MASARYKOVA UNIVERZITA Přírodovědecká fakulta Ústav teoretické fyziky a astrofyziky

BAKALÁŘSKÁ PRÁCE

Hvězdná fotometrie obyčejnými digitálními fotoaparáty

Mirek Dočekal

2011

Chtěl bych moc poděkovat Filipu Hrochovi za obětavé vedení, pevné nervy, ochotu a trpělivost. Jeníku Hollanovi za cenné rady. Rodičům za láskyplnou podporu v celém dosavadním životě. V neposlední řadě i strašné spoustě dalších lidí. Všechny bych je vyjmenovat nedokázal, tak to ani nebudu zkoušet.

Prohlašuji, že jsem svou bakalářskou práci napsal samostatně a výhradně s použitím citovaných pramenů. Souhlasím se zapůjčováním práce a jejím zveřejňováním.

V Brně dne

Mirek Dočekal

Abstrakt:

V předložené práci studujeme schopnost jednookých digitálních zrcadlovek provádět hvězdnou fotometrii. Bylo použito velmi prosté technické vybavení k pozorování minima jasné zákrytové proměnné hvězdy a odhadu standardní odchylky určení hvězdné velikosti. Druhá část práce je zaměřena na praktické ověření převodu snímků z instrumentálního barevného systémemu digitálního fotoaparátu na standardní fotometrický systém pomocí programu *rawtran* a konstrukci barevného diagramu otevřené hvězdokupy M67.

Klíčová slova: digitální fotoaparát, hvězdná fotometrie, barevná kalibrace, program rawtran

Abstract:

In the present work we study the ability of DSLR cameras to perform stellar photometry. We used a very simple technical equipment to observe the minimum of bright eclipsing variable and we determine the estimated standard deviation of magnitudes. The second part focuses on practical verification the transformation of DSLR images from the instrumental color system of the camera to standard photometric system. We use *Rawtran* utility to convert images to FITS format. At last we make a color diagram of M67.

Keywords: DSLR, stellar photometry, color calibration, rawtran utility

Obsah

1	Úvo	od	6
2	Hvě	zdy a jejich fotometrie	7
	2.1	Nestálé stálice	7
	2.2	Otevřené hvězdokupy a M67	9
	2.3	Elektromagnetické záření	9
	2.4	Instrumentální hvězdné velikosti	10
	2.5	Barevná kalibrace	11
3	Poz	orovací přístroje	13
	3.1	Fotometrie pouhým okem	13
	3.2	Fotografie	15
	3.3	CCD	16
	3.4	CMOS	17
4	Pou	žitá technika	20
	4.1	Canon EOS 30D	20
	4.2	Objektivy	21
	4.3	Dalekohled	21
5	Zpr	acování snímků	22
	5.1	Jak začít	22
	5.2	Dark frame	23
	5.3	Flat field	23
	5.4	Skládání snímků	24
6	Pra	ktická část	25
	6.1	Proměnná hvězda λ Tauri	25
	62	Otevřená hvězdokupa M67	29

	6.3 Barevná kalibrace	31
	6.4 M67 pomocí CCD kamery $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	35
7	Závěr	38
A	Fotometrie M67	39
\mathbf{Li}	teratura	48

Kapitola 1 Úvod

V posledních několika desetiletích zažívá se nejstarší věda astronomie rozvíjí rychlostí, jaká nemá v dějinách obdoby. Technický pokrok ale nepřinesl jen družicové observatoře pro všechny vlnové délky a mnohametrové pozemní dalekohledy s adaptivní optikou, ale i cenově dostupné vybavení se stále impozantními možnostmi.

Hvězdná fotometrie pomocí DSLR (*Digital Single Lens Reflex* camera, česky digitální jednooká zrcadlovka), nejčastěji znamená intenzitní měření zákrytových proměnných hvězd a určení okamžiku minim. Zkušení pozorovatelé dosahují skvělých výsledků a dokazují, že ani nereálný sen generací astronomů s mnohatunovými přístroji, totiž planety v cizích hvězdných soustavách, není mimo možnosti digitálních fotoaparátů. [32]

Většina vlastníků digitálních zrcadlovek ale nemá paralaktickou montáž s pointerem, teleobjektiv s ohniskovou vzdáleností více než půl metru a vysokohorskou oblohu nad hlavou. Někteří mají třeba pouze objektiv, který dostali společně s fotoaparátem, stojan o třech nohách, bydlí ve větším městě a nejsou zkušenými pozorovateli proměnných hvězd.

Fotoaparáty ovšem nabízí více, nabízí pohled v barvách, pohled ve třech různých spektrálních oborech. Užitečnost barevného systému a možného převodu tohoto pohledu na pohled očima filtrů *Johsonova – Morganova* fotometrického systému dokládá zcela minimální využití CCD kamer bez jakéhokoli filtru.

Kapitola 2

Hvězdy a jejich fotometrie

2.1 Nestálé stálice

Skutečnost, že všechny hvězdy nočního nebe nejsou stejně jasné, je zcela zřejmá. Již starořecký astronom Hipparchos (190–120) ? př.n.l. rozdělil na nočním nebi viditelné hvězdy do šesti tříd. Přičemž ty nejjasnější označil jako hvězdy první velikosti a nejslabším okem viditelným hvězdám přisoudil šestou velikost. Jeho originální práce se bohužel nedochovala.

O Hipparchově klasifikaci víme díky slavnému *Almagestu* Klaudia Ptolemaia (90–165) ? n.l. Almagest obsahuje katalog 15 hvězd první velikosti, 45 druhé velikosti, 208 třetí velikosti, 474 čtvrté, 217 páté a 49 hvězd šesté velikosti, dvanáct hvězd je ještě slabších. U řady hvězd je poznámka, že jsou jasnější či slabší než jiné hvězdy téže třídy. [4]

Pro střední světelné toky hvězd zařazených do jednotlivých tříd F(i) platí: [15]

$$\frac{F(1)}{F(2)} = \frac{F(2)}{F(3)} = \frac{F(5)}{F(6)} = q = 10^{0,4},$$
(2.1)

kde q je kvocient dané geometrické řady.

Přesnější matematickou definici hvězdných velikostí přinesl až anglický astronom Robert Norman Pogson (1829–1891), který roku 1856 stanovil hodnotu q na $10^{0,4}$, což činí přibližně 2,512. Výsledný vztah:

$$m_1 = -2.5 \log \frac{F_1}{F_2} + m_2, \qquad (2.2)$$

který lze upravit na tvar:

$$\frac{F_1}{F_2} = 10^{0,4(m_2 - m_1)},\tag{2.3}$$

je na jeho počest nazýván Pogsonovou rovnicí. Hvězdné velikosti se označují m_i a F_i jsou světelné toky z těchto hvězd.

Pogson zachoval tradiční směr růstu hvězdných velikostí, jasným objektům tak náleží nízké těm nejjasnějším dokonce záporné hvězdné velikosti. Vysoké číslo znamená velmi slabý objekt. Logaritmický charakter vztahu vystihuje subjektivní odezvu lidských smyslů, které se vyvinuly ke zpracování velmi širokého spektra intenzit.

V centru pozornosti astronomů starověku i středověku nestály hvězdy, nýbrž objekty Sluneční soustavy, jež se na vzdáleném hvězdném pozadí pohybují. V evropském prostoru po dobu dvou tisíciletí zcela dominoval Aristotelův názor, podle kterého hvězdná obloha představovala jen nehybnou, věčnou a neměnnou kulisu. Pohybující se a měnící se objekty, jako jsou komety, byly považovány za jevy v zemském ovzduší pod sférou Měsíce. Na dálném východě takové předsudky neměli, nicméně i zde byla vzplanutí nov či supernov pouze zaznamenávána do kronik.

Proměnné hvězdy musely čekat až na přelom 16. a 17. století, než se jim dostalo zasloužené pozornosti. Roku 1609 nazval David Fabricius hvězdu o Ceti, kterou pozoroval od roku 1596, jako podivuhodnou. V průběhu dalších dvou století postupoval výzkum jen pomalu a další proměnné hvězdy byly objevovány jen zřídka a náhodně. První katalog proměnných hvězd publikovaný E. Pigottem roku 1786, obsahoval pouze 12 hvězd. Především díky práci E. Pigotta, J. Goodricka a W. Herschella se aktivita pozorovatelů proměnných hvězd v dalších desetiletích zvýšila, skutečným přelomem však byla až Výzva přátelům astronomie.

Autorem Výzvy k přátelům astronomie z roku 1844 je F. W. Argelander. Výzva obsahovala popis dostatečně přesné a přitom jednoduché metody odhadu jasností hvězd. Argelander je rovněž autorem katalogu *Bonner Durchmusterung* (BD) obsahujícího přes 320 tisíc hvězd a katalogu *Uranometria Nova*, kde jsou pro jasnější hvězdy uvedeny hvězdné velikosti.

Vynález moderních a na lidských smyslech nezávislých metod měření jasností hvězd, fotografie, fotonásobičů a dnes zcela dominantních CCD prvků, přinesl značný posun v dosahu a přesnosti měření i v astronomově pohodlí. Žádný z umělých přístrojů se však nedovede vypořádat s takovým rozsahem jasných i slabých objektů jako lidské oko. V honbě za stále slabšími a slabšími hvězdami se ty nejjasnější, jejichž výzkumem tento vědní obor začínal, pomalu dostávají mimo možnosti velkých dalekohledů s citlivými kamerami. Jsou prostě pro ně příliš jasné.

Digitálním fotoaparátům se zde odkrývá prostor.

2.2 Otevřené hvězdokupy a M67

Jedny z klenotů nočního nebe můžeme obdivovat především v létě a v zimě, kdy Mléčná dráha vystupuje vysoko nad obzor. Naše Galaxie má totiž zploštělý tvar a dá se říci, že mladší a mladší objekty se stále více koncentrují ke galaktické rovině. Otevřené hvězdokupy jsou objekty mladé. Z hustých mezihvězdných oblak plynu a prachu vznikají naráz desítky a stovky hvězd, které k sobě váže gravitační síla. Během milionů let hvězdokupy procházejí hustšími i řidšími oblastmi, čelí rušivým vlivů vnějších gravitačních polí, vzájemně na sebe působí jednotlivé hvězdy ve hvězdokupě, čas od času některá z nich získá dostatečnou rychlost a hvězdokupu opustí.

Vzhledem k měřítkům vesmíru otevřená hvězdokupa nevydrží dlouho a postupně se rozpadá. Většina otevřených hvězdokup na nočním nebi je mladší než jedna miliarda roků, existují ale i výjimky. Jednou z nich je M67. Hvězdokupa M67 leží stejně jako známé *Jesličky* v souhvězdí Raka. Její věk se odhaduje na 4 miliardy roků, je tedy téměř stejně stará jako naše Slunce.

