Reduction of échelle spectroscopy in IRAF

Theodor Pribulla

Astronomical Institute, Slovak Academy of Sciences, Tatranská Lomnica

Spectroscopic workshop, February 6-10, 2017, PřF MU, Brno

1. Prerequisites to reduce spectra

- Many alternative ways of echelle spectroscopic reduction exist !!!
- Types of spectra: biases and darks (depends on CCD temperature), object spectra, comparison spectra (e.g. ThAr, FeAr, HeNe), lamp flats (continuous light of tungsten, LED), alternatively chip flats (uniformly illuminated CCD chip without the spectrograph)
- FITS headers should contain: imagetype (flat, dark, object...), object coordinates (RA,DEC), geographical coordinates (longitude, latitude), dispersion axis (DISPAXIS keyword = 1 or 2), gain and read-out noise etc.
- CCD bad pixel mask should be produced with pixels, rows, columns of bad (e.g. hot or insensitive) pixels listed in ASCII file, e.g.

Bad Pixel mask created from file 20161111flat_S_1x1.fits
2 bad columns removed
685 686 1038 2048
932 934 730 732

A typical FITS header

SIMPLE = T
BITPIX = 16 /8 unsigned int, 16 & 32 int, -32 & -64 real
NAXIS = 2 /number of axes
NAXIS1 = 1374 /fastest changing axis
NAXIS2 = 1099 /next to fastest changing axis
BSCALE = 1.00000000000000000/physical = BZERO + BSCALE*array_value
BZER0 = 32768.0000000000000/physical = BZER0 + BSCALE*array_value
DATE-OBS= '2017-01-29T00:45:32' /YYYY-MM-DDThh:mm:ss observation start, UT
EXPTIME = 900.000000000000000000 /Exposure time in seconds
EXPOSURE= 900.0000000000000000000000000000000000
SET-TEMP= -20.00000000000000000000 /CCD temperature setpoint in C
CCD-TEMP= -20.029999552294612 /CCD temperature at start of exposure in C
XPIXSZ = 9.0800000000000000000000000000000000000
YPIXSZ = 9.0800000000000000000000000000000000000
XBINNING= 2 /Binning factor in width
YBINNING= 2 /Binning factor in height
XORGSUBF= 0 /Subframe X position in binned pixels
YORGSUBF= 0 /Subframe Y position in binned pixels
IMAGETYP= 'LIGHT '/ Type of image SITELAT = '49 09 10' / Latitude of the imaging location
SITELAT = '49 09 10' / Latitude of the imaging location
SITELONG= '20 17 28' / Longitude of the imaging location
JD = 2457782.5316203702 /Julian Date at start of exposure
FOCALLEN= 7500.000000000000000000 /Focal length of telescope in mm
APTDIA = 600.00000000000000000 /Aperture diameter of telescope in mm
APTAREA = 257296.44548892975 /Aperture area of telescope in mm^2
SWCREATE= 'MaxIm DL Version 5.18 130207 32K52' /Name of software that created
the image
OBJECT = 'TX UMa '
TELESCOP= 'Zeiss 600/7500' / telescope used to acquire this image
INSTRUME= 'G1_60cm_Eshl' / instrument or camera used
OBSERVER= 'Hambalek'
NOTES = 'Pribulla'
DISPAXIS= 1
RA = '10 45 20.5'
DEC = '+45 33 59'

2. Photometric reduction

- overscan correction in ccdproc
- making master darks using darkcombine, flatcombine

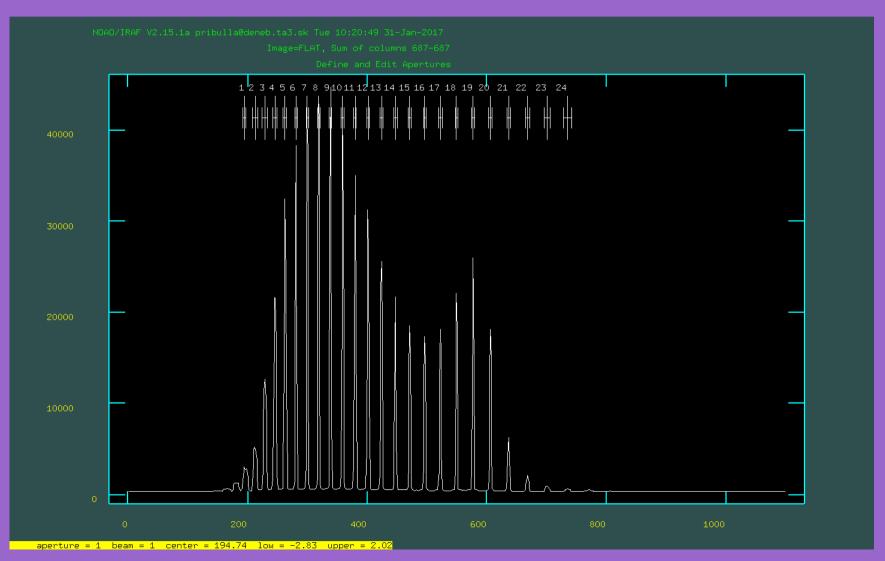
darkcombine input=@dark10.lst output=Dark10.fit combine=median process- scale=none

flatcombine input=@flats.lst output=Flat combine=median reject=crreject process- rdnoise=5.1 gain=0.26

 photometric reduction of the object frames, below is dark, flat and and bad-pixel correction done (list of parameters created by mkscript)

