

Hyades

$$
\begin{aligned}
& \log t=8.90 \\
& d=45 \mathrm{pc} \\
& {[\mathrm{Fe} / \mathrm{H}]=+0.17 \mathrm{dex}}
\end{aligned}
$$

4 Width of Main Sequence about 1.8 mag in M_{V}

NO
Observational error

What are the reasons?

Vertical distance from the main sequence

$$
x=a\left(C_{A B}-C_{A}\right)+V_{A}-V_{A B}
$$

Absolute magnitude:
$M_{V}=-2.5 \log \left(L_{1}+L_{2}\right)$

Maximum at $L_{1}=L_{2}=>$

$$
M_{V}=-0.753 \mathrm{mag}
$$

The maximal width of the main
sequence due to binary systems is
0.753 mag

Metallicity => different opacity

Praesepe: Fossati et al., 2008, A\&A, 483, 891

At.N.	Element	"Normal" A-type stars								SolarAbundances
		HD 72846	HD 73345	HD 73450	HD 73574	HD 74028	HD 74050	HD 74587	HD 74718	
3	Li	<-8.08(-, 1)	<-8.33(--1)	<-8.70(-;1)	<-8.38(-;1)			<-8.41(-;1)	<-8.26(-;1)	-10.99
6	C	-3.58(-; 1)	$-3.44(12 ; 3)$	-3.27(-; 1)	$-3.36(18 ; 2)$	-3.39(08; 2)	-3.52(-;1)	-3.49(01;2)	-3.51(04;2)	-3.65
8	0	-3.18(-;1)	-3.22(01; 2)				-3.70(-;1)	-3.30(-;1)		-3.38
11	Na	-5.44(01;2)	-5.37(01; 2)	$-6.28(-; 1)$	-5.57(02;2)	-5.98(-; 1)	-5.64(13;2)	-5.61(02; 2)	$-5.70(14 ; 2)$	-5.87
12	Mg	-4.18(08;3)	-4.18(02;3)	-5.02(18;2)	-4.37(04;3)	-4.86(08; 3)	-4.22(05;4)	-4.56(08; 3)	-4.52(01;2)	-4.51
14	Si	-4.62(16;2)	-4.67(-;1)	-4.13(-; 1)	-4.19(-; 1)	-4.17(-;1)	-4.37(-;1)	-4.16(-;1)	-4.25(-;1)	-4.53
16	S	-4.71(04;2)	-4.44(03;4)	-4.35(-; 1)	-4.61(02;2)	-4.26(01;2)		-4.50(04; 2)	-4.28(11;2)	-4.90
20	Ca	-5.17(-; 1)	-5.39(09;6)	-5.95(06; 4)	-5.86(16;5)	-5.37(16;2)	-6.13(06; 2)	-5.49(15;6)	-5.68(02; 3)	-5.73
21	Sc	-8.88(-; 1)	-8.63(07; 3)	$-8.57(14 ; 3)$	-8.89(02;3)	-8.35(-; 1)	-8.96(27;3)	-8.56(-;1)	-8.69(14;2)	-8.99
22	Ti	-6.88(03;5)	-6.95(06; 6)	$-7.30(11 ; 5)$	-6.98(09;5)	-6.78(-;1)	$-7.08(15 ; 5)$	-6.83(16;3)	-6.93(10;5)	-7.14
24	Cr	-6.23(06;3)	-6.22(08; 2)	$-6.56(08 ; 3)$	-6.19(16;3)	-6.23(12;4)	$-6.48(10 ; 3)$	-6.05(13;4)	-6.44(20;5)	-6.40
25	Mn		-6.37(-;1)	$-6.88(-; 1)$	-6.52(02;2)	$-6.77(-; 1)$	-6.61(-;1)	-6.62(04;2)	-6.71(-;1)	-6.65
26	Fe	-4.55(18;42)	-4.33(11;61)	-4.62(09; 15)	-4.49(10; 30)	-4.50(09; 18)	-4.44(13; 16)	$-4.28(10 ; 33)$	-4.61(11;26)	-4.59
28	Ni	-5.70(18;2)	-5.58(11;4)	-5.82(16;2)	-5.62(08;4)	-5.93(14;3)	-5.60(15;3)	-5.84(-; 1)	-5.68(02; 3)	-5.81
39	Y	-9.75(-; 1)	-9.46(-; 1)	-9.83(-; 1)	-9.20(-;1)	-9.56(-; 1)	-9.26(-; 1)	-9.13(-;1)	-9.10(--1)	-9.83
56	Ba	-9.48(-;1)	-9.30(06; 2)	-9.50(02; 2)	-8.98(04;2)	-9.65(-; 1)	-9.52(01; 2)	-8.96(25;2)	-9.15(-;1)	-9.87
	$T_{\text {eff }}$	8045	7993	7270	7662	7750	7872	7500	7600	
	$\log g$	3.50	3.96	4.20	4.00	4.50	3.66	4.20	4.00	
	$v_{\text {mic }}$	2.5	2.6	2.7	2.6	2.6	2.6	2.7	2.7	
	$v \sin i$	119	85	138	102	150	188	90	155	

