Cataclysmic variables $(CV) \rightarrow classical novae (CN)$

Petr Kurfürst ÚTFA MU Brno

Astronomical transients Selected chapters from astrophysics, fall semester, 2022

Talk outline

- WDs
- Hydrogen accretion onto WD
- Classical (recurrent (RN)) novae
- Thermal stability of a WD hydrogen surface layer
- He accretion onto WD
- CSM interactions

WD initial/final mass relation \leftarrow masses in open clusters (Adding/removing material to or from WDs)

Credit: Kalirai+ 2018

- WD initial mass relation typical WD initial/final masses (Hansen+ 2007)
- Most massive WDs are only coming from most massive (relatively) stars

WD initial/final mass relation \leftarrow masses from SDSS

Figure 7. Mass distribution for the DA stars in the SDSS with 40,000 K > T_{eff} > 13,000 K. The distribution shown with a solid line corresponds to our optimal sample of 1089 DA stars with S/N > 15. In comparison, we show as a dashed line the distribution with an alternate cutoff of S/N > 20, scaled to match the former (the number of stars is given on the right-hand scale). The mean mass and standard deviation are given in the figure.

Fig. 14. Similar to Fig. 11 but for the SDSS E06/TB11 sample with $T_{\rm eff} < 40000$ K and S/N > 15 (black empty histograms). We also highlight the sub-distributions for 13000 $T_{\rm eff}$ (K) < 40000 (blue histograms, radiative atmospheres) and $T_{\rm eff} < 13000$ K (red histograms, convective atmospheres). Binaries and magnetic objects were removed from the distributions.

Credit: Tremblay+ 2011, 2013

- Only 5 WDs with $M > 1.3 M_{\odot}$
- Very rare, origin often speculated to be WD mergers

Accreting WDs

- White dwarfs have typically 'done' burning after the large giant envelope is lost in strong winds and pulses and they simply cool 'forever'.
- Nuclear reactions can be revived, however, when a WD is in a tight binary and given the opportunity to accrete fresh Hydrogen or/and Helium.
- The tightest detected binary system is ZTF J1813+4251, including a sun-like star and white dwarf, co-orbiting every 51 minutes (Burdge+2022 using an algorithm that searched over 1000 images from the ZTF, identifying stars that had brightness variability periods around 1h)
- Though rare, the resulting thermonuclear outbursts are commonly observed in our galaxy and others.
- Indeed, they are the most frequent type of transients seen in a typical galaxy!

Accreting WDs WD of C/O donor star - H/He or pure He

• < 1% of WDs are in binaries where accretion occurs, releasing gravitational energy $GM_1m_p/R_1 \approx$ 100 - 300 keV/nucleon

 Whereas nuclear fusion of H→He or He→C releases energy 1 - 5 MeV/nucleon

• This contrast is further enhanced when the WD stores fuel for > 1000 years and burns it rapidly, making these **binaries detectable** in distant galaxies during the thermonuclear event

Accreting WDs

M87 galaxy (Virgo A)

Some numbers:

 \bullet Two WDs are 'made' per year in a $10^{11}~M_{\odot}$ elliptical galaxy

The observed rates are:

~20 Classical Novae (H fuel) per year, implying a WD/MS contact binary birthrate of one every 400 years (Townsley & Bildsten [T&B] 2005)
One Type Ia SN every 250 years, that is, one in 500 WDs explodes!

• Predicted rates: Helium Novae (Eddington-limited) every 250 years, one large He explosion every 5000 years, and WD - WD mergers every 200 years

Some numbers:

• Basic classification: 3 observed types (Sokoloski, Bildsten & Ho 2001)

	Cataclysmic variables	Supersoft sources	Symbiotics ^c
Orbital period:	Hours	Hours – Days	Years
Mass transfer mechanism:	Stable RLOF ^a	Unstable RLOF	Wind of RLOF
$\dot{M}_{WD} \left(M_{\odot} \mathrm{yr^{-1}} \right)^{b}$:	$10^{-10} - 10^{-8}$	$10^{-8} - 10^{-6}$	$10^{-9} - 10^{-5}$
Observed number:	400-500	pprox 35	pprox 190
Magnetic subclass:	Yes	?	Yes
Outbursts:	TNR ^a & DI ^a	Cause?	Cause?
Disc:	Yes	Yes	Some?
Steady nuclear burning:	No	Yes	Some
Flickering:	Yes	Some	Some

