicím.

Pro vytvoření představ o velikostech uvolňovaných energií při explozích je vhodné uvést tabulku:

<table>
<thead>
<tr>
<th>Zdroj uvolňování</th>
<th>Energie (J)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atomová bomba nad Hirošimou</td>
<td>(10^{14}) J</td>
</tr>
<tr>
<td>Výbuch sopky Krakatoa</td>
<td>(10^{17}) J</td>
</tr>
<tr>
<td>Velká erupce na Slunci</td>
<td>(10^{25}) J</td>
</tr>
<tr>
<td>Výbuch novy</td>
<td>(10^{39}) J</td>
</tr>
<tr>
<td>Výbuch supernovy</td>
<td>(10^{44}) J</td>
</tr>
<tr>
<td>Výbuch M 82</td>
<td>(10^{50}) J</td>
</tr>
<tr>
<td>Výbuch v rádiové galaxii</td>
<td>(10^{55}) J</td>
</tr>
</tbody>
</table>
5 STAVBA VESMÍRU

Pozorujeme výrazně zvláštní chování jader aktivních galaxií, centrální oblasti rychle ro-
tují, vyznačují se existencí silného magnetického pole a relativistických částic. Jsou zřejmě
vyměněna černými děrami. Příházní tak k aktivním galaxiím. Ještě do poloviny 20. století se
předpokládalo, že základním zdrojem záření v galaxiích jsou hvězdy. Ve zmíňovaném období
však byly objeveny galaxie, ve kterých vyzařování jader je převládající složkou celkového zá-
ření. Aktivita jader je spojena s intenzivním uvolňováním energie z relativně nevelkých oblastí
($R < 1$ pc).

V nich probíhají procesy, které způsobují intenzivní vyzařování v rentgenovém, ultrafialo-
vém, infračerveném i rádiovém oboru elektromagnetického spektra.

K typickým vlastnostem patří:

- Netepelný typ spektra od rádiového části takzvaného Černého spektra, který je způsoben
 vznikem energie spojenou s aktivitou jader.

- Časová proměnnost jasnosti s periodou od 10 minut v rentgenové oblasti spektra po 10
 roky v optické a rádiové oblasti elektromagnetického spektra.

- Existence širokých emisních čar ve spektru, dokládajících pohyb horkého plynu velkými
 rychlostmi.

- Morfologické zvláštnosti (výrony, horké skvrny). Neobyčejný vzhled je často důsledkem
 aktivity jádra, z kterého jsou vyvrhována velká množství hmoty.

Vezměme zajímavý příklad aktivní galaxie M 82, mimochodem galaxie, ve které lze velmi
obtížně identifikovat jednotlivé hvězdy. Jde o jednu z nejjasnějších galaxií v infračervené ob-
lasti spektra, nacházející se ve vzdálenosti 3,6 Mpc. Tato nepravidelná galaxie o hmotnosti
∼ 10^{10} M_☉ má přibližně 3krát menší velikost než naše Galaxie. Z jádra M 82 probíhá expanze
vodíku rychlostí asi 1000 km · s^{-1}. V roce 1962 Sandage pořídil na Mount Palomar snímek
galaxie ve světle čáry H_α a Linds v Yerkesu použil spektrograf ke studiu jejího spektra. Na-
stavil štěrbinu spektrografu podél osy vláken a získal široké jasné emisní čáry vodíku, jakož
i kyslíku, dusíku a síry. Čáry byly posunuty na obě strany, jak k fialovému tak k červenému
konci spektra. Určená rychlost rozpínání vláknité struktury plynu byla asi 1000 km · s^{-1}, což
7krát převyšovalo únikovou rychlost v daném místě.

Linds a Sandage provedli výpočty uvolněných energií při explozi. Zjištěná hodnota toku
záření v čáře H_α při uvedené vzdálenosti byla 2 · 10^{33} W. Za předpokladu hustoty protonů
10^7 m^{-3} dal odhad expaldujících částí vodíkového plynu ∼ 6 · 10^8 M_☉. Odtud byla určena horní
hranice uvolněného momentu vodíkovaného plynu, které je třeba odhadnout v rádiovém oboru
Celkové množství propočítané uvolněné energie je ∼ 10^{50} J, což je ekvivalentní explozi miliónů supernov.

