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� Fundamental Concepts

��� What is a Stellar Atmosphere� and Why Do We Study It�

By the term stellar atmosphere we understand any medium connected phys�
ically to a star from which the photons escape to the surrounding space� In
other words� it is a region where the radiation� observable by a distant ob�
server� originates� Since in the vast majority of cases the radiation is the only
information about a distant astronomical object we have �exceptions being
a direct detection of solar wind particles� neutrinos from the Sun and SN
����a� or gravitational waves�� all the information we gather about stars is
derived from analysis of their radiation�

It is therefore of considerable importance to develop reliable methods
which are able to decode the information about a star contained in its spec�
trum with con	dence� Having understood the physics of the problem and
being able to carry out detailed numerical simulations will enable us to con�
struct theoretical models of a stellar atmosphere and predict a stellar spec�
trum� This has important applications in other branches of astrophysics� such
as i� derived stellar parameters can be used to verify predictions of the stel�
lar evolution theory
 ii� models provide ionizing �uxes for the interstellar
medium and nebular models
 iii� predicted stellar spectra are basic blocks for
population syntheses of stellar clusters� starburst regions� and whole galaxies�
Moreover� very hot and massive stars have special signi	cance� They are very
bright� and therefore may be studied spectroscopically as individual objects
in distant galaxies� Reliable model atmospheres for these stars may therefore
yield invaluable independent information about distant galaxies� like chemical
composition� and� possibly� reliable distances�

This alone would easily substantiate viewing the stellar atmosphere theory
as an independent� and very important� branch of modern astrophysics� Yet�
in the global astrophysical context� there is another� and equally important�
contribution of the stellar atmospheres theory� Stellar atmospheres are the
best studied example of a medium where radiation is not only a probe of
the physical state� but is in fact an important constituent� In other words�
radiation in fact determines the structure of the medium� yet the medium is
probed only by this radiation�
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Unlike laboratory physics� where one can change a setup of the experiment
in order to examine various aspects of the studied structures separately� we do
not have this luxury in astrophysics� we are stuck with the observed spectrum
so we should better make a good use of it� This is exactly what the stellar
atmosphere theory is doing for almost a century now� Consequently� it is
developed to such an extent that it provides an excellent methodological
guide for other situations where the radiation has the dual role of a probe
and a constituent� Examples of such astronomical objects are the interstellar
medium� H II regions� and� in particular� accretion disks�

There has been a signi	cant progress in the 	eld of stellar atmospheres
achieved in recent years� The progress was motivated by an unprecedented
increase of quality of ground� and space�based observations� and by develop�
ment of extremely fast and e
cient numerical methods� However� despite of
this progress� the stellar atmospheres theory is still far from being su
ciently
developed� It is a mature 	eld� yet it is now reaching qualitatively new levels
of sophistication� In short� it is a 	eld worth pursuing� o�ering as a reward a
signi	cant contribution to our knowledge about the Universe�

The main goal of this lecture is to provide a gentle introduction to the
basic concepts needed to understand the fundamental physics of stellar atmo�
spheres� as well as the leading principles behind recent developments� Partic�
ular emphasis will be devoted to the classical plane�parallel atmospheres in
hydrostatic and radiative equilibrium� Topics which concentrate speci	cally
on non�static phenomena �stellar winds�� and on departures from radiative
equilibrium �stellar chromospheres and coronae�� are covered in other lectures
of this volume�

There is no textbook that would fully cover the topics discussed in this lec�
ture� The fundamental textbook of the 	eld� Mihalas ������� is still a highly
recommended text� although it does not cover important recent develop�
ments� like for instance the ALI method� The third edition of the book is now
in preparation� but it will take a couple of years before it is available� There is
a recent textbook by Rutten ������� distributed electronically� which covers
both the basic concepts as well as some of the modern development� and is
highly recommended to the beginner in the 	eld� There are two books edited
by Kalkofen which present a collection of reviews on various mathematical
and numerical aspects of radiative transfer �Kalkofen ����
 ������ A good
textbook that covers both the theoretical and observational aspects of the
stellar atmospheres is that by Gray ������� Other related textbooks include
Rybicki and Lightman ������� Shu ������� and an elementary�level textbook
by B�ohm�Vitense ������� An old but excellent textbook on radiative trans�
fer is Je�eries ������� Besides these books� there are several excellent review
papers covering various topics �e�g� Kudritzki ����
 Kudritzki and Hummer
������ and several conference proceedings which contain many interesting
papers on the stellar atmospheres theory � Properties of Hot Luminous Stars
�Garmany �����
 Stellar Atmospheres� Beyond Classical Models �Crivellari�



Stellar Atmospheres Theory� An Introduction 	

Hubeny� and Hummer �����
 The Atmospheres of Early�Type Stars �Heber
and Je�ery �����
 and Hydrogen�De	cient Stars �Je�ery and Heber �����

to name just few of the most important ones�

��� Basic Structural Equations

A stellar atmosphere is generally a plasma composed of many kinds of parti�
cles� namely atoms� ions� free electrons� molecules� or even dust grains� and
photons� Typical values of temperature range from ��� K �or even less in
the coolest stars� to a few times ��� K in the hottest stars �temperature is
even higher� ��� � ��� K� in stellar coronae�� Likewise� the total particle den�
sity ranges from� say� ��� to ���� cm��� Under such conditions� the natural
starting point for the physical description is the kinetic theory�

We start with very general equations� in order to emphasize a close con�
nection of the stellar atmospheres theory and other branches of physics� We
will then simplify these equations to the form which is used in most textbooks�

Speci	cally� the most general quantity which describes the system is the
distribution function fi�r�p� t�� which has the meaning that fi�r�p� t�drdp
is the number of particles of kind i in an elementary volume of the phase
space at position r� momentum p� and at time t� The equation which de�
scribes a development of the distribution function is the well�known kinetic�
or Boltzmann� equation� written as

�fi
�t

� �u � r� fi � �F � rp� fi �

�
Dfi
Dt

�
coll

� ���

where r and rp are the usual nabla di�erential operators with respect to
position and momentum components� respectively
 u is the particle velocity�
and F is the external force� The term �Df�Dt�coll is the so�called collisional
term� which describes creations and destructions of particles of type i with
the position �r� r� dr� and momentum �p�p� dp��

The kinetic equation provides a full description of the system� However�
the number of unknowns is enormous� It should be realized that the individual
particles are� in general� not just the atoms and ions� but in fact all the
individual excitation states of atoms� ions� or molecules� According to the
standard procedure� one simpli	es the system by constructing equations for
the moments of the distribution function� i�e� the integrals over momentum
weighted by various powers of p� I shall present only the 	nal equations
 the
reader is referred to any standard textbook of the kinetic theory for a detailed
derivation and an extensive discussion�

The resulting set of equations are the well�known hydrodynamic equa�
tions� namely the continuity equation�

��

�t
�r � ��v� � � � ���
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the momentum equation�

���v�

�t
�r � ��vv� � �rP � f � ���

and the energy balance equation�

�

�t

�
�

�
�v� � ��

�
�r�

��
�

�
�v� � ��� P

�
v

�
� f �v�r��Frad � Fcon� � ���

Here� v is the macroscopic velocity� � the total mass density� P the pressure�
f the external force� � the internal energy� Frad the radiation �ux� and Fcon

the conductive �ux� Equations ��� � ��� represent moment equations of the
kinetic equation� ���� summed over all kinds of particles�

We may also write a zeroth�order moment equation for the individual
kinds of particles� i�e� the conservation equation for particles of type i�

�ni
�t

�r � �niv� �

�
Dni
Dt

�
coll

� ���

where ni is the number density �or the occupation number� or population� of
particles of type i� One may also write momentum and energy balance equa�
tions for the individual particles if needed �e�g� if di�erent kinds of particles
have di�erent macroscopic velocities�� We will not consider these situations
here�

The moment equations are still quite general� An application of those
equations is discussed in other papers of this volume� Here� I will present a
further signi	cant simpli	cation of the system� which applies for the case of a
stationary �i�e� ���t � ��� and moreover static �v � �� medium� Finally� we
will consider a ��D situation� i�e� all quantities depend on the z�coordinate
only� �

Dni
Dt

�
coll

� � � ���

rP � f �� dP

dz
� ��g � ���

rFrad � � �� Frad � const � �T �
e� � ���

where � is the Stefan�Boltzmann constant� and Te� is the so�called e�ective
temperature� The 	rst equation is called the statistical equilibrium equation�
the second one the hydrostatic equilibrium equation� while the last one� ex�
pressing the fact that the only mechanism that transports energy is radiation�
is called the radiative equilibrium equation� �Notice that the conductive �ux
was neglected here� which is a common approximation in the stellar atmo�
spheres theory� However� this approximation breaks down� for instance� in
the solar transition region��

What about convection� which we know may contribute signi	cantly to
the energy balance in certain types of stellar atmospheres� Convection is a



Stellar Atmospheres Theory� An Introduction �

transport of energy by rising and falling bubbles of material with properties
�e�g� temperature� di�erent from the ambient medium� It is therefore� by its
very nature� a non�stationary and non�homogeneous phenomenon� Putting
v � � and assuming a ��D medium means� strictly speaking� that convection
is a priori neglected� However� there are descriptions� like the mixing�length
theory �see any standard textbook� like Mihalas ������ that simplify the
problem and cast it in the form of ��D stationary equation� viz�

Frad � Fconv � �T �
e� � ���

where the convective �ux Fconv is a speci	ed function of basic state parame�
ters �temperature� density� etc��

So far� we have speci	ed the kinetic equation for particles� The same
may be done for photons� Since� as explained above� photons have a special
signi	cance in stellar atmospheres� we will consider the kinetic equation for
photons � the so�called radiative transfer equation � in the Sect� ��

��� LTE versus non�LTE

It is well known from statistical physics that a description of material prop�
erties is greatly simpli	ed if the thermodynamic equilibrium �TE� holds� In
this state� the particle velocity distributions as well as the distributions of
atoms over excitation and ionization states are speci	ed uniquely by two
thermodynamic variables� In the stellar atmospheres context� these variables
are usually chosen to be the absolute temperature T � and the total particle
number density� N � or the electron number density� ne� From the very nature
of a stellar atmosphere it is clear that it cannot be in thermodynamic equilib�
rium � we see a star� therefore we know that photons must be escaping� Since
photons carry a signi	cant momentum and energy� the elementary fact of
photon escape has to give rise of signi	cant gradients of the state parameters
in the stellar outer layers�

However� even if the assumption of TE cannot be applied for a stellar
atmosphere� we may still use the concept of local thermodynamic equilibrium
� LTE� This assumption asserts that we may employ the standard thermody�
namic relations not globally for the whole atmosphere� but locally� for local
values of T �r� and N �r� or ne�r�� despite the gradients that exist in the at�
mosphere� This assumption simpli	es the problem enormously� for it implies
that all the particle distribution functions may be evaluated locally� with�
out reference to the physical ensemble in which the given material is found�
Notice that the equilibrium values of distribution functions are assigned to
massive particles
 the radiation 	eld is allowed to depart from its equilibrium�
Planckian � ����� distribution function�

Speci	cally� LTE is characterized by the following three distributions�
� Maxwellian velocity distribution of particles

f�v�dv � �m���kT ���� exp��mv���kT � dv � ����
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where m is the particle mass� and k the Boltzmann constant�
� Boltzmann excitation equation�

�nj�ni� � �gj�gi� exp ���Ej �Ei��kT � � ����

where gi is the statistical weight of level i� and Ei the level energy� measured
from the ground state�

� Saha ionization equation�

NI

NI��
� ne

UI
UI��

C T���� exp��I�kT � � ����

where NI is the total number density of ionization stage I� U is the partition
function� de	ned by U �

P�

� gi exp��Ei�kT �
 �I is the ionization potential
of ion I� and C � �h����mk���� is a constant �� ���������� in cgs units�� It
should be stressed that in the astrophysical LTE description� the same tem�
perature T applies to all kinds of particles� and to all kinds of distributions�
���� � �����

Equations ���� � ���� de	ne the state of LTE from the macroscopic point
of view� Microscopically� LTE holds if all atomic processes are in detailed bal�

ance� i�e� if the number of processes A� B is exactly balanced by the number
of inverse processes B � A� By A and B we mean any particle states be�
tween which there exists a physically reasonable transition� For instance� A
is an atom in an excited state i� and B the same atom in another state j
�either of the same ion as i� in which case the process is an excitation�de�
excitation
 or of the higher or lower ion� in which case the term is an ioniza�
tion�recombination�� An illuminating discussion is presented in the textbook
by Oxenius �������

In contrast� by the term non�LTE �or NLTE� we understand any state
that departs from LTE� In practice� one usually means that populations of
some selected energy levels of some selected atoms�ions are allowed to depart
from their LTE value� while velocity distributions of all particles are assumed
to be Maxwellian� ����� moreover with the same kinetic temperature� T �

One of the big issues of modern stellar atmospheres theory is whether� and
if so to what extent� should departures from LTE be accounted for in numeri�
cal modeling� This question will be discussed in more detail later on �Sects� ��
��� Generally� to understand why and where we may expect departures from
LTE� let us turn to the microscopic de	nition of LTE� It is clear that LTE
breaks down if the detailed balance in at least one transition A � B breaks
down� We distinguish the collisional transitions �arising due to interactions
between two or more massive particles�� and radiative transitions �interac�
tions involving particles and photons�� Under stellar atmospheric conditions�
collisions between massive particles tend to maintain the local equilibrium
�since velocities are Maxwellian�� Therefore� the validity of LTE hinges on
whether the radiative transitions are in detailed balance or not�
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Again� the fact that the radiation escapes from a star implies that LTE
should eventually break down at a certain point in the atmosphere� Essen�
tially� this is because detailed balance in radiative transitions generally breaks
down at a certain point near the surface� Since photons escape �and more
so from the uppermost layers�� there must be a lack of them there� Conse�
quently� the number of photoexcitations �or any atomic transition induced by
absorbing a photon� is less than a number of inverse processs� spontaneous
de�excitations �we neglect here� for simplicity� stimulated emission��

These considerations explain that we may expect departures from LTE
if the following two conditions are met� i� radiative rates in some important
atomic transition dominate over the collisional rates
 and ii� radiation is not
in equilibrium� i�e� the intensity does not have the Planckian distribution�
Later� we will show how these conditions are satis	ed in di�erent stellar
types� However� some general features can be seen immediately� Collisional
rates are proportional to the particle density
 it is therefore clear that for
high densities the departures from LTE tend to be small� Likewise� deep
in the atmosphere� photons do not escape� and so the intensity is close to
the equilibrium value� Departures from LTE are therefore small� even if the
radiative rates dominate over the collisional rates�

� Radiative Transfer Equation

As explained above� radiation plays a somewhat privileged role in the stellar
atmospheres theory� This is the reason why we consider the radiative transfer
equation separately from equations describing the material properties� The
dominant role of radiation is also re�ected in the terminology � the whole
stellar atmosphere problem is sometimes referred to as a solving the radiative

transfer equation with constraints� i�e� viewing all the material equations as
mere �constraints��

As discussed in the preceding section� one may view the radiative transfer
equation as a kinetic equation for photons� In the astronomical literature� it
is customary to start with a phenomenological derivation of the radiative
transfer equation� and to show later that this equation is in fact equivalent
to the kinetic equation�

It should be realized� however� that when viewing radiation as an ensem�
ble of mutually non�interacting� massless particles � photons� and describing
the interaction between radiation and matter in terms of simple collisions
�interactions� between photons and massive particles� the wave phenomena
connected with radiation are in fact neglected� This is a good approximation
if i� the wavelength of radiation is much smaller than the typical distance
between massive particles
 and if ii� the particle positions are random� These
conditions are well satis	ed under the stellar atmospheric conditions� we deal
with a hot plasma� so the particle positions are indeed random� For optical�
UV� and even higher�frequency radiation� the wavelengths �	 
 ���� cm�
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are indeed smaller that typical interparticle distances� For infrared and radio
wavelengths� some wave phenomena �e�g� refraction� may actually play a role
in the radiative transfer�

In the following� we will adhere to the photon picture� and neglect all
the wave phenomena� A somewhat special case is the polarization of radia�
tion� Polarization will also be neglected here� i�e� we assume an unpolarized
radiation� We will see in other lectures �e�g�� Bjorkman� this volume�� that
polarization of radiation may actually play an important diagnostic role in
certains stellar atmospheric structures �as an indicator of asymmetries of
the medium�� It is possible to extend the usual formalism of the transfer
equation to account for polarization� by introducing a vector quantity �the
so�called Stokes vector� instead of scalar intensity of radiation� and to write
down the transfer equation in the vector form� We will not consider this case
here
 the interested reader is referred to standard textbooks � Chandrasekhar
������
 or recently Sten�o ������
 or excellent review articles �several papers
in Kalkofen ������

��� Intensity of Radiation and Related Quantities

We start with phenomenological de	nitions� The speci�c intensity� I�r�n� �� t��
of radiation at position r� traveling in direction n� with frequency �� at time
t is de	ned such that the energy transported by radiation in the frequency
range ��� � � d��� across an elementary area dS� into a solid angle d� in a
time interval dt is

dE � I�r�n� �� t� dS cos 
 d� d� dt � ����

where 
 is the angle between n and the normal to the surface dS �i�e�
dS cos 
 � n � dS�� The dimension of I is erg cm�� sec�� hz�� sr��� The
speci	c intensity provides a complete description of the unpolarized radia�
tion 	eld from the macroscopic point of view�

As pointed out above� there is a close connection between the speci	c
intensity and the photon distribution function� f � The latter is de	ned such
that f�r�n� �� t� d� d� is the number of photons per unit volume at location
r and time t� with frequencies in the range ��� � � d��� propagating with
velocity c in direction n� The number of photons crossing an element dS in
time dt is f�c � dt��n � dS��d� d��� The energy of those photons is the same
expression multiplied by h�� h being the Planck constant� Comparing this to
the de	nition of the speci	c intensity� we obtain the desired relation between
the speci	c intensity and the distribution function�

I � �ch�� f � ����

This relation makes it easy to understand the following expressions� Anal�
ogously as for massive particles� one de	nes various moments of the distribu�
tion function � i�e� the speci	c intensity in this case � which have a meaning
of the energy density� �ux� and the stress tensor�
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From the de	nition of the distribution function� it is clear that the en�

ergy density of radiation is given by �dropping an explicit indication of the
dependence on frequency� etc��

E �

I
�h��f d� � ���c�

I
I d� � ����

because f is the number of photons in an elementary volume� and h� the
energy of each
 we have to integrate over all solid angles� Similarly� the energy
�ux of radiation is given by

F �

I
�h�� � �cn� f d� �

I
n I d� � ����

because cn is the vector velocity�
The radiation stress tensor is de	ned by

P �

I
�h��nnf d� � ���c�

I
nn I d� � ����

Finally� we mention that the photon momentum density �recall that the mo�
mentum of an individual photon is �h��c�n� is given by

G �

I
�h��c�n f d� � ���c��F � ����

i�e�� it is proportional to the radiation �ux�

��� Absorption and Emission Coe�cient

The radiative transfer equation describes the changes of the radiation 	eld
due to its interaction with matter� To describe this interaction� one 	rst
introduces several phenomenological quantities�

Absorption coe�cient describes the removal of energy from the radiation
	eld by matter� It is de	ned in such a way that an element of material� of
cross�section dS and length ds� removes from a beam of speci	c intensity I
�incident normal to dS into a solid angle d��� an amout of energy

dE � ��r�n� �� t� I�r�n� �� t� dS d� d� dt � ����

The dimension of � is cm��� thus ��� has a dimension of length� and it
measures a characteristic distance a photon can travel before it is absorbed

in other words� the photon mean free path�

Emission coe�cient describes the energy released by the material in the form
of radiation� Analogously� it is de	ned such as an elementary volume of ma�
terial� of cross�section dS and length ds� releases �into a solid angle d�� in
direction n� within a frequency band d�� an amout of energy

dE � ��r�n� �� t� dS d� d� dt � ����



�� I� Hubeny

The dimension of � is erg cm�� hz�� sec�� sr���
The absorption and emission coe
cients are de	ned per unit length� Some�

times� one de	nes the coe
cients per unit mass� which are given by expres�
sions ���� and ���� divided by the mass density� ��

The above coe
cients are de	ned phenomenologically� To be able to write
down actual expressions for them� we have to go to microscopic physics� In
other words� we have to describe all contributions from microscopic processes
that give rise to an absorption or emission of photons with speci	ed proper�
ties� Detailed expressions will be considered later on �Sects� ���� ����� Here�
we will discuss some general points�

i� Sometimes� one distinguishes two types of absorption� a �true absorp�
tion�� and a �scattering�� In the true absorption �also called �thermal absorp�
tion�� process� a photon is removed from the incident beam and is destroyed

while in the scattering process a photon is 	rst removed from the beam� but
is immediately re�emitted in a di�erent direction and with �slightly� di�erent
frequency� This distinction is re�ected in a notation�

��r�n� �� t� � ��r�n� �� t� � ��r�n� �� t� � ����

where the 	rst term on the right hand side� �� refers to the true absorption�
while the second term� �� to the scattering� However� I stress that this distinc�
tion does not really have to do much with the absorption process � � describes
a removal of photon from the beam and does not have to care about what
happens next� The distinction between the true absorption and scattering
actually enters rather the proper formulation of the emission coe
cient�

ii� It is known from the quantum theory of radiation that there are three
types of elementary processes that give rise to an absorption or emission of
a photon� �� induced absorption � an absorption of a photon accompanied
by a transition of an atom�ion to a higher energy state�
 �� spontaneous
emission � an emission of a photon accompanied by a spontaneous transition
of an atom�ion to a lower energy state�
 and �� stimulated emission � an
interaction of an atom�ion with a photon accompanied by an emission of
another photon with identical properties� In the astrophysical formalism� the
stimulated emission is usually treated as negative absorption�

iii� In thermodynamic equilibrium� the microscopic detailed balance holds�
and therefore the radiation energy absorbed in an elementary volume in an
elementary frequency interval is exactly balanced by the energy emitted in the
same volume and in the same frequency range� From the de	nition expressions
for the absorption and emission coe
cients� ���� and ����� it follows that in
the equilibrium state� � I � �� Moreover� we know that in thermodynamic
equilibrium the radiation intensity is equal to the Planck function� I � B�
where

B��� T � �
�h��

c�
�

exp�h��kT �� �
� ����

We are then left with an interesting relation that in thermodynamic equilib�
rium� ��� � B� which is called Kirchho��s law�
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��� Phenomenological Derivation of the Transfer Equation

Having de	ned the basic phenomenological coe
cients which describe the
interaction of radiation and matter� a heuristic derivation of the radiative
transfer equation is straightforward� We express a conservation of the total
photon energy when a radiation beam passes through an elementary volume
of matter of cross�section dS �perpendicular to the direction of propagation�
and length ds �measured along the direction of propagation�� Taking into
account de	nitions of the speci	c intensity� ����� and the absorption and
emission coe
cients� ���� and ����� we obtain

�I�r� �r�n� �� t��t�� I�r�n� �� t�� dS d� d� dt �

���r�n� �� t�� ��r�n� �� t�I�r�n� �� t�� ds dS d� d� dt � ����

which expresses the fact that the di�erence between speci	c intensities before
and after passing through the elementary volume of pathlength ds is equal
to the di�erence of the energy emitted and absorbed in the volume� The
di�erence of intensities on the left hand side may be expressed as

di� I �
�I

�s
ds�

�I

�t
dt �

�
�I

�s
�

�

c

�I

�t

�
ds � ����

Finally� �I��s may be written as n � r� so we arrive at

�
�

c

�

�t
� n � r

�
I�r�n� �� t� � ��r�n� �� t�� ��r�n� �� t� I�r�n� �� t� � ����

This is the general form of the radiative transfer equation� Let us now consider
two important special cases�

�� for a one�dimensional planar atmosphere� nz � �dz�ds� � cos 
 � ��
where 
 is the angle between direction of propagation of radiation� n� and the
normal to the surface� Further� let us assume a time�independent situation�
���t � �� so we obtain

�
dI��� �� z�

dz
� ���� �� z�� I��� �� z����� �� z� � ����

where the intensity of radiation is now only a function of the geometrical
coordinate z� frequency �� and the directional cosine ��

�� in spherical coordinates� the derivative along the ray� ���s is given by
���s � �����r� � �� � ����r������� and the radiative transfer equation in
a spherically symmetric medium is written as

�
�I��� �� r�

�r
�

�� ��

r

�I��� �� r�

��
� ���� �� r�� I��� �� r����� �� r� � ����
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��� Optical Depth and the Source Function

Let us start with a simple ��D transfer equation� written as

�
dI�
dz

� �� � ��I� � ����

where we drop an explicit indication of the dependence of I� �� and � on
the geometrical distance z and angle �� and write� as is customary in the
astrophysical literature� the frequency � as a subscript� We divide the transfer
equation by ��� and obtain a very simple and advantageous form of the
transfer equation�

�
dI�
d��

� I� � S� � ����

where the elementary optical depth is de	ned by

d�� � ��� dz � ����

and the source function is de	ned by

S� � ��
��

� ����

The absorption and emission coe
cient are local quantities� therefore the
de	nition of the source function� ����� applies for all geometries� The optical
depth depends on the geometry
 in case of a ��D transfer� the most natural
de	nition is the optical depth along the ray� de	ned by

d� � ��r�n� �� ds � ����

where ds is the elementary pathlength in the direction n� In the case of
a plane�parallel atmosphere� the relation between the optical depth in the
direction � �which we denote here as ����� and the �normal�direction� ��
de	ned by ����� is

d��� � d���� � ����

What is the physical meaning of the optical depth and of the source func�
tion� The meaning of the optical depth is straightforward� In the absence
of emissions� the transfer equation is simply dI�d� � I� and the solution
is I�� � � I�� � �� � exp���� �� i�e� the optical depth is the e�folding dis�
tance for attenuation of the speci	c intensity due to absorption� In other
words� the probability that a photon will travel an optical distance � is sim�
ply p�� � � exp��� �� Since the absorption coe
cient �e�g� in spectral lines�
may be a sharply varying function of frequency� the �monochromatic� optical
depth may also vary signi	cantly with frequency� Sometimes one de	nes var�
ious frequency�independent optical depths� like those corresponding to the
averaged absorption coe
cient� either over the whole spectrum �a typical ex�
ample being the Rosseland optical depth � see Sect� ����� or over a spectral
line �see Sect� �����



Stellar Atmospheres Theory� An Introduction �	

The meaning of the source function can also be easily understood� Let us
write the number of photons emitted in an elementary volume �de	ned by an
elementary area dS and an elementary path ds�� to all directions� From the
de	nition of the emission coe
cient it follows that �assuming an isotropic
emission for simplicity� Nem � � ds ����h�� d� dt dS� where the factor ��
comes from an integration over all solid angles� and h� transforms energy
�from the original de	nition of the emission coe
cient� to the number of
photons� Using the de	nition of the optical depth and the source function�
we may rewrite the factor � ds as � ds � ������ ds � S�� �d� � Consequently�
the number of emitted photons is

Nem � S�� �d�
��

h�
d� dt dS � ����

In other words� the source function is proportional to the number of photons

emitted per unit optical depth interval�
For completeness� we mention that the number of photons absorbed per

unit optical depth interval �from all solid angles� is analogously given by

Nabs � J�� �d�
��

h�
d� dt dS � ����

which directly follows from ����
 J being the mean intensity of radiation�
de	ned by �����

��	 Elementary Solutions

In this section� we consider the simplest solutions of the ��D plane�parallel
transfer equation� For notational simplicity� we drop subscript � indicating
the frequency dependence�

a� No absorption� no emission� i�e� � � � � �� The transfer equation reads
dI�dz � �� which has a trivial solution

I � const � ����

This expresses the obvious fact that in the absence of any interaction with
the medium� the radiation intensity remains constant�

b� No absorption� only emission� i�e� � � �� but � � �� The solution is
simply

I�z� �� � I��� �� �

Z z

	

��z��dz��� � ����

This equation is often used for describing an outcoming radiation from an
optically thin radiating slab� like for instance a forbidden line radiation from
planetary nebulae� or a radiation from the solar transition region and�or
corona�
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c� No emission� only absorption� i�e� � � �� � � �� The transfer equation
now reads � dI�d� � I� and the solution is simply

I��� �� � I��� �� exp������ � ����

d� Absorption and emission� We will now write a general formal solution of
the transfer equation� i�e� for the case where both� absorption and emission�
coe
cients are di�erent from zero� � � �� � � �� The solution is called
�formal� because it is assumed here that both � and � are speci�ed functions
of position and frequency� As we shall see later on� both coe
cients may
depend on the radiation 	eld� so that in actual problems they may not be
given a priori� without previously solving the general transfer problem� The
formal solution reads

I���� �� � I���� �� exp������ �������

Z ��

��

S�t� exp���t� ������ dt�� � ����

e� Semi�in�nite atmosphere� A special case of the formal solution ���� for
emergent radiation �i�e� �� � �� from a semi�in	nite atmosphere ��� � ��
reads

I��� �� �

Z �

	

S�t� exp��t��� dt�� � ����

This equation shows that the speci	c intensity in a semi�in	nite atmosphere
is in fact a Laplace transform of the source function�

f� Semi�in�nite atmosphere with a linear source function� Another special
case of the general formal solution ���� is a emergent intensity from a semi�
in	nite atmosphere� with a source function being a linear function of optical
depth� S�� � � a� b� � It is given by

I��� �� � a� b� � S�� ��� � ����

This important expression is called the Eddington�Barbier relation� It shows
that the emergent intensity� for instance in the normal direction �� � �� is
given by the value of the source function at the optical depth of unity� The
values of emergent intensity for all angles � between � and � then map the
values of the source function between optical depths � and �� Although in
reality the source function does not have to be a linear function of optical
depth� it can usually be well approximated by it in the vicinity of � � ��
Consequently� the Eddington�Barbier relation� ����� usually provides a good
estimate of the emergent intensity�

g� Finite homogeneous slab� Finally� an expression for an emergent radia�
tion ��� � �� from a 	nite ��� � T 
�� and homogeneous slab �i�e� S�t� � S
is constant�� in the normal direction �� � ��� reads

I��� �� � S � ��� e�T
�
� ����
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In the special case T � �� ���� becomes I��� �� � S� while for T � �� we
obtain I��� �� � S � T � Both limiting expressions have a simple physical ex�
planation� As we have shown above� the source function expresses a number
of photons �or radiative energy� emitted per unit optical depth� In the opti�
cally thin case �T � ��� there is little absorption� so practically all created
photons escape from the medium� Since the actual optical depth is T � the
total emergent intensity is S �T � In the optical thick case� we may roughly say
that the photons created deeper than � � � are very likely absorbed� so the
only photons which contribute to the emergent intensity are those emitted
at optical depths � 	 �� Consequently� the emergent intensity is S � �� i�e� S�
regardless of the actual optical thickness of the slab�

��
 Moments of the Transfer Equation

Analogously to the case of massive particles� we may de	ne various moments
of the photon distribution function� i�e� the speci	c intensity� By appropri�
ately integrating the kinetic �i�e� transfer� equation we obtain relations be�
tween these moments� As was discussed in Sect� ����� the 	rst three moments
are the photon energy density� radiation �ux� and the radiation stress tensor�
Written synoptically� �see� e�g the textbook by Shu ������ we may write�

� cE�

F�
cP�

�
A �

I �
� �

n
nn

�
A I�d� � ����

Consequently� the moment equations are obtained by multiplying the transfer
equation ���� by �� n� etc�� and integrating over all solid angles� The 	rst two
moment equations read

�E�

�t
�r �F� � �� � �� cE� � ����

�

c

�F�
�t

� cr �P� � ��� F� � ����

Both these equations have the general structure of the moment equation of
the kinetic equation� namely

���t�density of quantity� � �gradient of its �ux� � �sources � sinks� � ����

In the astrophysical literature� one usually introduces moments as angle�
averaged� rather than angle�integrated quantities� The 	rst moments of the
radiation intensity are usually denoted as J � H� K� We may synoptically
write �

� J�
H�

K�

�
A �

�

��

�
� cE�

F�
cP�

�
A �

�

��

I �
� �

n
nn

�
A I�d� � ����
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In a plane�parallel approximation� all the moments are scalar quantities�
and are given by

J� �
�

�

Z �

��
I����d� � ����

H� �
�

�

Z �

��
� I����d� � ����

K� �
�

�

Z �

��
��I����d� � ����

and the moment equations are written as

dH�

d��
� J� � S� � ����

and
dK�

d��
� H� � ����

The system of moment equations is not closed� i�e� the equation for n�th
moment contains the �n����th moment� etc� It is therefore necessary to come
up with some kind of closure relation� In the stellar atmospheres theory� one
de	nes the so�called Eddington factor� fK� by

fK� � K��J� � ����

It is clear from the de	nition of moments that in the case of isotropic radia�
tion� I���� � I� being independent of angle� the Eddington factor fK � ����
Assuming the Eddington factor to be speci	ed� one may combine the two
moment equations ���� and ���� together�

d��fK� J��

d���
� J� � S� � ����

This equation is very useful� It e�ectively eliminates one independent vari�
able� the angle �� from the problem� Numerically� it replaces the original
transfer equation� which is a 	rst�order linear di�erential equation for the
speci	c intensity I��� by a second�order but still linear di�erential equation
for the mean intensity� J� � However� its simplicity is illusory� It cannot be
used alone� even if the source function is given� since in general the Ed�
dington factor is unknown unless the full solution of the transfer equation is
known� However� this form of the transfer equation is very useful in certain
numerical methods� as we will discuss later on� It should be realized that it
can be used to advantage only in iterative methods
 in which we use current
values of J and K to determine the current Eddington factor fK� and keep
this factor 	xed during the subsequent iteration step�
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��� Lambda Operator

