The free cluster parameters

- 1. Reddening
- 2. Distance modulus
- 3. Age
- 4. Metallicity

Determination in the order: Reddening, age, distance modulus simultaneously, metallicity with possible iterations

Color - Magnitude - Diagram

Glushkova et al., 2013, MNRAS, 429, 1102

Grocholski & Sarajedini, 2003, MNRAS, 345, 1015

Different photometric indices

Several different indices et al. are available (very much incomplete):

- Sensitive to temperature:
 - 1. Johnson: B-V, V-I, R-I, V-K, ...
 - 2. Strömgren: b-y, u-b, β
 - 3. Geneva: B2-V1, X, ...
 - 4. 2MASS: H-K, J-K and H-J
- "Mixture":
 - 1. Johnson: U-B
 - 2. Strömgren: c₁, m₁, ...
 - 3. Geneva: d, D, m₂, ...

How to derive cluster parameters?

- Program "HR Trace", very good for training: <u>http://xoomer.virgilio.it/hrtrace/index.htm</u>
- Use as much as possible available indices
- Check the literature for published values as least as a starting point
- First try it with a "standard set" of data

Absorption = Extinction = Reddening

- $A_V = k_1 E(B-V) = k_2 E(V-R) = ...$
- General extinction because of the ISM characteristics between the observer and the object
- Differential extinction within one star cluster because of local environment
- Both types are, in general wavelength dependent

Reasons for the interstellar extinction

- Light scatter at the interstellar dust
- Light absorption => Heating of the ISM
- Depending on the composition and density of the ISM
- Main contribution due to dust
- Simulations and calculations in Cardelli et al., 1989, ApJ, 345, 245

Cardelli et al., 1989, ApJ, 345, 245

Cardelli et al., 1989, ApJ, 345, 245

Dependency of the extinction from R_v

How to derive the reddening?

 Non-Isochrone approach: from photometric and spectroscopic observations

Classical approach: Neckel & Klare, 1980, A&AS, 42, 251

Take all available UBV and Strömgren β photometry

MK classifications

4. Extinction values and distances. — The visual extinction A_v can be derived from

$$A_{v} = R \{ (B - V) - (B - V)_{0} \}.$$
 (2)

For R we take the value 3.1.

The intrinsic color $(B-V)_0$ follows directly from the MK calibration, if the MK type is known. In addition, $(B-V)_0$ can also be derived from the UBV and β data. The distance moduli are then given by

$$V - M_v - A_v = 5 \lg r - 5$$
. (3)

If we could derive A_v and r by both methods, we could use the mean values of extinction and distance moduli. This was possible for 1 020 stars. Figure 4 shows the frequency distribution of the differences

$$D = (V - M_{v}(MK) - A_{v}(UBV, MK)) - (V - M_{v}(\beta) - A_{v}(UBV, \beta)). \quad (4)$$