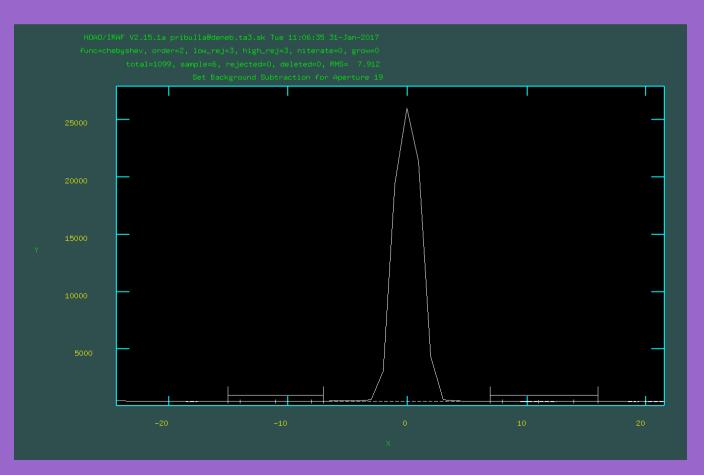
```
ccdproc ("raw/"//subor, output=corrsubor, ccdtype="", max_cache=0,
noproc=no, fixpix=yes, overscan=no, trim=no, zerocor=no, darkcor=yes,
flatcor=yes, illumcor=no, fringecor=no, readcor=no, scancor=no,
readaxis="column", fixfile="/scisoft/share/iraf/iraf/local/scripts/bpm-Atik.txt",
biassec="", trimsec="", zero="",
dark=darksubor, flat=flatsubor, illum="", fringe="", minreplace=1.,
scantype="shortscan", nscan=1, interactive=no, function="legendre", order=1,
sample="*", naverage=1, niterate=1, low_reject=3., high_reject=3.,
grow=0., >> "log_34.txt")
```

- removal cosmic hits/spikes (program of V. Pych can be used), alternative is crutil. package in IRAF
- cosmic hits are easily detected and removed when combining multiple spectra


3. Co-adding the frames

- For long-period objects it is practical to co-add the frames to (i) boost SNR (ii) clean cosmic hits
- It is good to define statistical region to weight the frames according to the signal, this can be done by first tracing lamp flats

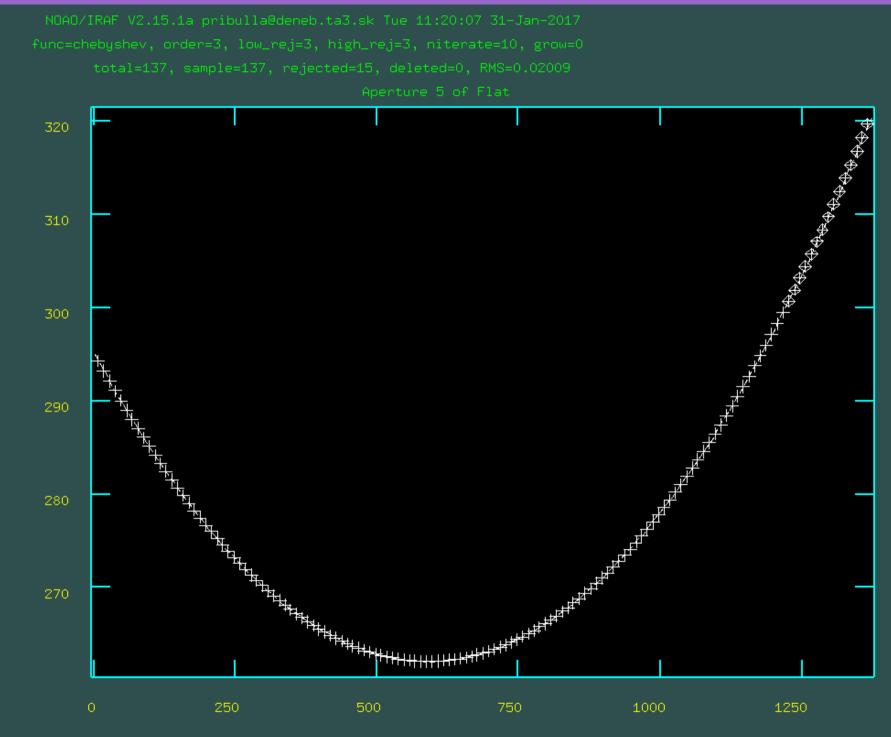
combine ("@"//inplist, outcome, plfile="", sigma="", ccdtype="", subsets=no, delete=no, clobber=no, combine="average", reject="crreject", project=no, outtype="real", offsets="none", masktype="none", maskvalue=0., blank=0., scale="median", zero="none", weight="median", statsec=region, lthreshold=0, hthreshold=60000., nlow=1, nhigh=1, nkeep=1, mclip=yes, lsigma=3., hsigma=3., rdnoise="5.1", gain="0.26", snoise="0.", sigscale=0.1, pclip=-0.5, grow=0)


4. Finding the echelle orders

• Now we work in noao.imred.echelle and use task apfind using a spectrum of well-exposed lamp flat or early-type star

5. Defining the apertures and bckgrnd

- Still working in apfind edit the apertures
- Ordering, resizing, deleting, adding of the apertures (=echelle orders)
- Important keys are: . (dot) selects nearest aperture, I and u lower and upper range for the aperture, b - set the background, t - initialize, s+s - background range, f - fit the background


6. Tracing the apertures

- still working with the lamp flat or early-type stellar spectrum use aptrace
- for first order-definition work interactively !

