

HR Diagrams for Various Open Clusters

Turn off point

- Where is the turn-off point located?
-Color/temperature
- Absolute/apparent magnitude/luminosity
- Direct correlation with the age
- Difficult to define for young star clusters
- First, classical method, just „to look" at color-magnitude-diagram

Mermilliod, 1981, A\&A, 97, 235: no newer paper available!

A correlation has been established between the mean absolute magnitude of the red giant concentrations and ages (Fig. 7). A straight line has been fitted by eye, which gives the following relation:

$$
\log t=0.280 M_{V}+8.610
$$

No direct error estimation possible

Possible to use for star clusters between 20 Myr and 800 Myr

Fig. 7. Relation between the mean absolute magnitude of the red giant concentrations and $\log t$. The darkened area at $M_{V}=+1$. indicates the position of the clump in old clusters.

Very precise method

Possible to use between for star clusters between 20 Myr and 300 Myr
$(U-B)_{0}$ for cooler stars = older ages is almost constant

Fig. 6. Calibration of the bluest $(U-B)_{o}$ on the main sequence in terms of age ($\log t$)

$$
\begin{array}{ll}
-.80 \leq(U-B)_{o}^{<-.35} & \log t=1.795(U-B)_{o}+8.785 \\
-.28 \leq(U-B)_{o}<.00 & \log t=0.813(U-B)_{o}+8.487
\end{array}
$$

Not very accurate but still useful, never done for 2MASS and NIR

Calculation of Isochrones

The calculation of theoretical isochrone (= lines of equal age) is done with stellar atmospheres

Free parameter : Metallicity [X, Y, Z]

1. Zero Age Main Sequence $\left[T_{\text {eff }}, L\right]_{0}$
2. Chemical and gravitational evolution
3. $\left[T_{\text {eff }}, L\right](\mathrm{t})$
4. Adequate stellar atmosphere $=$ PHYSICS
5. Absolute fluxes
6. Folding with filter curves
7. Colors, absolute magnitudes and so on

Which astrophysical "parameters" are important?

- Equations of state
- Opacities
- Model of convection
- Rotation
- Mass loss
- Magnetic field
- Core Overshooting
- Abundance of helium

Maeder \& Mermilliod, 1981, A\&A, 93, 136

Different treatment of convection

A comparison of isochrone sets

- Grocholski \& Sarajedini (2003, MNRAS, 345, 1015) compared the following isochrones: 1. "Padova": Girardi et al., 2002, A\&A, 391, 195 2.Baraffe: Baraffe et al., 1998, A\&A, 337, 403 3."Geneva": Lejeune \& Schaerer, 2001, A\&A, 366, 538 4. Y^{2} : Yi et al., 2001, ApJS, 136, 417
5.Siess: Siess et al., 2000, A\&A, 358, 593

The location of the Sun with isochrones of 5 Gyr

Isochrones by Siess et al. (1997) seem "to have a problem"

Comparison of different masses for a constant M_{V}

Zero line is the isochrone of the Padova group

Comparison of different color indices for a constant M_{V}

Zero line is the isochrone of the Padova group

Name	Available photometry	Log age	$E(B-V)$	$[\mathrm{Fe} / \mathrm{H}]$
M35 (NGC 2168)	$U B V R I J H K_{\mathrm{S}}$	8.17	0.19	-0.160
M37 (NGC 2099)	$\ldots B V \ldots J H K_{\mathrm{S}}$	8.73	0.27	0.089
NGC 1817	$\ldots B V R I J H K_{\mathrm{S}}$	8.80	0.26	-0.268
NGC 2477	$U B V \ldots . . I H K_{\mathrm{S}}$	9.04	0.23	0.019
NGC 2420	$\ldots B V R I J H K_{\mathrm{S}}$	9.24	0.05	-0.266
M67 (NGC 2682)	$U B V R I J H K_{\mathrm{S}}$	9.60	0.04	0.000

Used Parameters from the literature
Photometry

Cluster	Padova	Baraffe	Geneva	Y^{2}	Siess	Twarog et al.
M35 (NGC 2168)	10.16	10.41	9.81	9.91	9.96	10.30
M37 (NGC 2099)	11.55	11.40	11.50	11.35	11.75	11.55
NGC 1817	12.10	12.30	11.90	11.85	12.00	12.15
NGC 2477	11.55	11.60	11.30	11.15	11.45	11.55
NGC 2420	12.12	12.45	11.95	11.90	12.07	12.10
M67 (NGC 2682)	9.80	9.80	9.60	9.45	9.65	9.80
	log t, E(B-V) and [Fe/H] fixed, only				Value from the	
	Distance modulus determined	literature				

Cluster	Padova	Baraffe	Geneva	Y^{2}	Siess	Twarog et al.
M35 (NGC 2168)	10.16	10.41	9.81	9.91	9.96	10.30
M37 (NGC 2099)	11.55	11.40	11.50	11.35	11.75	11.55
NGC 1817	12.10	12.30	11.90	11.85	12.00	12.15
NGC 2477	11.55	11.60	11.30	11.15	11.45	11.55
NGC 2420	12.12	12.45	11.95	11.90	12.07	12.10
M67 (NGC 2682)	9.80	9.80	9.60	9.45	9.65	9.80

Transformation in distances [pc]

- M35: 1148 [916,1208]; -20\% +5\%
- M37: 2042 [1905,2239]; -7\% +10\%
- NGC 1817: 2692 [2344,2884]; -13\% +7\%
- NGC 2477: 2042 [1698,2089]; -17\% +2\%
- NGC 2420: 2630 [2399,3090]; -9\% +17\%
- M67: 912 [776,912]; -15\% +0\%
- Mean values: -13(5)\% +7(6)\%, for one free parameter!

Cluster	Padova	Baraffe	Geneva	Y^{2}	Siess	Twarog et al.
M35 (NGC 2168)	10.16	10.41	9.81	9.91	9.96	10.30
M37 (NGC 2099)	11.55	11.40	11.50	11.35	11.75	11.55
NGC 1817	12.10	12.30	11.90	11.85	12.00	12.15
NGC 2477	11.55	11.60	11.30	11.15	11.45	11.55
NGC 2420	12.12	12.45	11.95	11.90	12.07	12.10
M67 (NGC 2682)	9.80	9.80	9.60	9.45	9.65	9.80

In a statistical point-of-view: significant

For a given reddening, metallicity and age, the isochrones by Baraffe et al. yield significantly brighter and Yi et al. significantly fainter absolute magnitudes .

In addition, the isochrones by Siess et al. do not reproduce the location of the Sun correctly.

Automatic Methods

Definition of different „important" areas (Box) in the CMD. Do this allocation as you like.

Turn-off point, location of the red giant clump, and so on.

Count the number of stars in each box.

Warning: you always "lose" stars because of discrete boxes.

Only for t > 300 Myr

Other methods

- An et al., 2007, ApJ, 655, 233
- Buckner \& Froebrich, 2013, MNRAS, 436, 1465
- Fernandes et al., 2012, A\&A, 541, A95
- Frayn \& Gilmore, 2003, MNRAS, 339, 887
- Kharchenko et al., 2005, A\&A, 438, 1136
- Monteiro et al., 2010, A\&A, 516, A2
- Oliveira et al., 2013, A\&A, 557, A14
- Pinsonneault et al., 2003, ApJ, 598, 588