V jádrech některých vnějších galaxií byly zjištěny černé díry. Jako typický příklad vezměme
obří eliptickou galaxii ve vzdálenosti zhruba 15 Mpc M 87, o celkové hmotnosti
řádově 10^{13} M_☉. V její centrální části se nachází černá díra o hmotnosti 3 · 10^9 M_☉.

Z jádra, přesněji z disku přehřátého plynu obklopujícího černou díru, vychází výtrysk
(jet) tvořený proudem nabitéch částic, především elektronů. Ty jsou urychlovány rotujícím
magnetickým polem spojeným s plazmatem v disku. Pozorované rádiové záření pochází od
elektronů pohybujících se relativistickými rychlostmi, které rychle obíhají podél magnetických
siločar ve výtrysku a vytváří synchrotronové záření. Výtrysk je složen z jednotlivých uzlů. Celkový mechanismus výtrysku vysvětluje model černé díry s tlustým akrečním diskem.
V současné době předpokládáme s velkou pravděpodobností výskyt černých děr v jádru celé řady galaxií, například NGC 1068, NGC 3377, NGC 3379, NGC 3894, NGC 4151, NGC 4486 B, NGC 4258, NGC 4945, NGC 5128, NGC 6251 atd. Předběžně propočítané hmotnosti černých děr, na základě rychlosti pohybu plynu nebo hvězd kolem center galaxií, dosahují \(\sim (10^7 - 10^8) M_\odot \).

Některé galaxie projevují nadbytek rádiového záření \(L > 10^{33} \text{ W} \), zpravidla jde o galaxie typu E s velkou hmotností a kompaktním jádrem. Mohou v rádiovém oboru vyzdvihovat více než v optickém oboru, příkladně až \((10^{36} - 10^{38}) \text{ W} \). Rádiové záření vychází ze dvou laloků, vyvržených z galaxii symetricky ve dvou protilehlých směrech, rychlostmi \(v \sim c \). Laloky samotné jsou vždy podstatně větší než sama galaxie. Synchrotronové záření je vyvoláno relativistickými elektrony pohybujícími se v magnetickém poli galaxie. Jedna z nejblížších rádiových galaxií, 5 Mpc vzdálená od nás, je Centaurus A, NGC 5128.

K nejaktivnějším mimogalaktickým objektům patří kvasary, podle současných názorů jasná jádra galaxií, vesměs černé díry, \(R < 1 \text{ pc} \). Jde o objekty s velmi malými úhlovými rozměry, ale s výrazným ultrafialovým zářením, širokými emisními čarami, s maximálními hodnotami \(z > 5 \). Jde o kosmologicky rudý posuv, způsobeným všeobecným rozpínáním vesmíru. Zářivé výkony kvasarů dosahují až \(\sim 10^{40} \text{ W} \), jsou značně proměnné s časem, příkladně v optickém oboru spektra pozorujeme kvaziperiodické změny s periodami několika dnů až roků.

5.3 Kosmologické rozpínání vesmíru

Při vytváření modelů vesmíru vychází kosmologie z obecné teorie relativity, na jejímž základě jsou vytvářeny matematické modely popisující mimo jiné geometrickou strukturu vesmíru. K řešení Einsteinových gravitačních rovnic je však nutná znalost některých parametrů (průměrná hustota, Hubbleova konstanta, decelerační parametr), které jsou odvozovány z astrofyzikálních observací. Hodnoty měření mají dosud velký rozptyl a zatím nelze učinit definitivní rozhodnutí o typu kosmologického modelu platného pro náš vesmír.