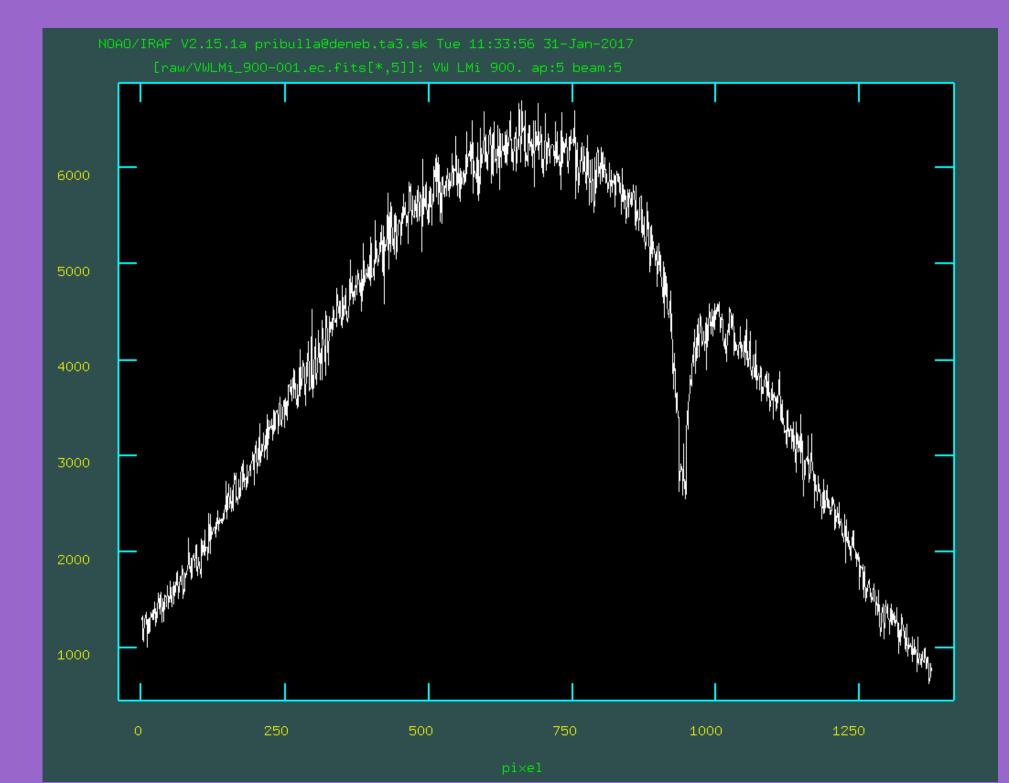
cl> aptrace Flat.fits

- important keys are: f fit, d -delete a point, a add a point, with colon commands one can change e.g. order, polynomial type, number of iterations
- fitted traces are stored in database/ directory and can be used as a reference for future reductions
- when in a script the typical settings look like:

aptrace (first, apertures="", references="Trace", interactive=no, find=no, recenter=yes, resize=no, edit=no, trace=no, fittrace=no, line=INDEF, nsum=10, step=5, nlost=2, function="chebyshev", order=3, sample="*", naverage=1, niterate=10, low_reject=2., high_reject=2., grow=0.)