Jednotlivé hvězdy ve hvězdokupě vznikly prakticky současně a ze stejného oblaku, mají tak společné chemické složení i věk. Liší se především hmotností a právě hmotnost hvězd nejvíce ovlivňuje jejich další vývoj. Hmotné hvězdy se vyvíjejí mnohem rychleji než ty méně hmotné. Mnoho hvězd již opustilo hlavní posloupnost a na barevném diagramu je dobře viditelný odklon hlavní posloupnosti a větev obrů.

2.3 Elektromagnetické záření

Nejnápadnější vlastností hvězd je, že jsou zdrojem elektromagnetického záření. Atmosféra planety Země i vlastnosti lidského zraku způsobují, že dokážeme vnímat jen velice malou část rozmanitého světa elektromagnetických vln. Přesto téměř vše, co víme o hvězdách, jsme se dozvěděli díky jejich elektromagnetickému záření a nebýt odraženého světla hvězd, neznali bychom ani řadu dalších objektů.

Elektromagnetické záření je příčné vlnění, elektrická intenzita E i magnetická indukce B jsou proměnné a na sebe kolmé. Směr šíření elektromagnetického záření kolmý k oběma složkám udává takzvaný *Poytingův vektor*. Záření lze charakterizovat pomocí frekvence (kmitočtu) ν či vlnové délky λ . Mezi těmito veličinami platí ve vakuu vztah:

$$c = \nu \cdot \lambda. \tag{2.4}$$

Pro jiná prostředí dosadíme na místo rychlosti světla ve vakuu c příslušnou rychlost elektromagnetických vln v daném prostředí. V přírodě častěji než monochromatické záření nalézáme celou směs různých vlnových délek. Funkce zastoupení různých vlnových délek se nazývá spektrum.

Vedle vlnového pohledu na elekromagnetické záření existuje ještě zcela ekvivalentní kvantový pohled. Záření není spojité, ale šíří se po kvantech, tato kvanta nazýváme fotony. Energie jednoho fotonu je přímo úměrná frekvenci a nepřímo vlnové délce:

$$E = \hbar \cdot \nu = \frac{\hbar c}{\lambda},\tag{2.5}$$

kde \hbar je Planckova konstanta.

Fotolektrické fotometry, ty v digitálních fotoaparátech nevyjímaje, pracují díky fotoefektu. Má-li dopadající foton dostatečně vysokou energií a tedy dostatečně malou vlnovou délkou, část této energie se spotřebuje na uvolnění elektronu z materiálu. Přebytek potom tvoří kinetickou energii vyraženého elektronu. Fotoefekt byl objeven roku 1887 H. Hertzem. Podrobné vysvětlení tohoto jevu podal A. Einstein a byl odměněn Nobelovou cenou.

Hvězdy v prvním přiblížení září jako *absolutně černá tělesa*, záření takových těles popisuje rovnice:

$$B_{\nu}(\nu,T) = 2\pi \frac{\nu^2}{c^2} \frac{\hbar\nu}{\exp(\hbar\nu/kT) - 1},$$
(2.6)

kde k je Boltzmannova konstanta.

2.4 Instrumentální hvězdné velikosti

Fotometrii lze provádět aperturní nebo profilovou metodou. Při aperturní se sečte signál ve vhodně zvolené zpravidla kruhové clonce. Tok záření aperturou F_A je: [7]

$$F_A = S_A - N_A B_A, (2.7)$$

kde S_A značí celkový signál ve clonce a $N_A B_A$ je odečítané pozadí ze všech pixelů clonky.

Profilová fotometrie se snaží namodelovat tvar obrazu bodového zdroje. Obvykle se používá aproximace Gaussovou funkcí. Výsledkem potom je:

$$F_P = 2\pi G_0 \sigma^2, \tag{2.8}$$

kde G_0 a σ jsou parametry Gaussovy funkce.

Program *Munipack* využívá aperturní fotometrii. Získáme tok záření hvězdy v dané clonce. Pomocí Pogsonovy rovnice můžeme zavést instrumentální hvězdnou velikost

$$m = 25 - 2.5 \log_{10} F. \tag{2.9}$$

Najdeme si srovnávací hvězdu či hvězdy se známou hvězdnou velikostí. Označíme-li instrumentální magnitudy srovnávacích hvězd jako m_i a katalogové jako M_i , můžeme dojít k:

$$\mu = \frac{\Sigma(m_i - M_i)}{N},\tag{2.10}$$

kde μ je vztah mezi nulovým bodem katalogu a našeho fotometrického systému.

Od instrumentální magnitudy m_x neznámé hvězdy k její kalibrované hodnotě M_x se dostaneme následující rovnicí:

$$M_x = m_x - \mu. \tag{2.11}$$

2.5 Barevná kalibrace

Existuje veliké množství různých barevných fotometrických systémů. Za standardní se považuje širokopásmový Johnsonův systém. Původně se skládal z filtrů U, B a V, později byl rozšířen o dlouhovlnější filtry R, I a další. Barevné indexy například B - V či V - R jsou definovány jako rozdíl hvězdných velikostí v daných filtrech s tím, že se odečítá dlouhovlnná magnituda od krátkovlnné. Hvězdy spektrální třídy A0 mají barevné indexy nulové, hvězdy raných typů záporné a hvězdy pozdních spetrálních typů mají kladné barevné indexy.

Problematika barevné kalibrace je podrobně popsána v [3]. Lineárním fitovaním napozorovaných dat lze dojít k soustavě:

$$v - V = \zeta_v (V - R) + \eta_v,$$
 (2.12)

$$b - v = \zeta_{bv} (B - V) + \eta_b v,$$
 (2.13)

$$v - r = \zeta_{vr} (V - R) + \eta_v r,$$
 (2.14)

kde malá písmena značí instrumentální a velká tabulkové hvězdné velikosti. Systém blízký standardnímu bude mít hodnoty ζ blízké jedné. Pak je možné na místo B - V a V - R dosadit b - v a v - r. Jinak je potřeba rovnice upravit pro získání okalibrovaných magnitud opravit.

V této kapitole jsem čerpal hlavně z [11], [2] a [7]

Kapitola 3

Pozorovací přístroje

3.1 Fotometrie pouhým okem

Lidské oko bylo až do 1609 jediným fotometrickým přístrojem. Galileo Galilei, který v tomto roce začal pozorovat pomocí svého vlastnoručně vyrobeného dalekohledu, a nespočet jeho následovníků v dalších stoletích otevřeli pomocí stále větších a dokonalejších přístrojů lidskému zraku obzory do ohromné šíře. Nicméně konec monopolu lidského oka, jakožto detektoru světla hvězd, přineslo až 19. století

Na sítnici lidského oka se nachází světločivé buňky dvou základních typů, leží zde až 130 milionů tyčinek a 7 milionů čípků. Rozmístění těchto buněk na sítnici je velice nerovnoměrné. Čípky jsou silně koncentrovány do malé oblasti v optické ose oka, takzvané žluté skvrny. Tyčinky zase ve žluté skvrně chybějí a nejvíce se jich nachází přibližně 20 ° od osy oka. Čípky uprostřed žluté skvrny mívají své vlastní nervové vlákno, které posílá do mozku informaci o intenzitě světla. Naproti tomu hlavně v okrajových částech sítnice se nachází stovky světločivých buněk na společném nervovém vlákně. Oko tak opouští jen asi 1 milion nervů. [24]

Tyčinky jsou velmi citlivé na světlo a umožňují člověku se orientovat i při velice slabém osvětlení. Za denního světla jsou tyčinky zcela zahlceny a proto nefunkční. Spektrální citlivost oka je při nočním *skotopickém* vidění největší pro vlnovou délku 510 nm. Protože všechny tyčinky mají spektrální citlivost v podstatě stejnou, přinášejí nám zprávu o intenzitě světla, nikoli o jeho barvě.

Denní *fotopické* vidění obstarávají čípky. Čípky jsou tří různých druhů a liší se spektrální citlivostí. Máme čípky nejcitlivější na modrou, zelenou a

Obrázek 3.1: Hustota světločivých buněk lidské sítnice v místech různě vzdálených od optické osy oka. Upraveno podle [36]

červenou barvu. Maxima jejich spektrálních citlivostí leží v oblasti 435 nm, 535 nm a 565 nm. Díky tomu vidíme za dostatečného osvětlení barevně. Barvu můžeme rozlišit i u jasných hvězd nočního nebe. Při vysoké intenzitě vnímáme nejlépe světlo o vlnové délce 555 nm. Skutečnost, že se se slábnoucím osvětlením posouvá maximální citlivost oka ke kratším vlnovým délkám, objevil slavný český přírodovědec Jan Evangelista Purkyně a tento jev je po něm pojmenován.

Za fenomenální lze označit dynamický rozsah lidského zraku. Naše oči zvládnou po dostatečné předchozí adaptaci zpracovat signály s poměrem jedna ku miliardě [24]. Podle Weberova-Fechnerova psychofyzického zákona je subjektivní odezva lidského zraku, úměrná nikoli osvětlení oka, ale jejímu logaritmu. Geometrická řada jasností hvězd se proto lidskému pozorovateli jeví jako řada aritmetická. Lidské oko díky této vlastnosti dobře slouží za slunečného dne i bezměsíčné noci. Umělé detektory bývají lineární, alespoň v používaném rozsahu.

Obrázek 3.2: Spektrální citlivost oka v denním a nočním režimu. Převzato z [38]

Mezi nevýhody patří čas potřebný k dokonalé adaptaci na tmu, jež dosahuje mnoha desítek minut, ale nevítaný silný zdroj světla ji dovede ve vteřině pokazit. Kvantová účinnost nedosahuje ani jednoho procenta. Na každý zachycený foton připadá více než sto, jež letěly mnoha světelných let zbůhdarma. Rovněž není možné zvýšit citlivost dlouhými expozicemi. Oko sbírá fotony po dobu několika setin nanejvýš desetiny sekundy a my neumíme tuto dobu vědomě prodloužit.

3.2 Fotografie

Skleněná deska či film jsou pokryty chemikáliemi reagujícími na světlo. Klíčovou složkou černobílých fotografických emulzí jsou soli stříbra. Hvězdnou

velikost lze posoudit na základě míry zčernání fotografické emulze, je ovšem potřeba znát její gradační křivku, nebo měřením průměrů kotoučků hvězd. [8] Existují fotografické emulze citlivostí odpovídající lidskému zraku. Ty v astronomické praxi nejčastěji používané však byly nejcitlivější na světlo vlnové délky asi 430 nm tedy na vlnovou délku podstatně kratší.

Fotografie vnesla do světa fotometrie objektivitu, výsledky v dlouhodobě archivovatelné formě a možnost dlouhých expozic. Fotografické desky mají velký formát, mohou zachytit mnoha hvězd najednou z poměrně velké části oblohy. Plocha CCD čipu je naproti tomu velmi malá a dalekohledy vybavené CCD kamerami mají obvykle jen malé zorné pole. Velikost zrn fotografické emulze se pohybuje kolem 1 μ m, což mnohem méně než mají pixely CCD kamer.