Na gymnáziu žáci nemohou získat úplný a vyčerpávající přehled všech kosmologických modelů vesmíru, protože to přesahuje odborný a časový rámec výuky fyziky. Je však možné objasňovat (na přiměřené úrovni) fyzikální podstatu vesmíru jako celku, v němž v současné etapě vývoje má ve vesmírném měřítku rozhodující vliv gravitační interakce. Při výkladu se lze opírat o elementární vztahy, uvádějící vzájemní závislost mezi kritickou hustotou hmoty ve vesmíru, Hubbleovou konstantou a tzv. Hubbleovým stářím vesmíru. Odvození těchto závislostí lze provést i v rámci klasické fyziky následujícím způsobem:

Zkoumejme sférickou oblast prostoru o hmotnosti \(M = \text{konst.} \), \(\rho = \rho(t), R = R(t) \), ve které se pohybují částice – galaxie o hmotnosti \(m \), částice na povrchu koule má rychlost \(v_R \). Platí vztah pro celkovou mechanickou energii \(\frac{1}{2} m v_R^2 - G \frac{m M}{R} = W_c \). Odtud pro hustotu energie \(w \)
dostaneme \(\frac{1}{2} v_R^2 - \frac{GM}{R} = w \). V určitém čase \(t = t_0 \), platí podle Hubbleova zákona \(v_R = HR(t) \) a dále \(\rho = \rho(t_0) \). Úpravou obdržíme \(R^2 \left(\frac{1}{2} H^2 - \frac{4}{3} G \pi \rho \right) = w \). V kritickém stavu při \(R \to \infty \) je \(\frac{w}{R^2} \to \infty \) platí \(\frac{1}{2} H^2 - \frac{4}{3} G \pi \rho_k = 0 \), odtud \(\rho_k = \frac{3}{8} H^2 \pi G \). Při střední rychlosti expanze \(v_R \approx \frac{R}{t} \), odkud s použitím Hubbleova zákona \(v_R = HR \) obdržíme \(t \approx \frac{1}{H} \). Přijmeme-li Hubbleovu konstantu \(H = 75 \text{ km} \cdot \text{s}^{-1} \cdot \text{Mpc}^{-1} \) je stáří \(t \approx 10^{10} \) roků. Podle sondy WMAP je stáří vesmíru \((13,7 \pm 0,2) \) miliard roků.

Obecně lze vývojové procesy ve vesmíru rozdělit na chemický vývoj látky, vývoj stavby a fyzikálních vlastností kosmických těles a soustav, které vytvářejí.

Při výkladu chemického vývoje látky vytváříme kvalitativní představy o změnách chemického složení vesmíru a kosmických těles v průběhu jejich existence. Problematiku rozdělujeme na:

1. Vznik elementárních částic, vodíku, deuteria, helia a lithia v počátečním období vývoje vesmíru. Po kvantitativní stránce poměr hmotností jader helia a vodíku vzniklých ve vesmíru je asi 25% : 75%.

2. Postupný vznik helia a dalších chemických prvků probíhajících v nitru hvězd.

V současné době je ústředním článkem v posloupnosti chemického vývoje právě chemická evoluce v nitru hvězd.
6 Didaktický rozbor témat

J. A. Komenský „A co si silně přeji a důrazně žádám: knihy musí předkládat všechno srozumitelně a přístupně, tak, aby žákům jistě dávaly světlo, s jehož pomocí mohou sami porozumět všemu i bez učitele“.

V. Vanýsek: „Astrofyziku je nutno začlenit do výuky tak, aby lépe vynikla logická struktura fyzikálního poznávání kosmického prostoru a vesmíru vůbec. Není účelem nového pojetí astrofyziky na gymnáziu informovat studenta o všech hlavních výsledcích, kterých dosáhla, ale na vybraných příkladech ukázat na fyzikální podstatu jevů ve vesmíru“.
Schéma astrofyzikálního celku

- ZÁŘENÍ HVĚZD
 - měření vzdálenosti
 - měření rychlosti
 - zářivý výkon hvězd
 - efektivní povrchová teplota hvězd
 - poloměr hvězd
 - spektra hvězd
 - složení atmosféry
 - radiální rychlost

- Zdroje energie
- Stavový H-R diagram hvězd
 - termojaderné reakce
 - vznik hvězd
 - závěrečná stadia vývoje hvězd
 - Slunce a sluneční soustava

- Galaxie
 - struktura a charakteristiky galaxií
 - kupy a nadkupy galaxií

- Pohyb galaxií
- Reliktní záření
- Rozpínání vesmíru
 - OTR
 - kosmologický model rozpínajícího se vesmíru

- Hubbleův zákon
6.1 Záření – zdroj informací

Cíl: Osvojení principů astrofyzikálních metod určování vzdáleností a charakteristik hvězd.