Column

i n

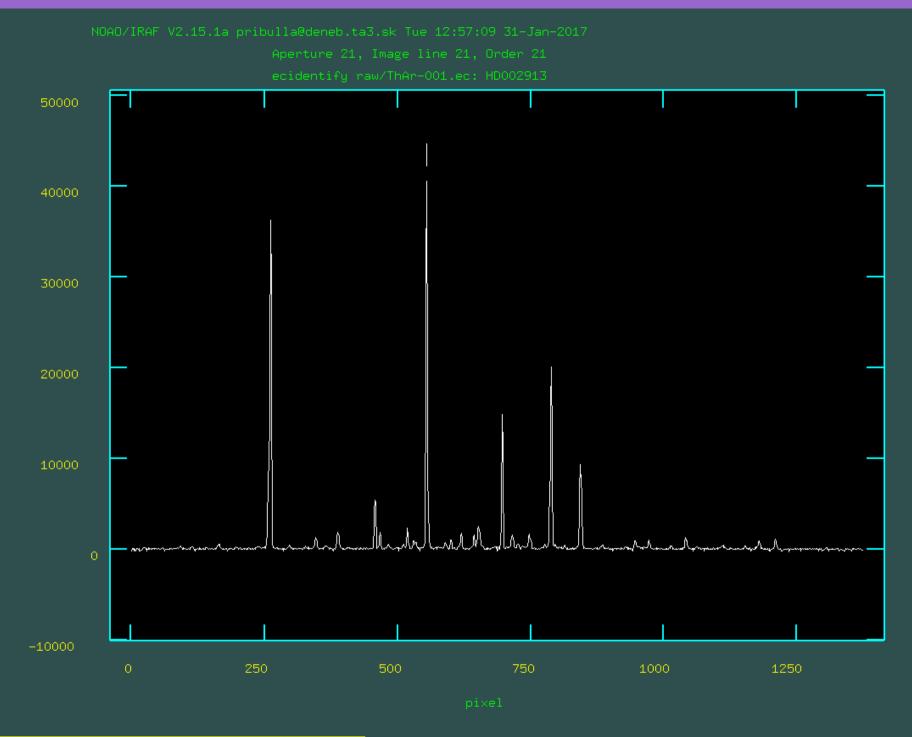

7. Extracting aperture spectra

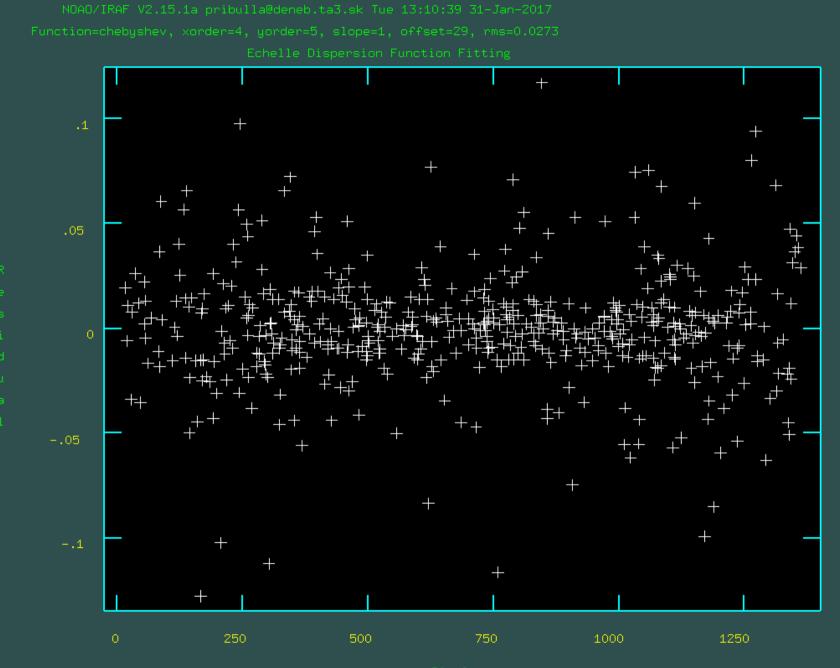
- Spectra are extracted for object and comparison lamp spectra (ThAr, FeNe...)
- Aperture reference from the traced spectrum is used, apertures are NOT edited or traced now

echelle> apsum input=@object.txt format=echelle ref=Flat.fits
echelle> apsum input=@ThAr.txt format=echelle ref=Flat.fits

 In scripts more parameters can be used to control e.g. background subtraction, type of the extracted spectrum 2D or 3D (so called extras)

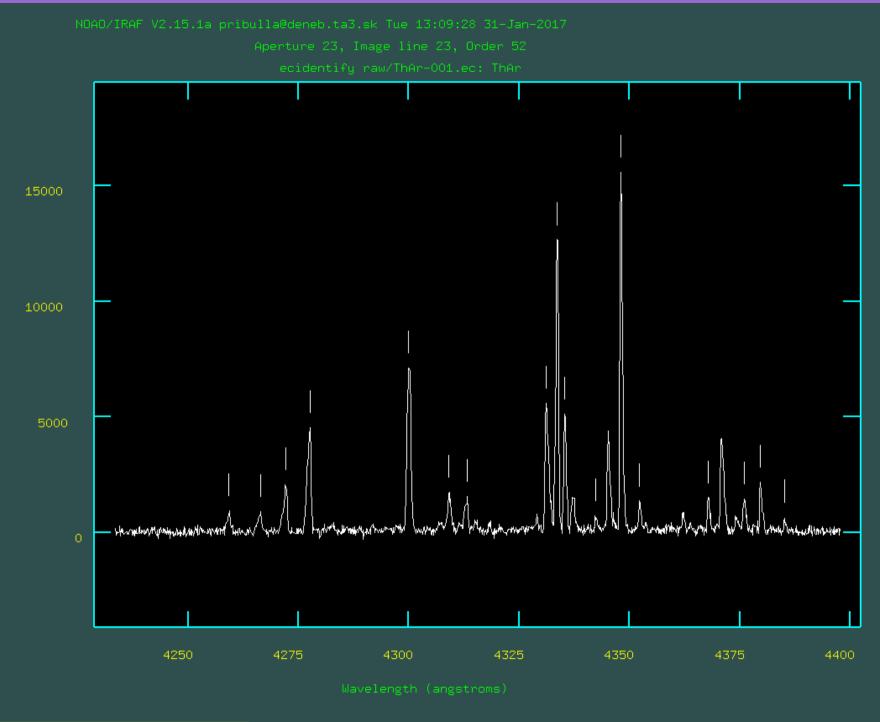
apsum ("@compar.txt", output=" ", apertures=" ", format="echelle", references="FLAT", profiles="", interactive=no, find=no, recenter=no, resize=no, edit=no, trace=no, fittrace=no, extract=yes, extras=no, review=no, background="median", weights="none", pfit="fit1d", clean=no, skybox=1, saturation = INDEF, readnoise=rdn[ii], gain=gn[ii], lsigma=4., usigma=4., nsubaps=1)