3.3 CCD

Revoluci v oblasti 2D fotometrie přinesly křemíkové detektory CCD (*Charge Coupled Devices*). Objevily se na přelomu 60. a 70. let dvacátého století. Je ironií, že původním záměrem jejich tvůrců bylo vytvořit počítačovou paměť. Nicméně první snímek planety Uran byl pořízen 61 palcovým dalekohledem Arizonské univerzity již roku 1975.

Podobně jako fotometry s fotonásobiči pracuje CCD detektor na principu fotoelektrického jevu, kdy dopadající fotony uvolňují v materiálu elektrony. Na začátku expozice jsou všechny buňky v CCD matici nabity a díky uvolňovaným elektronům se postupně vybíjejí. Každý pixel představuje potenciálovou jámu mezi elektrodami umístěnými v izolační krycí vrstvě nad a pod vrstvou detektorů. Zbylý náboj pixelu se vyčte po skončení expozice.

A/D převodník převádí počet elektronů uvolněný v jednotlivé buňce snímače na číselnou hodnotu ADU (Analog-to-Digital Unit). Důležitým parametrem každé CCD kamery je takzvaný gain, tedy poměr počtu elektronů a výsledné hodnoty ADU.

Ke kladům CCD detektorů patří mnohem vyšší kvantová účinnost než mají fotografické materiály nebo lidské oko, která umožňuje zkrácení expozic a lepší využití pozorovacího času. Linearita prakticky v celém rozsahu je další zlepšení oproti fotografickým materiálům, které mají lineární jen jistou část gradační křivky.

CCD čipy vytlačily fotografický film i z běžných komerčních fotoaparátů. Snaha výrobců o velkosériovou výrobu, snížení nákladů a z toho plynoucí zvýšení zisků, či rozmach miniaturních fotoaparátů v mobilních telefonech, od kterých se však očekává schopnost dlouhého provozu na baterie, vynesla do popředí detektory technologie CMOS. Mezi jejichž klady patří nižší spotřeba energie a jednodušší výroba.

3.4 CMOS

Jako detektory fotonů slouží ve většině moderních digitálních fotoaparátů čipy CMOS (*Complementary Metal Oxide Semiconductor*). V posledních letech existovaly na trhu digitální zrcadlovky vybavené CCD i CMOS detektory. Jednotliví výrobci však dříve či později přešli k technologii CMOS. Firma Canon patřila mezi průkopníky CMOS detektorů a její zrcadlovky řady EOS jsou jimi vybaveny již delší dobu. Přestože CMOS ve fotoaparátu alespoň v principu funguje obdobným způsobem jako CCD kamera užívaná v astronomii, je třeba mít na paměti některé odlišnosti.

Polovodičové detektory obou typů jsou pro větší vlnové délky citlivější než fotonásobiče, s výhodou je lze využít i v infračervené oblasti. Ovšem běžné modely digitálních fotoaparátů jsou vybaveny infračerveným filtrem, který omezuje jejich spektrální citlivost na rozsah srovnatelný s lidským zrakem. Existují i varianty modifikované pro účely astrofotografie, které tento filtr nemají.

Sum detektorů CMOS je větší než v případě astronomických CCD. Kvantová účinnost je naproti tomu o něco nižší, nicméně stále dosahuje mnoha desítek procent a překonává možnosti fotografických emulzí, fotonásobičů či lidského oka. Parametry obou typů detektorů se stále zlepšují a čipy soudobých fotoaparátů snesou srovnání se staršími CCD kamerami.

A/D převodník převádí elektrické napětí vzniklé na jednotlivých buňkách snímače na číselnou hodnotu ADU. Fotoaparáty jsou obvykle vybaveny 14bitovým převodníkem, starší typy 12bitovým, což umožňuje rozlišit 16384 respektive 4096 úrovní signálu. CCD kamery mívají převodník 16bitový, z čehož plyne 65536 různých úrovní signálu, některé dokonce 18bitový, takové dokáží rozlišit 262144 úrovní. [1]

Detektory v digitálních fotoaparátech mívají velké množství pixelů na malé ploše, proto je i plocha jednotlivého pixelu mnohem menší než u běžné CCD kamery. Vyplývá z toho schopnost zadržet menší náboj v každém pixelu. Kapacity buněk polovodičových detektorů jsou typicky v řádech desítek až stovek tisíc elektronů. Při nasycení daného pixelu hrozí přetékání náboje do sousedních pixelů, hvězda je často protažena do jakéhosi chvostu jehož směr naznačuje směr vyčítání. Některé čipy jsou vybaveny anti – bloomingem, který tomuto zabraňuje. Takový detektor je ale zase nelineární pro velké hodnoty zadrženého náboje. V každém případě je tedy dobré nevyužívat na maximum rozsah detektoru. Problémem linearity digitálních fotoaparátů se zabývala řada autorů. Výsledek byl v podstatě vždy příznivý. Informace v českém jazyce lze nalézt například na stránkách České astronomické společnosti. [26] Linearitu použitého fotoaparátu již neověřoval.

Obrázek 3.3: Jeden pixel čipu CMOS. Převzato z [23]

Z konstrukčního hlediska se bohužel CMOS detektor vyznačuje tím, že velkou část plochy snímače zabírají obslužné elektronické obvody a jen asi třetina celkové plochy je využívána ke sběru světla. Mikročočky nad každým pixelem mají maximalizovat množství zachycených fotonů.

CCD čip je obvykle černobílý, měří tedy tok fotonů jen v jediném kanálu podobně jako lidské tyčinky. Chceme-li získat barevný snímek, je třeba postupně měnit filtry a složit snímky vzniklé s časovým odstupem. Více najdete například v [13]. Hlavním účelem digitálních zrcadlovek je pořizovat barevné snímky. Proto se na jejich CMOS čipu nacházejí pixely s filtry tří různých druhů, takzvaná Bayerova maska. Barevný snímek s kanály RGB vzniká najednou. Přesněji řečeno každý typ fotoaparátu používá vlastní barevný systém, který se od standardního RGB může poněkud lišit.

Obrázek 3.4: Bayerova maska. Převzato z [23]

Výrobci digitálních fotoaparátů, které jsou určeny především k pořizování snímků za denního světla, se pochopitelně snaží spektrální citlivost lidského oka ve fotopickém režimu napodobit. V každé oblasti o velikosti 2×2 pixely je jeden nejcitlivější na červenou barvu, jeden na modrou a dva na zelenou barvu. Díky dvojnásobnému množství zelených pixelů se spektrální citlivost fotoaparátu přibližuje spektrální citlivosti lidského oka, které je v zelené barvě citlivější než v modré a červené. Každý pixel přímo měří v jednom ze tří kanálů a hodnoty v ostatních dvou se získávají interpolací z okolních pixelů patřičného typu. Mezery mezi jednotlivými pixely stejného typu mohou být zdrojem problémů, pohybuje-li se obraz hvězdy po masce.

V této kapitole sem čerpal především z [1], [6]

Kapitola 4

Použitá technika

4.1 Canon EOS 30D

Systém, kterým firma Canon označuje své digitální zrcadlovky je takový, že čísla s méně ciframi odpovídají dražším modelům. Canon EOS 30D je představitelem střední třídy digitálních zrcadlovek označované dvojmístnými čísly. Aktuálním modelem v cenové hladině mezi 20 000 Kč a 30 000 Kč je Canon EOS 60D. Canon EOS 30D se vyráběl v letech 2006 až 2007. Změny oproti předchůdci nebyly velké, i snímač s rozlišením 8 megapixelů zůstal stejný.

K pro astronoma důležitějším skutečnostem patří, že je vybaven 14bitovým převodníkem a k přesné fotometrii je tak přece jen použitelnější než staré 12bitové fotoaparáty. Fotoaparát umí exponovat až 30 s, drátěná spoušť umožňuje i delší expozice. CMOS detektor s rozlišením 3504×2336 pixelů má rozměr 22,5×15 mm a je tak přibližně 1,6krát menší než kinofilm.

Ohnisková vzdálenost použitých objektivů v takovém případě odpovídá objektivům s ohniskovou vzdáleností 1,6krát větší osazených na aparátu se snímačem plné velikosti. Číselný údaj o ohniskové vzdálenosti uváděný na objektivech odpovídá kinofilmovým fotoaparátům a digitálním zrcadlovkám se stejně velkým snímačem. Velikost jednoho pixelu Canonu 30D je přibližně 6,4 μ m, což je méně než obvykle mívají CCD kamery, u těch se navíc využívá binningu a velikost jednoho pixelu je pak podstatně větší. Canon EOS 60D má pixely jen 4,3 μ m velké.

4.2 Objektivy

Měl jsem k dispozici tři různé objektivy. Prvním z nich byl širokoúhlý objektiv s pevnou ohniskovou vzdáleností 15 mm, který může dosáhnout clonového čísla f/2.8. Nakonec jsem žádná data získaná tímto objektivem v této práci nepoužil.

Dalším byl objektiv s ohniskovou vzdáleností měnitelnou v rozsahu 18 mm až 55 mm se světelností f/3.5 až f/5.6 v závislosti na ohnisku. Při použití nejdelšího ohniska má clona průměr asi 1 cm. Tímto objektivem byl pozorován zákryt hvězdy λ Tau.

Pro pozorování otevřené hvězdokupy a přímou soutěž s velkým dalekohledem. Jsem použil teleobjektiv s ohniskem 100 mm až 400 mm, průměrem čočky 92 mm a maximálním clonovým číslem f/4.5 až f/5.6, toto clonové číslo při ohnisku 400 mm znamená asi průměr clony asi 7 cm. Pro pozorování ze stativu se tento objektiv příliš nehodí nejen z důvodu téměř půldruhakilogramové hmotnosti. Vlastní pohyb hvězd umožňuje pořizovat jen asi sekundové expozice při nejdelším ohnisku.

4.3 Dalekohled

Dalekohled Newtonova typu byl nedávno přemístěn z Brna do Vyškova. Průměr zrcadla je 40 cm a ohnisková vzdálenost přibližně 1,75 m. Je vybaven CCD kamerou SBIG ST7 s rozlišením 765×510 pixelů.

Kapitola 5

Zpracování snímků

5.1 Jak začít

Samozřejmá je potřeba fotografie ukládat do bezztrátového formátu RAW, což dnes naštěstí umí i dražší modely kompaktních fotoaparátů. K překlenutí propasti mezi digitálním fotoaparátem a CCD kamerou lze použít velice užitečný program *Rawtran* [30] jehož autorem je Filip Hroch.