	SpT	Spectral	II	II/III	III	III/IV	IV	IV/V	v
		Туре		Ą	bsolut	e Magni	tude		
Bailer-Jones.						-			
1006 PhD	1	03	-	-	-	-	-	-	-
1990, PHD,	2	04	_	_	-	-	-	-	-
Cambridge	3	05	-8.20	-7.70	-7.20	-6.80	-6.40	-5.90	-5.60
University	4	06	-7.60	-7.20	-6.85	-6.50	-6.10	-5.70	-5.40
	5	07	-7.00	-6.80	-6.60	-6.30	-5.90	-5.50	-5.20
	6	08	-6.50	-6.30	-6.20	-5.90	-5.60	-5.30	-5.00
	7	09	-6.00	-5.85	-5.70	-5.50	-5.30	-5.00	-4.70
	8	BO	-5.40	-5.20	-5.00	-4.90	-4.80	-4.50	-4.20
	9	B1	-5.00	-4.70	-4.40	-4.20	-4.00	-3.80	-3.60
	10	B2	-4.80	-4.20	-3.60	-3.35	-3.10	-2.80	-2.50
	11	B3	-4.60	-3.85	-3.10	-2.80	-2.50	-2.10	-1.70
	12	B4	-4.50	-3.57	-2.55	-2.40	-2.15	-1.75	-1.35
	13	B5	-4.40	-3.30	-2.20	-2.00	-1.80	-1.40	-1.00
	14	B6	-4.20	-3.05	-1.90	-1.70	-1.50	-1.20	-0.70
	15	B7	-4.00	-2.80	-1.60	-1.40	-1.20	-0.80	-0.40
	16	B8	-3.80	-2.60	-1.00	-0.85	-0.70	-0.35	0.00
	17	В9	-3.60	-2.45	-0.40	-0.30	-0.20	0.15	0.50
	18	AO	-3.20	-1.90	0.10	0.20	0.30	0.65	1.00
	19	A1	-3.00	-1.75	0.50	0.60	0.70	1.00	1.30
	20	A2	-2.90	-1.65	0.70	0.85	1.00	1.30	1.60
	21	A3	-2.80	-1.60	0.90	1.05	1.20	1.40	1.80
	22	A4	-2.80	-1.55	1.05	1.15	1.30	1.63	1.95
	23	A5	-2.70	-1.50	1.10	1.25	1.40	1.75	2.10

Assume V = 10 mag and no reddening

O5: -5.6 => 13 000 pc A0: +1.0 => 630 pc G0: +4.5 => 125 pc M0: +8.9 => 15 pc

Assume V = 20 mag and no reddening

O5: -5.6 => 1.3 Mpc A0: +1.0 => 63 kpc G0: +4.5 => 12.5 kpc M0: +8.9 => 1.5 kpc

24	A6	-2.65	-1.45	1.15	1.35	1.60	1.95	2.30
25	A7	-2.60	-1.40	1.20	1.50	1.80	2.10	2.40
26	A8	-2.60	-1.40	1.30	1.65	2.05	2.25	2.50
27	A9	-2.55	-1.35	1.40	1.75	2.10	2.35	2.60
28	FO	-2.50	-1.30	1.50	1.85	2.20	2.45	2.70
29	F2	-2.50	-1.30	1.60	2.00	2.40	2.75	3.10
30	F3	-2.40	-1.20	1.65	2.10	2.45	2.90	3.35
31	F5	-2.30	-1.10	1.70	2.10	2.50	3.05	3.60
32	F6	-2.25	-1.05	1.75	2.15	2.55	3.18	3.80
33	F7	-2.20	-1.00	1.75	2.15	2.60	3.30	4.00
34	F8	-2.20	-1.00	1.75	2.20	2.80	3.50	4.20
35	GO	-2.10	-0.95	1.70	2.15	2.90	3.70	4.45
36	G1	-2.05	-0.90	1.70	2.10	3.00	3.80	4.70
37	G2	-2.00	-0.90	1.60	2.10	3.00	3.90	4.80
38	G3	-2.00	-0.85	1.60	2.05	3.05	4.00	5.00
39	G5	-2.00	-0.85	1.60	2.00	3.10	4.15	5.20
40	G6	-2.00	-0.80	1.50	2.00	3.15	4.23	5.30
41	G8	-2.00	-0.80	1.35	1.95	3.20	4.35	5.50
42	KO	-2.00	-0.80	1.20	1.87	3.20	4.50	5.80
43	K1	-2.00	-0.85	1.00	1.80	3.30	4.70	6.10
44	K2	-2.00	-0.90	0.80	1.80	3.30	4.80	6.30
45	KЗ	-2.00	-1.00	0.60	1.80	3.40	5.00	6.60
46	K4	-2.10	-1.00	0.20	-	.—	-	6.90
47	К5	-2.20	-1.00	0.00	-	-	-	7.50
48	MO	-2.40	-1.00	-1.10	-	-	—	8.90
49	M1	-2.50	-1.10	-0.40	-	-	-	9.60
50	M2	-2.50	-1.10	-0.60	-	-		10.30
51	MЗ	-2.50	-1.20	-0.70	-	-	-	10.80
52	M4	-2.50	-1.20	-0.80	-	-	-	11.40
53	M5	-2.50	-1.30	-0.90	-	-	-	12.30
54	M6	-2.50	-1.30	-1.00	-	-	-	13.20
55	M7	-2.50	-1.40	-1.10	-	-	-	14.00
56	M8	-2.50	-1.50	-1.20	-	-	-	16.50
57	M9	Ξ.	-	-	-	-	-	-