Pojmy: Roční paralaxa, efektivní povrchová teplota, spektrální třída, fyzická dvojíhvězda.

Návaznost na fyziku: Zákony záření černého tělesa (Stefanův-Boltzmannův, Wienův), Kirchhoffovy zákony spektrální analýzy, III. Keplerův zákon v přesném tvaru. Zákon vše-obecné gravitace.

6.2 Stavba a vývoj hvězd

Slunce

Cíl: Získání představ o hvězdě hlavní posloupnosti, na které závisí život na Zemi.

Základní myšlenky: Slunce je typická hvězda, dostupná pro podrobné studium, což nám umož-ňuje analyza k nám přicházejícího slunečního záření.

Pojmy: Zářivý výkon, solární konstanta, fotosféra, chromosféra, koróna, sluneční skvrny, protuberance, sluneční aktivita, sluneční vítr.

Návaznost na fyziku: Elektromagnetické záření různých vlnových délek, spojité a čárové spek- trum, plazma.

Stavba nitra hvězd

Cíl: Vytvořit u žáků představy o fyzikálních podmínkách v nitru hvězd na základě známých fyzikálních zákonů.

Základní myšlenky: Stavba nitra hvězd je popisována fyzikálními zákony. Procesy uvolňování energie udržují záření hvězd – gravitační smrštování, termojaderné reakce. V nitru platí hydrostatická rovnováha.

Pojmy: Model hvězd, hydrostatická rovnováha, gravitační smrštování, termojaderné reakce.

Návaznost na fyziku: Záření, tlak, stavová rovnice, zákon zachování energie.

Zdroje energie hvězd

Cíl: Pochopení procesů spojených s uvolňováním energie při termojaderných reakcích v nitru hvězd.

Základní myšlenky: V jádře hvězd při termojaderných reakcích probíhá nevratná změna chemického složení. Zdrojem energie je přeměna hmotnostního úbytku.
6 DIDAKTICKÝ ROZBOR TÉMAT

Pojmy: p-p řetězec, CNO cyklus.

Návaznost na fyziku: Vlastnosti elementárních částic, termojaderné reakce, hmotnostní úbytky.

Vývoj hvězd

Cíl: Osvojení představ o délce existence, vývoje a konečných stadií vývoje hvězd a Slunce.

Pojmy: Hvězda hlavní posloupnosti, červený obr, nova a supernova, bílý trpaslík, neutronová hvězda, černá díra.

Návaznost na fyziku: Termojaderné reakce, vlastnosti plynu.

H-R diagram

Cíl: Seznámení žáků se stavovou a vývojovou interpretací H-R diagramu, s určováním fyzikálního stavu hvězdy, závislostí mezi zářivým výkonem, efektivní povrchovou teplotou a poloměrem hvězdy zachycenou na diagramu efektivní teplota – zářivý výkon.

Pojmy: Stavový a vývojový H-R diagram, hvězdy hlavní posloupnosti, červený obr, bílý trpaslík.

Návaznost na fyziku: Stefanův-Boltzmannův zákon, Wienův posunovací zákon.

6.3 Stavba vesmíru

Naše Galaxie

Cíl: Pochopení stavby naší hvězdné soustavy – Galaxie.

Základní myšlenky: Hvězdná soustava, ke které patří i naše sluneční soustava, představuje seskupení hvězd, plynu a prachu. Její stavba je určována gravitačními silami a pohybem látky.

Pojmy: Galaxie, sférická složka, plochá složka, hvězdokupy, temné mlhoviny, difúzní mlhoviny, diferenciální rotace Galaxie.

Návaznost na fyziku: Rotace tuhého tělesa, keplerovská rotace.

112
Vnější galaxie, jejich aktivita

Cíl: Studium objektů položených za hranicemi Galaxie.

Základní myšlenky: Látka je ve velkých měřítcích vesmíru koncentrována do hvězdných soustav.

Pojmy: Eliptické, spirální, nepravidelné galaxie, galaxie s aktivním jádrem, kvasary, Místní skupina galaxií, kupa galaxií.

Návaznost na fyziku: Netepelné záření, relativistické částice, gravitační interakce.

Kosmologické rozpínání vesmíru

Cíl: Seznámit žáky se současnými představami o stavbě a vývoji vesmíru.