^aRLOF=Roche lobe overflow; TNR=thermonuclear runaway; DI=disc instability ${}^{b}\dot{M}_{WD}$ is the time-averaged accretion rate onto the WD ^c Let's leave it to Jaroslav Merc

 Their "physical nature" differs mainly in mass inflow rate M_{WD}, outburst mechanisms, and stability of H-shell nuclear burning

Some numbers:

- Classification according to the light curve development speed:
- fast novae (NA) rapid brightness increase, followed by a brightness decline of \sim 3 mag within \sim 100 days (Ritter & Kolb 2003)
- slow novae (NB) decline of \sim 3 mag in 150 days or more
- very slow novae (NC) also known as symbiotic novae, staying at maximum light for a decade or more and then fading very slowly.
- recurrent novae (RNe) multiple registered nova eruptions separated by 10-80 years (Bode & Evans 2008)
- dwarf novae instability in the accretion disk that causes a change in viscosity heating the whole disc increase of *L*
- Extragalactic novae relatively common in M31 (several dozen novae brighter than about 20 mag each year) also in M33 and M81

Some kinematics:

(cf. Paczyński 1971, T&B 2005)

• Radius of a low-mass MS binary companion with filled RL is

$$R_2 = 0.46 a \left(rac{M_2}{M_{
m WD} + M_2}
ight)^{1/3}, \quad {
m with} \quad \omega_{
m orb}^2 = G \; rac{M_{
m WD} + M_2}{a^3}$$

• Relation between such a low-mass MS star average density and the orbital period:

$$P_{\rm orb} = 10.6 \, {\rm hr} \left({{\rm g} \, {\rm cm}^{-3} \over \langle \rho \rangle} \right)^{1/2}, \quad {\rm where} \quad \langle \rho \rangle = {3 I \over 4 \pi}$$

• Orbital period of a CV with the above MS donor star is

$$P_{\rm orb} = 9 \, {\rm hr} \sqrt{\frac{M_\odot}{M_2} \left(\frac{R_2}{R_\odot}\right)^3}$$

Cataclysmic variables:

- \sim 1 in 100 WDs end up in a CV, local space density is 1 per 40 pc³
- Optically variable objects with strong emission lines; at low accretion rates, the disk is thermally unstable, leading to dwarf novae outbursts
- Very uncertain whether the WD mass increases or decreases, but it is clear that 0.3-0.6 solar masses is put on the WD over its "lifetime"
- **Figure**: evolution of a single CV with init $M_2 = 0.9 M_{\odot}$; $M_{WD} = 1.1 M_{\odot}$; the system first comes into RL contact at $P_{orb} = 6$ h and evolves through the period gap to the min P_{orb} and back to longer periods by 10^{10} yr

- Left panel: Normal distribution of CNe orbital periods of 9 systems with $P_{\rm orb} < 6 \, {\rm hr}$
- Right panel: Orbital period distribution of 1144 semidetached binaries containing a WD and a RL filling low-mass secondary; the green band highlights the period gap $(2.15 \text{ h} \lesssim P_{\text{orb}} \lesssim 3.18 \text{ h})$

Accreting WDs

- Things yet to be explained:
- Why is the burning thermally unstable (first approximation analytical solution a bit more math)?
- How does a thermally unstable model evolve?
- What is the rate of the events from a given binary?
- How do we understnd their outcomes? (not quite well... considering)
- Do we have any good predictions that are testable? (I will highlight supersoft sources from stable burning after the flash)

(cf. K. Shen & L. Bildsten 2007, LB's talk at 35 HUJI WS, Agrawal+ 2021)

• steady state luminosity $L = Q\dot{M} + L_{core}$, with specific nuclear energy release Q, and accretion rate (mass overflow) \dot{M}