	TABLE V.	The $M_v(\beta)$ calibration.		
β (mag)	$M_v(eta)$ (mag)	β (mag)	$M_v(eta)$ (mag)	Crawf 1976, – 83.48
2.560 2. 570 2.580 2.590 2.600 2.610 2.620 2.630 2.640 2.650 2.650 2.660 2.670	-6.51 -5.84 -5.22 -4.65 -4.12 -3.62 -3.17 -2.75 -2.36 -2.01 -1.69 -1.39	2.720 2.730 2.740 2.750 2.760 2.770 2.770 2.780 2.790 2.800 2.800 2.810 2.820 2.830	-0.27 -0.10 0.04 0.18 0.30 0.41 0.51 0.60 0.68 0.76 0.83 0.90	– 83, 48 Examp for the index
2.680 2.690 2.700 2.710	-1.12 -0.87 -0.65 -0.45	2.840 2.850 2.860 2.870 2.880 2.890 2.900	0.97 1.03 1.10 1.17 1.24 1.31 1.39	

FIGURE 4. — Frequency distribution of the differences between the distance moduli derived from UBV + MK and $UBV + \beta$ data.

Piskunov et al., 2006, A&A, 445, 545

Haffner 18

Age about 8 Myr d = 6000 pc

differential extinction within the cluster

Yadav & Sagar, 2001, MNRAS, 328, 370

Determination of the reddening - Isochrones

- From two temperature sensitive parameters, the determination of the reddening is not possible
- You need one "other" observational index
- First choices: (U B), (u b), [X], β
- Normally, you only have V, J, H, K, and so on

You would need a spectral information

4. Extinction values and distances. — The visual extinction A_v can be derived from

$$A_{v} = R \{ (B - V) - (B - V)_{0} \}.$$
 (2)

For R we take the value 3.1.

The intrinsic color $(B-V)_0$ follows directly from the MK calibration, if the MK type is known. In addition, $(B-V)_0$ can also be derived from the UBV and β data. The distance moduli are then given by

$$V - M_v - A_v = 5 \lg r - 5$$
. (3)

If we could derive A_v and r by both methods, we could use the mean values of extinction and distance moduli. This was possible for 1 020 stars. Figure 4 shows the frequency distribution of the differences

$$D = (V - M_{v}(MK) - A_{v}(UBV, MK)) - (V - M_{v}(\beta) - A_{v}(UBV, \beta)). \quad (4)$$

Distance modulus

- Apparent DM: (V M_V) which still includes the reddening
- Absolute DM: (V M_V)₀ or (V₀ M_V) which not includes the reddening
- Be careful there is always a mixture in the literature!

How to determine the DM?

- Direct isochrone fitting
- Calibrate M_V directly via photometry and spectroscopy with known reddening and V magnitude => distance directly
- Advantage: statistical sample

Fig. 3. Histogram of the distances for the stars in the direction of (a) NGC 1647 and (b) NGC 1778. The thin line is a Gaussian fit to the data.

Guerrero et al., 2011, RMxAA, 47, 185

Balaguer-Núñez et al., 2007, A&A, 470, 585

Fig. 9. The histograms of the distance modulus, reddening and metallicity of the selected member stars of M 67 with H_{β} measurements. The arrows indicate the mean values adopted for the cluster.