Základní myšlenky: Kosmologie zachycuje obraz vyvíjejícího se vesmíru.

Pojmy: Kosmologický princip, Hubbleův zákon, Hubbleova konstanta, modely vesmíru, počáteční stadium vývoje, reliktní záření, kritická hustota, horizont vesmíru.

Návaznost na fyziku: Vlastnosti elementárních částic, záření černého tělesa, gravitační interakce.
7 Pozorování

M. Koperník: „Kdo chce sledovat pomocí číselných výpočtů charakter pohybů a oběhů, říkám nezíská nic“.

Astrofyzikální jevy, příčinné vztahy mezi nimi a odhalování jejich podstaty, jsou různorodě spojeny s pozorováním. Jejich postavení je porovnávatelné s úlohou experimentů ve výuce fyziky a chemie. Již nejednodušší pozorování pouhým okem dovolují Žákům ukázat jevy a kosmická tělesa, jejichž znalost je nezbytná pro porozumění nově se dočasně astrofyziky.

Vyučka musí být v zájmech případě jenom teoretická či dokonce pouze verbální, zbavená pozorovacího kontakta žáka s obrobou plnou kosmických objektů a jevů. I ta nejodhadušší pozorování, prováděná pouhým okem, mají nezvážitelnou cennost, přispívají ke vzniku pevné emocionální vazby, která ulehčuje osvojovací proces abstraktní obtížné astrofyziky.

Pozorování jsou zvláštní specifickou formou výuky základům předmětu. V samotném procesu pozorování jsou formovány dovednosti i návyky, nezbytnost pečlivé přípravy k pozorování, systematičnost, přesnost při jejich vlastním provádění.

I prostá pozorování mohou vyprovokovat řadu otázek a následně hledání odpovědí na ně, jak pomocí dalších pozorování, tak hlubší aplikací fyzikální vědy. Uvedme několik příkladů. Hvězdy září → ztrácí energii → mění se, proč?
Hvězdy mají různé barvy → povrchové teploty hvězd jsou rozdílné → jiná pozorování to potvrzují, proč?

Pozorování Měsíce

Roku 1619 Scheiner publikoval měsíční mapu o průměru 10 cm, na které jsou některé detaily poměrně přesně uvezeny.

Cíl pozorování: Seznámí žáky se zvláštnostmi pozorovaného pohybu Měsíce po obloze, se základními útvary na jeho povrchu podle mapy, naučí se při pozorování dalekohledem zakreslovat hlavní detaily povrchu a provést jejich ztotožnění s objekty na mapě Měsíce.

- Pozorování okem změn fází Měsíce každé 3 – 4 dny, zakreslení tvaru disku a polohy mezi hvězdami v souhvězdích, které určíte.

• Určení průměru vybraných útvarů – moře Klidu, kráteru Koperník provedení odhadu nejmenšího rozměru detailu na povrchu Měsíce, který ještě můžeme pozorovat při $Z = (70 - 120)$krát
• Stanovení přibližné výšky hor některou ze známých metod.
• Nalezení místa přistání amerických výprav Apollo respektive sovětských lunochodů.

Zatmění Měsíce

Měsíc ani při úplném zatmění nezmizí z oblohy. Nachází se v zemském stíně, jeho zbarvení je hnědé až cihlově červené. Je způsobeno lomem slunečního světla v zemské atmosféře, která rozptyluje nejméně právě červené světlo.

Zatmění Slunce

Vlastní pozorování zatmění Slunce jsou velmi přitažlivá, neboť při něm můžeme sledovat řadu atraktivních jevů, například načervenalé záření chromosféry, stříbřitou barvu koróny, případně protuberance či vliv zatmění na přírodu na Zemi. To vše vyvolává hluboké estetické zážitky a emotivní prožitky, které se mohou stát didaktickým prostředkem a motivací studentů o něm.

Ze základní školy je studentům známo, že zatmění Slunce vznikají při dopadu stínu vytvořeného Měsícem na Zemi. Pro pozorovatele na zemském povrchu je sluneční kotouč zakryt jen částí nebo úplně. Tuto základní představu dále prohloubíme a rozvineme.