Rawtran je založen na programu *dcraw* [31] jehož autorem je Dave Coffin. Ten dokáže rozložit původní RAW snímek, v tomto případě s příponou .CR2, na snímky v jednotlivých barevných kanálech XYZ. Dále zná spektrální citlivosti běžných digitálních zrcadlovek, modely Canon EOS nevyjímaje. Mělo by proto být možné převést fotografii z instrumentálního barevného systému do standardního Johsonova systému. Stěžejní částí této práce je ověření přesnosti této transformace.

Výstupem jsou snímky uložené ve formátu FITS, obsahující všechny patřičné náležitosti. Dostaneme se tak tam, kde uživatel astronomické CCD kamery začíná. Pro další zpracování lze s úspěchem využít běžný astronomický software. Já jsem použil *Munipack* [29] jehož autorem je opět Filip Hroch.

Stejně jako snímek CCD kamerou i snímek z fotoaparátu je poznamenán především tepelným šumem a nerovnoměrnou citlivostí v závislosti na jednotlivých pixelech detektoru, stejně jako na vinětaci či barevné vadě optické soustavy. Zvláště při použití širokoúhlého objektivu je vliv optiky značný.

5.2 Dark frame

Snímek nočního nebe neobsahuje jen užitečný signál ze vzdálených hvězd, mlhovin či zodiakálního světla. Obsahuje i neužitečný signál z pouličních lamp, letadel, laserových ukazovátek, případně i Měsíce v úplňku, ovšem ani to není vše. Část signálu neodpovídá na obloze vůbec ničemu. Lze to jednoduše dokázat, vyfotíme-li tmu, tedy ne noc, ale úplnou tmu. Například nasadíme na objektiv krytku. Prohlédneme-li si poté FITS soubor například v programu *ds9* stále uvidíme nenulové hodnoty ADU.

Zkusíme-li to pro různé expoziční časy, zjistíme, že část tohoto signálu je tam stále a část lineárně roste s časem expozice. Konstantní složka se nazývá *Bias* a je tam schválně. Nulová hodnota, od které se začínají počítat chtěné či nechtěné dopadající elektrony a jim příslušné ADU, není na nule, ale je o něco výše. Jde o pojistku proti podtečení vlivem šumu a s tím spojených nepříjemností.

S časem rostoucí složka se nazývá *temný proud*. Je silně závislý na teplotě a chlazením detektoru ho lze velmi omezit. Nevýhodou fotoaparátů je, že nemají chlazené detektory. Ovšem největší přínos nižší teploty detektoru je při snímání v dlouhovlnném oboru. Ve viditelném světle je temný proud menší a zrcadlovky Canon s EOS s ním nemají významnější problém. Pozornost je však třeba věnovat dostatečnému temperování fotoaparátu před pozorováním.

Temný proud můžeme korigovat tím, že od pořízeného snímku odečteme takzvaný temný snímek neboli *dark frame*. Dark frame má zpravidla stejnou expoziční dobu jako korigovaný snímek, liší se v tom, že objektiv je během expozice zakrytý. Nasnímáme-li i biasy, můžeme nakalibrovat dark frame i na jinou expoziční dobu, což může být výhodné, je-li expozice velmi dlouhá. Obecně je však nejjednodušší použít dark framy se stejnou expoziční dobu. Korekce biasu se v tomto případě provede automaticky.

5.3 Flat field

Vyfotíme-li plochu osvětlenou v každém ze tří barevných kanálech dokonale rovnoměrně a rozkládající se přes celé zorné pole fotoaparátu, měli bychom dostat snímek s naprosto stejnými hodnotami ADU pro všechny pixely patřičné barvy. V praxi tomu tak nebude, protože snímač není dokonalý a jeho citlivost se bude mírně lišit pixel od pixelu, tyto variace navíc bývají jiné pro fotony různých vlnových délek. Díky vinětaci můžeme očekávat okraje tmavší než střed zorného pole, zrnka prachu ležící na optických plochách se projeví jako tmavší skvrnky a disperze v čočkách objektivu může zapříčinit další rozdíl mezi jednotlivými barevnými kanály. Tyto skutečnosti zkreslují i jakýkoli jiný snímek pořízený danou sestavou.

Počet elektronů $E_{x,y}$ zaznamenaných v pixelu o souřadnicích x a y lze vyjádřit jako:

$$E_{x,y} = \tau \cdot V_{x,y} \cdot Q_{x,y} \cdot I_{x,y}, \tag{5.1}$$

kde τ značí dobu expozice, $Q_{x,y}$ kvantovou účinnost detektoru, $V_{x,y}$ vliv optických členů před objektivem a $\overline{I}_{x,y}$ je průměrný tok dopadajících fotonů. Zatímco uživatel CCD kamery může měnit pouze parametr τ , digitální fotoaparát nabízí širší možnosti. Díky uzavíratelné cloně můžeme regulovat $\overline{I}_{x,y}$. Nastavením hodnoty ISO lze měnit gain, stejnému počtu zachycených elektronů bude odpovídat jiný počet ADU.

Pokud víme, co se stane s obrazem dokonale rovnoměrně osvětlené plochy, můžeme tyto rušivé vlivy zmapovat a astronomické snímky o ně opravit. V praxi není získání snímku alespoň přibližně dokonale rovnoměrně osvětlené plochy, takzvaného *flatfieldu*, jednoduchá záležitost. Jelikož mají fotoaparáty mnohem širší zorné pole než hvězdářské dalekohledy, je pořizování flat fieldů ještě obtížnější, zvláště jedná-li se o flat field pro rybí oko se zorným polem asi 100°. Fotoaparát na stativu navíc neumí sledovat pohyb hvězdé oblohy a obraz dané hvězdy se tak po čipu pohybuje, což by u dokonale pointovaného dalekohledu na dokonale ustavené paralaktické montáži odpadlo.

Flat field se od korigovaného snímku neodečítá, ale snímek se jím podělí, přesněji řečeno podělí se flat fieldem normovaným na jedničku, průměrná úroveň snímku se tak nezmění.

5.4 Skládání snímků

Program *Munipack* kromě předešlých operací umí snímky i skládat dohromady, každý snímek musí proto posunout, otočit a vhodně naškálovat. Při focení ze stativu jsou posuny značné. Skládáním snímků roste poměr signálu a šumu s druhou odmocninou počtu snímků. Rovněž konečný dark frame by měl být složen z více dílčích snímků, stejně jako flatfield.

Kapitola 6 Praktická část

Grafy i regrese jsem dělal v programu QtiPlot [40], který umí počítat i s chybami jednotlivých datových bodů a udělí jim patřičnou váhu.

6.1 Proměnná hvězda λ Tauri

Pozorování zákrytové proměnné hvězdy λ Tauri proběhlo v noci ze 30. na 31. prosince 2010. Místo se nachází na souřadnicích přibližně 49° 24′ 10″ severní šířky a 15° 29′ 32″ východní délky v nadmořské výšce asi 560 metrů. Směrem na jih a západ se rozkládá travnatá pláň postupně se svažující do údolí, ve kterém leží Hubenovská přehrada, na východě je za kopcem chatová osada Rounek a na severu zalesněná Hora sv. Antonína neboli Korunní vrch. Nejbližší jihlavské domy leží něco přes tři kilometry východně, přesto zde bývá tmavá obloha.

Mezi 23^h 17^m až 0^h 48^m UT jsem pořídil 126 použitelných snímků, bohužel poté přišla oblačnost. Minimum bylo předpovězeno na 0^h 16^m UT [26]. Fotil jsem ze stativu a čas od času pomocí jemných pohybů, kterými byl naštěstí stativ opatřen, centroval hvězdu. Obraz proměnné i srovnávací hvězdy se tak pokaždé nachází na jiném místě snímače, což negativně ovlivňuje přesnost.

Použil jsem objektiv $f = 18 - 55 \,\mathrm{mm}$ nastavený na $f = 51 \,\mathrm{mm}$, clonu samozřejmě nejširší možnou tedy f/5.6 a ISO 1600, každá expozice trvala 15 s. Proměnná hvězda se nacházela na západě a během pozorování její výška klesla ze 38 na 24 stupňů. Jako srovnávací hvězdu jsem zvolil μ Tau a pro kontrolu její neproměnnosti hvězdu 47 Tau.

Obrázek 6.1: λ Tau ve filtruB,tmavá kolečka značí rozdíl magnitud proměnné a srovnávací hvězdy, křížky rozdíl magnitud srovnávací a kontrolní hvězdy.

Obrázek 6.2: λ Tau ve filtruV.

Obrázek 6.3: λ Tau ve filtruR.

Program QtiPlot proloží histogram rozdílů srovnávací a kontrolní hvězdy Gaussovou křivkou o rovnici:

$$y = y_0 + A \frac{1}{\sigma\sqrt{2\pi}} \exp\left(\frac{(x - x_c)^2}{2\sigma^2}\right)$$
(6.1)

a hledá parametry $y_0, x_c, A \neq \sigma$.

Tabulka 6.1: Parametry fitovaných funkcí

fi	iltr B	fi	iltr V	fi	filtr R		
y_0	0,3111	y_0	0,2894	y_0	0,1485		
x_c	1,0051	x_c	0,5247	x_c	$0,\!1925$		
A	4,9612	A	6,1106	A	$5,\!1256$		
σ	0,0990	σ	$0,\!0779$	σ	$0,\!1079$		

Obrázek 6.4: Histogram pro filtrB.

Obrázek 6.5: Histogram pro filtrV.

Obrázek 6.6: Histogram pro filtr R.

6.2 Otevřená hvězdokupa M67

Pozorování se uskutečnilo v rámci astronomického praktika dne 24. 3. 2011 na Hvězdárně Vyškov. Hvězdárna leží na souřadnicích asi 49° 17' 2" severní šířky a 17° 1' 21" východní délky v nadmořské výšce asi 250 m.

Byl použitý hlavní přístroj hvězdárny, Newtonův dalekohled s průměrem zrcadla 40 cm. Mgr. Tomáš Henych v čase $18^h 40^m$ UT až $19^h 21^m$ UT pořídil 21 snímků ve filtru R a mezi $19^h 21^m$ UT a $19^h 55^m$ UT 21 snímků ve filtru V. Expoziční čas všech snímků byl 90 s, jeden snímek v R jsem při zpracování vyřadil. Bohužel z časových důvodů neproběhlo snímání ve filtru B.

Fotoaparát s teleobjektivem f = 100-400 mm nastavený na f = 400 mm byl přišroubovaný k dalekohledu. Díky paralaktické montáži dalekohledu vybavené hodinovým strojem i fotoaparát sledoval pohyb hvězdokupy po obloze. V čase 18^h 37^m UT až 19^h 59^m UT jsem pořídil 30 snímků. Nejširší možná clona měla opět clonové číslo f/5.6, v tomto případě to znamená průměr asi 70 mm. Hodnota ISO byla 1600 a každá expozice trvala 120 s.