7. Identifying comparison lines

- Well exposed arc/hollow cathod lamp spectrum is needed, e.g. ThAr, FeNe, FeAr.
- The line lists and plots can be found at KPNO, e.g. https://www.noao.edu/kpno/tharatlas/thar/thar.html
- N.B. depending on the calibration source current the lines of different ionization/excitation will change their relative intensity !!!
- ecidentify task is used:

echelle> ecidentify raw/ThAr-001.ec.fits


- Important key commands: marking a line is done by m + typing catalogue wavelength, to produce a fit press f, orders are changed with j and k
- It is advisable to identify at least 5 lines every other aperture
- after the fit is obtained the x scale changes from pixels to Å
- catalogue wavelength is then suggested after pressing m
- prior to running the command it is practical to set at least the type and order degree of the fitting polynomial in both axes, 4 is appropriate typically

Pixel

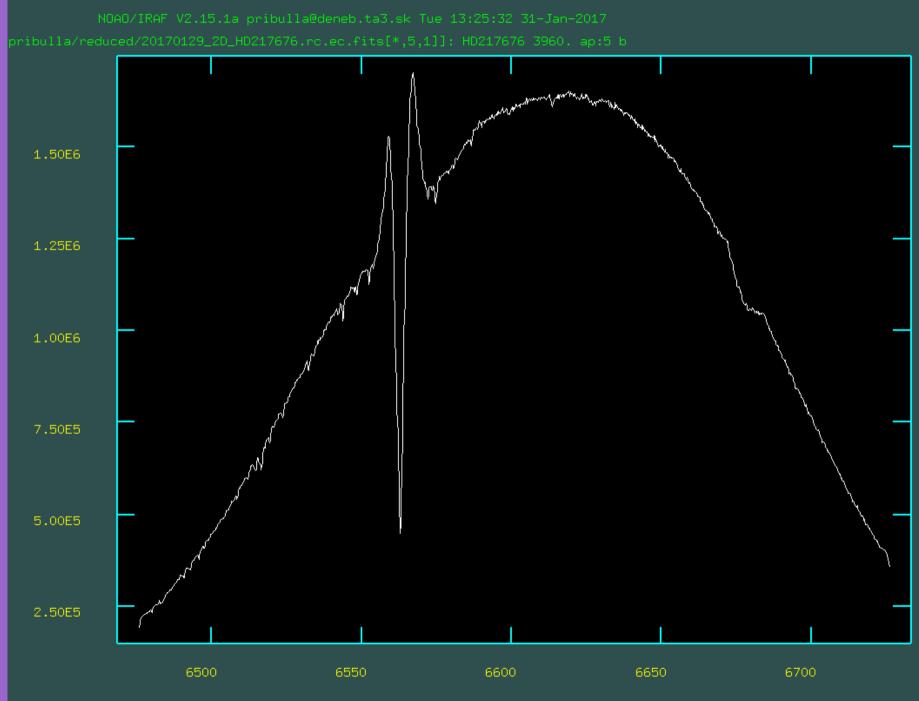
# Thu þegin	id Comp.ec											
	task	ecidentify										
	image	Comp.ec										
	units	angstroms 5 532										
	feature				7505 00010	7505 7000	1 0	1	1			
		1 1	30 30	205.33 301.55	7585.82313 7567.81965	7585.7922 7567.7417	4.0 4.0	1 1	1 1			
		1	30	398.30	7549.33265	7549.3138	4.0	1	1			
		1	30	1000.10	7425.23525	7425.2942	4.0	1	1			
		1	30	1013.87	7422.20399	7422.3118	4.0	1	1			
		1	30	1058.61	7412.29359	7412.3368	4.0	1	1			
		1	30	1144.22	7393.06549	7392.9801	4.0	1	1			
		1	30	1235.56	7372.16243	7372.1184	4.0	1	1			
		1	30	1316.65	7353.26453	7353.293	4.0	1	1			
		1	30	1327.25	7350.77031	7350.814	4.0	1	1			
		2	31	28.97	7372.13632	7372.1184	4.0	1	1			
		2 2	31 31	137.43	7353.24425	7353.293	4.0	1	1 1			
		2	31	151.16 277.09	7350.81897 7328.21764	7350.814 7328.285	4.0 4.0	1 1	1			
			31	343.56	7316.02634	7316.005	4.0	1	1			
		2	31	366.63	7311.75247	7311.7159	4.0	1	1			
		2 2 2	31	628.73	7261.63536	INDEF	4.0	1	1			
		2	31	788.10	7229.73549	INDEF	4.0	1	1			
		2	31	845.32	7218.0145	7218.0542	4.0	1	1			
		2	31	1077.78	7168.91936	7168.8952	4.0	1	1			
		2	31	1107.09	7162.55888	7162.5569	4.0	1	1			
		2	31	1124.06	7158.85866	7158.8387	4.0	1	1			
		2	31	1177.63	7147.09306	7147.0416	4.0	1	1			
		2	31	1272.92	7125.84375	7125.82	4.0	1	1			
		2 3	31 32	1353.99 123.99	7107.43962 7125.79333	7107.4778 7125.82	4.0	1 1	1 1			
		3	32 32	125.99	7124.53616	7124.5607	4.0 4.0	1	1			
		3	32	230.41	7107.45127	7107.4778	4.0	1	1			