- typical values: $Q \sim 5 \times 10^{18} \text{ erg g}^{-1}$ for H/He \rightarrow He, $Q \sim 1 \times 10^{18} \text{ erg g}^{-1}$ for He \rightarrow C
- heat transfer in advection zone: $L(r) = -4\pi r^2 \left[\frac{1}{3} \frac{c}{\kappa_0} \frac{d}{dr} a T^4 \right]$ (1)

• outer envelope in a steady state HEq: $dP/dr = -\rho(r)g$

• $\frac{dP_{rad}}{dP} = \frac{\kappa L(r)}{4\pi GM(r)c} = \frac{L(r)}{L_{Edd}(r)}$, with $\kappa \equiv \kappa_{es} = \text{constant}$ (2)

• This profile survives until we reach high enough ρ and T to burn

- We introduce the following timescales:
 - accretion time: $t_{
 m accr} = rac{\Delta M}{\dot{M}}
 ightarrow$ time to accrete the ΔM layer
 - nuclear burning time: $t_{nuc} = \frac{Q}{\epsilon(\rho, T)} \rightarrow time to deplete the fuel$
 - $\epsilon(
 ho,T)$ is the nuclear energy generation rate [erg g^{-1} s^{-1}]

- gas layer undergoes compression for some time \to until it is dense and hot enough for nuclear fusion ignition
- further compression is now of the "ash" (basically He)

• comparability of t_{accr} and t_{nuc} at TN burning: $\frac{\Delta M}{\dot{M}} = \frac{Q}{\epsilon(q,T)}$ (4)

• pressure at TN layer:
$$P = \frac{F}{S} = \frac{g\Delta M}{4\pi R^2} = \frac{GM\Delta M}{4\pi R^4}$$

• is this solution stable to thermal perturbations?

• from the 1st LTD:
$$T \frac{ds}{dt} = \epsilon(\rho, T) - \frac{dL(r)}{dM(r)} = \epsilon_{nuc} - \frac{1}{\rho} \nabla \cdot F$$
 (5)

• putting in thermal perturbation: will T rise or drop? Assume a constant pressure perturbation dP (relevant assumption in a thin limit) $c_{\rho} \frac{dT}{dt} = \epsilon_{nuc} - \frac{1}{\rho} \nabla \cdot F$ (RHS = steady state: $\epsilon_{nuc} - \epsilon_{cool}$) (6)

• one zone model: from TB $dP/g = -\rho dr$, that is, $\epsilon_{\text{cool}} = -\frac{1}{\rho} \frac{d}{dr} \left[\frac{c}{\kappa \rho} \frac{d}{dr} \left(\frac{1}{3} a T^4 \right) \right] = -g^2 \frac{d}{dP} \left[\frac{c}{\kappa} \frac{d}{dP} \left(\frac{1}{3} a T^4 \right) \right] \propto T^4(7)$

(*P* is better coordinate than ρ - it does not change so much)

- what about perturbing the nuclear burning rate $\epsilon_{nuc} \equiv \epsilon(\rho, T)$?
- we expand ϵ_{nuc} : $\frac{\delta\epsilon}{\epsilon} = \frac{\partial \ln \epsilon}{\partial \ln \rho} \frac{\delta\rho}{\rho} + \frac{\partial \ln \epsilon}{\partial \ln T} \frac{\delta T}{T}$ (8)
- perturbed quantities $\delta \rho$, δT
- $\frac{\partial \ln \epsilon}{\partial \ln \rho} \approx 1$, while $\frac{\partial \ln \epsilon}{\partial \ln T} \equiv \nu \approx 10$ for CNO burning at $T = 10^8 \text{ K}$

• total pressure:
$$P = \frac{\rho kT}{\mu m_p} + \frac{aT^4}{3}$$
, perturbation $\delta P = 0$

• perturbing this, we get: $\frac{\delta\rho}{\rho} = -\frac{\delta T}{T} \left(1 + 4 \frac{P_{\text{rad}}}{P_{\text{gas}}}\right)$, so if (9)

• $P_{\rm rad} = 0$, then $\delta \ln \rho$ and $\delta \ln T$ are (clearly) anticorrelated