Je nutno říci, že jsem snahu o zachycení i slabých hvězd hvězdokupy poněkud přehnal, ISO 800 nebo trochu kratší expoziční časy by byly vhodnější. Pro přesnější fotometrii digitálním fotoaparátem řadou autorů včetně Christiana Buila [32] doporučované mírné rozostření obrazu jsem neaplikoval, neboť bylo potřeba rozlišit mnoho blízko sebe ležících hvězd.

Obrázek 6.7: M67 uprostřed zorného pole fotoaparátu při 400mm ohnisku a tedy největším možném zvětšení, obdélníček představuje zorné pole CCD kamery.

Obrázek 6.8: Vlevo pohled dalekohledem vpravo fotoaparátem, všimněte si vzhůru směřujícího chvostu přeexponované hvězdy.

6.3 Barevná kalibrace

Označím-li malými písmeny b, v, r naměřené instrumentální hvězdné velikosti a velkými písmeny B, V, R jejich tabelované hodnoty, mohu z grafů pomocí lineární regrese dojít ke koeficientům barevné transformace. Kalibrační hvězdy jsem převzal z [18]. V tomto článku jsou uvedeny přesné magnitudy ve filtrech B, V i R pro celkem 64 hvězd. Já jsem chtěl v maximální možné míře srovnat podmínky pro obě použitá zařízení, proto jsem pro kalibraci fotoaparátu i CCD kamery vybral tytéž hvězdy. Vyřadil jsem ty, které byly mimo zorné pole dalekohledu, stejně jako ty, které byly na snímcích z digitálního fotoaparátu slité s jinou hvězdou, přeexponované či téměř přeexponované. Zbylo mi 40 kalibračních hvězd. Detailnější postup barevné kalibrace najdete například v [3].

Obrázek 6.9: Barevná kalibrace fotoaparátu pro filtrV.

Obrázek 6.10: Barevná kalibrace fotoaparátu pro barevný indexB-V.

Obrázek 6.11: Barevná kalibrace fotoaparátu pro barevný indexV-R

Přímky proložené těmito grafy mají rovnice:

$$v - V = (-0,012 \pm 0,021) \odot (V - R) + (-2,382 \pm 0,009),$$
 (6.2)

$$b - v = (0, 427 \pm 0, 003) \odot (B - V) + (0, 807 \pm 0, 002),$$
 (6.3)

$$v - r = (0,513 \pm 0,007) \odot (V - R) + (0,147 \pm 0,004).$$
 (6.4)

Směrnice závislostí pozorovaných a kalibrovaných barevných indexů by měla vyjít blízká jedné.

Předešlé tři rovnice jde převést na novou soustavu, kam mohu dosazovat naměřené instrumentální hvězdné velikosti:

$$B = b + (1,293 \pm 0,033) \odot (b - v) + (0,530 \pm 0,058), \tag{6.5}$$

$$V = v + (0,027 \pm 0,046) \odot (v - r) + (2,379 \pm 0,022), \tag{6.6}$$

$$R = r + (-1, 145 \pm 0, 090) \odot (v - r) + (2, 675 \pm 0, 065).$$
(6.7)

Obrázek 6.12: Barevný diagram z fotoaparátu pro barevný index B - V.

Obrázek 6.13: Barevný diagram z fotoaparátu pro barevný indexV-R.

6.4 M67 pomocí CCD kamery

Stejný postup jsem použil pro snímky ze CCD kamery, tentokrát však jen pro dva filtry.

Obrázek 6.14: Barevná kalibrace CCD pro filtrV.

Obrázek 6.15: Barevná kalibrace CCD pro barevný index V-R,chybové úsečky jsou velmi malé.

Rovnice fitovaných přímek jsou:

$$v - V = (0, 175 \pm 0, 020) \odot (V - R) + (-1, 666 \pm 0, 008),$$
 (6.8)

$$v - r = (0,909 \pm 0,002) \odot (V - R) + (0,413 \pm 0,001).$$
 (6.9)

Směrnice závislosti barevných indexů je v tomto případě jedné mnohem blíže. Po úpravě:

$$V = v + (-0, 193 \pm 0, 022) \odot (v - r) + (1, 746 \pm 0, 022), \tag{6.10}$$

$$R = r + (-0,293 \pm 0,009) \odot (v - r) + (2,200 \pm 0,015).$$
(6.11)

Obrázek 6.16: Barevný diagram ze CCD pro indexV-R.

Kapitola 7

Závěr

Použil jsem běžný digitální fotoaparát k napozorování části křivky zákrytové proměnné hvězdy $\lambda Tauri$. Současně jsem porovnával dvě konstantní hvězdy. Rozborem jejich rozdílů jsem určil velikost směrodatné odchylky relativních hvězdných velikostí ve filtrech B, V a R. Ve všech případech činí přibližně desetinu magnitudy.

Bez větších potíží lze tedy při použití zcela nejzákladnějšího objektivu s poměrně krátkým ohniskem, stativu bez pohonu a bez pointace, navíc za ne zcela ideálních podmínek, dosáhnout minimálně přesnosti vizuálního pozorování. Bonusem je informace z více barevných filtrů, kterou lze v principu převést na standardní systém.

Provedl jsem kalibraci fotometrického systému, na který program *rawtran* převádí snímky z fotoaparátu. Pro srovnání jsem na základě souběžně pořízených snímků provedl totéž s fotometrickými filtry instalovanými na dalekohledu Hvězdárny Vyškov. Využil jsem velmi dobře proměřené otevřené hvězdokupy M67.

Přesnost měření jednotlivých hvězd není dostatečná k pořízení kvalitního barevného diagramu hvězdokupy. Chyba určení barevných indexů v řádech desetin magnitudy je vzhledem k rozsahu, jakého barevné indexy dosahují, příliš veliká.

Grafy barevných kalibrací s lineárními fity vyšly vcelku hezky. Ovšem směrnice závislostí b-v na B-V a v-r na V-R, které by měly vyjít blízké jedné, jsou přibližně poloviční. Hodnoty barevných indexů jsou podceněné. Bohužel se na základě těchto pozorování zdá, že barevný systém odvozený rawtranem se citelně odlišuje od standardního. Systém filtrů ve Vyškově je standardnímu podstatně bližší.

Příloha A

Fotometrie M67

Obrázek A.1: CCD snímek M67

číslo	V [mag]	$\sigma_V [mag]$	B [mag]	$\sigma_B [mag]$	R [mag]	σ_R [mag]	P [12]
1	14,554	0,036	15,403	0,099	14,323	0,109	93
2	14,046	0,028	14,956	0,079	13,753	0,083	96
3	14,604	0,038	15,174	0,088	13,864	0,104	90
4	14,115	0.031	14,901	0,081	13,670	0,089	93
5	13,297	0,028	14,012	0,071	12,837	0.075	94
6	14,328	0.032	15,018	0,085	13,879	0.095	87
7	14,762	0,046	15,629	0,113	14,141	0.126	95
8	14.571	0.038	15.122	0.093	14.048	0.111	91
9	13,432	0.028	13,960	0.072	13.059	0.078	93
10	12.723	0.026	13.307	0.070	12.403	0.072	95
11	14.081	0.029	14.867	0.080	13.750	0.086	94
12	13,171	0.027	13,798	0.070	12.776	0.074	94
13	11,292	0.023	11,298	0.064	11,295	0.066	90
14	14,630	0.037	15,460	0.100	14,437	0.125	51
15	15.077	0.573	15,469	0.107	11,101	0,120	93
16	14,186	0.047	14.829	0.111	13.441	0.119	
17	13,366	0.028	14.141	0.077	13,157	0.079	96
18	10,800 10,805	0.028	11,900	0.072	10,101 10,232	0.074	94
19	13,500	0,020	14,000	0,099	13 029	0.098	96
20	14,707	0.054	15 591	0.135	14 020	0 139	95
21	12 953	0.029	13,591	0.071	12,437	0,100 0.077	75
22	12,859	0.027	13,555	0.072	12,101 12,524	0.074	97
23	13,161	0.038	13,901	0.094	12,714	0.096	85
20	11,123	0,394	11 366	0.067	10 691	0.068	94
24	11,120 11,317	0,024	11,500	0,007	11,001	0.067	95
26	13 396	0.031	13 923	0,000	12,204 12,942	0.084	95
20	13,056	0,001	13,520 13,657	0.076	12,342 12,700	0.081	63
28	10,000 10,204	0,023 0.022	10,533	0,010	10.275	0,001	94
20	7 574	4.278	11,000	0.073	10,210	0,000	96
30	12 949	0.030	13 866	0.074	12 359	0.078	0
31	14,309	0.087	15,000 15,073	0 204	14,076	0.223	92
32	12,600	0.028	13 292	0.069	12,010 12,214	0.074	84
33	12,602 12,649	0,020 0.027	13 191	0.069	12,211 12,234	0.073	95
34	12,049 12,003	0,021	12,131 12,763	0,003	12,254 11.546	0,075	80
35	12,035 12,017	0,025 0.475	12,705	0,071	11,540 19.115	0,075	0.0
36	12,517 12,612	0,410	12 912	0.078	12,110 12,275	0.083	95
37	12,012 13 558	0,030	14 135	0.078	13 232	0.081	94
38	13,000 13,101	0,030	14,155	0,070	13,252 12 754	0,001	05
30	11,101 11,337	0,040	12 366	0.072	12,704 10,723	0,111	95
40	13,007	0,023 0.032	12,300 14.177	0.085	10,720 13 103	0,075	90
40	10.77	0,032 0.027	11 720	0,000	10,100	0,005	04
41	10,11	0,021	12 005	0,071	10,230 11.405	0,072	04
42	12,14 14,613	0,050	15 457	0,012	14 108	0.158	03
40	14,013 12,271	0,008	13,457	0,130	14,190 10,522	0,153	93 87
44	12,571	0,030	14.026	0,121	10,022 12.027	0,102	04
40	12,011	0,030	13,030 13,572	0,031	10,027	0,100	94 00
40	12,300 12,728	0,030	13,572	0,077	12,342 12.983	0,075	90 03
48	12,120	0.020	13,440	0.072	12,200	0.073	95 Q2
40	13 063	0.041	14 /11	0,070	13 546	0.106	92 95
50	13 9/0	0.043	13,819	0,030	13,040	0,119	71
51	19,249 19,783	0.037	13,012	0.079	12 354	0,112	96
52	14,616	0,063	15,349	0,138	13,926	0,154	93

Tabulka A.1: Kalibrované hvězdné velikosti pro DSLR část1.