8. Line re-identification

 Automated re-identification of the features and solution of all comparison spectra for a given night:

echelle> ecreidentify @thar.lst

ECREIDENTIFY: NOAO/		-	.ta3.sk Wed	18:48:28	01-Feb-2017						
Reference image = Comp.ec, Refit = yes											
Image	Found Fit	Pix Shift	User Shift	Z Shift	RMS						
raw/ThAr-001.ec	531/532 531/531	0.159	-1.05	-4.7E-6	0.036						
raw/ThAr-002.ec	529/532 529/529	0.143	-0.95	-4.3E-6	0.042						
raw/ThAr-003.ec	530/532 530/530	0.121	-0.813	-3.7E-6	0.0453						
raw/ThAr-004.ec	532/532 532/532	0.128	-0.85	-3.8E-6	0.0354						
raw/ThAr-005.ec	532/532 532/532	0.124	-0.819	-3.7E-6	0.0344						
raw/ThAr-006.ec	528/532 528/528	0.126	-0.828	-3.7E-6	0.0376						
raw/ThAr-007.ec	530/532 530/530	0.119	-0.798	-3.6E-6	0.0323						
raw/ThAr-008.ec	528/532 528/528	0.108	-0.725	-3.3E-6	0.0295						
raw/ThAr-009.ec	531/532 531/531	0.116	-0.776	-3.5E-6	0.0344						
raw/ThAr-010.ec	526/532 526/526	0.118	-0.785	-3.5E-6	0.0373						
raw/ThAr-011.ec	527/532 527/527	0.122	-0.808	-3.6E-6	0.0356						
raw/ThAr-012.ec	527/532 527/527	0.142	-0.931	-4.2E-6	0.0368						


9. References and wavelength sol.

- Assigning the reference comparison spectra for the object spectra.
- Typically the spectra are assigned according to JD. It is ideal to have comparison spectra just before and just after each object spectrum

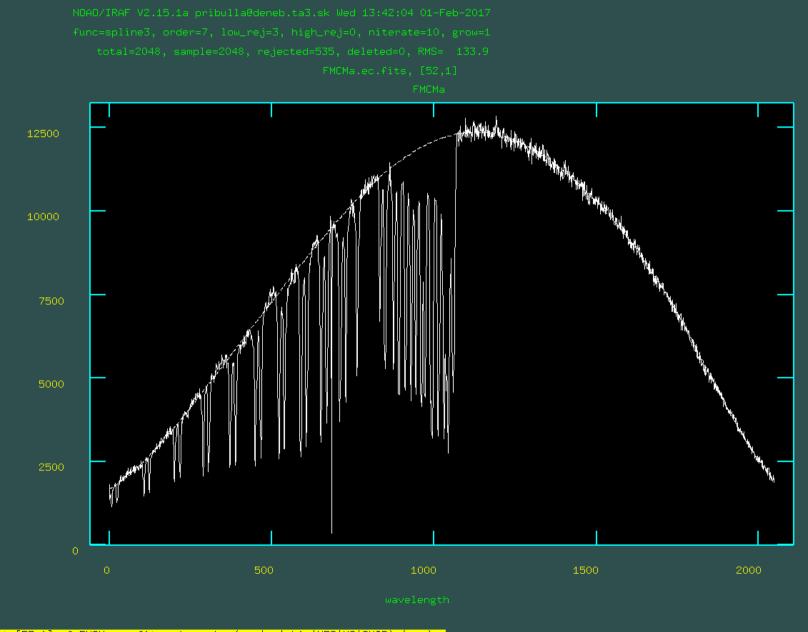
echelle> refspectra @object.lst @ThAr.lst

• Dispersion correction of the spectra (using comparisons as references):

