Introduction to IRAF (Image Reduction and Analysis Facility)

Theodor Pribulla

Astronomical Institute, Slovak Academy of Sciences, Tatranská Lomnica

Spectroscopic workshop, February 6-10, 2017, PřF MU, Brno

1. Installing and starting IRAF

- IRAF can be installed only under Linux, it is distributed by National Optical Astronomy Observatories: http://iraf.noao.edu/
- Installation of IRAF and xgterm is described e.g. at: http://www.astr.tohoku.ac.jp/~akhlaghi/irafinstall.html
- In the working directory run mkiraf and select xgterm as the terminal type, startup file login.cl and parameter directory uparm/ are created
- IRAF is run by typing cl into the shell command prompt
- If you wanna work with IRAF plots run xgterm and start IRAF from there !
- Size and position of the graphical terminal is good to customize in .bashrc file e.g. as:

alias xgterm='xgterm -bg black -fg green -cr purple -geometry 80x40+100+50 -fn 10x20 -G 1500x900+50-50&'

2. Customise your settings

- Edit startup file login.cl to customise your session, hash # is used to comment out text
- selecting packages to be loaded at the beginning:

apphot # Aperture photometry astcat # astrometry and listings of stars echelle # echelle spectroscopy

selecting image extensions to be accepted by IRAF

set imextn = "oif:imh fxf:fits,fit,FIT"

defining your own scripts/tasks, tasks without parameters start with \$

User aliases
task \$red34 = /scisoft/share/iraf/iraf/local/scripts/red34.cl
task \$red12 = /scisoft/share/iraf/iraf/local/scripts/red12.cl
task \$redsp = /scisoft/share/iraf/iraf/local/scripts/redsp.cl
task \$spoj = /scisoft/share/iraf/iraf/local/scripts/spojall.cl
task extract = extract.cl

defining standard image size (depends on your monitor)

set stdimage = imt2048

3. Working in the command language

• When starting IRAF the defined tasks and packages are listed (packages finish with a dot)

Visit http://iraf.net if you have questions or to report problems.								
The following commands or packages are currently defined:								
color. ctio. dataio. dbms.	dimsum. eis. esowfi. extract	fitsutil. gemini. gmisc. guiapps.	images. language. lists. mscred.	mxtools. nmisc. noao. obsolete.	plot. proto. red12 red34	redsp rvsao. softools. spoj	stecf. stlocal. stsdas. system.	

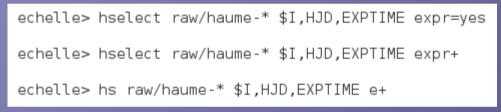
ecl>

- A package is loaded typing its name to the command prompt, e.g. noao, list of available tasks and packages is displayed
- cl is exited typing log and a package is left by bye
- IRAF supports many UNIX commands, e.g., ls, mkdir, mv, cd
- A general shell command is recognized by a starting !
- all available tasks are listed with ??
- help typed without a task name provides a brief help for all tasks in the loaded package

4. Tasks and parameter editing

• a task is run by typing its name and parameters, e.g.

splot ../DATASP/20140612/n1D_df_tauboo_300-001.ec.fits xmin=5870 xmax=5920


- parameters of a task are stored in uparm/ directory
- they are listed with lpar command
- parameters are changed typing e.g. epar splot

PACKAGE = TASK =	0	I R A F duction and Analysis Facility
images = line = band = (units =	=1 =1	Leo.rc.ec.fits List of images to plot Image line/aperture to plot Image band to plot Plotting units
(options= (xmin =		Combination of plotting options: auto, zero, xydraw, histogram, nosysid, wreset, flip, overplot Minimum X value of initial graph

- vi editor is the default for IRAF, edited parameters are saved with :q and discarded by :q!
- setting back the defaults for a parameter is done by unlearn task

5. More on tasks and cl shell

- some results that can be re-used are stored in database/
- tasks can be shortened if non-ambiguous e.g. ecreidentify by ecre
- there are various ways to enter parameters, the following commands have the same meaning:

- "yes" and "no" can be replaced by "+" and "-"e
- package where a task is included can be found in the first line of the corresponding help
- executed commands are stored in history (expires upon closing cl)
- There are two kinds of commands in interactive regime
 - 1. key commands, one key is presses
 - 2. colon commands, e.g. :b_sample -20:-5,5:20
- help is invoked by pressing ? in interactive regime

6. Setting observatory

 to set the local parameters run observatory task, e.g. for setting KPNO use:

observatory set kpno

 observatory database is stored typically in: /iraf/iraf/noao/lib/obsdb.dat

7. Setting instruments

 CCD translation files (for IRAF to understand FITS keywords) are stored typically in: /iraf/iraf/noao/imred/ccdred/ccddb/kpno

setinstrument MaximDL site=asuG12

• a translation file typically looks like:

# Images	obtained	with	Maxim DL V5
subset			FILTER
exptime darktime imagetyp biassec datasec trimsec fixfile			EXPTIME darktime IMAGETYP biassec datasec trimsec fixfile
LIGHT DARK BIAS FLAT COMP			object dark zero flat other

8. Images and image lists

lists of images stored in files start with @ character, e.g.:

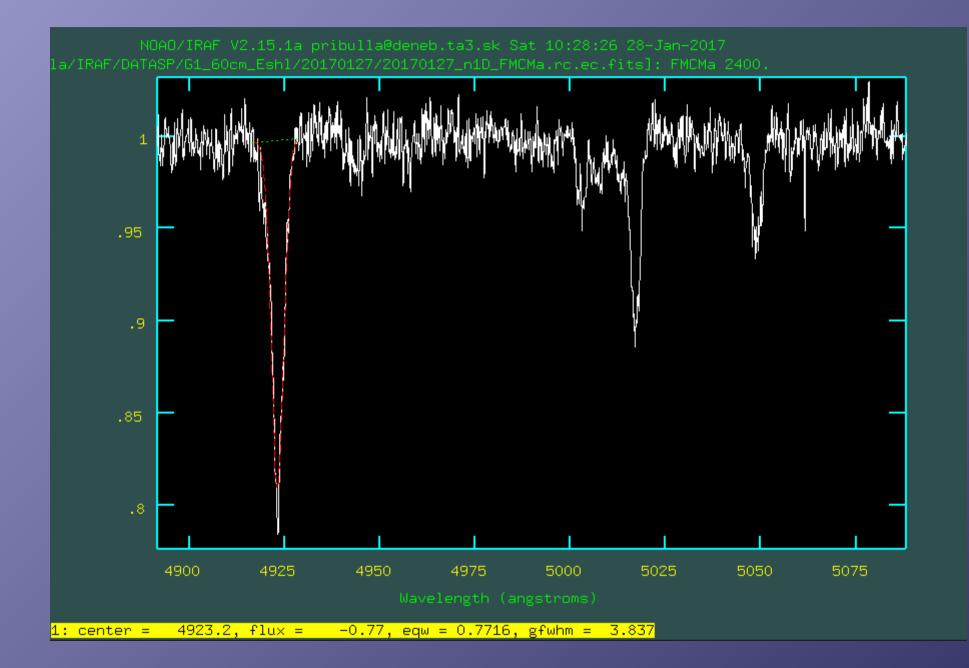
imstat @eecep.lst

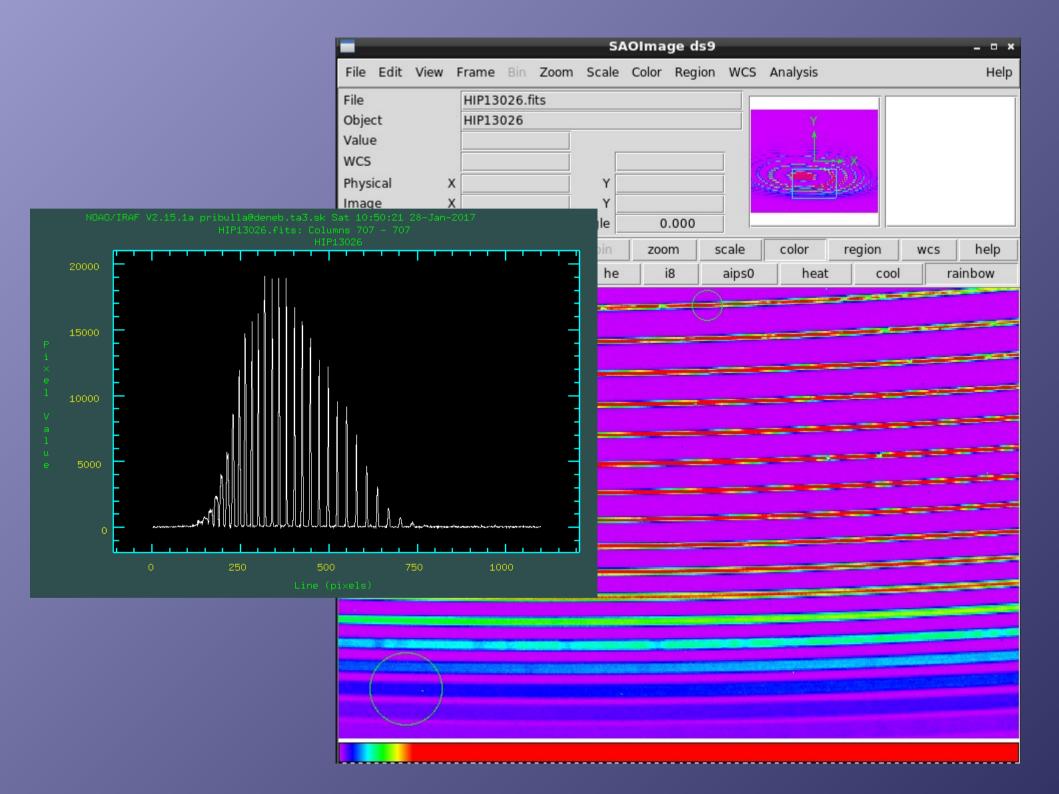
• image subsections are denoted by square brackets:

imstat raw/adf_eecep-003I.fit[100:200,100:200]

• multiple images (inputs) are separated by a comma:

```
imstat eecep-002I.fit,eecep-003I.fit,eecep-004I.fit
```


• images can be effectively examined by starting ds9 as a display tool (external program) and then using imexam:


imexam raw/adf_nnser-004N.fit