číslo	V [mag]	$\sigma_V [\mathrm{mag}]$	B [mag]	$\sigma_B [mag]$	R [mag]	$\sigma_R [mag]$	P [12]
53	12,964	0,032	13,932	0,078	12,310	0,080	84
54	12,483	0,027	13,164	0,069	12,056	0,072	93
55	14,094	0,043	14,702	0,094	13,500	0,107	96
56	14,284	0,059	14,959	0,130	13,869	0,156	92
57	12,138	0,030	12,529	0,073	11,821	0,080	83
58	13,091	0,046	13,766	0,106	12,678	0,109	94
59	12,501	0.036	13,196	0.083	11,909	0,089	94
60	12,449	0,029	13.397	0.075	11,893	0,076	95
61	14,411	0,044	15,210	0,110	14,040	0,118	
62	,	,	11.013	0.071	,	,	93
63	12,766	0.035	$13,\!156$	0,081	12,139	0,086	95
64	14,410	0.034	15.144	0.091	14.177	0.101	93
65	12,497	0.028	13.215	0.074	12.152	0.075	95
66	15.009	0.204	15.885	0.460	14.629	0.470	96
67	12.609	0.039	13.205	0.090	12.358	0.099	95
68	14.970	0.086	16.024	0.228	13,898	0.196	94
69	14.142	0.040	15.019	0.098	13.582	0.104	87
70	13.534	0.029	14.235	0.081	13.234	0.083	95
71	11.537	0.030	12.571	0.072	10.873	0.076	64
72	14,703	0.098	15.382	0.206	14,330	0.225	93
73	13,925	0.095	14.660	0.246	13,766	0.243	95
74	13.884	0.053	14.504	0.121	13,522	0.137	96
75	14.170	0.185	14.851	0.413	14,108	0.427	94
76	14 496	0 140	11,001	0,110	13,526	0,254	75
77	10,548	0,110 0.027	11 554	0.073	10,320 10,119	0.072	95
78	14,531	0.048	15 690	0.137	14,177	0,012	90
79	11,594	0.025	11,951	0.066	11 288	0,070	0
80	14.080	0.092	14,792	0.214	13,390	0.191	93
81	14,002	0.030	14.862	0.079	13,600	0.084	
82	10.437	0.027	11,505	0.072	9.997	0.072	79
83	13.378	0.030	13.992	0.076	12.905	0.081	92
84	12.755	0.036	13.540	0.092	12.410	0.090	94
85	12.773	0.029	13.317	0.069	12.233	0.075	94
86	13.929	0.066	14.155	0.133	13.669	0.158	
87	13.767	0.044	14.516	0.108	13.474	0.115	
88	13.774	0.033	14.380	0.089	13.521	0.093	92
89	10.601	0.025	11.094	0.069	10.377	0.070	96
90	13.920	0.030	14.678	0.080	13.585	0.085	92
91	12.755	0.039	13.284	0.092	12.330	0.094	-
92	13,764	0,050	14,344	0,122	13,542	0,132	91
93	14.526	0.036	15.257	0.096	14.044	0.105	83
94	13,752	0,049	14,469	0.121	13,252	0,115	94
95	11,846	0.034	12,663	0,077	11,104	0,082	95
96	13,347	0,030	14.063	0.074	12,771	0,079	90
97	13,283	0,045	13,591	0,100	12,760	0,105	89
98	13,897	0,044	14.611	0.109	13,506	0,110	94
99	$13,\!149$	0,046	13,105	0,099	12,845	0,110	0
100	13,234	0,047	$13,\!676$	0,107	12,965	0,116	95
101	10,899	0,023	11,138	0,065	10,818	0,067	45
102	13,253	0,048	13,745	0,117	12,914	0,115	95
103	12,674	0,044	13,165	0,100	12,298	0,103	95
104	14,328	0,098	$15,\!081$	0,230	13,961	0,225	93

Tabulka A.2: Kalibrované hvězdné velikosti pro DSLR část2.

číslo	V [mag]	$\sigma_V [\text{mag}]$	B [mag]	$\sigma_B [\mathrm{mag}]$	R [mag]	$\sigma_R [mag]$	P [12]
105	12,976	0,058	13,273	0,126	12,462	0,127	91
106	15,216	0,583	$15,\!632$	0,208			
107	13,735	0,034	14,412	0,092	13,526	0,096	93
108	12,594	0,027	13,264	0,070	12,183	0,072	87
109	12,629	0,028	$13,\!190$	0,069	12,134	0,074	95
110	12,974	0,042	13,523	0,098	$12,\!627$	0,103	89
111	12,507	0,027	13,041	0,068	12,051	0,073	94
112	11,536	0,030	12,344	0,075	11,000	0,078	96
113	12,484	0,029	13,020	0,069	11,885	0,076	95
114	15,268	0,286	16,200	0,739	14,725	0,600	89
115	14,628	0,141	15,374	0,328	14,096	0,301	95
116	12,715	0,042	13,493	0,108	12,298	0,101	96
117	$12,\!614$	0,033	13,217	0,083	12,185	0,085	95
118	13,326	0,040	13,905	0,098	12,650	0,096	
119	13,596	0,036	14,305	0,092	13,025	0,095	86
120	14,413	0,034	14,958	0,087	14,128	0,095	92
121	12,288	0,027	12,872	0,069	11,859	0,073	92
122	12,626	0.033	13,282	0.084	12,255	0.085	0
123	12,990	0.031	13,551	0,077	12,492	0,080	93
124	12,785	0,029	13,453	0,071	12,256	0,076	85
125	11,575	0,029	12,618	0,072	10.976	0.075	91
126	14,893	0.301	16,222	0,913	13,979	0.544	94
127	12,828	0,028	13.354	0,071	12,468	0.075	91
128	13,347	0.037	,	, í	13,154	0.101	
129	12,938	0.030	13,990	0.074	12,328	0.076	31
130	14.051	0.067	14.864	0.179	13.951	0.187	
131	10,631	0,029	11,774	0,075	10,047	0.075	93
132	12,249	0.030	12,708	0,070	11.673	0.078	
133	13,544	0,504	13,394	0,079	ŕ		95
134	12,264	0,028	12,487	0,071	12,031	0,074	94
135	11,086	0,029	12,157	0,072	10,481	0,075	94
136	13,887	0,046	14,393	0,104	13,570	0,123	92
137	12,730	0,029	$13,\!699$	0,074	12,185	0,077	96
138	13,438	0,043	13,997	0,102	12,962	0,105	90
139	14,529	0,096	$15,\!688$	0,291	14,411	0,283	93
140	14,107	0,049	14,724	0,125	13,475	0,119	92
141	13,383	0,032	14,049	0,078	12,854	0,083	93
142	10,940	0,024	11,259	0,066	10,852	0,068	95
143	12,561	0,028	13,329	0,071	12,105	0,073	93
144	$13,\!689$	0,040	$14,\!172$	0,098	13,398	0,112	94
145	14,063	0,053	$14,\!397$	0,123	13,563	0,131	
146	13,080	0,034	13,999	0,092	$12,\!604$	0,091	
147	$14,\!625$	0,048	16,024	0,145	14,370	0,137	96
148	11,316	0,030	12,422	0,072	$10,\!620$	0,076	92
149	13,456	0,061	$14,\!193$	0,171	13,080	0,147	93
150	10,599	0,023	10,933	0,066	10,611	0,066	95
151	$13,\!224$	0,030	13,752	0,079	12,864	0,082	52
152	$13,\!578$	$0,\!051$	$14,\!580$	0,123	$12,\!815$	0,118	95
153	$13,\!864$	0,059	$14,\!825$	0,181	$13,\!451$	0,143	90
154	$14,\!085$	0,032	$15,\!025$	0,085	$13,\!653$	0,092	92
155	$13,\!291$	0,040	$13,\!369$	0,091	12,789	0,100	93
156	12,182	0,030	$13,\!296$	0,074	$11,\!524$	0,076	94
157	10,980	0,023	$11,\!127$	0,065	10,965	0,067	96

Tabulka A.3: Kalibrované hvězdné velikosti pro DSLR část3.

číslo	B-V	σ_{B-V}	V-R	σ_{V-R}	číslo	B-V	σ_{B-V}	V-R	σ_{V-R}
	[mag]	[mag]	[mag]	[mag]		[mag]	[mag]	[mag]	[mag]
1	0,849	0,106	0,231	0,115	53	0,967	0,084	$0,\!654$	0,086
2	0,910	0,084	0,293	0,088	54	0,681	0,075	0,427	0,077
3	0,570	0,096	0,741	0,111	55	0,608	0,104	0,594	0,115
4	0,786	0,086	0,445	0,094	56	$0,\!674$	0,143	0,416	0,167
5	0,715	0,077	0,460	0,080	57	0,391	0,079	0,318	0,085
6	0,690	0,091	0,449	0,101	58	$0,\!674$	0,115	0,413	0,118
7	0,867	0,122	0,620	0,134	59	0,695	0,091	0,591	0,096
8	0,552	0,100	0,522	0,118	60	0,948	0,081	0,556	0,082
9	0,528	0,077	0,373	0,083	61	0,799	0,119	0,371	0,126
10	0,584	0,075	0,320	0,077	62	3,438	4,279		
11	0,785	0,085	0,331	0,090	63	0,390	0,088	0,627	0,093
12	0,626	0,075	0,396	0,079	64	0,734	0,097	0,233	0,107
13	0,005	0,068	-0,003	0,070	65	0,719	0,080	0,344	0,080
14	0,831	0,107	0,193	0,131	66	0,877	0,504	0,380	0,512
15	0,392	0,583			67	0,596	0,098	0,251	0,107
16	0,643	0,120	0,745	0,128	68	1,054	0,243	1,072	0,214
17	0,775	0,082	0,209	0,084	69	0,877	0,105	0,560	0,111
18	1,094	0,077	0,574	0,079	70	0,701	0,086	0,300	0,088
19	0,651	0,107	0,471	0,106	71	1,034	0,078	0,665	0,082
20	0,884	0,146	0.687	0.149	72	0.679	0,228	0.373	0,245
21	0.639	0,077	0.516	0.082	73	0,735	0,264	0,160	0.261
22	0.696	0,077	0,336	0.079	74	0,620	0,132	0,362	0,147
23	0.740	0.102	0.447	0.103	75	0.681	0.453	0.062	0.465
24	0.243	0.400	0.432	0.400	76	- /	-,	0.290	0.077
$25^{$	0.274	0.070	0.113	0.071	77	1.007	0.078	0.429	0.077
$\frac{1}{26}$	0.527	0.082	0.453	0.089	78	1.159	0.145	0.353	0.148
27^{-5}	0.602	0.081	0.356	0.086	79	0.357	0.071	0.307	0.074
28	0.329	0.070	-0.072	0.069	80	0.712	0.233	0.689	0.212
29	3.663	4.279	0,01-	0,000	81	0.860	0.085	0.402	0.089
30	0.918	0.080	0.589	0.083	82	1.068	0.077	0.440	0.077
31	0.764	0.221	0.233	0.239	83	0.614	0.082	0.474	0.086
32	0,600	0.074	0.478	0.079	84	0 785	0,099	0.344	0.097
33	0.541	0.074	0.416	0.078	85	0.544	0.075	0.540	0.081
34	0.670	0.076	0.547	0.081	86	0.227	0.148	0.260	0.171
35	0,010	0,010	0.802	0.482	87	0 749	0 117	0.293	0.123
36	0.200	0.084	0.338	0,102	88	0,605	0.095	0.253	0,120
37	0.577	0.083	0,327	0.086	89	0.493	0.073	0.224	0.074
38	0,011	0,000	0.347	0,000	90	0,455	0.085	0,224	0,014
30	1 030	0.078	0.614	0.081	91	0,700	0,000	0,350 0.425	0 102
40	0.716	0,010	0.358	0,001	02	0,550	0,100	0,420	0.141
40	0,110	0,030	0,350	0,003 0.077	03	0,580	0,102	0,222	0,141
41	0,300	0,070	0,400	0.083	04	0,751	0,100	0,402	0,111
42	0,800	0.108	0,045	0,000 0.172	05	0,117	0,150	0,300	0,120
40	0,644	0,130	0,410	0,172 0.171	90	0,017	0,084	0,745	0,085
44	0,514	0,145	2,040	0,171 0.107	90	0,710	0,080	0,570	0,085
40	0,524	0,099	0,400	0,107	08	0,308	0,110	0,022	0,110
40	0,112	0,085	0,400	0,084	90	0,114	0,110	0,391	0,110
41	0,710	0,077	0,440	0,081	100	-0,044	0,109	0,304	0,119
40	0,394	0,075	0,398	0,078	100	0,442	0,117	0,209	0,120
49 50	0,447	0,104	0,418	0,113	101	0,238	0,009	0.240	0,071
50	0,003	0,109	0,101	0,120	102	0,492	0,127	0,340	0,124
10	0,273	0,087	0,429	0,100	103	0,491	0,109	0,370	0,112

