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TDE phenomenon
cf. T. Piran’s &
E. M. Rossi’s talk on 35HUJI

Credit: Stephan Rosswog 2006
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TDE phenomenon

Tidal disruption occurs when
the tidal gravitational field has
comparable magnitude to the
self-gravity of the star,
occurring at a radius given by

R t ≈ R⋆

(
MBH

M⋆

)1/3

Gas particles are then ejected
on nearly ballistic orbits

Disrupted stars are typically on
approximately parabolic orbits

Half of the material is bound
while the other half forms an
unbound collimated stream

Credit: Martin Rees 1988



TDE phenomenon

X-rays

Optical/UV

RadioRadio → interaction zone of
debris with CSM → very
similar to GRB afterglows
(see previous lecture)

Differences → not relativistic
& very far from spherical →
the role of shock waves
basically similar

Optical/UV comes from the
central blob of matter → from
the distance ∼ 1015 cm out of
the center; from the region
where the two streams interact

The X-rays come from the very
tiny region of the accretion
process around the center Credit: Rosswog+ 2009



TDE phenomenon



TDE process

Tidal radius:

R t ∼ R⋆

(
MBH

M⋆

)1/3

≈ 30 (will derive later)

Energy E t necessary to bring the star to R t
from “infinity”:

E t ≈
GMBHM⋆

R⋆
∼ M⋆c

2

R t/Rschw
≈ 1052 ergs

Hydrodynamic timescale τ h to disrupt the
star:

τ h ∼
(
GM⋆

R3
⋆

)−1/2

≈ 103 - 104 s

The specific energy ∆E necessary to disrupt the star:

∆E ∼ ±GMBH

R2
t

R⋆ (will derive later) ∼ 1020 erg ∼ v2
∞
2

⇒ v∞ ∼ 104 km s−1

Credit: Bonnerot+ 2017



Dynamics & rates → TDEs cf. Re’em Sari’s talk on 35HUJI

Dynamic processes near a galactic center leading to TDEs

Rates: Loss cone ⇒ full/empty

Relaxation timescale → 2-body (resonance relaxation)

Evaluating the ratio
RTDE

REMRI
(Extreme-Mass-Ratio-Inspiral: stars orbiting around

BH emitting GWs → get closer to the BH via slowly inspiralling on ∼circular orbits)

Distribution of stars around BH: Bahcall-Wolf (BW) cusp → ρ ∼ r−7/4 → may
affect the loss cone rates

Galactic central BH mass: MBH = 4 × 106 M⊙ ⇒ Rschw =
2GMBH

c2 ≈ 0.1 AU

Radius of influence Rinf: radius of a sphere where the mass of stars equals the

MBH ⇒ Mtot(r < Rinf) = 2MBH; Rinf ∼ 2 pc in our galaxy ⇒ Rinf

Rschw
≈ 4 × 106



Loss cone: full/empty Credit: Bonnerot, Thesis, 2017

We now ignore the fact that
stars have different masses ⇒
⟨M⋆⟩ ∼= 1M⊙ → # of stars
within the Rinf ∼= 4 × 106

Circular Keplerian orbital
period P at Rinf ≈ 105 yrs

Tidal (residual) differential acceleration exerted by BH on a star with mass
M⋆ = M⊙ and radius R⋆ = R⊙, at a distance r ≫ R⋆:

a t =
GMBH

r2 − GMBH

(r + R⋆)2
≈ 2GMBHR⋆

r3

We expect that if a t ≥ g⋆, the star will be tidally disrupted: we define the tidal
radius r = R t where a t = g⋆ ≡ GM⋆/R

2
⋆ ,

R t ≈ R⋆

(
2MBH

M⋆

)1/3

≈ 1 AU ⇒ R t

Rschw
≈ 10 (in our galaxy)



Loss cone: full/empty Credit: Bonnerot, Thesis, 2017

Let’s assume all 4 × 106 stars
concentrated in or at R inf

with isotropic distribution of
velocity v : how many stars
will have the pericenter
distance R p of their elliptical
orbits below R t?

Conservation of angular momentum: j = VorbRinf =
√
GMBHRinf for a star

orbiting at Rinf with the Keplerian orbital velocity, per unit mass

Angular momentum on an Keplerian orbit scales as ∼
√
r ⇒ only stars in the

point P with j lower by
√
R t/Rinf compared to j circ can get below R t ⇒ only

a fraction of orbits forb

(
j <

√
R t

Rinf
j circ

)
=

R t

Rinf
(2D cone section!)