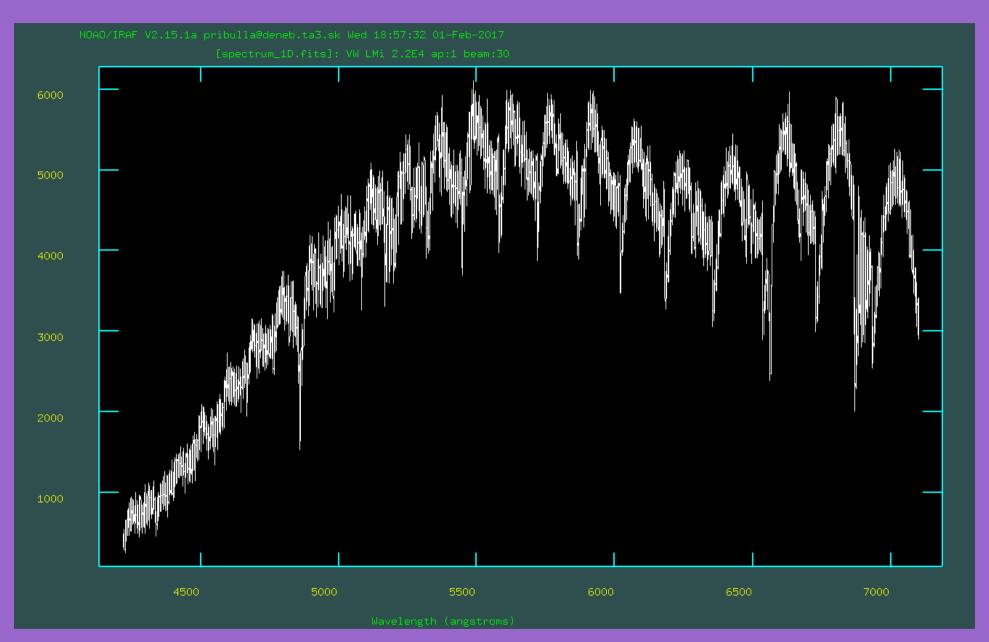
echelle> dispcor @object.lst

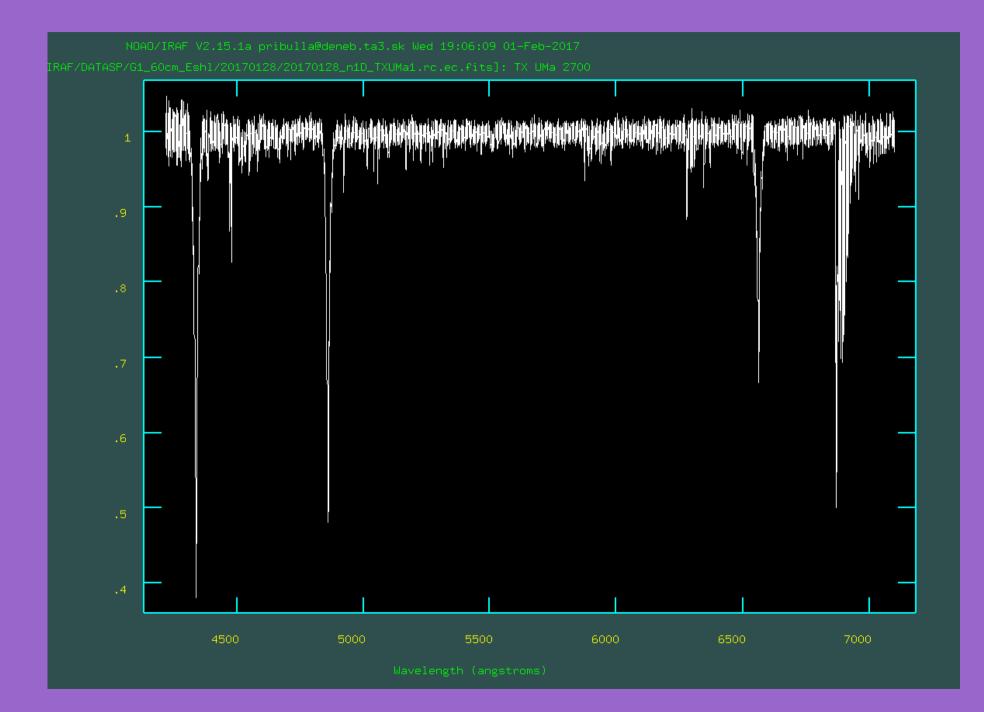
Javelength (angstroms)

10. 2D to 1D and rectification

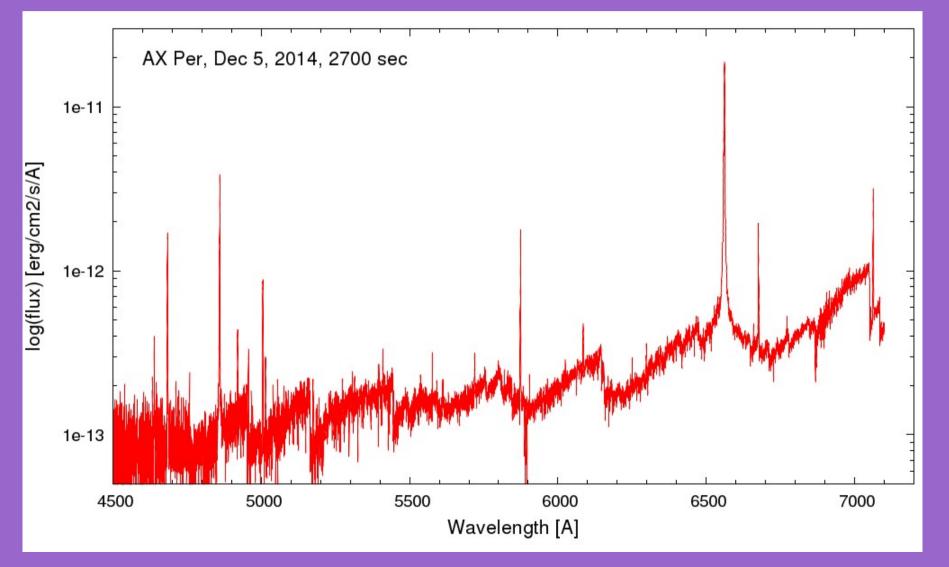

• First, individual orders are rectified to using continuum task and the fits are saved as 2D