Tabulka A.4: Barevné indexy pro DSLR část1.

číslo	B-V	σ_{B-V}	V-R	σ_{V-R}	číslo	B-V	σ_{B-V}	V-R	σ_{V-R}
	[mag]	[mag]	[mag]	[mag]		[mag]	[mag]	[mag]	[mag]
105	0,297	0,139	0,514	0,140	132	0,459	0,076	0,576	0,083
106	0,416	0,619			133	-0,151	0,510		
107	$0,\!677$	0,098	0,209	0,102	134	0,223	0,076	0,233	0,079
108	$0,\!670$	0,075	0,411	0,077	135	1,071	0,078	$0,\!605$	0,080
109	0,561	0,074	0,496	0,079	136	0,506	0,114	0,318	0,131
110	0,549	0,107	0,347	0,111	137	0,969	0,080	0,545	0,082
111	0,534	0,073	0,456	0,078	138	0,559	0,111	0,476	0,113
112	0,808	0,081	0,536	0,083	139	1,159	0,307	0,117	0,299
113	0,537	0,075	0,598	0,081	140	0,617	0,134	$0,\!632$	0,129
114	0,932	0,792	0,542	0,665	141	0,666	0,084	0,529	0,088
115	0,746	0,357	0,531	0,332	142	0,318	0,071	0,088	0,072
116	0,777	0,116	0,418	0,109	143	0,768	0,076	$0,\!456$	0,078
117	0,603	0,090	0,429	0,091	144	0,483	0,106	0,291	0,119
118	0,579	0,106	0,676	0,104	145	0,334	0,134	0,500	0,141
119	0,709	0,099	0,571	0,101	146	0,919	0,098	0,476	0,097
120	0,545	0,093	0,284	0,101	147	1,398	0,153	0,255	0,145
122	$0,\!657$	0,090	0,371	0,091	149	0,737	0,181	0,376	0,159
123	0,561	0,083	0,498	0,086	150	0,333	0,070	-0,012	0,070
124	0,668	0,076	0,529	0,081	151	0,528	0,085	0,360	0,088
125	1,044	0,078	0,598	0,080	152	1,003	0,133	0,763	0,128
126	1,329	0,961	0,914	0,622	153	0,961	0,191	0,413	0,154
127	0,526	0,077	0,360	0,080	154	0,940	0,091	0,431	0,098
128			0,193	0,108	155			0,502	0,108
129	1,053	0,080	0,609	0,082	156	1,114	0,079	$0,\!658$	0,082
130	0,813	0,192	0,100	0,199	157	0,147	0,069	0,015	0,071

Tabulka A.5: Barevné indexy pro DSLR část2.

Tabulka A.6: Kalibrované hvězdné velikosti pro CCD část 1.

číslo	V	σ_V	R	σ_R	P [12]	číslo	V	σ_V	R	σ_R	P [12]
	[mag]	[mag]	[mag]	[mag]			[mag]	[mag]	[mag]	[mag]	
10	12,951	0,019	12,832	0,016	95	26	13,426	0,016	13,190	0,016	95
11	13,960	0,016	$13,\!681$	0,016	94	27	13,190	0,016	12,926	0,016	63
12	13,126	0,016	12,840	0,016	94	28	10,032	0,010	10,142	0,015	94
13	11,316	0,011	11,380	0,015	90	30	12,849	0,021	12,307	0,017	0
14	14,573	0,017	14,540	0,016	51	31	14,065	0,018	13,707	0,016	92
15	14,558	0,018	14,224	0,016	93	32	12,567	0,016	12,287	0,016	84
16	14,142	0,018	13,752	0,016		33	12,594	0,018	12,240	0,016	95
17	13,479	0,014	13,316	0,016	96	34	12,195	0,018	11,811	0,016	89
18	10,776	0,020	10,308	0,016	94	35	13,098	0,018	12,712	0,016	94
19	13,414	0,017	13,124	0,016	96	36	12,672	0,018	12,291	0,016	95
20	14,800	0,017	$14,\!542$	0,017	95	37	13,400	0,017	13,100	0,016	94
22	12,951	0,014	12,817	0,015	97	38	13,840	0,019	13,436	0,017	95
23	13,045	0,017	12,698	0,016	85	39	11,323	0,023	10,684	0,017	95
24	10,920	0,015	10,709	0,016	94	40	13,371	0,017	13,068	0,016	94
25	11,306	0,012	11,289	0,015	95	42	12,844	0,017	12,530	0,016	94

číslo	V	σ_V	R	σ_R	P [12]	číslo	V	σ_V	R	σ_R	P [12]
	[mag]	[mag]	[mag]	[mag]			[mag]	[mag]	[mag]	[mag]	
43	14,469	0,019	14,094	0,016	93	104	14,072	0,019	13,663	0,016	93
44	13,149	0,018	12,795	0,016	87	105	12,754	0,017	12,426	0,016	91
45	13,476	0,016	13,221	0,016	94	107	13,714	0,017	13,370	0,016	93
46	12,816	0,018	12,455	0,016	90	108	12,598	0,016	12,315	0,016	87
47	12,690	0,019	12,267	0,016	93	110	12,867	0,017	12,538	0,016	89
48	12,460	0,016	12,168	0,016	92	112	11,413	0,021	10,856	0,017	96
49	13,867	0,017	13,575	0,016	95	113	12,631	0,017	12,329	0,016	95
50	13,110	0,018	12,760	0,016	71	114	14,690	0,021	14,199	0,017	89
51	12,699	0,018	12,326	0,016	96	115	14,238	0,018	13,861	0,016	95
52	14,538	0,019	14,119	0,017	93	116	$12,\!640$	0,018	12,278	0,016	96
53	13,011	0,019	12,568	0,017	84	117	12,488	0,018	12,098	0,016	95
55	14,023	0,018	$13,\!652$	0,016	96	118	13,441	0,018	13,060	0,016	
56	14,164	0,018	13,791	0,016	92	119	13,516	0,018	13,138	0,016	86
57	12,070	0,017	11,733	0,016	83	121	12,307	0,017	11,983	0,016	92
58	12,993	0,018	$12,\!606$	0,016	94	122	12,631	0,018	12,266	0,016	0
59	12,450	0,020	11,934	0,017	94	123	13,119	0,018	12,761	0,017	93
60	12,280	0,021	11,738	0,017	95	124	12,713	0,018	12,342	0,016	85
61	14,387	0,018	14,006	0,016		125	$11,\!682$	0,021	11,125	0,017	91
63	12,755	0,018	12,351	0,016	95	126	14,378	0,019	13,960	0,017	94
65	12,599	0,017	12,247	0,016	95	127	12,747	0,018	12,376	0,016	91
66	14,719	0,020	$14,\!382$	0,019	96	128	14,207	0,020	13,773	0,018	
67	12,472	0,018	12,091	0,016	95	131	10,489	0,023	9,833	0,017	93
69	14,138	0,018	13,791	0,016	87	132	$12,\!874$	0,037	11,516	0,021	
70	13,426	0,017	13,119	0,016	95	133	$14,\!647$	0,020	14,224	0,017	95
71	11,535	0,020	11,020	0,017	64	134	12,298	0,014	12,151	0,016	94
72	14,469	0,018	14,088	0,016	93	135	11,044	0,023	10,393	0,017	94
74	13,725	0,018	13,362	0,016	96	137	12,910	0,020	12,412	0,017	96
75	13,756	0,019	13,330	0,017	94	138	13,359	0,017	13,041	0,016	90
76	14,457	0,026	13,960	0,023	75	139	14,261	0,019	$13,\!839$	0,017	93
77	10,354	0,023	9,690	0,017	95	140	14,106	0,019	$13,\!698$	0,017	92
79	11,504	0,016	11,225	0,016	0	141	13,283	0,016	13,002	0,016	93
80	14,106	0,021	$13,\!639$	0,018	93	142	11,018	0,014	10,865	0,015	95
82	10,159	0,025	9,416	0,018	79	144	$13,\!594$	0,018	13,215	0,016	94
83	13,301	0,018	12,951	0,016	92	145	14,033	0,020	$13,\!635$	0,017	
84	12,763	0,018	$12,\!370$	0,016	94	147	14,506	0,020	14,055	0,017	96
86	14,142	0,019	13,739	0,017		148	11,317	0,021	10,773	0,017	92
87	$13,\!817$	0,018	13,442	0,016		149	13,285	0,018	12,892	0,016	93
88	13,906	0,019	13,462	0,017	92	151	13,325	0,017	12,991	0,016	52
89	10,462	0,018	10,061	0,016	96	152	13,427	0,023	12,778	0,017	95
91	$12,\!634$	0,018	12,249	0,016		153	14,017	0,019	$13,\!610$	0,016	90
92	13,711	0,018	13,321	0,016	91	154	14,018	0,017	13,705	0,016	92
93	14,564	0,018	14,236	0,017	83	155	13,248	0,017	12,907	0,017	93
94	$13,\!634$	0,018	13,264	0,016	94	156	12,197	0,021	11,667	0,017	94
95	11,899	0,022	11,296	0,017	95	157	11,030	0,012	11,022	0,015	96
96	13,259	0,017	12,912	0,016	90	158	15,286	0,018	14,992	0,017	95
97	13,204	0,019	12,782	0,017	89	159	15,311	0,023	14,780	0,018	93
98	13,857	0,017	13,525	0,016	94	160	14,933	0,019	14,572	0,017	95
99	$13,\!185$	0,018	12,792	0,016	0	161	14,904	0,019	$14,\!579$	0,017	93
100	13,221	0,017	12,891	0,016	95	162	12,285	0,019	11,847	0,016	0
102	13,443	0,019	13,037	0,017	95	163	14,049	0,020	$13,\!608$	0,019	94
103	12,579	0,019	12,153	0,016	95	164	14,909	0,021	$14,\!430$	0,017	95

Tabulka A.7: Kalibrované hvězdné velikosti pro CCD část 2.