The latter ratio= (4 × 10−5)−1 ⇒ from the # of isotropically moving stars in
the point P, only 10 may have sufficiently small j



Loss cone: full/empty Credit: Bonnerot, Thesis, 2017

This means: every 105 years
(Porb on Rinf), we will have 10
TDEs ⇒ full loss cone:

RTDE =
N⋆

R t
Rinf

P
=

MBH

M⋆

R t

Rinf

1
P

RTDE ∼ 10/P → but: only in
case of no interactions
between orbits!

After some time will all stars within this cone in velocity space be tidally
destroyed: we obtain the empty loss cone ⇒ RTDE = 0

Next step: how quickly the stars scatter each other to refill the loss cone that
the BH evacuated?



Loss cone: full/empty
2 stars moving absolutely randomly at or near Rinf: one
passes the other with velocity vorb, with an impact
parameter b; the change in j is given by mutual gravity
times the timescale of the interaction b/vorb, times Rinf:

∆j =
GM⋆

b2
b

vorb
Rinf =

GM⋆

b vorb
Rinf

gt = v
What is the rate of interactions at a distance b? A cylinder with a volume
V = 1/ρ → a cross-section S = πb2 and a length ∆x :

1
t
=

ρS∆x

t
≈ πb2 N⋆

R3
inf
vorb = πb2MBH

M⋆

1
R3

inf
vorb

What will be the value of b → to deflect an orbit by 90◦? Change in the “red”
velocity gt will be vorb (in case of 180◦ deflection → 2vorb - see the 5th lecture):

bmin:
GM⋆

b vorb
= vorb ⇒ bmin =

GM⋆

v2
orb

≡ M⋆

MBH
Rinf

So, over the timescale for which these interactions occur, the velocity
distribution will be completely reconfigured → “isotropised”



Loss cone: full/empty

What will be the timescale of these interactions? The inverse
of the rate of interactions with bmin will be the relaxation
time (+ a small logarithmic factor added later):

Trelax ∼
[
b2MBH

M⋆

1
R3

inf
vorb

]−1

=
MBH

M⋆
P (∼ 1011 yrs ?)

We have to correct this time by a logarithmic factor that comes from the fact
that most of interactions are weaker even if more frequent:

Trelax ∼
MBH

M⋆
P

1

ln MBH
M⋆

(∼ 1010 yrs ≈ age of Galaxy)

But: for our purpose, I do not need to isotropise the j of all stars but only of a
tiny fraction of them that is necessary to refill the loss cone:

Trelax,LC =
R t

Rinf
Trelax ≈ P

This holds if the edges of the loss cone are sharp → they are diluted so you
have to “bring” stars from farther away → Trelax ≈ P × ln MBH

M⋆
≈ 10P



Alternative approach - j diffusion

j

f reservoir

1D

2D

j cj lc =
√

Rt
Rinf

j c

B

A

I can regard the previous also as a diffusion flux in 2D in a j space → pointing
out that the 1st Fick’s law in 2D has a specific property

We try to diffuse a quantity f (j) from the point A where it has a constant
distribution to the point B where it is cleaned

Why in 2D: only 2 components of v contribute to j (the 3rd - radial - does not)

The 1st Fick’s law in 1D: D
∂f

∂j
= const. → the flux is linear (black line)

The 2D 1st Fick’s law: j D
∂f

∂j
= const. ⇒ f ∝ ln

j

j lc
→ particles (stars) have

to diffuse through inwardly smaller ring areas that becomes “harder” (red line)



BW cusp
What will be the rate of 2B interactions in case of any given distance r :

1
t
∼ b2

min
N⋆(r)

r3 v(r) =
G 2M2

⋆

v(r)3
N⋆(r)

r3 =
G 2M2

BH
v(r)3

N⋆(r)

r3

(
M⋆

MBH

)2

=

= N⋆(r)
GMBH

r3
r

v(r)

(
M⋆

MBH

)2

= N⋆(r)

(
M⋆

MBH

)2 1
P(r)

(+ the log factor...)

Peebles: BH absorbs stars that arrive as a constant diffusion flux at a timescale
given by the latter; we denote N⋆(r) the number of stars within each radius r
→ # of stars evacuated from a given r with the above rate (per unit time) is
constant (wrong argument):

N2
⋆(r)

(
M⋆

MBH

)2 1
P(r)

= const. ⇒ ρ⋆(r) ∝ r−9/4

Bahcall & Wolf: Energy ∼ M⋆/r evacuated from a given r with the above rate
(per unit time) is constant (correct argument):

N2
⋆(r)

r

(
M⋆

MBH

)2 1
P(r)