Let us 	rst write down the general formal solution of the radiative trans�
fer equation for a semi�in	nite plane�parallel atmosphere� with no incoming
radiation at the surface �� � ���

I���� � �� �

Z �

��

S� �t�e�
t������ dt�� � for � 
 � � ����

I���� � �� �

Z ��

	
S��t�e�
���t��
��� dt����� � for � 
 � � ����

Recall that from the de	nition of the directional cosine � follows that posi�
tive values of � correspond to outward directions� while negative values of �
correspond to inward directions� The mean intensity of radiation is obtained
by integrating ���� and ���� over �� viz�

J����� �
�

�

Z �

	

S��t�E��jt� �� j� dt � ����

where E� is the 	rst exponential integral� The general exponential integral is
de	ned by

En�x� �
Z �

�

e�xt

tn
dt � ����

The mean intensity may be synoptically expressed as an action of an
operator� �� on the source function�

J����� � ��� �S�t�� � ����

where the ��operator is de	ned by

�� �f�t�� �
�

�

Z �

	

E��jt� � j� f�t� dt � ����

The behavior of the kernel functions corresponding to the speci	c inten�
sity� ����� which is a simple exponential� and for the mean intensity� which
is the 	rst exponential integral� ����� is displayed in Fig� � The width of the
kernel decreases with decreasing �� which is easily understood by realizing
that a unit optical distance for a photon traveling with a certain angle with
respect to the normal to the surface� �� corresponds to a larger optical dis�
tance than for one traveling in the normal direction� because the distance
is proportional to ���� Similarly� the kernel for the speci	c intensity propa�
gating in the normal direction �� � �� is signi	cantly wider than the kernel
for the mean intensity� This is simply because the mean intensity contains
contribution from all angles� i�e� the corresponding kernel is an average over
all ��dependent speci	c intensity kernels�
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Fig� �� Kernel functions for the speci
c intensity at various angles �thin lines for
� � �� ���� ���� ��
� and ����� and for the mean intensity of radiation �thick line�

For practical purposes� ���� or ���� have to be replaced by a quadrature
sum� Equation ���� can thus be written in the discretized form as

Jd �
DX

d���

�dd�Sd� � ����

where d denotes the depth index �we dropped the frequency index ��� The
��operator can thus be thought of as ��matrix� and the mean intensity as
well as the source function at all depths as column vectors�

What is the meaning of the ��matrix� Let us take� quite formally� all
elements of the source function vector to be zero except the i�th element
which is taken to be �� Sd � �di� Then�

BB�
J�
J�
���
JD

�
CCA �

�
BB�

��� ��� � � � ��D

��� ��� � � � ��D
���

���
� � �

���
�D� �D� � � � �DD

�
CCA�

�
BBB�

�
���
�
���

�
CCCA �

�
BB�

��i

��i
���

�Di

�
CCA � ����

In other words� the i�th column of the � matrix is a solution of the transfer
equation with the source function given as a unit pulse function� Physically�
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the i�th column of � therefore describes how the pulse which originated at
the i�th depth point spreads over all depths�

��� Di
usion Approximation

Deep in the atmosphere� the source function approaches the Planck function�
S� � B� � because virtually no photons escape� and thus the medium ap�
proaches the thermal equilibrium� Let us choose a reference optical depth�
�� � �� and let us expand the source function for t� 
 �� by a Taylor
expansion�

S��t�� �
�X
n�	

dnB�

d�n�

�t� � ���n

n�
� ����

Substituting this expression to the formal solution� ���� and ����� we obtain

I��t� � �� �
�X
n�	

�n
dnB�

d�n�
� B����� � �

dB�

d��
� ��

d�B�

d���
� � � � � ����

By substituting this expression into de	nition equations for the moments� we
obtain

J����� � B����� �
�

�

d�B�

d���
� � � � � ����

H����� �
�

�

dB�

d��
� � � � � ����

K����� �
�

�
B����� �

�

�

d�B�

d���
� � � � � ����

These equations illustrate several features of the behavior of the radiation
	eld at large depths� First� the mean intensity approaches the Planck func�
tion� Second� the radiation 	eld is nearly isotropic� and the Eddington factor
fK� � K��J� approaches ���� Finally� the monochromatic �ux is given as a
derivative of the Planck function with respect to the optical depth� Since the
Planck function is only a function of temperature� we may express the �ux
by means of the temperature gradient�

H� �
�

�

dB�

d��
� ��

�

�

��

dB�

dz
� ��

�

�

��

dB�

dT

dT

dz
� ����

Thus� at great depths the transfer problem reduces to this single equation�
The name di�usion approximation comes from the similarity of this equation
to other� material� di�usion equations� which are typically of the form

�ux � �di�usion coe
cient� � �gradient of the relevant quantity�� ����

We may thus think of the term �������������dB��dT � as a radiative di�u�

sion coe�cient
 or� because of a similarity of ���� to the heat conductivity
equation� as radiative conductivity�
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By integrating over all frequencies we obtain for the total radiation �ux

in the di�usion approximation

H � �
�

�

�

�

�R

dB

dT

�
dT

dz
� ����

where the averaged opacity is de	ned by

�

�R

dB

dT
�

Z �

	

�

��

dB�

dT
d� � ����

which is the well�known Rosseland mean opacity� One may de	ne many other
averaged �mean� opacities by simpler expressions� but we see why the Rosse�
land opacity is de	ned by this seemingly strange expression � it yields the
exact total radiation �ux at large depths� Since the temperature in the atmo�
sphere is in fact determined by the condition imposed on the total radiation
�ux� the Rosseland mean opacity yields the correct temperature structure

deep in the atmosphere� It is also clear why the Rosseland opacity is the
most appropriate one for the use in the stellar interior theory �de Greve�
this volume�� Notice also that the integrand in the de	nition of Rosseland
opacity contains ���� i�e� the contribution to the integral is largest for the
lowest monochromatic opacities� Indeed� for those frequencies the medium
is most transparent� and therefore the monochromatic �ux is largest� This
again shows that the Rosseland mean opacity is the most appropriate one for
describing the total radiation �ux�

� Radiative Transfer with Constraints� Escape

Probability

��� Two�level Atom

The simplest situation where we have a coupling of the radiative transfer
equation and the statistical equilibrium equation is an idealized case of a
two�level atom� Real atoms contain many energy levels� so that this approxi�
mation may seem at 	rst sight to be grossly inadequate� However it actually
provides a surprisingly good description of line formation in many cases of in�
terest� And� more importantly� the case of the two level atom has a signi	cant
pedagogical value because it provides an explanation of many elementary pro�
cesses that are crucial to understand NLTE line formation� In other words�
a good physical understanding of line formation in a two�level atom is a pre�
requisite to understanding of more complicated cases� Therefore� this model
will be discussed here in certain detail�

Let us 	rst derive the expression for the source function� Figure � shows
schematically the energy levels and all the elementary processes populating
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Fig� �� Schematic representation of microscopic processes in s two�level atom

and depopulating the levels� The absorption and emission coe
cients are
given by

�� �
h�	
��

�n�B�� � n�B������� � ����

and

�� �
h�o
��

n�A������ � ����

where �	 is the line�center frequency� and B��� B�� and A�� are the Einstein
coe
cients for absorption� stimulated emission� and spontaneous emission�
respectively� for the radiative transitions between levels � and �
 n� and n�
are populations �occupation numbers� of levels � and �� respectively� and ����
is the absorption pro�le� The latter expresses the probability density that if
a photon is absorbed �emitted� in a line ���� it has a frequency in the range
��� ��d��� The pro	le coe
cient is thus normalized to unity�

R�
	 ����d� � ��

We assume that there is no other absorption or emission mechanism present�
It is advantageous to introduce a dimensionless frequency� x� by

x � � � �	
��D

� ����

��D is the Doppler width� given by ��D � ��	�c�vth� with the thermal
velocity vth � ��kT�m����� m being the mass of the radiating atom� In the
case of a pure Doppler pro	le �i�e� no intrinsic broadening of the spectral line

the only broadening is due to the thermal motion of radiators�� the absorption
pro	le is given by

��x� � exp��x���p� � ����
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In a more general case� where there is an intrinsic broadening of lines de�
scribed by a Lorentz pro	le in the atomic rest frame �the most common
types of intrinsic broadening being the natural� Stark� and Van der Waals
broadening � see Mihalas ����� or monograph by Griem ������ the pro	le
function is given by the Voigt function�

��x� � H�a� x��
p
�� H�a� x� �

a

�

Z �

��

e�y
�

�x� y�� � a�
dy � ����

The Voigt function is a convolution of the Doppler pro	le �i�e� the thermal
motions� and the Lorentz pro	le �intrinsic broadening�� The parameter a is
a damping parameter expressed in units of Doppler width� a � �������D��
where � is the atomic damping parameter� For instance� for the natural
broadening of a line originating in a two�level atom� � � A���

Opacity in the line may be written as

�x � ���x� � ����

and analogously for �x� The optical depth corresponding the the frequency�
independent opacity� �� is called the frequency�averaged opacity in the line�
and is often used in line transfer studies� Notice that this opacity is not equal
to the line center opacity� ����� but is related to it by� for instance for the
Doppler pro	le� ���� � ��

p
��

A remark is in order� We use the same pro	le coe
cient for absorption�
stimulated emission� and spontaneous emission � all of them are given through
����� This is an approximation called complete redistribution �CRD�� which
holds if an emitted photon is completely uncorrelated to a previously ab�
sorbed photon� In other words� the absorbed photon is re�emitted� i�e� redis�
tributed� completely� without any memory of the frequency at which it was
previously absorbed� A more exact description� taking into account photon
correlations� is called the partial redistribution �PRD� approach� A discussion
of this approach is beyond the scope of the present lecture
 moreover� PRD
e�ects are important only for certain lines �e�g� strong resonance lines� like
hydrogen L�� Mg II h and k lines� etc��� and under certain conditions �rather
low density�� The interested reader is referred to several reviews �e�g� Mihalas
����
 Hubeny ������

The source function follows from ���� and �����

S� � ��
��

�
n�A��

n�B�� � n�B��
� SL � ����

which is independent of frequency� thanks to the approximation of CRD�
Next step is to determine the ratio n��n� which enters the source function�

This is obtained from the statistical equilibrium equation� which states that
the number of transitions into the state � �or �� is equal to the number of
transitions out of state � ���� This equation reads

n� �R�� � C��� � n� �R�� � C��� � ����
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where R s are the radiative rates� and C s the collisional rates� The radiative
rates are given by

R�� � B��

Z �

	

J����� d� � B��
!J � ����

R�� � A�� � B��

Z �

	

J����� d� � A�� �B��
!J � ����

where the quantity !J is called the frequency�averaged mean intensity of radia�
tion� We will view here collisional rates as known functions of electron density
�since collisions with electrons are usually most e
cient� and temperature

for details� refer e�g� to Mihalas �������

Using the well�known relations between the Einstein coe
cients� B���B�� �
g��g�� and A���B�� � �h��	�c

�� and the relation between the collisional rates�
C���C�� � �n��n��� � �g��g�� exp�h�	�kT � �where �n��n��� denotes the
LTE population ratio�� we obtain after some algebra

S � ��� �� !J � �B�� � ����

where

� �
��

� � ��

 �� �

C����� e�h��kT �

A��
� ����

In the typical case� h��kT � � �since typical resonance lines� for which the
two�level approximation is adequate� are formed in the UV region where the
frequency is large�� and therefore � may be expressed simply as

� � C��

C�� �A��
� ����

which shows that � may be interpreted as a destruction probability� i�e� the
probability that an absorbed photon is destroyed by a collisional de�excitation
process �C��� rather than being re�emitted �A����

Equation ���� is the fundamental equation of the problem� The 	rst term
on the right hand side represents the photons in the line created by scattering�
i�e� by the emission following a previous absorption of a photon� while the
second term represents the thermal creation of a photon� i�e� an emission
following a previous collisional excitation�

Mathematically� the source function� ����� is still a linear function of the
mean intensities� This is the case only for a two�level atom
 in a general
multi�level atom the source function contains non�linear terms in the radi�
ation intensity� The two�level atom is thus an interesting pedagogical case�
it contains a large�scale coupling of the radiation 	eld and matter� yet the
coupling� although being non�local� is still linear� and therefore much easier
to handle �and understand�� than in the general case�

By applying any of the numerical methods which are discussed in the next
chapter� one can easily obtain a solution of the two�level atom problem� Let us
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Fig� �� Source function for a two�level atom in a constant�property semi�in
nite
atmosphere� with B � � �which only states that the source function is ex�
pressed in units of B�� and for various values of the destruction parameter ��
� � ����� ����� ����� ����

take a standard example of line formation in a homogeneous semi�in	nite slab�
The homogeneity implies that all material properties �temperature� density�
etc�� are independent of depth� In the context of the source function� �����
this means that �� B� and ��x� are depth�independent� The solution� 	rst
obtained by Avrett and Hummer ������� is displayed in Fig� � for several
values of the destruction parameter �� It shows two interesting features�

i� The surface value of the source function is equal to
p
�B� Actually� this

is a rather robust result� which is valid regardless of the type of the pro	le
coe
cient� Several rigorous mathematical proofs exist �see� e�g�� monograph
by Ivanov �����
 a physical explanation of this result was given by Hubeny
�������

ii� The source function starts to deviate from the Planck function at a
certain depth
 below this point it is essentially equal to B� This depth is called
the thermalization depth� and is traditionally denoted as �� We use here the
notation �th to avoid confusion with the ��operator� Figure � indicates that
for a Doppler pro	le� �th � ���� This indeed agrees with a more rigorous
analytical study �Avrett and Hummer ����
 Ivanov ������ These analyses
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moreover show that for a Voigt pro	le the thermalization depth is even larger�
�th � a����

Why does the source function decrease towards the surface� We know
that in the case of a homogeneous medium the departures from LTE arise
only because of the presence of the boundary through which the photons
escape� Before the line photons �feel� the presence of the boundary �i�e� in
large enough optical depths�� all microscopic processes depicted on Fig� � are
in detailed balance� so the LTE approximation holds� However� as soon as
the photons start to feel the boundary� i�e� they start to escape from the
medium through the boundary� the photo�excitations are no longer balanced
by radiative de�excitations� Since the absorption rate depend on the number
of photons present� while the spontaneous emission rate does not �we neglect
for simplicity the stimulated emission�� the number of radiative excitations
drops below the number of de�excitations as soon as photons start to escape�
The lower level will consequently start to be overpopulated with respect to
LTE� while the upper level will be underpopulated� Since the source function
measures the number of photons created per unit optical depth� and since
the number of created photons is proportional to the population of the upper
level �because this is the level from which the atomic transition accompanied
by the photon emission occur�� the source function has to drop below the
Planck function�

Having understood that� we now face an intriguing question� Given that
departures from LTE arise because of the presence of the boundary� how
come that the thermalization depth� i�e� the depth where the departures of
the source function from the Planck function set in� is so large� Recall that
the optical depth � in Fig� � is the frequency�averaged optical depth in the
line� One might then expect that the presence of the boundary is felt by an
�average� photon around � � �� while the actual depth where photons feel
the boundary is much larger �e�g� � � ��� for a typical value of � � ������

The explanation hinges on the fact that an �average� photon is not the
one which is responsible for the transport and escape of photons in a line�
Let us follow a photon trajectory from the point of its thermal creation� Let
us assume that the photon was created at a large optical distance from the
boundary� The photon is created with a large probability of having the fre�
quency near the line center� because this probability is given by the absorption
pro	le� ��x�� which is a sharply peaked function of frequency around x � ��
Consequently� the monochromatic optical depth is large� and so the physical
distance it travels before the next absorption �i�e� the geometrical distance
corresponding to �x � �� is quite small� The same situation very likely oc�
curs after the next scattering� We are then left with the following picture
of photon trajectory in the two�level atom case with complete redistribution
�the trajectory for the case of partial redistribution is quite di�erent��� The
photon makes many consecutive scatterings with the frequency staying close
to the line center
 during these scatterings the photon practically does not
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Fig� �� Schematic representation of a trajectory of a photon a a gas of two�level
atoms

move at all in the physical space� However� in a very infrequent event when
it is re�emitted in the wing� the opacity it sees drops suddenly by orders of
magnitude� and therefore it can travel a very large distance� The situation is
depicted in Fig� �� We see that the transfer in the core is ine
cient
 what re�
ally accomplishes the transfer are infrequent excursions of the photon to the
line wings� This makes the photon transfer quite di�erent from the massive
particle transport� The particle mean free path remains of the same order
of magnitude when a particle di�uses through the physical space� while the
photon mean free path can change enormously� It is now clear why the ther�
malization depth is so large� it is determined by line�wing photons� whose
mean free path is much larger that that of the core photons� which in turn
de	ne the mean optical depth � �

It is also clear why the thermalization depth depends on the destruction
probability �� The total number of consecutive scatterings is of the order of
���
 if the photon does not escape before it experiences ��� scatterings� it is
destroyed by collisional processes� and therefore does not feel the presence of
the boundary� These considerations are made more quantitative by the escape
probability approach� which we shall consider in detail in the next subsection�

Finally� I mention that the source function for a line in a general multi�
level atom can always be written in a form analogous to ����� viz� �see� e�g��
Mihalas �����

SLij � ��� �ij� !Jij � �ij � ����

where �ij and �ij are the generalized destruction and creation terms� re�
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spectively
 subscripts ij indicate that the quantities are appropriate for the
transition i� j� This approach is called the equivalent�two�level�atom �ETA�
approach� The source function is formally a linear function of the mean inten�
sity� However� it should be realized that the destruction and creation terms
�ij and �ij contain contributions from the transition rates in all transitions
in and out of states i and j� which depend on the radiation 	eld� Therefore�
despite apparent linearity of equation ����� one has to solve a general multi�
level atom problem by an iteration process� The ETA approach may or may
not converge in actual situations� and is not recommended as a robust and
universal method� Nevertheless� it may be useful in some applications �see�
for instance� several papers in Kalkofen ���� and ����
 or Castor et al� ������

��� Escape Probability

Let us 	rst consider a probability that a photon with frequency � and prop�
agating in the direction speci	ed by angle � escapes in a single �ight� This
probability is given by

p�� � e���� � ����

which follows from the very physical meaning of optical depth �see Sect� �����
The angle�averaged escape probability is given by

p����� �
�

�

Z �

	

e����� d� �
�

�
E����� � ����

where the integration only extends for angles � 
 �� since photons moving in
the inward direction �� 
 �� cannot escape� Finally� the angle� and frequency�
averaged escape probability for photons in one line is given by �adopting the
x�notation� and writing x as a subscript�

pe�� � �

Z �

��

�xpx��x� dx �
�

�

Z �

��

�xE� �� �x� dx � ����

Notice that at the surface� pe��� � ���� because a photon is either emitted
in the outward direction� in which case it certainly escapes� or in the inward
direction� in which case it does not escape �assuming an isotropic emission��

We may now quantify the considerations given in the previous subsection�
We introduce the photon destruction probability by

pd � � � ����

and we have the photon escape probability� pe� de	ned above� Now� if pe � pd�
photons are likely thermalized before escaping from the medium� In other
words� the line photons do not feel the presence of the boundary� and therefore
S � B� On the other hand� if pe � pd� photons likely escape before being
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thermalized� i�e� destroyed by a collisional process� It is therefore natural to
de	ne the thermalization depth �th� as

pe��th� � pd � ����

which indeed gives� by substituting the Doppler pro	le in ����� the expression
�th � ����

The escape probability considerations are actually much more powerful
than just to explain the value of thermalization depth� One may in fact con�
struct approximate expressions for the source function as a function of depth�
To demonstrate this� let us consider the following simple model� We know that
!J measures the number of photons absorbed in a line per unit optical depth
interval �which may be veri	ed by integrating ���� over frequencies�� If we
are far from the surface� all the photons emitted per unit optical distance�
S�� � d� � either escape from the medium by a single �ight �with a probability
pe�� or are re�absorbed� more or less on the spot� with probability ��pe� This
suggests that the number of photons absorbed at � � i�e� !J�� �� should be given
by

!J�� � � S�� � ��� pe� � ����

which gives us the desired approximate relation between the averaged mean
intensity of radiation and the source function� without actually solving the
transfer equation�

A very interesting point is that we can arrive� purely mathematically� to
the same equation if we start with the integral expression ����� �see Sect�
����� and do the following trick� Since the kernel function K��t� varies much
more rapidly than S�t�� we may assume that the source function does not
vary over the range where the kernel function varies appreciably� In other
words� we may remove S�t� from the integral in ������ and put S�t� � S�� ��
One may easily verify that by integrating the kernel function K� over � one
obtains ���� with pe given by �����

Substituting ���� into the the expression for the source function� ����� we
obtain the following expression for the source function�

S�� � �
�

�� ��� ��pe
B � ����

which is traditionally called the �rst�order escape probability approximation�
It describes very well the behavior of the source function at depths� but it
fails to reproduce the

p
��law� since it yields for the source function at the

surface S��� � ����� � ��B� which may be quite di�erent from
p
�B� The

reason for this can be easily understood� any transfer of photons is neglected
here� and the problem is reduced to just two mechanisms � a photon either
escapes in a single direct �ight� or is thermalized� This so�called �dichoto�
mous� model works well deep in the atmosphere� but fails in the outer layers
of the atmosphere� where the transfer of photons is important�
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Without going to any more details� I just mention that the so�called
second�order escape probability formalism� which takes into account some as�
pects of the photon transport� was developed �for an illuminating discussion�
see an excellent review by Rybicki� ������ The resulting expression for the
source function in a homogeneous atmosphere is

S�� � �

�
�

�� ���� ��pe

����

B � ����

which behaves very similarly to the 	rst�order approximation at depths� but
now yields the correct expression for the source function at the surface� S��� �p
�B�

Concluding� the escape probability approach is very useful and very pow�
erful� because it is able to provide simple approximate relations between the
source function and the mean intensity of radiation� based on simple phys�
ical arguments� It can therefore be used in cases where detailed numerical
solutions are either too complicated and time consuming �like in the case of
radiation hydrodynamic simulations� where the radiative transfer equation
is solved in a huge number of time steps�� or where a high accuracy of pre�
dicted emergent radiation is not required� However� one should always keep
in mind that the escape probability methods are inherently approximate� and
therefore one should be always aware of their potential limitations and in�
accuracies� Finally� I stress that these methods were discussed here partly
because of the above reasons� and partly because of their intimate relation to
a class of modern numerical methods� called Accelerated Lambda Iteration
�ALI� methods� which will be discussed in the next section�

� Numerical Methods

There are several types of numerical method� depending on the degree of
complexity of the problem at hand� In this section� we will consider numerical
methods for treating three basic problems� ordered by increasing complexity�
i� a formal solution of the radiative transfer equation � where the source
function is speci	ed
 ii� a solution of linear line formation problems � the
source function is a linear function of radiation intensity
 and iii� a solution
of general non�linear problems�

��� Formal Solution of the Transfer Equation

By the term formal solution we understand a solution of the transfer equation
if the source function is fully speci	ed� We have already shown the formal
solution of the transfer equation� given by ���� for the general case
 or by
���� and ���� for a semi�in	nite atmosphere� The related expression for the
mean intensity is ����� In practice� we may replace the integral over optical
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depth by a quadrature sum� and calculate the radiation intensity by a simple
summation�

Why� then� would we need to consider other numerical methods for this
apparently trivial problem� The basic point is that the simple numerical
quadrature is extremely ine
cient from the point of view of computer time�
This is because the kernel functions contain exponentials� which are very
costly to compute� As we will see later on� the speed of modern numerical
methods which solve a general coupled problem is in fact determined by the
speed with which the individual formal solutions are accomplished� Therefore�
we have to seek as e
cient numerical schemes for performing a formal solution
as possible�

There are essentially two classes of methods� namely those based on

�� the 	rst�order form of the transfer equation
 or
�� the second�order form of the transfer equation� The second�order method

is usually called the Feautrier method� in honor of its originator �Feautrier
������

First�order methods� They were not used very much during the last two
decades� However� they were revived recently by an ingenious adaptation of
the Discontinuous Finite Element �DFE� method by Castor et al� �������
This scheme now appears to be an extremely advantageous method� and will
very likely be used more and more in the stellar atmosphere numerical work�
I will present only a brief outline here
 the interested reader is referred to the
original paper�

Let us assume a given frequency � and angle �� Let us denote � the
monochromatic optical depth at frequency �� along the ray speci	ed by angle
�� In the following� we drop an explicit indication of frequency and angle
variables� The intensity of radiation in the optical depth interval between
two discretized depth points� ��d� �d���� is assumed to be given as a linear
function of optical depth�

I�� � � I�d
�d�� � �

��d
� I�d��

� � �d
��d

� ����

To avoid confusion� I stress that we deal with the intensity in one direction

only
 the notation I� and I� does not mean intensities in opposite directions�
as it is usually used in the radiative transfer theory�

If I�d � I�d � the linear representation of intensity� ����� is a continuous
function of frequency� However� the related numerical method would be quite
inaccurate� The essence of the DFE method is to allow for step discontinuities

at points �d� i�e� we consider generally I�d �� I�d � Substituting ���� into the
transfer equation ����� and performing analytic manipulations described in
Castor et al� ������� one obtains 	nal linear relations for the quantities I�

and I�� viz�
I�d�� � I�d � �I�d

��d
� Sd � I�d � ����
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and
I�d�� � I�d

��d
� Sd�� � I�d�� � ����

By eliminating I�d we obtain a simple linear recurrence relation for I�d �

����d � ���d � ��I�d�� � �I�d � ��dSd � ��d���d � ��Sd�� � ����

and I�d follows from

����d � ���d � ��I�d � ����d � ��I�d � ��d���d � ��Sd ���dSd�� � ����

Finally� the resulting speci	c intensity at �d is given as a linear combination
of the �discontinuous� intensities I�d and I�d �

Id �
I�d ��d � I�d ��d��

��d � ��d��
� ����

Second�order� or Feautrier method� The basis of the method is to in�
troduce the symmetric and antisymmetric averages of the speci	c intensity�

j�� � �

�
�I���� �� � I���� ��� � �� 	 � 	 �� � �����

h�� � �

�
�I���� ��� I���� ��� � �� 	 � 	 �� � �����

Considering separately the transfer equation ���� for positive and negative
� s� and adding and subtracting these equations we obtain�

� �dh���d��� � j�� � S� � �����

� �dj���d��� � h�� � �����

Using ����� to eliminate h�� from ������ we obtain

��
d�j��
d���

� j�� � S� � �����

This equation is very similar to the moment equation ����
 also the quantity
j�� is very similar to the mean intensity J� � The essential di�erence between
���� and ����� is that ����� is a closed equation for the symmetrized intensity
j��� which may therefore be solved in a single step if the source function is
known�

Special care should be devoted to the boundary conditions� The speci	c
intensity is speci	ed for negative � s at the upper boundary� and for the
positive � s at the lower boundary


I���� �� � � �� � I��� � �� 	 � 	 �� � �����

I���� �� � � �max� � I��� � �� 	 � 	 �� � �����
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��max �� for a semi�in	nite atmosphere�� Substituting ����� into ������ and
using ������ we obtain

� �dj���d���	 � j����� � I��� � �����

� �dj���d����max

� I��� � j����max� � �����

In most cases� the incoming intensity I��� � �� For a semi�in	nite atmosphere�
the di�usion approximation is usually used for the lower boundary condition�

I��� � B���max� � ���B�������max
� �����

Equation ������ together with boundary conditions ����� and ����� is
solved numerically by discretizing the depth variable� The discretized form
may be written as �writing u � j����

�Adud�� �Bdud �Cdud�� � Sd � �����

Detailed expressions for the elements A�B�C are given in the standard
textbooks �e�g� Mihalas ������ The resulting tridiagonal set of equations is
solved by a straightforward Gaussian elimination� consisting in a forward�
backward recursive sweep� namely

Dd � �Bd �AdDd���
�� Cd� D� � B��

� C� � �����

Zd � �Bd � AdDd���
�� �Sd � AdZd���� Z� � B��

� S� � �����

followed by the reverse sweep�

ud � Ddud�� � Zd� uND�� � � � �����

where ND is the number of discretized depth points�

��� Linear Coupling Problems

The second class of methods are those in which the source function is given as
a known� linear� function of the speci	c intensities� A typical example is the
line formation in a two�level atom� where the source function is given by �����
A more general case is the equivalent�two�level�atom source function� �����
with the creation and destruction terms �ij and �ij assumed to be speci	ed�
In other words� this corresponds to solving the transfer problem for one line
at a time�

Numerical solution can either be done by a di�erential equation approach�
or by an integral equation approach�
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The di
erential equation method consists in chosing discrete values of
frequencies� �xi� i � �� � � � � NF � and angles ��j � j � �� � � � � NA�� and to solve
a coupled set of transfer equations written for all frequency�angle points�

�j
dI�xi� �j� � �

d�
� ��xi� �I�xi� �j� � �� S�� �� � �����

where the source function on the right hand side is given by ����� replacing
the integrals over frequency and angle by a quadrature sum�

S � ��� ��
�

�

NFX
i��

NAX
j��

wx
i w

�
j ��xi� I�xi� �j� � � � �����

where wx
i and w�

j are the quadrature weights for the integration over fre�
quencies and angles� respectively� The source function couples all frequencies
and angles� but the main point is that the source function is a linear function
of the speci	c intensities� ����� The system ����� is thus a system of linear
di�erential equations� One may construct a column vector I whose elements
are values of speci	c intensity at given depth for all pairs of �x� ��� and write
all equations ����� as one di�erential equation for the vector I� One may then
apply the Feautrier method described above
 equations ����� � ����� remain
the same� only the meaning of u and the coe
cients A�B�C will be di�er�
ent� u will represent a vector �j�i�j � i � �� � � � � NF� j � �� � � � � NA� �i�e� the
Feautrier intensities at all discretized frequency�angle points�� and A�B�C
will be �NF � NA� � �NF � NA� matrices� The resulting system of linear
equations forms a block�tridiagonal system�

The integral equation method is based on expressing the averaged mean
intensity !J as an integral over S� which easily follows from the formal solu�
tion of the transfer equation discussed in Sect� �� By integrating ���� over
frequencies� we obtain

!J�� � �

Z �

	

S�t�K��jt� � j� dt � �����

where the kernel function K� is given by

K��s� �

Z �

	
E���xs��

�
x dx � �����

The behavior of the kernel function depends on the type of the absorption
pro	le� As can be intuitively expected� it has a narrower peak for the Doppler
pro	le than for the Voigt pro	le� A useful numerical algorithm for computing
the function K� was given by Hummer �������

Substituting ����� into ���� yields the following integral equation for the
source function�

S�� � � ��� ��

Z �

	

S�t�K��jt� � j� dt � �B � �����
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This equation was 	rst solved more than three decades ago by Avrett and
Hummer ������� The equation was subsequently extensively studied analyt�
ically by the Russian analytical school� Many elegant analytical results are
summarized in a monograph by Ivanov ������
 this book is recommended to
anyone who intends to study the radiative transfer seriously�

The integral equation approach has several advantages and drawbacks�
The advantage is that it deals with one simple integral equation for S� so
in a sense it is formulated in the most e
cient way since the knowledge of
S represents the solution of the problem �individual speci	c intensities of
radiation may then easily be obtained by the formal solution of the transfer
equation�� In other words� the coupling of radiation and material proper�
ties in the integral equation approach is fully contained in the function K��
which is calculated in advance� while in the di�erential equation approach the
coupling is treated explicitly� Nevertheless� the di�erential equation approach
may be reformulated in an e
cient way by casting it in the form analogous to
the integral approach �the so�called Rybicki variant of the Feautrier method
� see Rybicki ������ In any case� the integral equation approach su�ers from
a signi	cant drawback� namely that in evaluating the kernel function �and in
the formal solution of the transfer equation�� one faces the task of evaluating
a large number of exponentials� which are computationally very costly� There�
fore� most of the actual numerical work in the radiative transfer is nowadays
being done using the di�erential equation approach�

��� Accelerated Lambda Iteration

In the previous section� we saw that the two�level atom problem is a linear
one� and thus may be solved in a single step� without any iterations� However�
one pays a high price for that� one has to invert� at every discretized depth
point� some auxiliary matrices whose dimension is given by the product of
the number of discretized frequencies times the the number of discretized
angles� �The situation may be alleviated by employing the so�called Variable
Eddington Factor technique� developed by Auer and Mihalas ������� which
treats the angle coupling separately� The size of matrices is reduced but is
still given by the number of frequencies� which may be large�� Generally� one
should realize that any method that describes a coupling of various quantities

by means of a direct matrix inversion is fundamentally limited in that the
computer time scales as the cube of the number of quantities �i�e� the number
of frequency points in our case��

Therefore� one needs faster schemes� How can this be accomplished� The
clue is to realize that some part of the physical coupling is more important
than others� In other words� not all the parts of the coupling should neces�
sarily be treated on the same footing
 it is more or less a numerical overkill
to do so� So� this hints that the �important part� of the coupling should be
treated exactly� while the rest may be treated iteratively�
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Below� I demonstrate the method on an example of a two�level atom�
However� the method is much more powerful� and can be applied to virtually
any astrophysical radiative transfer problem� One such application will be
mentioned in Sect� ���� We 	rst recall that the two�level problem may be
written� by substituting ���� into ����� as

S � ��� �� !��S� � �B � �����

�which is just another expression of the integral equation form ����� The
frequency�averaged lambda operator is given by

!� �

Z �

	

������d� � �����

with the frequency�dependent Lambda operator �� given by ����� In the
following� I omit the bar over � for notational simplicity�

In a seminal paper Cannon ������ introduced into astrophysical radiative
transfer theory the method of deferred corrections �also called� somewhat
inaccurately� an operator splitting�� long known in numerical analysis� The
idea consists of writing

� � �� � ��� ��� � �����

where �� is an appropriately chosen approximate lambda operator� The iter�
ation scheme for solving ����� may then be written as

S
n��� � ��� �����S
n���� � ��� ���� � ����S
n�� � �B � �����

or� in a slightly di�erent form whose importance becomes apparent later�

S
n��� � S
n� � ��� ��� ��������SFS � S
n�� � �����

where
SFS � ��� ����S
n�� � �B � �����

Superscript FS stands for Formal Solution� In other words� ����� shows that
the action of the exact � operator is split into two contributions� an approx�
imate �� operator which acts on the new iterate of the source function� and
the di�erence between the exact and approximate operator� ����� acting on
the previous� known� iterate of the source function� The latter contribution
may be easily evaluated by the formal solution�

If we choose �� � �� we recover the �ordinary� lambda iteration� which
is straightforward� but is known to converge very slowly � see� e�g� Mihalas
����
 or Olson� Auer� Buchler ����� � hereafter referred to as OAB�� On
the other hand� the choice �� � � represents the exact method� which is
done without any iteration� but an inversion of the exact � operator may
be costly� So� in order that �� brings an essential improvement over both
methods� it has to satisfy the following requirements� i� it has to incorporate
all the essential properties of the exact � operator in order to obtain a fast
convergence rate of the iteration process
 but at the same time� ii� it must be
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easy �and cheap� to invert� These requirements are generally incompatible�
therefore the construction of the optimum �� is a delicate matter�

The interesting history of the quest for the optimum �� operator is sum�
marized by Hubeny ������� Let us stress that a numerically most advanta�
geous approximate operator is a diagonal �i�e� local� operator ��� in which
case it represents a multiplication by a scalar value� and its inversion is a
simple division� To understand that the term �diagonal operator� is equiva�
lent to the term �local operator�� recall ���� and ����� These equations also
explain why a good approximation for the exact ��matrix is its diagonal�
Recall that the matrix element �ji tells us what portion of photons created
in an elementary interval around depth point i �i�e� S��i�� are being absorbed
at depth point j �described by J��j��� Most photons are absorbed very close
to the point of their creation� so the diagonal term �ii is much larger than
the o��diagonal terms� In other words� approximating the exact � by a diag�
onal operator means replacing the kernel funtion for the mean intensity� ����
by a ��function� which� as seen in Fig� �� is quite reasonable� �These consid�
erations also show that the next simplest approximation for the ��operator
would be its tridiagonal part
 here an interaction between a given depth and
its immediate neighbors is taken into account��

Equation ����� is particularly instructive� It shows that iteration is driven�
similarly as the ordinary lambda iteration� by the di�erence between the old
source function and the newer source function obtained by formal solution�
However� unlike the ordinary lambda iteration� this di�erence is ampli	ed by
the �acceleration operator� �������������� To gain more insight� let us con�
sider a diagonal �i�e� local� �� operator� The appropriate �� has to be chosen
such as ���� � � � for large � �see below�� Since in typical cases � � �� the
acceleration operator indeed acts as a large ampli	cation factor� This inter�
pretation was 	rst introduced by Hamann ������� who also coined the term
�Accelerated Lambda Iteration� �ALI�� The acronym ALI is also sometimes
understood to mean �Approximate Lambda Iteration�� Other terms for ALI
are Operator Perturbation �Kalkofen ������ or Approximate�Operator Itera�
tion �AOI
 Castor et al� ����� ������ Finally� the term �accelerated � iter�
ation� should not be confused with �acceleration of convergence�� discussed
later on�

How do we know that �� should approach unity at large depths� Here
comes the intimate relation between the escape probability and the ALI meth�
ods� mentioned in Sect� ���� Recall that the escape probability formalism
gives a relation between between the mean intensity and the source func�
tion� namely !J � �� � pe�S� This is exactly what we need here � a local
approximate relation between !J and S� We may thus put� as a reasonable
choice� �� � � � pe� which indeed shows that �� approaches unity for large
� � This escape�probability form of �� may be used for numerical work� but
modern approaches provided more e
cient and robust ways to construct the
approximate �� operator�



Stellar Atmospheres Theory� An Introduction 	�

I will not discuss here all possible variants of the �� operator
 the in�
terested reader is referred to Hubeny ������� I will only mention several
important papers� First� Scharmer ������ revived Cannon s original ideas�
and constructed an ingenious �� operator based on the Eddington�Barbier
relation� Next� OAB have shown� using rigorous mathematics� that a nearly
optimum �� operator is a diagonal part of the true � operator� Olson and
Kunasz ������ showed that the tridiagonal and possibly higher multi�band
parts of the lambda operator yield even more rapid convergence� Finally� Ry�
bicki and Hummer ������ used a formalism based on the Feautrier scheme�
employing a very e
cient algorithm for inverting a tridiagonal matrix� and
demonstrated that the entire set of the diagonal elements of � can be found
with an order of ND operations� This feature makes it the method of choice�
since it avoids computing costly exponentials� a problem inherent to both
previous approaches �OAB
 Olson and Kunasz ������

Acceleration of Convergence� This is a highly technical topic� but is
mentioned here because it has recently become an important ingredient of
the ALI methods� Only a brief summary of the basic ideas is presented here�
Any iterative scheme can be written in the form

x
n��� � F � x
n� � x
	� � �����

where F is called the ampli�cation matrix� In the case of the linear transfer
problem� ������ we have F given by F � ��� ��� ������� ���� ����� �����
where x
n� is an n�th iterate of the source function�

As it is well known from linear algebra� any iteration method where the
�n� ���th iterate is solely evaluated by means of the previous one converges
only linearly� However� taking into account information from the earlier it�
erates� one may 	nd faster schemes� I will not discuss these methods in any
detail here� the interested reader is referred to the review papers by Auer
������ ������ or to the original papers cited therein� I just brie�y mention
that for the most popular scheme� the Ng acceleration� the general expression
for the accelerated estimate of the solution in the n�th iteration is written

xacc �

	
��

MX
m��

�m



x
n� �

MX
m��

�mx

n�m� � �����

where the coe
cients � are determined by a residual minimization� Practical
expressions are given by OAB� Auer ������ ������ or Hubeny and Lanz �������

��� Non�linear Coupling Problems

To illustrate the basic problem of applying ALI in multilevel problems� let us
	rst write down the expression for the radiative rates� For simplicity� let us
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consider only lines
 the treatment of continua is analogous� The net transition
rate for any line i� j �i and j �� i represent any states of an atom�� is

Rnet
ji � njAji � �niBij � njBji� !Jij � �����

The basic ALI equation� ������ gives for !Jij

!Jij � ���Snew� � ��� ����Sold� � �����

Here the second term� which may be written as � !Joldij � is known from the pre�
vious iteration� However� the 	rst term contains Snew which is a complicated�
and generally non�linear function of the �new� populations�

This is an unfortunate situation� By applying the ALI idea� we have suc�
ceeded to eliminate the radiation intensity from the rate equations� but at
the expense of ending with a set of non�linear equations for the populations�
We cope with this problem by one of the possible two ways�

�� Linearization� The usual way of solving the set of non�linear equations
is by applying the Newton�Raphson method� This may be rather time
consuming because each iteration requires to set up and to invert the
Jacobi matrix of the system�

�� Preconditioning� This is an ingenious way to analytically remove inac�
tive �scattering� parts of radiative rates from the rate equations� and to
recover a linearity of the ALI form of the rate equations�

Let us demonstrate the idea of preconditioning on a simple case� where the
total source function is given by the line source function Sij � njAji��niBij�
njBji� �i�e�� the case of non�overlapping lines and no background continuum��
Let us further assume that we have a local �diagonal� approximate �� op�
erator ��� is then a real number�� The net rate ����� may be written� after
some algebra�

Rnet
ji � njAji��� ��ji� � �niBij � njBji�� !Joldij � �����

which is indeed linear in the populations�
This is a very interesting expression� Notice 	rst that the original net rate�

������ is represented by a subtraction of two large contributions� all emission
minus all absorptions� while the result� the net rate� is rather small� Physi�
cally� this follows from the fact that most emissions �i�e� radiative transitions
j � i� are those which immediately follow a previous absorption of a photon
�transitions i� j�� i�e� they are the part of a scattering process� In order to
improve the numerical conditioning of the system of rate equations� we have
to somehow eliminate the scattering contributions� i�e� to �precondition� the
rates� An illuminating discussion of this topic is presented by Rybicki �������

In the ALI form of the net rate� ������ we see that deep in the atmosphere�
�� � �� so that the 	rst term is indeed very small� Similarly� the second term
is also small because � !Jij is small� In other words� the radiative rates are
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indeed preconditioned� In the context of the ALI approach� this idea was
	rst used by Werner and Husfeld ������
 a systematic study was presented
by Rybicki and Hummer ������ ������ who have extended it to the case of
general overlap of lines and continua�

� Model Atmospheres

	�� De�nition and Terminology

By the term model atmosphere we understand a speci	cation of all the at�
mospheric state parameters as functions of depth� Since the problem is very
complex� we cannot construct analytic solutions� Therefore� we discretize the
depth coordinate and consider a 	nite number of depth points � this number
is typically of the order of several tens to few hundreds� A model atmosphere
is then a table of values of the state parameters in these discretize depth
points�

Which are the parameters that describe the physical state of the atmo�
sphere� The list of parameters depend on the type of the model� i�e� on the
basic assumptions under which the model is constructed� Traditionally� the
list of state parameters includes only massive particle state parameters �e�g�
temperature� density� etc��� but not the radiation 	eld parameters� This might
seem to be in sharp contrast of what was being stated before� namely that
radiation intensity is in fact a crucial parameter� It indeed is� and in fact
the radiation intensity is an important state parameter in the process of con�
structing the atmospheric structure� But� when the system of all structural
equations� which includes the radiative transfer equation� is solved� we do
not have to keep the radiation intensity in the list of state parameters which
has to be stored in the table representing the model� The point is that once
all the necessary material properties are given� we may easily determine the
radiation 	eld by a formal solution of the transfer equation�

The terminology is sometimes ambiguous� Some astronomers� mostly ob�
servers� understand by the term �model stellar atmosphere� a table of emer�
gent radiation �ux as a function of wavelength� This is understandable� since
for many purposes the predicted radiation from a star is the only interesting
information coming out of the model� Let us take an example of a widely
used Kurucz ������ ����� grid of model atmospheres� For each combination
of input stellar parameters �Te� � logg� and metallicity�� he publishes two ta�
bles
 one is the �model atmosphere� in our de	nition� i�e� a relatively short
table of values of temperature� electron density� etc�� in all depth points
 the
second table is a table of emergent �ux versus wavelength� In fact� many if
not most workers use only this second table� A drawback of using the tabu�
lated model �ux is that it has a 	xed wavelength resolution �in the case of
Kurucz models� it is relatively coarse � �� "A�� and thus cannot be used for
purposes which require a high�resolution predicted spectrum� On the other
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hand� from the genuine model� one may easily compute a spectrum of any
resolution�

Below� I summarize the basic types of model stellar atmospheres�

I� Static models� These are models constructed under the assumption
of hydrostatic equilibrium� Consequently� these models apply only to atmo�
spheric layers that are indeed close to hydrostatic equilibrium� i�e� the macro�
scopic velocity is small compared to the thermal velocity of atoms� These
layers are traditionally called stellar photospheres� Basic input parameters
are the e�ective temperature� Te� � the surface gravity� g �usually expressed
as logg�� and chemical composition� Strictly speaking� one should give the
values of abundances of all individual chemical species� In reality� one usually
considers solar abundances� or some ratio of some or all abundances with
respect to the solar one� If all elements but hydrogen and helium share the
common abundance ratio with respect to the solar abundances� this ratio is
called metallicity� There are some additional input parameters� like the mi�
croturbulent velocity� or� in the case of convective models� the mixing length
�or some other parameters approximating the convection�

There are several basic types of models�

� LTE grey models� They are the simplest possible models� based on the
assumption that the opacity is independent of frequency� They are not
used any longer for spectroscopic work� but they are useful for providing
an initial estimate in any iterative method for constructing more realistic
models� and they are very useful for pedagogical purposes� For this reason�
they will be discussed at length in the next section�

� LTE models� They are based on the assumption of LTE �see Sect� �����
Two state parameters� for instance temperature� T � and density� �� �or
electron density� ne�� su
ce to describe the physical state of the atmo�
sphere at any given depth�

� NLTE models� This is a rather ambiguous term which encompasses any
model which takes into account some kind of a departure from LTE� In
early NLTE models� the populations of only few of the low�lying energy
levels of the most abundant species� like H and He� were allowed to depart
from LTE
 the rest was treated in LTE� There are two basic kinds of NLTE
models� or approaches to include NLTE e�ects�


 Models solving for the full structure� The codes of general use include
an early H�He model atmosphere code described by Mihalas et al
������� the Kiel code �Werner �����
 PAM �Anderson ������ and a
universal code TLUSTY �Hubeny ������


 NLTE line formation �also called a restricted NLTE problem�� Here�
the atmospheric structure �temperature� density� etc�� is assumed
to be known form previous calculations �either LTE or simpli	ed
NLTE�� and is kept 	xed� while only radiative transfer and statisti�
cal equilibrium for a chosen atom�ion is solved simultaneously� The
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popular codes of this sort include DETAIL�SURFACE �Butler and
Giddings �����
 MULTI �Carlsson ������ and MALI �Rybicki and
Hummer ������

� NLTE line�blanketed models� This is in fact a subset of the previous
item� I consider it separately because these models represent a qualita�
tively new step in the model construction� They are models where NLTE
is considered for practically all energy levels and transitions between
them � lines and continua � that in�uence the atmospheric structure�
The number of such lines may actually go to millions� so the problem is
presently extremely demanding on the computer resources and ingenuity
of the numerical methods used� In these models� it is no longer necessary
to compute the atmospheric structure using simple atomic models� and
recalculate NLTE line formation in individual atoms separately� These
models will be discussed in more detail in Sect� ����

II� Uni�ed models� By de	nition� uni	ed model atmosphere are those
which relax the a priori assumption of hydrostatic equilibrium� and which
thus treat the whole atmosphere ranging from an essentially static photo�
sphere to a highly dynamical wind on the same footing� Ideally� this would
mean solving self�consistently the set of hydrodynamic equations ��� � ���
and the radiative transfer equation� This is a tremendous task� which has
not yet been even attempted to solve generally� Instead� one treats the hy�
drodynamic of the wind taking into account radiation in some approximate
way �for instance� the line driven wind theory by Castor� Abbott� Klein ����

or Pauldrach� Puls� Kudritzki ���� � see lecture by Lamers in this volume��
Once the basic hydrodynamic structure �essentially� the density and velocity
as a function of radius� is determined� one solves in detail a NLTE radia�
tive transfer� possibly together with the radiative equilibrium equation� This
approach was pioneered by the Munich group �Gabler et al� ����
 Sellmaier
et al� ������ who also coined the term �uni	ed models�� The name stresses
a uni	cation of a photosphere and wind
 prior to this approach there were
separate models for photospheres and for winds� so�called core�halo models�

Besides Munich models� there exists several other variants of uni	ed model
atmospheres� I do not present a review of these approaches �some topics are
covered in other lectures �Lamers� this volume
 Fullerton� this volume�
 I just
brie�y mention that various uni	ed models are computed

� with or without self�consistent T �r�� That is� either the radiative equi�
librium is solved exactly �e�g� Gabler et al� ����
 Hillier �����
 or the
temperature structure is approximated for instance by the grey temper�
ature structure �de Koter et al� ����
 Schaerer and Schmutz �����


� with or without Sobolev approximation in the wind


� with or without metal line blanketing
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	�� Basic Equations of Classical Stellar Atmospheres

