Star clusters before and after Gaia

Ulrike Heiter

Uppsala University

Outline

- Gaia mission overview
- Use of stellar clusters for calibration of stellar physical parameters
- Impact of Gaia data on cluster research

Gaia mission objectives

- Mapping the Milky Way Galaxy in **six dimensions**
- Positions of ~I billion stars
 - scanning satellite with two viewing directions
 - limiting magnitude = 20
 - accuracy down to 20 μas
- **Space velocities** of Galactic stars
 - proper motions for all stars
 - radial velocities for objects brighter than 17th mag
- Physical parameters for all stars

Gaia mission characteristics

ESA cornerstone mission

150 million km

- Launch date: 2012
- Lissajous-type orbit around second Lagrange point
- Lifetime: 5 years

Sun

12 Sep 2008

Simulations for T_{eff} =3500K

12 Sep 2008

Simulated RVS data

Physical properties of Gaia sources

- Classification of all sources → probabilities for single star, binary, galaxy, quasar, asteroid, etc.
- Astrophysical parameters for stars: $T_{\rm eff}$, log g, metallicity, α elements, interstellar extinction
- Software development based on model spectra
- **Testing** and **calibration** of algorithms using sets of stars with observed spectra and known parameters
- Spin-off: improved model spectra and stellar atmosphere models

Outline

- Gaia mission overview
- Use of stellar clusters for calibration of stellar physical parameters
- Impact of Gaia data on cluster research

Sources for calibration stars

- Bright stars (6 < V < 14) for algorithms based on RVS data \rightarrow field stars from stellar parameter catalogues
- Faint stars (10 < V < 18) for photometer algorithms
 - stars in **open and globular clusters**
 - open clusters selected using WEBDA (described in posters by Paunzen et al. and Baumann & Paunzen)
 - metallicity \leftarrow Twarog et al. (1997), Gratton (2000)
 - age, reddening, distance \leftarrow Paunzen & Netopil (2006)
 - globular cluster parameters from Harris (2003)

Calibration stars in open clusters

Name	[M/H]	Distance	Age	North/South
NGC 2506	-0.4	far	old	S/N
NGC 2660	-0.2	far	old	S
Melotte 111	+0.0	nearby	young	N/S
IC 4756	+0.0	nearby	young	N/S
IC 2395	+0.0	nearby	young	S
NGC 2682	+0.0	nearby	old	N/S
NGC 6819	+0.0	far	old	Ν
Berkeley 18	+0.0	far	old	Ν
NGC 6791	+0.2	far	old	Ν
Melotte 25	+0.2	nearby	young	N/S
NGC 6067	+0.2	far	young	S
NGC 6253	+0.4	far	old	S

Faint stars in southern open clusters

12 Sep 2008

Ulrike Heiter - Gaia and star clusters

Ground-based observations of calibration stars

- Need homogeneous set of low- and high resolution spectra – new or from archives
- Purpose
 - input spectra for testing algorithms
 - parameter determination of calibration stars
- Observing programmes planned, with
 C. Soubiran (Bordeaux), F. Thévenin (Nice),
 Y. Frémat (Brussels), A. Vallenari (Padova)

Outline

- Gaia mission overview
- Use of stellar clusters for calibration of stellar physical parameters
- Impact of Gaia data on cluster research

 from Gaia Concept and Technology Study
 (ESA, 2000)

Open clusters

- Gaia will observe all known open clusters, with mean distances to better than 1%
- Will discover thousands of new ones
- Detection possibility depends on intrinsic parameters

 total number of members, age, space velocity
- and relative parameters
 - distance, interstellar absorption number of members brighter than V = 17 or V = 20
 - velocity relative to local standard of rest

Cluster detection

5 kpc – nearly complete census of open clusters

Old open clusters at high absorpion: few stars brighter than V=17 at 2 kpc Young rich clusters: >30 stars brighter than V=17 at LMC distances

Lund Observatory (1955)

Galactic globular clusters

- Complete census of member stars in non-central parts of all globular clusters
 - I/3 of clusters fully observed by Gaia
 - 2/3 thirds observable at \geq 3 central radii
- Mean distances to better than 1% for ~3/4 of all globular clusters, mean distances to better than 5% for all clusters → Calibrate distances of external globular clusters

What will we learn from cluster data?

- Stronger constraints for stellar models
- New insight in spatial and chemical structure of galactic disk from open clusters
- Absolute ages for globular clusters to better than IGyr \rightarrow resolution of age conflict?
- Mass of the Milky Way halo to within ~20 percent from globular cluster proper motions
- New lower limit to age of Universe from globular cluster ages

Conclusions

- Gaia is a versatile space mission, but data processing is a challenge
- Star clusters play a crucial role for Gaia data calibration
- Gaia data will advance research done on and with stellar clusters