= const. ⇒ ρ⋆(r) ∝ r−7/4



TDEs/EMRIs

r init

r p
not allowed

not allowed

not included

RinfRgw

R schw

R t
∼ r−1/2

2B

GW

Initial position of a ⋆ within the gray strip near the diag line (circular orbits →
45◦ if properly scaled); they may accidentally diffuse around their j equilibria
within the strip; some refill the loss cone → diffuse “vertically” down to R t

⋆ with rinit < Rgw diffuse “vertically” down only to the red line (∼ r−1/2 dividing
the “2-body region” from the “GW region”), then move “horizontally” to the

diagonal line, and then along it to R t: the ratio
RTDE

REMRI
=

Rinf

Rgw
=

(
R t

Rschw

)2



TDEs/EMRIs

Breakup of binaries may alter this “picture” → “story” for a separate lecture

For any significantly eccentric orbit, we do not need to change it much because
the pericenter is already close to BH: the time-rate to change the pericenter is

smaller by j2 (where j ∼ √
rp) → 1

t
∼ N⋆(r)

(
M⋆

MBH

)2 1
P(r)

rp
r

→ with N⋆(r)

given from the BW cusp

The timescale at which GWS can bring any orbit r to a smaller rp:

Tgw =
Rschw

c

MBH

M⋆

(
rp

Rschw

)4
rp
r

(
r

rp

)3/2

,

where the 1st fraction is the timescale of two equal bodies at Rschw, the 2nd
fraction → longer time due to the mass ratio, the 3rd term → the GR gives
t ∼ r4

p to shrink the orbit from rp to Rschw, the 4th term → the lowering of
emitted E for much wider orbit r > rp, and the last one → the longer time due
to lower velocity at r



TDE energy budget

Let’s describe the basic dynamics associated
with the passage of the star at pericenter:

The star starts to be deformed at a few Rt

from the BH → stretched along an almost
radial direction → stellar debris spread with
(specific) Eorb = E = −GMBH/(Rt + R⋆):

E = E (Rt) + ∆E ≈ −GMBH

Rt
+

GMBH

R2
t

R⋆

At Rt, ⋆ is confined between two orbital
planes that intersect near pericentre, and ⋆
is progressively compressed into a “pancake”

We introduce β as Rt/Rp, in the limit β ≫ 1, the inclination angle between
these two planes is α ≈ R⋆/(Rt sin θt) ⇒ (parabola)

cos θt =
2Rp

Rt
− 1 ⇒ sin θt ≈ θt =

√
Rp

Rt
⇒ α ≈ R⋆√

RpRt

Credit: Bonnerot+ 2017



TDE energy budget

At pericentre, in addition to shearing along
the orbital plane, the star undergoes a
vertical compression for a large β:

The specific vertical “compression” energy

∆Ec =
1
2
⟨v2

c ⟩ ⇒ the pericenter

“compression” velocity
√
⟨v2

c ⟩ ≈ αvp where

vp =

√
GMBH

Rp
is the orbital velocity at Rp

Substituting Rt and β, the latter gives

⟨v2
c ⟩ ∼ ∆Ec = β2GM⋆

R⋆

Credit: Bonnerot+ 2017



TDE energy budget

This strong vertical compression causes the
formation of shocks that convert this energy
∆Ec into a compressive heat Tc

Comparing
∆Ec

∆E
∼ β2

(
M⋆

MBH

)1/3

⇒ can be

ignored unless β ≫ 1 ⇒ the effectivity of the
compression increases for smaller BHs

From the previous and from the stellar
structure and evolution theory →
temperature at a stellar center T⋆ ∼ GM⋆

R⋆
⇒ Tc ∼ β2T⋆

⇒ for MS stars with T⋆ ≈ 107 K ⇒ β ≈ 3
can give He burning

Increase in T in WDs can be explosive
(He-flash)

Corresponding high compression
not obtained numerically →
a controversy? (Rossi+ 2017)

Credit: Bonnerot+ 2017



Fallback of matter on ballistic orbits
About half of the debris stream produced by
the disruption is bound to the BH → it
comes back to the disruption site

The stream moves ballistically around BH
→ the most tightly bound debris has an
orbital energy −∆E ≈ −GMBH/2a (Virial
→ Ek cancels half of Ep), which corresponds to
a semi-major axis amin and orbital period
tmin (using the Kepler law t2 ∝ a3 and
assuming dM/dE = const.):

GMBH

R⋆

(
MBH
M⋆

)2/3 =
GMBH

2a
⇒

amin =
R⋆

2

(
MBH

M⋆

)2/3

⇒ tmin ∼ R
3/2
⋆

√
MBH

M⋆
⇒

∆E ∼ M
2/3
BH t−2/3 → Ṁ =

dM
dE

dE
dt

∼ t−5/3

But: Stellar structure can
modify dM/dE
(Lodato+ 2009; Guillochon
& Ramirez-Ruiz 2013)