číslo	V	σ_V	R	σ_R	P [12]	číslo	V	σ_V	R	σ_R	P [12]
	[mag]	[mag]	[mag]	[mag]			[mag]	[mag]	[mag]	[mag]	
165	14,969	0,023	14,434	0,018	94	180	12,663	0,018	12,267	0,016	
167	15,295	0,022	14,797	0,017	96	182	15,015	0,020	$14,\!608$	0,017	93
168	14,896	0,023	14,313	0,018		183	14,494	0,020	14,059	0,017	93
169	12,898	0,018	12,509	0,016	94	184	$14,\!655$	0,021	14,164	0,017	93
170	12,706	0,020	12,208	0,017	94	185	14,184	0,023	$13,\!635$	0,018	95
171	15,025	0,021	14,537	0,017		186	14,340	0,021	13,839	0,018	93
172	14,851	0,022	14,369	0,018		187	13,887	0,018	13,514	0,016	89
173	12,596	0,018	12,219	0,016	82	188	13,581	0,018	13,199	0,016	94
174	12,708	0,020	12,202	0,017	95	189	12,317	0,008	12,844	0,015	94
175	14,280	0,019	13,884	0,017	89	190	13,339	0,019	12,950	0,017	95
176	14,748	0,020	14,306	0,017	95	191	13,726	0,018	13,367	0,017	96
177	11,113	0,014	10,977	0,015	93	192	12,969	0,021	12,412	0,017	96
178	12,641	0,018	12,282	0,016	93	193	14,874	0,021	14,403	0,017	95
179	15,126	0,024	14,574	0,019	0	194	14,591	0,022	14,090	0,018	95

Tabulka A.8: Kalibrované hvězdné velikosti pro CCD část 3.

Tabulka A.9: Barevný index pro CCD část1.

číslo	V-R	σ_{V-R}	číslo	V-R	σ_{V-R}	číslo	V-R	σ_{V-R}
	[mag]	[mag]		[mag]	[mag]		[mag]	[mag]
10	0,118	0,025	42	0,314	0,024	73	0,393	0,025
11	0,279	0,023	42	0,314	0,024	74	0,363	0,024
12	0,286	0,023	43	0,375	0,025	75	0,426	0,025
13	-0,064	0,018	44	0,354	0,024	76	0,497	0,035
14	0,032	0,024	45	0,255	0,022	77	0,664	0,029
15	0,334	0,024	46	0,361	0,024	79	0,278	0,023
16	0,390	0,025	47	0,423	0,025	80	0,467	0,028
17	0,163	0,021	48	0,292	0,023	82	0,744	0,030
18	0,468	0,026	49	0,292	0,023	83	0,350	0,024
19	0,290	0,023	50	0,350	0,024	84	0,393	0,025
20	0,258	0,024	51	0,373	0,024	86	0,402	0,025
22	0,134	0,021	52	0,419	0,026	87	0,375	0,024
23	0,347	0,024	53	0,443	0,025	88	0,444	0,025
24	0,211	0,022	55	0,372	0,024	89	0,401	0,024
25	0,017	0,019	56	0,373	0,025	91	0,385	0,024
26	0,236	0,022	57	0,338	0,024	92	0,390	0,024
27	0,264	0,023	58	0,387	0,024	93	0,328	0,025
28	-0,109	0,018	59	0,516	0,026	94	0,371	0,024
30	0,541	0,027	60	0,541	0,027	95	0,603	0,028
31	0,357	0,024	61	0,380	0,025	96	0,346	0,024
32	0,280	0,023	63	0,404	0,025	97	0,421	0,026
33	0,354	0,024	65	0,352	0,024	98	0,332	0,024
34	0,384	0,024	66	0,338	0,027	99	0,394	0,025
35	0,386	0,025	67	0,380	0,024	100	0,330	0,024
37	0,300	0,023	70	0,308	0,023	103	0,426	0,025
38	0,405	0,025	71	0,515	0,026	104	0,409	0,025
39	0.639	0,028	72	0,382	0,025	105	0,328	0,023

číslo	V-R	σ_{V-R}	číslo	V-R	σ_{V-R}	číslo	V-R	σ_{V-R}
	[mag]	[mag]		[mag]	[mag]		[mag]	[mag]
107	0,344	0,024	139	0,421	0,025	169	0,389	0,024
108	0,283	0,023	140	0,408	0,025	170	0,498	0,026
110	0,329	0,023	141	0,281	0,023	171	$0,\!488$	0,027
112	0,556	0,027	142	0,153	0,021	172	$0,\!482$	0,028
113	0,302	0,023	144	0,379	0,024	173	0,377	0,024
114	0,492	0,027	145	0,398	0,026	174	0,506	0,026
115	0,377	0,025	147	0,451	0,026	175	0,396	0,025
116	0,362	0,024	148	0,544	0,027	176	0,442	0,026
117	0,390	0,024	149	0,393	0,024	177	0,136	0,021
118	0,382	0,024	151	0,334	0,024	178	0,360	0,024
119	0,378	0,024	152	0,649	0,029	179	0,552	0,031
121	0,323	0,023	153	0,407	0,025	180	0,396	0,025
122	0,365	0,024	154	0,313	0,024	181	0,433	0,025
123	0,357	0,024	155	0,341	0,024	182	0,407	0,026
124	0,372	0,024	156	0,530	0,027	183	0,435	0,026
125	0,556	0,027	157	0,007	0,019	184	0,492	0,027
126	0,418	0,026	158	0,294	0,025	185	0,549	0,029
127	0,372	0,024	159	0,531	0,029	186	0,501	0,028
128	0,434	0,027	160	0,361	0,025	187	0,373	0,024
131	0,655	0,029	161	0,325	0,026	188	0,383	0,024
132	1,359	0,042	162	0,439	0,025	189	-0,527	0,017
133	0,423	0,026	163	0,441	0,028	190	0,389	0,025
134	0,147	0,021	164	0,478	0,027	191	0,358	0,025
135	0,651	0,029	165	0,536	0,029	192	0,556	0,027
136	0,328	0,024	166	0,387	0,024	193	0,471	0,027
137	0,498	0,026	167	0,498	0,028	194	0,500	0,029
138	0,319	0,023	168	0,583	0,029			

Tabulka A.10: Barevný index pro CCD část $\mathbf{2}.$

Literatura

- [1] Berry R., Burnell J.: *The Handbook of Astronomical Image Processing*, Willmann-Bell, Richmond, 2005.
- [2] Carroll B. W., Ostlie D. A.: An Introduction to Modern Astrophysics, 1996.
- [3] Jílková L.: Barevná kalibrace fotometrického systému, Brno, 2006.
- [4] Krtička J., Štefl V.: *Historie astronomie*, Brno, 2008.
- [5] Horálek P.: Studium jasu oblohy, Brno, 2010.
- [6] Howell S. B.: *Handbook of CCD Astronomy*, Cambridge University Press, Cambridge, 2006.
- [7] Hroch F.: Astronomické praktikum, Brno, 2006.
- [8] Kleczek J.: Velká encyklopedie vesmíru, Academia, Praha, 2002.
- [9] Marková H.: CCD fotometrie vybrané otevřené hvězdokupy II, Brno, 2008.
- [10] Manfroid J., Sterken Ch.: Astronomical Photometry (A Guide), Kluwert Academic Publishers, London, 1992.
- [11] Mikulášek Z., Krtička J.: Základy fyziky hvězd, Brno, 2005.
- [12] Payne-Gaposhkin C.: Stars and Clusters, Harvard University Press, Cambridge, MA, 1979.
- [13] Poledníková J.: Spektrální syntéza astronomických snímků, Brno, 2009.
- [14] Sanders, WL., Astron. Astrophys., 27, 89-116, 1976.

- [15] Zejda M., Mikulášek Z.: Pozorování proměnných hvězd I, Hvězdána a planetárium Mikuláše Koperníka v Brně, Brno, 1994.
- [16] Fiacconi D., Tinelli L.: Light Curve Analysis of XX Cygni from Data Taken Using DSLR, 2009OEJV..114....1F
- [17] Montgomery K. A., Marchall L. A., Janes K. A.: CCD Photometry of the old open cluster M67, Astronomical Journal, 106, 1, 181-219., 1993.
- [18] Henden A.: The M67 Unfiltered Photometry Experiment AAVSO, 29, 1, 35-43, 2000.
- [19] Hoot J. E.: Photometry with DSLR Cameras, The Society for Astronomical Sciences 26th Annual Symposium on Telescope Science. Held May 22-24, 2007 at Big Bear, CA. Published by the Society for Astronomical Sciences., 67, 2007.
- [20] Littlefield C.: Observing Exoplanets Transits with Digital SLR Cameras, AAVSO, 38, 2010.
- [21] Schield R. E.: *CCD photometry of M67 stars useful as BVRI standarts*, Astronomical Society of Pacific, 1998.
- [22] Taylor S. A.: CCD and CMOS Imaging Array Technologies: Technology Review, Technical Report EPC-1998-106.
- [23] http://www.fotografovani.cz/
- [24] http://www.fotoroman.cz/
- [25] http://www.digimanie.cz/
- [26] http://var2.astro.cz/
- [27] http://www.jiast.cz/clanky/teleskopie-x-astronom-amater-a-jeho-zrak
- [28] http://ccd.mii.cz/art?id=303
- [29] http://munipack.astronomy.cz/
- [30] http://integral.physics.muni.cz/rawtran/
- [31] http://www.cybercom.net/~dcoffin/dcraw/

- [32] http://astrosurf.com/buil/
- [33] http://simbad.u-strasbg.fr/simbad/
- [34] http://learn.hamamatsu.com/articles/quantumefficiency.html
- [35] http://www.fen-net.de/walter.preiss/e/slomoinf.html
- [36] http://calgary.rasc.ca/lp/lightandtheeye.html
- [37] http://www.citizensky.org/content/ dslr-documentation-and-reduction
- [38] http://www.agi32.com/kb/index.php?article=997
- [39] http://soft.proindependent.com/qtiplot.html
- [40] http://photo.astronomy.cz