Let us summarize the basic equations of stellar atmospheres for the case
of horizontally�homogeneous� plane�parallel� static atmosphere� This case is
sometimes called the classical stellar atmosphere problem�

Radiative transfer equation� The most advantageous form of the transfer
equation for the use in model atmosphere construction is either the usual
	rst�order form� e�g� ����� which is then solved by the DFE method� or the
second�order form with the variable Eddington factor�

d��fK� J��

d���
� J� � S� � �����

It involves only the mean intensity of radiation� J� �which is a function of
only frequency and depth�� but not the speci	c intensity �which is in ad�
dition a function of angle ��� In fact� it is the mean intensity of radiation
which enters other structural equations� and therefore the mean intensities�
not speci	c intensities� are to be taken as the atmospheric state parameters�
An obvious numerical advantage is that instead of dealing with NF � NA
parameters describing the radiation 	eld per depth �NF and NA being the
number of discretized frequency and angle points� respectively� we have only
NF parameters� A discretization of the depth variable� mentioned above� is
done in such a way that depth points run from the �surface� depth� where
�� � � for all frequency points� to a depth where �� � � for all frequencies
�because the di�usion approximation� ������ is used for the lower boundary
condition��

Hydrostatic equilibrium equation� This equation reads� recalling ����

dP

dz
� �� g � �����

where P is the total pressure� Introducing the Lagrangian mass m� de	ned
as the mass in the column of a cross�section of � cm� above a given point in
the atmosphere�

dm � �� dz � �����

we obtain for the hydrostatic equilibrium equation simply

dP

dm
� g � �����

which� since g is constant in a plane�parallel atmosphere� has a trivial solu�
tion� P �m� � mg � P ���� In fact� this is the reason why one usually choses
m as the basic depth variable of the ��D plane�parallel atmospheres problem�
Nevertheless� it should be kept in mind that the total pressure is generally
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composed of three pars� the gas pressure� Pgas� the radiation pressure� Prad�
and the turbulent pressure� Pturb� i�e�

P � Pgas � Prad � Pturb � NkT �
��

c

Z �

	

K�d� �
�

�
� v�turb � �����

where vturb is the microturbulent velocity� The hydrostatic equilibrium equa�
tion may then be written as �neglecting the turbulent pressure�

dPgas
dm

� g � ��

c

Z �

	

dK�

dm
� g � ��

c

Z �

	

��
�
H�d� � �����

We may think of the r�h�s� of this equation as the e�ective gravity acceleration�
since it expresses the action of the true gravity acceleration �acting downward�
i�e� towards the center of the star� minus the radiative acceleration �acting
outward�� In other lectures �Lamers� this volume� we saw that this is the
term which is crucial in the radiatively�driven wind theory�

Radiative equilibrium equation� This expresses the fact that the total
radiation �ux is conserved� see ����Z �

	

H�d� � const �
�

��
T �
e� � �����

This equation may be rewritten� using the radiative transfer equation� asZ �

	

���J� � ��� d� �

Z �

	

�� �J� � S�� d� � � � �����

Notice that ����� contains the thermal absorption coe
cient ��� not the total
absorption coe
cient �� � This is because the scattering contributions can�
cel out� To illustrate this mathematically� let us take an example of electron
scattering� The absorption coe
cient for the process �see ���� is given by
ne�e
 �e being the electron scattering �Thomson� cross�section� The emission
coe
cient is then given by ne�eJ� � As it is seen from ������ these two contri�
butions cancel� This is also clear physically� because an absorption followed
immediately be a re�emission of a photon does not change the energy balance
of the medium� and therefore cannot contribute to the radiative equilibrium
equation�

Statistical equilibrium equations
 also sometimes called rate equations�
These are in fact equations ���� where the collisional term is written explicitly�

ni
X
j ��i

�Rij �Cij� �
X
j ��i

nj �Rji � Cji� � �����

where Rij and Cij is the radiative and collisional rate� respectively� for the
transition from level i to level j� The l�h�s� of ����� represents the total number
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of transitions out of level i� while the r�h�s� represents the total number of
transitions into level i from all other levels� The radiative rates are given
by expressions analogous to those discussed for a two�level atom in Sect� ���
�notice that they depend on the radiation intensity�� while the collisional
rates are assumed to be given functions of temperature and electron density�

The set of rate equations for all levels of an atom would form a linearly
dependent system� Therefore� one equation of the set has to be replaced by
another equation� Usually� this is the total number conservation equation
�or abundance de	nition equation��

P
i ni � Natom� where the summation

extends over all levels of all ions of a given species�
Two comments are in order� First� in practice there are only a limited

number of levels of an atom�ion which are treated explicitly� i�e� for which
the equation of the form ����� is actually written down and solved� These are
usually low�lying levels� The remaining levels are typically treated in some
approximate way� as� for instance� in LTE with respect to the ground state
of the next ion �following Auer and Mihalas ������ or with respect to the
highest explicit level of the current ion� Another possibility is to express this
contribution through the partition function �Hubeny ������ In any case� the
abundance de	nition equation has to be modi	ed to readX

explicit

ni �
X
upper

ni � Natom � �����

Second� the above abundance de	nition equation can replace the rate
equation for any level� This level was usually taken� following Auer and Mi�
halas ������� to be the ground state of the highest ion of the given species�
However� a numerically more stable option is to choose a level which has the
highest population of all the levels of the given species� as was suggested by
Castor et al� �������

Charge conservation equation� This equation expresses the global electric
neutrality of the medium� X

i

niZi � ne � � � �����

where Zi is the charge associated with level i �i�e� equal to � for levels of
neutral atoms� � for levels for once ionized ions� etc��� The summation now
extends over all levels of all ions of all species�

Auxiliary de�nition equations� There is a number of auxiliary expres�
sions� like the de	nition equations of the absorption and emission coe
cient�

�� �
X
i

X
j�i

�ni � �gi�gj�nj ��ij��� �
X
i

�
ni � n�i e

�h��kT
�
�i����

�
X
�

nen������� T �
�

�� e�h��kT
�

� ne�e � �����



Stellar Atmospheres Theory� An Introduction 
�

where the four terms represent� respectively� the contributions of bound�
bound transitions �i�e� spectral lines�� bound�free transitions �continua�� free�
free absorption �also called the inverse brehmstrahlung�� and of electron scat�
tering� Other scattering terms� like for instance the Rayleigh scattering� may
also be added if appropriate to the problem at hand� Here� ���� are the
corresponding cross�sections
 subscript � denotes the �continuum�� and n�
the ion number density� The negative contributions in the 	rst three terms
represent the stimulated emission �remember� stimulated emission is treated
as negative absorption�� There is no stimulated emission correction for the
scattering term� since this contribution exactly cancels with ordinary absorp�
tion �for an illuminating discussion� see Shu ������ Finally� notice that the
relation between the bound�bound cross section �ij��� and previously in�
troduced quantities �the Einstein coe
cients and the absorption pro	le� is
simply �ij��� � �h�	����Bij�����

Analogously� the thermal emission coe
cient is given by

�� �
�
�h���c�

� hX
i

X
j�i

nj�gi�gj��ij��� �
X
i

n�i�i���� e�h��kT

�
X
�

nen������� T � e�h��kT
i
� �����

The three terms again describe the bound�bound� bound�free� and free�free
emission processes� respectively�

These equations should be complemented by expressions for the relevant
cross�sections� de	nition of LTE populations� and other necessary expres�
sions� The resulting set forms a highly�coupled� highly non�linear system of
equations� The equations and corresponding quantities that are determined
by them are summarized in the Table ��

Table �� Summary of classical stellar atmosphere equations and state parameters

Equation Corresponding state parameter

Radiative transfer Mean intensities� J�

Radiative equilibrium Temperature� T

Hydrostatic equilibrium Total particle density� N

Statistical equilibrium Populations� ni

Charge conservation Electron density� ne
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	�� LTE�grey Model� A Tool to Understand the Temperature
Structure

Before discussing the methods and results of solving the full stellar atmo�
sphere problem� it is very instructive to consider an extremely simpli	ed case
of the so�called LTE�grey model� Although these models have not been used
to describe a real stellar atmosphere for more than four decades� they are
still very useful because i� they provide a beautiful pedagogical tool to un�
derstand an interplay between radiative equilibrium and radiative transfer�
thus to understand a behavior of temperature as a function of depth
 and ii�
they provide an excellent starting solution for iterative methods to construct
more sophisticated models�

The basic assumption of these models is that the absorption coe
cient is
independent of frequency�

�� � � � �����

In reality� one uses some frequency�averaged opacity� usually the Rosseland
mean opacity� ����� The other basic assumption is that of LTE� S� � B� �
The radiative equilibrium equation thus reduces to

J � B � �����

where the quantities without the frequency subscript � are understood as
frequency�integrated quantities�

J �

Z �

	

J�d� 
 B �

Z �

	

B�d� � �T � � �����

The second equation of the problem� the radiative transfer equation �ac�
tually� its second moment�� reads

dK

d�
� H �� K�� � � H � � � const � �����

because H is constant with depth� as follows from the radiative equilibrium�
The constant in the above equation is equal to K���� Invoking� for simplicity�
the Eddington approximation � K � J��� and K��� � �����H � we obtain
�recall that the �ux is given by F � �H��

J�� � �
�

�
F �

�
� �

�

�

�
� �����

We know that the total �ux� F � is speci	ed through the e�ective temperature�
F � �T �

e� � Combining ����� and ����� together� we obtain

T � �
�

�
T �
e�

�
� �

�

�

�
� �����

There exists an elegant analytic solution of the general grey atmosphere prob�
lem which yields an analogous expression for the temperature as ������ only
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the constant ��� is replaced by a function q�� �� called Hopf function� It is a
smoothly varying function of optical depth� with q��� � �����
 q��� � �����
which is not very far from the Eddington approximation value�

An important point to realize is that the grey temperature structure fol�
lows just from the radiative transfer equation and the radiative equilibrium
equation� The hydrostatic equilibrium equation does not enter this deriva�
tion� In other words� the temperature in a grey atmosphere� as a function of
mean optical depth� does not depend on the surface gravity� However� the
hydrostatic equation determines the relation between the averaged optical
depth and the geometrical coordinate �m or z��

We see that the temperature is a monotonically increasing function of
optical depth� Why this is so� It is easy to understand it in physical terms�
The condition of radiative equilibrium stipulates that the total radiation �ux
is constant with depth in the atmosphere� However� the radiation �ux mea�
sures the anisotropy of the radiation 	eld �i�e� the �ux would be zero for
perfectly isotropic radiation�� We know from the transfer equation� and in
particular from the di�usion approximation� that the anisotropy decreases
with increasing depth in the atmosphere� The only way how to maintain the
constant �ux in spite of decreasing anisotropy of radiation is to increase the
total energy density of radiation �proportional to J�� i�e� the temperature
�recall that J � S � B � �T ���

The fact the integrated J is equal to integrated B at all depths � does
not necessarily mean that the frequency�dependent J� has to be equal to B�

for all frequencies� In fact� we should expect that there should be a frequency
range for which J� � B� � i�e� J� � B� � �
 these regions may be called
�heating� regions
 while at the rest of frequencies J� 
 B� � i�e� J� �B� 
 �

these regions may be called �cooling� regions� Remember� J is proportional
to the number of photons absorbed per unit optical depth� while S � B to
the number of photons emitted per unit optical depth� Thus� for instance�
J� � B� means that more photons are absorbed than emitted at frequency �

the energy of extra absorbed photons must then increase the internal energy�
i�e� the temperature� of the medium�

Which frequency regions are the heating ones� and which are the cooling
ones� In the case of an LTE�grey atmosphere� the answer is easy� Let us
	rst write down some useful expressions� From the general expression for the
Plack function� ����� we may easily derive two limiting expressions� In the
high frequency limit� �h��kT �� �� we obtain the Wien form�

B��� T � � �h��

c�
exp��h��kT � � �����

while the low�frequency limit� �h��kT �� �� is called the Rayleigh�Jeans tail�

B��� T � � �k��

c�
T � �����
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Another important expression is the Eddington�Barbier relation for the mean
intensity at the surface� which may be derived from the Eddington�Barbier
relation ���� integrated over angles�

J��� �
�

�
S�� ��� �����

Let us consider the surface layer of a grey atmosphere� If the frequency �
is �large�� i�e� in the Wien regime� then a decrease of the local temperature
between � � � and the surface �� � ��� translates into a large decrease of
B��T �� ��� because for large frequencies the Planck function is very sensitive
to T � see ������ In other words� B at the surface may be signi	cantly �even
orders of magnitude� lower than B at � � �� Since the mean intensity at the
surface is about one half of B�� ���� it is clear that J���� � B���� for these
frequencies� The large frequencies are therefore the �heating� frequencies�

In contrast� for low frequencies �the Rayleigh�Jeans tail��B is linearly pro�
portional to T � We know from the T �� � relation for a grey atmosphere that
T ��� � ���T ������ The factor ��� from the Eddington�Barbier relation will
now dominate� so we get J���� � �����B��� ��� 
 B����� Consequently� the
low frequencies are the �cooling� frequencies� One can make these consider�
ations more quantitative� but this is not necessary
 the only important point
to remember is that the high�frequency part of the spectrum is responsible
for heating� while the low�frequency part is responsible for cooling�

Two�step grey model� The above considerations are interesting� but not
particularly useful for a purely grey atmosphere� They are� however� very
helpful if we consider an atmosphere with some simple departures from the
greyness� Let us consider a two�step grey model� i�e� with the opacity given as
a step function� �� � � �the original grey opacity� for � 
 �	� and �� � a�
for � 
 �	� with a� �� i�e� with a large opacity for high frequencies �one may
visualize this as a schematic representation of a strong continuum jump� for
instance the Lyman discontinuity�� We will denote the original optical depth
as �old� and the new one �for � 
 �	�� as �new� � Let us further assume that
the frequency �	 is high enough to be in the range of �heating� frequencies�

What are the changes of the temperature structure with respect to the
original grey temperature distribution implied by the opacity jump� We will
consider separately the surface layers � � �� and the deep layers�

The surface layers� Since the opacity for � 
 �	 is much larger than the
original opacity� we may neglect the contribution of the latter to the radiative
equilibrium integral� so the modi	ed radiative equilibrium equation becomesZ �

��

J�d� �

Z �

��

B�d� � �����

which� together with the Eddington�Barbier relation J���� � B���new� �����
yields for the new surface temperature� T	� the expression

�����

Z �

��

B� �T ��new� ���� d� �

Z �

��

B��T	�d� � �����
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from which follows that T	 
 T ��new� � ��� Since the temperature at �new� � �
must be close to the original temperature at the surface �recall that �new� �
�old�� the new temperature at the surface is lower than the original surface
temperature� which gives rise to the term surface cooling e�ect�

The above derivation was more or less a mathematical one� But� in physi�
cal terms� why do we get a cooling� This is simply because by adding opacity

in the heating portion of the spectrum� we e�ectively suppress this heating�
Therefore� we obtain a cooling� These considerations also suggest that by
adding an additional opacity in the cooling� i�e� the low�frequency� part of
the spectrum� we may actually get a surface heating of the atmosphere�

The deep layers� It is intuitively clear that the atmospheric layers which are
optically thick in all frequencies will be little in�uenced by the additional
opacity jump� However� an interesting region is the one which is opaque for
large frequencies �� 
 �	�� �i�e� �new� � � for these frequencies�� while still
transparent for the original opacity� �old 
 �� Since the optical depth is large
for � 
 �	� J� � B� for these frequencies� and therefore the monochromatic
�ux is close to zero� The condition of radiative equilibrium at those depths
may be written as J � � B�� where the primed quantities are de	ned as partial
integrals� e�g� J � �

R ��
	 J�d�� and analogously for B� From the radiative

transfer equation and the Eddington approximation� we have dJ ��d� � �H
�not H�
 or� better speaking� H� � H� because there is no �ux for � 
 �	��
We may formally write J � � ��T �� and by repeating the same procedure as
in deriving the original grey temperature structure� we obtain

T � � �����������T �
e� �� � ���� � �����

We have �� 
 �� because J � 
 J � This is simply because the energy density
of radiation for � 
 �	 is smaller than the total energy density� Therefore�
the new temperature is larger than the original one� Consequently� the phe�
nomenon is called the backwarming e�ect�

Again� what is the explanation of this e�ect in physical terms� By adding
opacity� the �ux in the high�opacity part drops� Therefore� the �ux in the
rest must increase in order to keep the total �ux constant� However� the only
way how to accomplish it in LTE is to increase the temperature gradient�
and therefore the temperature itself in the previously �at T �� � region�

One may wonder why we spend so much time with an admittedly crude
and unrealistic model� such as a simple two�step grey model� However� it
should be realized that the above discussed phenomena of surface cooling and
backwarming are quite general� and are not at all limited to a grey approxi�
mation� In any model� including sophisticated NLTE models �see Sect� �����
there are always frequencies which cause heating and those which cause cool�
ing� Any process which changes opacity�emissivity in those regions changes
the overall balance and therefore in�uences the temperature structure� In the
NLTE models� there are typically several intervening or competing mecha�
nisms� but the fundamental physics behind the temperature structure is ba�
sically the same as in the case of the grey model� Likewise� the mechanism of
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backwarming is quite general� The beauty of the grey model is that one may
describe all these phenomena by a simple analytical model�

	�� LTE and NLTE Model Atmospheres

LTE models� Constructing LTE model stellar atmospheres is now a more
or less standard procedure� It consists in solving simultaneously basic struc�
tural equations ����� � ������ where ����� is replaced by the Saha�Boltzmann
distribution� ���� and ����� Consequently� the absorption and emission co�
e
cients are known functions of temperature and electron density� i�e� they
are given locally� Nevertheless� there is still a non�local coupling of radiation
	eld and material properties via the radiative equilibrium equation �and� to
a smaller extent also the hydrostatic equilibrium equation� via the radiation
pressure term�� which has to be dealt with�

I will not discuss this topic here in any detail� I just mention that the 	eld
of LTE model atmospheres is completely dominated by the Kurucz model
grid �Kurucz ����
 ������ and by his computer program ATLAS �Kurucz
����
 ������ Yet� there are several independent computer programs� designed
speci	cally for very cool stars � Gustafsson et al� ������
 Tsuji ������
 John�
son et al� ������
 Allard and Hauschildt ������
 to name just few�

NLTE models� Why do we expect that departures from LTE may be im�
portant in stellar atmospheres� As explained above� departures from LTE
arise when the radiative rates dominate over the collisional rates� These con�
ditions typically occur at high temperatures and low densities� The higher the
e�ective temperature� and the stronger the radiation 	eld� the deeper in the
photosphere we may expect departures from LTE� We also anticipate that
the departures will be largest at frequencies with highest opacities �EUV�
cores of strong lines�� When the opacity is large� the observed spectrum will
be formed higher in the atmosphere where the density of the material is low�
Therefore� NLTE models are most important for interpreting observed spec�
tra of hot stars �O� B� A stars� typically Te� � �� ��� K� and of supergiants�
i�e� the intrinsically brightest stars�

However� the most important point to realize is that for a star of any

spectral type� there is always a wavelength range� and correspondingly a layer

in the atmosphere� where NLTE e�ects are important� Yet� the meaning of
the assessment �NLTE e�ects are important� is somewhat arbitrary� The
point is that a precise de	nition of this term should in principle involve the
desired accuracy of the predicted spectrum� For instance� if one requires an
accuracy of� say� ��# in the predicted �ux in the optical and UV spectrum
for a main�sequence B star� then one may say that LTE models are su
cient�
However� NLTE models would be necessary if one requires an accuracy of� say
��� #
 and NLTE models would still be necessary if one requires an accuracy
of �����# for the same star in the EUV spectrum range �wavelengths below
the Lyman limit� i�e� ��� "A��
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How one calculates NLTE model atmospheres� The realization that the
nonlocal coupling of physical quantities is extremely important led Auer and
Mihalas ������ to develop the complete linearization �CL� method to solve
the set of discretized structural equations� This is a very robust method based
on the Newton�Raphson scheme� All equations are linearized and are treated
on the same footing� allowing a fully consistent treatment of all couplings�
The method has brought an enormous progress in the modeling� and in fact
has opened a new era in the stellar atmospheres theory� However� a high price
had to be paid� Because of the need to invert individual block matrices of the
general Jacobi matrix of the system� the computer time increases with the
cube of the number of unknowns� Therefore� it was possible to consider only a
limited number of atomic levels and opacity sources �lines�� Typically� about
�� to �� energy levels were allowed to depart from their LTE populations

only a few lines were included explicitly� and the radiative transfer was solved
at typically ��� frequencies� It also became clear very soon that dealing with
millions of lines within this framework would be out of the question regardless
of how rapidly the computer technology might progress�

However� already the early simpli	ed NLTE models have demonstrated
that departures from LTE form an essential feature in interpreting the spec�
tra of hot stars �for a review� see Mihalas ����� and Kudritzki and Hummer
������ In the same period� the importance of metal line blanketing on the at�
mospheric structure was demonstrated numerically� and a widely used grid of
LTE line�blanketed model atmospheres was constructed �Kurucz ������ Since
then� a debate ensued as to what kind of model atmospheres is more ade�
quate� metal line�blanketed LTE models or NLTE models without blanketing�
Models accounting for both metal line�blanketing e�ects and departures from
LTE were then deemed an unreachable dream�

The dream had slowly started to come through in the ���� s with the
advent of the ALI method� The 	rst who applied the ALI idea to the model
stellar atmosphere construction was Werner �����
 ����
 ������ He has shown
that the method has a great potential� because it e�ectively eliminates the
radiation intensities from the set of model unknowns� One is therefore able to
consider many more frequency points� and consequently many more atomic
transitions� in the model construction� Moreover� the method was found to
be more stable than the complete linearization method in many cases�

A disadvantage of the ALI scheme is that it sometimes converges rather
slowly� This is easy to understand� since the information about changes in
state parameters is lagged� i�e� is communicated to the rest of the state pa�
rameters only in the subsequent iteration� Nevertheless� the time per iteration
is very small� Moreover� the speed of convergence can be accelerated by pre�
dicting better estimates of the solution using the acceleration of convergence
techniques �see Sect� ����� In contrast� the CL method requires only a small
number of iterations� because it is a global method with an almost quadratic
convergence� The time per iteration may however be enormous�
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What was therefore needed was a method which would combine the ad�
vantages of both these methods
 namely the convergence rate �i�e� the number
of iterations required to reach a given accuracy� being virtually as high as
for the standard CL method� while the computer time per iteration is almost
as low as for the standard ALI method� This was exactly what was achieved
by developing the so�called hybrid complete linearization�accelerated lambda
iteration �CL�ALI� method �Hubeny and Lanz ������ The method formally
resembles the standard complete linearization
 the only di�erence being that
the radiation intensity at selected frequency points is not explicitly linearized

instead� it is treated by means of the ALI approach�

	�	 Line Blanketing

The term line blanketing describes an in�uence of thousands to millions of
spectral lines on the atmospheric structure and predicted emergent spectrum�
The line blanketing in�uences not only the emergent spectrum �the so�called
line blocking�� but also� and more importantly� the atmospheric structure �the
backwarming and the surface cooling e�ects�� Although the ALI�based meth�
ods have opened the way to attack this problem� the enormous complexity of
the iron�peak elements �i�e�� we have to account for hundreds of energy levels
and millions of line transitions per ion� still precludes using direct methods
which were successfully used for light elements �He� C� N� O� etc���

Statistical methods are therefore necessary� The idea is to avoid dealing
with all individual energy levels of complicated metal species� Instead� several
states with close enough energies are grouped together to form a so�called
�superlevel�� The basic assumption is that all individual levels within the
same superlevel share the same NLTE departure coe
cient
 in other words�
the individual levels forming a superlevel are in Boltzmann equilibrium with
each other� This idea was pioneered by Anderson ������� The transitions
between individual superlevels� called �superlines�� are treated by means of
two possible approaches�

� Opacity Distribution Functions �ODF�� The idea is to resample a com�
plicated frequency dependence of the superline cross�section to form a
monotonic function of frequency
 this function is then represented by a
small number of frequency quadrature points �Anderson ����
 Hubeny
and Lanz ������

� Opacity Sampling �OS�� The idea is a simple Monte Carlo�like sampling of
frequency points of the superlevel cross�section �Anderson ����
 Dreizler
and Werner ������ The advantage of this approach is that it can easily
treat line blends and overlaps
 the disadvantage is that one has to be very
careful to choose a su
ciently large number of frequency points� since
otherwise the representation may be inaccurate� Indeed� the line cores�
which represent the region of maximum opacity� are relatively narrow�
Considering too few frequency points may easily lead to missing many
important line cores�
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These two approaches are illustrated in Fig� �� We consider the superline
between the superlevels � and �� of Hubeny and Lanz ������ model of Fe iii�
The detailed cross�section �upper panel� has been computed for some �����
internal frequency points� The dotted line in the middle panel represents the
Opacity Sampling by �� �equidistant� wavelength points� while the number
of points is doubled for the full line� This shows that unless a large number of
frequency points is considered� the OS representation may be quite inaccurate
since practically all strong lines are missed� Finally� the lower panel shows
the Opacity Distribution Function representation� With �� points only� we
have already a fairly accurate representation of the resampled cross�section
to be used in model atmosphere construction�

The 	rst NLTE model atmospheres including iron�line blanketing were
presented by Anderson ������� Anderson and Grigsby ������� Dreizler and
Werner ������� and Hubeny and Lanz ������� The strategy for computing
line�blanketed model atmospheres is as follows� Hydrogen� helium� and the
most important light metals �C� N� O� possibly others� are represented by
detailed atomic models� and all the individual lines are treated separately�
This involves of the order of ��� atomic levels� and up to � ��� lines� which
are represented by several thousands of frequency points� The heavy �iron�
peak� metals are treated by means of the statistical� ODF or OS� approach�
Since the dominant opacity is provided by iron and nickel� we either neglect
all the other iron�peak elements� or group all of them together to form an
averaged iron�peak element �as suggested 	rst by Anderson ������

Finally� I will show how the line blanketing in�uences the temperature
structure of an atmosphere� As an example� let us take a model with Te� �
�� ��� K� and log g � �� which corresponds to a main�sequence O�star� Fig�
ure � shows the temperature as a function of depth �expressed as column
mass in g cm���� We consider several NLTE model atmospheres� a� H�He
LTE model� b� H�He NLTE model� c� NLTE model with light elements only
�H�He�C�N�O�Si�
 and d� fully blanketed NLTE model �H�He�C�N�O�Si�Fe�
Ni�� All models consider all lines originating between explicit levels of all
species that are taken into account�

The behavior of temperature is easily explained by a reasoning analogous
to that put forward in the preceding subsection� The frequency region above
the Balmer limit �i�e� 	 
 ���� "A� is the �heating region�� Therefore� adding
an opacity there causes a surface cooling� This explains the cooling in LTE
H�He model �caused mainly by the hydrogen and He II Lyman and Balmer
lines�� and also the additional cooling in the H�He�C�N�O�Si model �which is
caused mainly by the C IV resonance doublet at 	 ���� "A�� Similarly� the
additional opacity in the heating region causes the heating of deeper layers�
the so�called backwarming e�ect� Indeed� it is clearly seen that while the
lines of light elements cause only a modest backwarming �in the layers at
logm � �� and deeper�� the Fe and Ni lines� being quite numerous� cause an
appreciable heating in these layers�
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Fig� �� An illustration of various numerical treatments of a typical superline� Upper
panel� the detailed cross�section� Middle panel� the Opacity Sampling representa�
tion� Lower panel� the Opacity Distribution Function representation� Small squares
indicate the points used to represent this ODF in model atmosphere calculations
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Fig� �� Temperature structure for four model atmospheres with the same
parameters� Te� � 	� ���K� log g � 
� Thick line� fully blanketed NLTE
H�He�C�N�O�Si�Fe�Ni model� dashed line� NLTE model with light elements
�H�He�C�N�O�Si�� thin line� NLTE H�He model� dotted line� LTE H�He model�

Now� how it is possible that few lines �of H� He� or light elements� are able
to cause a signi	cant surface cooling� while a large number of lines is needed
to get a signi	cant backwarming� Again� this is explained by employing the
two�step grey model considerations� Let us take equation ������ It shows that
a strong opacity source completely dominates the radiative equilibrium inte�
gral� so that the other frequency regions become unimportant� The original
two�step grey model considers the strong opacity source to extend from �	 to
in	nity
 however� the essence remains the same if the strong opacity source
is just one line� or few strong lines� In the case of one dominant line� the
radiative equilibrium integral reduces to� in analogy to ������

!J � SL � �����

which follows from ������ ����� ����� and ����� In LTE� we get surface cooling
due to the exactly same reasons as in the two�step grey model �LTE forces
S to be equal to B� and B is forced to be equal to !J at the surface� which is
low�� In NLTE� the cooling e�ect may be even stronger� because the two�level
source function� ����� implies that !J � SL � B� and we know from Sect� ����
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that the two�level atom source function decreases signi	cantly towards the
surface�

On the other hand� the backwarming e�ect is primarily caused by blocking
of the �ux by additional opacity sources
 the more extended �in the frequency
space� the blocking is� the larger the backwarming �recall ����� and subse�
quent discussion�� The actual strength of a line does not matter so much
as soon as it is able to e
ciently block the �ux� Therefore� a single narrow
and very strong line is quite e
cient in the surface cooling� but relatively
ine
cient in the backwarming�

There is still one remaining puzzling feature� Why� in view of all what
was said above� we obtain a large surface heating in the NLTE H�He models�
This was indeed a big surprise when the e�ect was 	rst discovered by Auer
and Mihalas ������� who have also provided its physical explanation� The
e�ect is related� but not equivalent� to another� previously discovered NLTE
surface temperature rise� called the Cayrel mechanism �Cayrel ������

The explanation of the Auer�Mihalas temperature rise goes as follows�
It is true that lines always cause a surface cooling� However� in NLTE� a
line radiation also in�uences the atomic level populations� From Sect� ��� we
know that the main e�ect of line transfer is to overpopulate the lower level of
a line transition� Considering Lyman and Balmer lines thus gives rise to an
overpopulation of the hydrogen n � � and n � � states� and consequently to
increasing the e
ciency of the Lyman and Balmer continua� Since they are
heating continua� this leads to an additional heating at the surface� There
is a competition between this heating and traditional surface cooling caused
by the Lyman and Balmer lines� but in the present case the indirect heating
wins�

However� interesting as it may be from the theoretical point of view� the
indirect heating due to the hydrogen �and to a lesser extent the He II� lines
is in reality usually wiped out by the e�ect of metal lines �as it is in the
case displayed in Fig� ��� Nevertheless� the Auer�Mihalas heating survives for
metal�poor atmospheres� where it may give rise to observable e�ects in the
hydrogen line pro	les �e�g� for hot DA white dwarfs � see Lanz and Hubeny
���� for a discussion and original references��

Finally� I stress that the behavior of temperature at the surface should
not be overinterpreted� It only in�uences observed spectrum features which
correspond to the strongest opacity sources� like the very cores of strongest
lines �e�g� the C IV resonance lines in the present case�� Yet� these features
may in reality be more in�uenced by a stellar wind� which is neglected in
the hydrostatic models anyway� Therefore� the most important e�ect of line
blanketing is its in�uence on temperature in the deeper layers�
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� Using Model Atmospheres to Analyse Observed

Spectra

So far� we have been mostly concerned with the question of how the model
stellar atmospheres are constructed� In this chapter� we will discuss another�
and equally important� question of how these models are used to address
general astrophysical questions�


�� A Scheme of Spectroscopic Diagnostics

As was stated before� the observed spectrum is practically the only infor�
mation about a star we have� The process of deducing stellar properties from
its spectrum is therefore called spectroscopic diagnostics� This is a multi�step
process with many interlinked steps� It is schematically displayed in Fig� ��

The basic step is input physics� By this term we mean a selection of
the basic physical assumptions under which the medium is being described
�i�e�� which processes and phenomena are neglected
 which equilibrium con�
ditions are assumed to hold� etc��� The basic assumptions then determine the
equations to be solved� They also tell us what are the basic input parameters
of the model construction� For instance� when adopting the assumption of a
plane�parallel atmosphere in the hydrostatic and radiative equilibrium� the
input model parameters are the e�ective temperature� surface gravity� and
chemical composition� These parameters are �basic� from the point of con�
structing model atmospheres� yet they are related to other parameters which
may be viewed as more fundamental� like stellar mass� radius� and luminosity�
The latter parameters are fundamental if one considers a certain instant of
the stellar life� Yet� taking into account more extended input physics �i�e��
adding the stellar evolution theory�� we may then consider even more funda�
mental parameters like the initial stellar mass� initial composition� and the
age�

Likewise� going to more complex models� like for instance the uni	ed
photosphere�wind models� we have di�erent input parameters depending on
the level of physical description we adopt� In a simple theory we have� in
addition to the stellar mass� radius� and luminosity� two additional input
parameters � the mass loss rate and the wind terminal velocity �see Lamers�
this volume�� Yet� in a more involved physical picture we may come up with
a relation between the wind parameters and other parameters�

Sometimes the additional input parameters make up for the lack of ad�
equate physics� Typical examples are the so�called microturbulent velocity
which is often used for describing short�scale non�thermal motions
 or the
mixing length parameter used in the mixing�length theory of convection� An
example from a somewhat di�erent yet related 	eld is the ��parameter for
describing a turbulent viscous dissipation in accretion disks� All such input
parameters are convenient parameters which allow us to construct models
even if we do not really know what is going on� Their values are constrained



�� I� Hubeny

            

Fig� �� A sketch of the individual steps of astrophysical spectroscopic diagnostics
and their interconnections
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by agreement between theoretical predictions and observations
 it is gener�
ally believed that a more fundamental physics will either determine their
values from other structural parameters� or will get rid of them completely�
Nevertheless� there are cases where such parameters are very useful� for in�
stance when a �better physics� would require an enormously complicated and
time�consuming modeling�

The input physics� which tells us which equations are to be solved� thus
in�uences profoundly the next step� numerics� By this term we understand
all the work necessary to develop a code for computing model stellar atmo�
spheres� This involves adopting appropriate methods provided by numerical
mathematics or� often� developing new methods suited to a particular mod�
eling purpose �a good example being the ALI method�� This also involves
a lot of computer programming and� the most time�consuming part� code
debugging and testing�

Having developed a stellar atmosphere code� one may proceed to the next
step� model atmospheres� It is depicted in Fig� � as a distinct step from
numerics� despite the fact that it could have been a part of the Numerics
box� Usually� a stellar atmosphere code contains a large number of various
numerical options and tricks� One usually needs a lot of experience to cope
successfully with various numerical problems �typically a slow convergence
or divergence of iterations�� and to 	nd proper options to coax the code to
work� Sometimes the author of the code builds a grid of models him or herself
�typical example being Bob Kurucz�� but it is still useful that a code itself is
being available to the whole community� This is because the number of inter�
nal input parameters may be enormous to make it reasonable to construct a
su
ciently dense� all�purpose grid� Many codes for stellar atmospheric mod�
eling are indeed publicly available� �

The last step of the �theoretical� branch of the spectroscopic diagnostic
procedure is spectrum synthesis� which yields the main product� the syn�

thetic spectrum� It will be discussed in detail in the next section�

It should be realized that not all of the above steps have to be done
in analyzing a particular object� One may work� for instance� with a pre�
calculated grid of model atmospheres and construct only synthetic spectra�
One may even work with an existing grid of synthetic spectra
 one then avoids
the theoretical part completely�

I will not discuss the other� �observational�� branch of diagnostics� The
main steps are taking the rough data �by ground�based or space�based in�
struments� � the step observations � and subsequent data reductions�
The 	nal product is a well�calibrated observed spectrum�

Now comes the crucial part of the spectroscopic diagnostics� the com�

� The most extended collection of existing modeling codes is maintained on the
CCP� �Collaborative Computer Project No� � on the Analysis of Astronomical
Spectra� library � Je�ery ������� The library is also available via WWW on the
address http���star�arm�ac�uk�ccp��
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parison of the observed and theoretical spectra� The actual procedure to be
performed in this step is discussed in detail in Sect� ���� Here� I will only stress
the signi	cance of this step in the global context� Above all� the comparison
determines the values of basic input parameters� One may proceed iteratively�
after an initial guess of input parameters and constructing the 	rst synthetic
spectrum� the comparison step suggests new values of basic input parame�
ters� which are then used for constructing a new model atmosphere and new
synthetic spectrum� and the process is repeated� Alternatively� one may 	rst
construct a grid of synthetic spectra around the most probable values of basic
parameters� and to determine their 	nal values by some sort of ���	tting�

However� the most important point to realize is that the comparison step
does not merely serve to determine values of model input parameters� It may
happen that we are not able to match observations for any combination of
input parameters� Then we have to go back to the input physics step� and re�
vise the basic physical assumption under which the models were constructed�
This may of course lead to a revision �or even to a rewriting� of the computer
program and consequently to reconstructing the model grid� But by this con�
nection we actually learn the most important part of all � the physics�

In Fig� �� the dashed line drawn from the comparisons step to the nu�
merics step is meant to indicate that lack of agreement between observations
and theory does not have to be caused by an inadequacy of adopted physical
description� but also by an inadequate numerical treatment of otherwise cor�
rect equations� The most trivial example of this phenomenon is a hidden bug
in the program� which does not in�uence the results in some cases �usually
those used for testing�� but may have a dramatic e�ect in others� Also� this
may indicate an insu
cient accuracy or inadequacy of adopted numerical
method�s� for solving a given set of equations� for inverting matrices� etc�
Another example are various numerical approximations for atomic param�
eters� �e�g� polynomial expansions for transition cross�section or collisional
rates� which are derived for a certain parameter range� but are not applicable
for others� etc�� etc��

Finally� an unsuccessful match of observations and theory may reveal
that the observations are at fault� For instance� an UV spectrum of a star
may by contaminated by a contribution from a close object not seen in the
optical region� Also� the data reduction step may be at fault � for instance a
persistent mismatch of observations and models for various objects may lead
to a discovery of an error in �at	eld corrections� or an unexpected presence
of scattered light in the spectrograph� etc�


�� Spectrum Synthesis

Ideally� there should be a one�to�one correspondence between a model at�
mosphere �the structure�� and the synthetic spectrum� In other words� to
every model atmosphere there should correspond a unique emergent spec�
trum� However� in the real life the model structure is always computed using
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a simpli	ed treatment of chemical species � some of them do not in�uence
the atmospheric structure signi	cantly and are therefore omitted �like� for
instance� Li� etc��� or are treated in a simpli	ed way when constructing the
model�

However� one needs to include all the opacity sources available� lines and
continua� when producing the synthetic spectrum� One can easily a�ord that�
Since the temperature� electron density� and atomic level populations are
speci	ed by the model� the calculation of the synthetic spectrum consists of
a simple wavelength�by�wavelength formal solution of the radiative transfer
equation� with the absorption and emission coe
cients given by ����� and
������ However� the summation over line transitions may actually include
hundreds or even thousands of individual spectral lines contributing at a sin�
gle wavelength point� This feature� and the very fact that we have to deal
with literally millions of lines� make an e
cient coding of this problem non�
trivial� The most widely used general purpose codes of this kind are SYNTHE
�Kurucz ������ which is designed to produce spectra for Kurucz model atmo�
spheres
 and SYNSPEC �Hubeny� Lanz� and Je�ery ������ which calculates
spectra for NLTE models created by TLUSTY� but works for Kurucz models
as well�

Another important point� an input model atmosphere is constructed as�
suming certain abundances of chemical species� In order to be strictly con�
sistent� one would have to consider the same abundances in the spectrum
synthesis as well� However� due to the same reasons as put forward above� it
is permissible to use di�erent abundances in the spectrum synthesis step� It is
clear that for �unimportant� species� one may change their abundance to any
reasonable value� However� one should be careful with changing abundances
of �important� species� like He� C� N� O� etc� signi	cantly� If this is done� it is
recommended to recalculate a full model atmosphere using these new values
of abundances� This will not only show whether the previous approach was
reasonably accurate� but also the new model may subsequently be used for a
	ne tuning of abundances�

It should be realized that the calculation of the 	nal synthetic spectrum
to be compared to observations involves two steps�

�� producing the net emergent spectrum �radiation �ux at the stellar sur�
face� as discussed above
 and

�� performing a convolution with rotational and�or instrumental broaden�
ing�

Since a star generally rotates� one has to add contributions from all sur�
face elements taking into account the Doppler shift due to the local projected
rotational velocity� This procedure is described in detail for instance in Gray
������� If one assumes a certain a priori given limb�darkening law �i�e� the
dependence of speci	c intensity on ��� one may perform the rotational convo�
lution with the radiation �ux
 otherwise� the rotational convolution needs a



�� I� Hubeny

speci	cation of radiation intensities� The procedure is easy for well�behaving�
spherically�symmetric stars� However� one may face complications either be�
cause of non�sphericity �for instance that implied by extremely fast rotation��
or by departures from surface homogeneity �various starspots� etc��� or for a
complicated pattern of velocity 	elds at the stellar surface �non�radial pulsa�
tions� macroturbulence� etc���

Finally� to be able to compare the predicted spectrum to observations� one
has to reproduce numerically a conversion of the incoming stellar spectrum
by the spectrograph� In practice� this usually means accounting for a 	nite
spectrum resolution of a spectrograph by convolving the net spectrum with
a known instrumental broadening function �usually a Gaussian with a given
FWHM�� One can also include an instrumental spectrum sensitivity function
at this stage� The 	nal result of this step is a predicted spectrum which is
directly comparable to the observed one�


�� Spectrum Fitting

The spectrum 	tting is the procedure of 	nding the model spectrum that 	ts
the observed spectrum best� It may be done by two di�erent ways�

i� a �consecutive model construction� procedure� which consists of a�
computing 	rst a small number of initial models for some initial estimates of
the basic parameters
 b� 	nding the next estimate of basic model parameters
�either by an educated guess� or by using more sophisticated mathematical
techniques � for instance the Amoeba optimized search package � Press et
al� ������ and comparing the resulting spectra to observations� The process
is repeated until the criteria for a successful match are satis	ed� The basic
characteristics of this approach is that one does not need any precalculated
grid of models
 instead� the models are calculated on the way of getting closer
and closer to the 	nal model� Obviously� this procedure is e
cient only if an
e�ort to generate a model spectrum from scratch is reasonably small�

ii� a �grid�	tting� procedure� which consists in having a precalculated grid
of spectra� and 	nding a model which produces the best 	t� One may either
	nd the best�	t model �i�e� one of the models of the grid�� or 	nd the best�	t
parameters by interpolating in the model grid� assuming that the synthetic
spectra corresponding to model parameters in between the grid values may
be approximated by an interpolation of tabulated model spectra� If the grid
has a su
ciently small step in basic stellar parameters� this procedure is quite
satisfactory�

Let us take an example of determining basic stellar parameters for OB
stars from observed hydrogen and helium lines� Let us further assume that
the mass loss rate is su
ciently low so that all the observed lines originate
in the stellar photosphere� i�e� their pro	les may be interpreted by means of
hydrostatic model atmospheres� Finally� let us assume that we are 	tting the
observed spectra by means of simple H�He model atmospheres� This means
that the grid of spectra depends on 	ve input parameters� Te� � log g� Y �the
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helium abundance�� vtb �microturbulent velocity�� and v sin i �projected ro�
tational velocity
 i being the inclination of the rotation axis with respect to
the direction to the observer�� One may either determine all 	ve of them by
a ���	tting� or to determine some of them independently� and to 	t only a
subset of parameters� A typical case for OB main�sequence stars is to deter�
mine vtb and v sin i from metal lines� and to determine the three remaining
parameters by a line pro	le 	tting� Sometimes� even Y may be determined
independently �from pro	les or equivalent widths of lines of the dominant ion
of helium for which the pro	les are not so sensitive to Te� and logg�� One
is then left with 	tting the observed hydrogen and helium line pro	les with
only a ��dimensional grid of spectra which depend only on Te� and logg�

There are two options to perform the actual 	tting�

a� 	tting both parameters simultaneously
 or

b� using the �t diagrams� This consists in keeping one parameter 	xed �typ�
ically log g�� and 	nding such a value of Te� which 	ts the observed pro	le
best� One then goes to the next grid value of logg� and repeats the 	tting�
Every 	tted spectral line then de	nes a curve in the Te��logg plane� on which
the best�	t values of Te� and log g are located� Ideally� all curves should in�
tersect in one single point� which then determines the overall best 	t values
of Te� and log g� In reality� one usually does not get such a good 	t� but
at least one should obtain a relatively small region in the Te��logg plane
where the curves intersect� If one single spectral line de	nes a signi	cantly
di�erent 	t curve� it is a strong indication that something on the theoretical
or observational level was incorrect�

The 	t diagram method is illustrated on the following example� I have
constructed a grid of NLTE H�He model atmospheres with e�ective temper�
atures between ����� and ����� K� in steps of ���� K� and for logg between
��� to ���� in steps of ����� All models have a solar abundance of helium�
I will not 	t an actual observed spectrum
 instead� I will pretend that the
�observed� spectrum is the synthetic spectrum computed for a fully metal
line�blanketed NLTE model for Te� � �� ��� K� and log g � ��

This example will illustrate two features
 namely i� what the 	t diagrams
look like� and ii� what error one makes if the spectrum is 	tted by simple H�
He model atmospheres instead of by line�blanketed models� The 	t diagram
for H� He I and He II lines is shown in Fig� �� A very interesting result
is that the H�He models would determine the best 	t parameters Te� �
�� ��� K� and log g � �� In other words� the H�He models will overestimate
the deduced e�ective temperature� which is not surprising in view of the
discussion presented in Sect� ���� namely that the local temperature in the
H�He models in regions where H and He lines are formed is lower than in the
line�blanketed models �no backwarming��
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Fig� �� A 
t diagram for 
tting the H� He I� He II line pro
les by means of NLTE
H�He model atmospheres� The �observed� spectrum is in fact a synthetic spectrum
computed for a fully metal line�blanketed NLTE model for Te� � 	� ��� K� and
log g � 
� Squares� hydrogen lines �H� to H��� triangles� He I lines ��� 
	��� 

���

��� �A�� stars� He II lines ��� 
���� 
���� 
�
�� 
��� �A��


�� Determination of Fundamental Stellar Parameters

Here we will only be concerned with the question how the fundamental stellar
parameters are determined from a photospheric analysis� i�e� by analyzing the
observed stellar spectrum by means of hydrostatic model atmospheres� An
important part of this procedure� which is nevertheless often forgotten� is
to verify that the deduced stellar properties are indeed consistent with the
assumption of hydrostatic equilibrium�

The fundamental stellar parameters to be determined are the stellar mass�
M�� radius� R�� and luminosity� L�� In general� we do not know the distance
to the star� d� so we add this quantity to the list� even if it does not represent
an intrinsic stellar property� �There are� obviously� other fundamental stellar
parameters� like the chemical composition� rotational velocity� etc� For the
purposes of this section� we assume that they are determined independently
of the four fundamental parameters listed above��

The parameters which we determine directly from observations are the
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e�ective temperature� Te� � and surface gravity� g� In addition� we have the
measured magnitude� mobs that re�ects the whole observationally accessible
wavelength range� If the �ux in the unobservable region is negligible� then this
magnitude represent the total� bolometric� magnitude�mbol� If not� one has to
apply the bolometric correction� which follows from the model atmosphere�

In any case� we end up with three �measured� quantities� Te� � g� and
mbol� but we have � unknown fundamental parameters� M�� R�� L�� and d�
The governing relations between them are

� T �
e� � L�����R

�
�� � �����

g � GM��R
�
� � �����

L� � L� �mbol �mobs� Te�� � d� � �����

The last relation expresses the conversion of the observed magnitude to the
stellar luminosity�

We thus have three relations for four unknowns� In fact� in some cases
the stellar evolution theory may supply an independent additional relation
between the fundamental parameters� for instance the mass�radius relation
for white dwarfs �Hamada and Salpeter ������ or the mass�luminosity rela�
tion for central stars of planetary nebulae �Paczynski ������ However� in the
general situation we do not have such a relation� and even if we do we may
want to check the theoretically predicted relations observationally�

Therefore� from the photospheric analysis only� one cannot derive all four
parameters simultaneously� This is easily understood from the physical point
of view� A plane�parallel hydrostatic atmosphere is just a thin layer sitting
on the top of a spherical star� The only information about a dimension of the
underlying star is contained in the surface gravity g which depends also on
the stellar mass� Since the atmosphere is thin� the emergent spectrum does
not carry any independent information about the atmospheric extent�

To remove the radius�mass degeneracy� we need either independent geo�
metrical information �knowing the radius or the distance�� or an independent
knowledge of the mass� The typical situation is that we know the distance d
�the situation will be signi	cantly improved when Hipparchos parallaxes are
released�
 then the other parameters are determined as follows�

�� from known mobs and d �and� possibly� Te��� we determine the absolute
bolometric magnitude� Mbol and� therefore� luminosity� L�


�� from L� and Te� � we determine R�

�� from R� and g� we determine mass M�

As it turns out� if the mass of early�type O stars is determined in this way
�which is called the spectroscopic mass�� and if the mass is also determined
by comparing the evolutionary tracks and the position of the star in the H�R
diagram �the so�called evolutionary mass�� one 	nds a signi	cant discrepancy
�e�g� Herrero et al� ������ The sense of discrepancy is that the spectroscopic
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masses are systematically lower than the evolutionary masses� The discrep�
ancy arises either by inaccuracies of the stellar atmospheres theory� or the
stellar evolution theory� or� most likely both� From the stellar atmospheres
side� there has been a recent progress in understanding the reasons for the
discrepancy �e�g� Lanz et al� ������ However� the problem is not yet solved�
and presents a challenge for future research�
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