Victim star

Debris stream

Ṁ fb ∝ t−5/3



Circularisation

It is commonly believed that most of the
electromagnetic emission detected from
TDEs originates from the dissipation of the
debris orbital energy when the stream
comes back to BH

We can evaluate j at R p by comparing the
specific energies

1
2
v2 =

GMBH

R p
⇒ j p ≈

√
2GMBHR p

From the conservation of j , we define the
circularisation radius R circ where most of
the disrupted debris is settled at a circular
orbit within a standard accretion disk:

j p = j circ ≈
√
GMBHR circ ⇒ R circ = 2R p

The loss of orbital energy

is then ∆Ecirc ≈
3GMBH

4R p

Victim star

Debris stream

Ṁ fb ∝ t−5/3



Circularisation
Comparing the loss of circular energy
∆E circ with the compression energy ∆E c:

∆E circ

∆E c
∼ β

(
MBH

M⋆

)1/3

≈ 102

Assuming that a fraction η of the available
rest mass energy is dissipated and radiated
locally, the associated L can be larger than
the LEdd by a factor (Bonnerot 2017)

Ṁ

ṀEdd
=

ηṀc2

LEdd

This ratio exceeds unity initially as long as
the black hole mass is MBH ≤ 3 × 107M⊙
→ then decreases with time and becomes
lower than one for t ≥ tEdd with
tEdd/tmin ≡ (Ṁ/ṀEdd)

3/5 (Bonnerot 2017):

Lacc ≈ LEdd = 1044 erg s−1
(

MBH

106 M⊙

) But: some discrepancies
with the models → much
higher Teff then observed
(∼ 106 K / 50 000K)

Victim star

Debris stream

Ṁ fb ∝ t−5/3



TDE models

Credit: Rosswog, Ramirez-Ruiz & Hix 2009

Allowable region for the
TDEs of stars of different
evolutionary states: a
0.6M⊙ CO WD, a
0.17M⊙ He WD, a 1M⊙
MS star, and a 1.4M⊙
RG, bounded by the
conditions that Rp < Rt,
R⋆ < Rschw , and
Rt > Rschw for a TDE to
be observable, as a
function of MBH, and
β ≡ Rt/Rp



TDE models

Credit: Clerici &Gomboc 2020

Two behaviours of the circularisation of the debris, depending on the initial
orbital e and β: (a) shocks and higher precessing angles allow the debris to
form a circular disc quickly and (b) the shocks are not impactful enough to
allow fast circularisation → the debris follows elliptical orbits → Figure: the
debris does not circularise efficiently and a disc is not formed (quickly)



TDE models

Credit: Clerici &Gomboc 2020

Circularisation of the stellar debris: the debris quickly and efficiently
circularises, mainly through self-crossings and shocks, and forms a disc with no
debris falling back



TDE models

Credit:
Clerici & Gomboc 2020

Circularisation of the
stellar debris: the debris
circularises relatively
quickly and forms a disc
while there is still debris
falling back



TDE models

Lbol of TDE PS16dtm compared to an ensemble of models → dashed blue line
shows LEdd for fixed black hole mass of 106 M⊙, the dashed purple line shows
the AGN luminosity prior to the flare → the projected behavior of the flare
suggests that it will remain bright for years (Blanchard+ 2017)



TDE observables

PS1-10jh taken in the F225W
(UV) and F625W (optical) filters.
Grayscale and black contours
show an optical image dominated
by the host galaxy, and magenta
contours show the UV point
source associated with the fading
transient

UV/optical light curve of tidal disruption event
candidate PS1-10jh as measured by GALEX in
the NUV and PS1 in the g,r,i,z bands, 1250
rest-frame days since the peak of the flare.
Models for the fallback rate of a tidally
disrupted star from Lodato et al. (2009) are
plotted with thick lines and from Guillochon &
Ramirez-Ruiz (2013) are plotted with thin lines.

Credit: Gezari+ 2015



TDE observables

Parameters of PS1-10jh:

Peak luminosity: ∼ 1044 erg s−1

Temperature: ∼ 50 000K

Line width: ∼ 5000 km s−1

Total energy: ∼ 1051 erg

Rem: ∼ 1015 cm=∼ 1000Rschw



TDE observables

Radio TDEs

Credit: Alexander et al. 2017



TDE observables

Detection of transient, broad He II line emission on top of the hot, thermal
continuum 22 days before the peak of the flare in TDE PS1-10jh

Credit: Gezari+ 2021