V jaké části roku je největší pravděpodobnost, že proběhne úplné zatmění Slunce?

V létě, kdy se Země nachází v největší vzdálenosti od Slunce, které tak má nejmenší úhlový průměr a může být úplně zakryto Měsícem. Pro ilustraci několik čísel. Z povrchu Země při střední vzdálenosti 149 600 000 km pozorujeme Slunce pod úhlovým průměrem 31,99’, Měsíc při střední vzdálenosti 384 000 km má úhlový průměr 31,12’. Přestože je Měsíc na obloze úhlově menším objektem, dochází k úplným zatměním Slunce. Zdůvodnění spočívá v tom, že vzdálenost Země od Slunce se mění, rovněž tak je proměnná vzdálenost Měsíce od Země, neboť Země i Měsíc se pohybují po eliptických drahách. Úhlový průměr Slunce je největší počátkem ledna, kdy dosahuje hodnoty 32,53’ a nejmenší koncem června s hodnotou 31,45’. U Měsíce kolísá hodnota úhlového průměru od 33,22’ v perigeu do 30,13’ v apogeu jeho dráhy,
vždy při pozorování Měsíce v zenitu. Shrnuto s větší pravděpodobností v létě nastane situace, kdy kotouč Měsíce zakryje kotouč Slunce a dojde tak k úplnému zatmění.

Za jakých podmínek může nastat prstencové zatmění Slunce, při kterém je možné přímo pozorovat sluneční korunu?

Prstencové zatmění Slunce bude probíhat v situaci, kdy se Měsíc nachází v blízkosti apo-gea, jeho pozorovaný úhlový průměr je nejmenší a současně se Země nachází v blízkosti perihélia své dráhy, tedy úhlový průměr Slunce je největší. Stínový kužel Měsíce nedosáhne až k Zemi.

Porovnejte četnost výskytu zatmění Slunce i Měsíce jak pro povrch celé Země, tak pro určité pozorovací místo na povrchu. Proč zatmění Měsíce neprobíhají každý měsíc?

Podívejme se na následující obrázek.

Zatmění Slunce může nastat, jestliže se Měsíc nachází na dráhovém úseku AB, zatmění Měsíce při poloze na dráhovém úseku CD. Protože AB > CD, tudíž zatmění Slunce se uskuteční častěji. Je zřejmé, že zatmění Měsíce můžeme pozorovat z celého polokoule, poloviny povrchu Země, zatímco zatmění Slunce pouze v úzkém pásu na povrchu Země, zpravidla asi (100–200) km širokém, kterým prochází měsíční stín. Shrnuto, zatmění Měsíce pro daný bod povrchu Země probíhají častěji.

Proč zatmění Slunce v rovníkových oblastech trvá déle než v oblastech středních zeměpisných šířek?
Při zatmění Slunce se stín Měsíce pohybuje po povrchu Země od západu k východu rychlostí přibližně \(v_M = 1 \text{ km} \cdot \text{s}^{-1} \). Stejním směrem rotuje Země kolem své osy, na rovníku rychlost přibližně \(v_Z = 0,5 \text{ km} \cdot \text{s}^{-1} \), na pólu je rychlost nulová. Pozorovatel nacházející se v oblasti rovniku může být proto déle ve stínu Měsíce. Druhým méně závažným důvodem je skutečnost, že na rovníku je pozorovatel bližší k Měsíci než v jiných oblastech Země. Číselné vyjádření doby zatmění pro plnou fázi dává při maximálním průměru měsíčního stínu \(D = 270 \text{ km} \), za předpokladu výše uvedených rychlostí, časový interval \(t = \frac{D}{v_M - v_Z} = \frac{270}{1 - 0,5} = 540 \text{ s} \).

Skutečná hodnota je při přesných hodnotách rychlostí pohybů 7 min 31 s. Podmínky pro takovou časovou délku úplného zatmění jsou splňovány pouze zcela výjimečně. Nejdéle v minulém století trvalo zatmění 30. června 1973 s délkou trvání totality 7 min 10 s.

Ve vyšších zeměpisných šířkách je rychlost pohybu místa pozorovatele na povrchu Země menší, jmenovatel uvedeného zlomku větší a tudíž doba trvání úplného zatmění kratší.