• $P_{\rm rad}$ becomes important, then $\delta \ln \rho / \delta \ln T$ grows up, and the density decline is going to shut off the burning (this is why nuclear burning can be stabilized in a WD case)

- recalling the equation $c_p \frac{dT}{dt} = \epsilon_{nuc} \epsilon_{cool}$, its perturbations are:
- LHS: $c_{\rho} \frac{\mathrm{d}}{\mathrm{d}t} (T_0 + \delta T) = c_{\rho} \frac{\mathrm{d}}{\mathrm{d}t} \delta T$, where T_0 is a fiducial T (10)
- RHS: $= \epsilon_{nuc} \epsilon_0 \left(\frac{T}{T_0}\right)^4$, where ϵ_0 is the "stable" rate,

• that is, using Eq. (8):
$$\epsilon_0 \frac{\delta T}{T_0} \left(\nu - 1 - 4 \frac{P_{\text{rad}}}{P_{\text{gas}}} \right) - 4\epsilon_0 \frac{\delta T}{T_0}$$
, (11)

• If $\epsilon_{nuc} > \epsilon_{cool}$, the solution is unstable: $\nu > 1 + 4\left(1 + \frac{P_{rad}}{P_{gas}}\right)$

- From this condition, we can constrain the (narrow) stabilizing luminosity zone: $\frac{P_{rad}}{P} = \frac{\dot{M}}{\dot{M}_{Edd}} = \frac{L}{L_{Edd}} = \frac{5}{9}$
- This can be achieved either by high "core" luminosity L_{core} or by high accretion rate \dot{M}/\dot{M}_{Edd}

Credit: Townsley & Bildsten 2005

• \dot{M} for Z = 10⁻², no $L_{\rm core}$. No hydrostatic envelope above the stability strip, thermally unstable envelope below this. Numerical equivalent bounds (right panel, dashed lines), nuclear $\dot{M}_{\rm Edd}$ (dotted line).

Classical novae from unstable TN burning of accumulated matter

Accretion of H/He at low rates leads to a limit cycle of accumulation followed by thermonuclear instability

Reccurence times

depend on WD mass and accretion rate

Stable burning can occur at high \dot{M} rates due to radiation pressure stabilization

- left panel: T and ρ for varying M and \dot{M} of WDs with steady burning of H in cold CNO. M = 0.5 (squares) and $1.35 M_{\odot}$ (circles).
- right panel: ranges of thermally stable accretion rates assuming no L_{core} , with given metallicity. Burning is via the full CNO cycle.

• $1.2\,M_{\odot}$ CO nova sims with MESA; dashed lines - without CBM

Credit: Finzell+ 2018

After a big ejection: Supersoft phase

- Always an amount of H left to burn stably over a prolonged time, typically once the WD radius shrinks inside it's RL
- These post-nova WDs are then seen in what's called a supersoft phase; can be seen also in MW, likely responsible for keeping the expanded ejecta hot for so long that a radio source is detected

• Physics best studied in M31, which is well monitored for Novae and can be observed by soft X-ray instruments to measure how long the supersoft source is on

He-accreting WDs (shortly)

He accretion scenarios:

- Low mass He WD donors, accretion rates are in the unstable regime, but flashes are likely weak
- Burning He WDs cores (sdB stars) accrete for a long time at low rates and allow for accumulation of very thick unstable He shells
- More massive He burning cores can find their way into stable regime, avoiding flashes

He-accreting WDs (shortly)

The expanding bipolar shell of He Nova V445 Puppis

He nova V445 Puppis:

Credit: Woudt+ 2009

CSM interactions

- Early UV/X-ray Flash from the TNR + short-lived phases soon after
- Many CNe are gamma-ray sources, most likely due to internal shocks in the ejected material

- Collisions generate internal shocks → sweep up gas into a cool thin shell (Steinberg& Metzger 2020)
- These radiative shocks generate a correlated gamma-ray and optical flare via ejecta reprocessing of accelerated relativistic particles and thermal UV/X-ray emission

CSM interactions

Schematic timeline of the physical processes and electromagnetic signals from novae. The figure includes modified images of convection/mixing during the thermonuclear runaway (Metzger+ 2020)