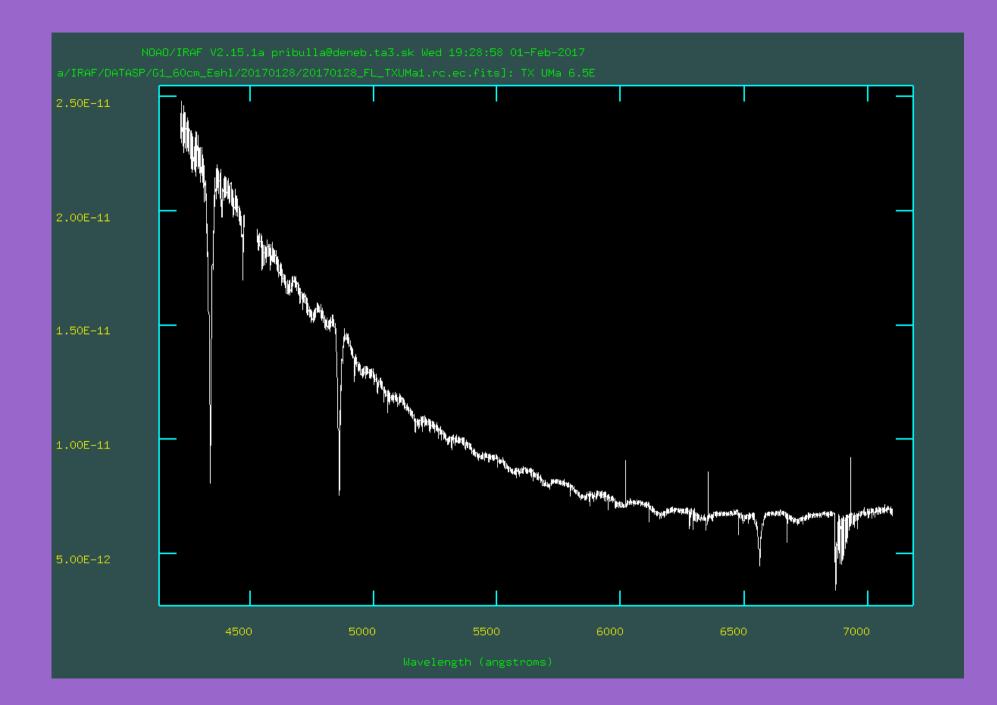
echelle> continuum FMCMa.ec.fits FMCMa_fit type=fit


• Then 2D fits to the continuum and 2D spectra are combined to 1D spectra using scombine task:


echelle> scombine FMCMa_fit.fits FMCMa_fit_1D.fit group=images combine=sum w1=4220 w2=7300 dw=0.05

• Finally, 1D object spectra are divided by 1D continuum fits resulting in 1D combined and rectified object spectra using sarith task


Fit [53,1] of FMCMa.ec.fits w/ graph (yes|no|skip|YES|NO|SKIP) (yes):


11. Spectrophotometric calibration

- Calibration to fluxes, e.g. erg/s/m²/Å using spectrophotometric standards
- Complicated by (i) fiber opening/slit loses, (ii) chromatic atm. refraction (for low X), (iii) atmospheric extinction, $k = k(\lambda)$ (iv) blaze function (v) order overlap

11.Spectrophotometric calibration

- The principal steps are:
 - -adding standard star to the sensitivity file using stand task (for a selected spectrophotometric standard)
 - -computing sensitivity and extinction function using sensfunc
 -calibrating continuum of the selected standard using calibrate
 -dividing spectrum of the object by the continuum fit of the
 standard and multiplying the result by the standard calibrating
 spectrum
- correcting the result for the different exposure times using sarith

12. Heliocentric and barycentric RVs

 Geocentric wavelength system of the spectrum is transformed to barycentric/heliocentric system using bcvcorr task

bcvcorr ("@object.txt", specsky=no, subgrav=no, keyra="RA", keydec="DEC", keyeqnx="EPOCH", equinox="2000", keydate="DATE-OBS", keytime=" ", keywhen="start", keyexp="EXPOSURE", keyhjd="HJD", hjd=0., gjd=0., obsname=observe[ii], savebcv=yes, savejd=no, verbose=yes, printmode=2, debug=yes)

• Heliocentric Julian date is computed by setjd task:

setjd (corrsubor, observatory=observe[inst], date="DATE-OBS", time="TIME-OBS", exposure="EXPTIME", ra="RA", dec="DEC", epoch="EPOCH", jd="jd", hjd="hjd", ljd="ljd", utdate=yes, uttime=yes, listonly=no, >> "log_34.txt)

• Wavelength system of a spectrum is then Doppler corrected:

dopcor (output4,output4, "-BCV", isvelocity=yes, add=yes, dispersion=yes, flux=yes, factor=3., apertures="*", verbose=yes)