Fe: -4.28 to -4.62dex; 0.34 dex

Slettebak et al., 1980, ApJ, 242, 171

Von Zeipel theorem (1924,
Energy generation rate MNRAS, 84, 665)

From the rotational velocity $=>\varepsilon=>\mathrm{T}_{\text {eff }}$ and $\mathrm{L}(\log \mathrm{g})$

Collins \& Smith, 1985, MNRAS, 213, 519

p ... Degree of differential rotation

Collins \& Smith, 1985, MNRAS, 213, 519

Conclusions - Width of the Main

 Sequence- Differential reddening: $\mathrm{k} \cdot \Delta \mathrm{E}(\mathrm{B}-\mathrm{V})$
- Spectroscopic Binaries: 0.753 mag
- Metallicity: up to 1.2 mag for M_{V}, but only 0.2 mag for $(U-B)$ versus $(B-V)$
- Rotation: 1 mag for $\mathrm{M}_{\mathrm{V}}, 0.2$ (?) mag for $(U-B)$ versus $(B-V)$

47 Tuc

Definition - Radii

- Core Radius: Distance at which the apparent surface luminosity has dropped by half
- Half-Light Radius: Distance from the core within which half the total luminosity from the cluster is received
Half-Mass Radius: The radius from the core that contains half the total mass
- Tidal Radius: Distance from the center at which the external gravitation of the galaxy has more influence over the stars in the cluster than does the cluster itself

Density - Profile (King Profile)

- Heuristic description of the density law of star clusters (open and globular) by Ivan King (1962, AJ, 67, 471):

$$
f=f_{1}\left[\left(1 / r-1 / r_{t}\right)^{2}\right]
$$

f... Stars per square unit or surface density; $f_{1} \ldots$ Constant; $r_{t} \ldots$ Radius $f(r)=0$

- General formula:

$$
f=k\left\{\frac{1}{\left[1+\left(r / r_{c}\right)^{2}\right]^{\frac{1}{2}}}-\frac{1}{\left[1+\left(r_{t} / r_{c}\right)^{2}\right]^{\frac{1}{2}}}\right\}^{2}
$$

k ... Constant; r_{c}... core radius

Density - Profile (King Profile)

- Typical Globular Cluster:

1. $r_{t} / r_{c} \sim 30$
2. Unit for k is $V=10$ mag per square arc minute

The parameters r_{t} and r_{c} can be treated within numerical simulations and can be converted into an „astrophysical quantity", for example:

$$
r_{t}=R\left(M / 2 M_{g}\right)^{\frac{1}{3}}
$$

R ... Distance from the galactic center; M ... Mass of the Globular Cluster; $\mathrm{M}_{\mathrm{g}} .$. Mass of the Milky Way

King et al., 1968, AJ, 73, 456

Sánchez \& Alfaro, 2005, ApJ, 696, 2086

Also works for open clusters

Ellipticity

Goodwin, 1997, MNRAS, 286, L39

Figure 1. The ellipticity distributions of globular clusters in the LMC (full line) and the Galaxy (dashed line) from data in White \& Shawl (1987) and Kontizas et al. (1989).

Dotted line indicates probable outline of the galaxy, a flattened lens-shaped system formed by the stars, as seen edgewise from outside. Eccentric position of the Sun is shown by a cross. Some of the known open star clusters are scattered among the stars in shaded region. Small circles represent globular clusters.

Two „external Populations"

- Halopopulation:
- Spherical around the center of the Milky Way
- Very extended (Halo)
- $-2.5<[\mathrm{Fe} / \mathrm{H}]<-1 \mathrm{dex}$
- 10 < Age < 15 Gyr
- Diskpopulation (Bulge):
- More concentrated around the center of the Milky Way
- $-0.7<[\mathrm{Fe} / \mathrm{H}]<+0.5 \mathrm{dex}$
- Age about 10 Gyr
- Continuous transition!

Bica et al., 2006, A\&A, 450, 105

153 Globulars

Two Populations

Reddening
Although the large distance, no reddening, Halo

New Globulars with large reddening and large distance detected

Multiple „, internal Populations"

- Multiple Main, AGB and HB Sequences within one Globular were found
- Not for all Globulars although same observational quality
- No clear morphology detected yet
- Also indications for the oldest OCLs
- Project SUMO:
http://www.iac.es/proyecto/sumo/index.html

Double sub-giant branch but no double Main Sequence

No "location" effect

Reddening determination also works for these indices, not only for (U-B) versus (B-V)

Red Giant Branch

$$
C_{U, B, I}=(U-B)-(B-I)
$$

Individual populations