- imexam produces plots e.g. vertical and horizontal graphs, aperture photometry on stars etc.
- important keys are: I line profile, c column profile, r radial plot, v vector profile

9. Useful IRAF tools/tricks

- window function in the interactive regime, w is followed by a command: consecutive e key expands part of the plot, x and y zoom the plot centered on the cursor, a returns to automatic scaling
- IRAF has nice fitting capabilities, e.g. in task splot one can fit various kinds of profiles to spectral lines or determine SNR, e.g. m followed by m measures SNR, and average, k followed by g,l,or v fits the Gaussian, Lorenzian and Voight profile to a line, h is used to measure EQW

10. Useful IRAF tools/tricks

• FITS headers are edited using hedit command, e.g.

hedit raw/TXUMa_900-00* RA "12 18 06.5" ver-

• FITS files are selected and listed using ccdlist command:

ccdlist raw/* ccdtype=object l-

• only object frames are listed and long format is suppressed:

raw/HIP67301_020-001.fit[1374,1099][ushort][object][]:HIP67301 raw/HIP67301_020-002.fit[1374,1099][ushort][object][]:HIP67301 raw/HIP67301_020-003.fit[1374,1099][ushort][object][]:HIP67301 raw/HIP67301_020-004.fit[1374,1099][ushort][object][]:HIP67301 raw/HIP67301_020-005.fit[1374,1099][ushort][object][]:HIP67301 raw/HIP67301_030-001.fit[1374,1099][ushort][object][]:HIP67301 raw/HIP67301_030-002.fit[1374,1099][ushort][object][]:HIP67301 raw/HIP67301_030-002.fit[1374,1099][ushort][object][]:HIP67301 raw/HIP67301_030-003.fit[1374,1099][ushort][object][]:HIP67301 raw/HIP67301_030-004.fit[1374,1099][ushort][object][]:HIP67301