Jak by vypadalo zatmění Slunce a Země pozorovatelné z Měsíce?

Úhlový průměr Slunce pozorovatelný z Měsíce je stejný jako ze Země, ale úhlový průměr Země je čtyřikrát větší než Měsíce, zatmění Země prakticky nenastane neboť po povrchu Země se bude přesouvat pouze malý stín Měsíce. Zatmění Slunce naopak bude dobře pozorovatelné.

Co je to saros?

Simulace průběhu zatmění na PC

Na adrese ftp://astro.sci.muni.cz/astrosoft je uložen volně šířitelný program pro operační systém DOS EZ Cosmos, pomocí něhož můžeme provést simulaci průběhu zatmění. Po spuštění programu na obrazovce STATUS doplníme nezbytné údaje:

- místo pozorování vybereme město v pásu úplné totality,
- datum,
- místní čas.

Pro operační systém Linux je možné doporučit program Xephem, který je běžnou sou částí jednotlivých distribucí.
Pozorování zatmění Slunce

Neméně zajímavé je pozorování změn v chování živočichů na Zemi vyvolaných poklesem teploty a jasnosti oblohy, zejména v poslední třetině úplného zatmění.
Slovo závěrem

U nás je v současné době astrofyzikální výuka na základních a středních školách zařazena do fyziky, pro její úspěšnost je tudíž prvořadá vazba na fyzikální výuku. Pro aplikaci této konцепce na jednotlivé tématické celky tradiční školské astrofyziky lze uvést následující vybrané příklady:

Sluneční soustava

Co jsou sluneční skvrny?
Proč se Měsíc vzdaluje od Země?
Proč některé měsíce ve sluneční soustavě si uchovaly atmosféru, zatímco Merkur nikoliv?
Proč existuji na Marsu vyšší hory než na Zemi?
Jak určíme hmotnost nejvzdálenější planety Pluta?

Hvězdy

Vznikají hvězdy i v současné době a můžeme tento proces pozorovat?
Proč mají hvězdy a planety sférický tvar?
Proč můžeme pozorovat některé hvězdy s různými barvami a jiné nikoliv?
Jak určujeme fyzikální podmínky v nitru hvězdy?
Jak vysvětlujeme rychlou rotaci neutronových hvězd – pulsarů?
Jak zjišťujeme přítomnost planet kolem hvězdy?

Naše Galaxie a vnější galaxie

Které jsou základní projevy aktivity jader galaxií?
Lze se přesvědčit o existenci černých děr v jádřech galaxií?
Jak objasňujeme rudý posuv ve spektrech vzdálených galaxií?
Jak interpretujeme Hubbleův zákon a Hubbleovu konstantu?

Z výše uvedeného přehledu vezměme otázku:
Jak vysvětlujeme rychlou rotaci neutronových hvězd – pulsarů?

K jejímu objasnění budeme aplikovat poznatky vyplývající ze zákona zachování momentu hybnosti.

Závěrečná fáze vývoje hvězd – katastrofické smršťování vede ke značnému zmenšování poloměru a v důsledku platnosti zákona zachování momentu hybnosti ke zvětšování úhlové rychlosti a zmenšování periody rotace $T \sim r^2$. Příkladně zmenšení poloměru 10^5 krát vede ke snížení periody rotace 10^{10} krát. Potvrzením uvedených závislostí je existence neutronových hvězd, jednoho z možných závěrečných stadií vývoje hvězdy. Neutronové hvězd s hmotnostmi přibližně srovnatelnými s hmotností Slunce a poloměry (10 – 20) km pozorujeme jako pulsary s periodami rádiových pulsů v intervalu od několika setin sekundy až do řádově sekund. To přesvědčivě potvrzuje rychlou rotaci těchto těles kolem vlastní osy. Skutečná úhlová rychlost rotace neutronových hvězd je (10 – 100) krát menší než odpovídá matematickým závislostem odvozeným ze zákona zachování momentu hybnosti, neboť hvězdy při smršťování předávají značnou část momentu hybnosti svým obalům prostřednictvím magnetických polí.

8 Literatura

[38] Štefl, V.: K prověřování vědomostí žáků z astrofyziky na gymnáziu. MFvŠ 20, (1989/90), č. 4, 265.

