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ABSTRACT

M7-type neutron stars are a group of young, thermally emitting in soft X-ray spectra,
radio-quiet, isolated neutron stars, never observed in stellar systems with multiple stars.
However, models of stellar system evolution do not exclude the possibility of their birth
in systems with OB-type stars. If true, it could provide us with more candidates for
such types of neutron stars, crucial for understanding neutron star physics in general.
The XMM-Newton space observatory enables us to analyse the parts of the spectrum
corresponding to soft X-ray emission due to its larger collecting area compared to other
telescopes, such as Chandra. The goal of this work is to analyse XMM-Newton archival
observations of nearby (. 500 pc) OB stars to test a method for finding possible traces
of neutron star spectral signatures hidden within the complex signal of the OB star’s
line-driven stellar winds. We report on observing peculiar fit results for the spectrum of ζ

Pup, a well-known OB star. Our model suggests the presence of a black body component
in the spectrum with effective radius RBB,W = 10.9± 3.5 km, RBB,χ2 = 10.9± 0.9 km and
temperature kTBB,W = 74.9 ± 8.1 eV, kTBB,χ2 = 73.7 ± 1.8 eV, which corresponds to the
range in which canonical neutron star’s observed radius is expected to be R∞ = 13 km
and the typical range of known M7-type neutron star temperatures kT < 100 eV.

ABSTRAKT

Neutronové hvězdy typu M7 jsou skupinou mladých, tepelně emitujících v měkkém
rentgenovém spektru, rádiově tichých, izolovaných neutronových hvězd, které nikdy nebyly
pozorovány ve hvězdných systémech s více hvězdami. Modely vývoje hvězdných sys-
témů však nevylučují možnost jejich vzniku v systémech s hvězdami typu OB. Pokud
je to pravda, mohlo by nám to poskytnout více kandidátů na tento typ neutronových
hvězd, což je klíčové pro pochopení fyziky neutronových hvězd obecně. Vesmírná observa-
toř XMM-Newton nám umožňuje analyzovat části spektra odpovídající měkké rentgen-
ové emisi díky větší sběrné ploše ve srovnání s jinými dalekohledy, jako je Chandra.
Cílem této práce je analyzovat archivní pozorování blízkých (. 500 pc) hvězd typu
OB, a vyzkoušet tak metodu hledání možných stop spektrálních signatur neutronových
hvězd skrytých v komplexním signálu záření hvězdných větrů hvězd typu OB. Podáváme
zprávu o pozorování zvláštních výsledků fitu spektra známé hvězdy typu OB ζ Pup. Náš
model naznačuje přítomnost složky černého tělesa ve spektru s efektivním poloměrem
RBB,W = 10.9 ± 3.5 km, RBB,χ2 = 10.9 ± 0.9. km a teplotou TBB,W = 74.9 ± 8.1 eV,
TBB,χ2 = 73.7 ± 1.8. eV, což odpovídá rozsahu, v němž se očekává pozorovaný poloměr
kanonické neutronové hvězdy R∞ = 13 km, a typickému rozsahu teplot známých neu-
tronových hvězd typu M7 kT < 100 eV.
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And no one calls us to move on
And no one forces down our eyes
No one speaks and no one tries

No one flies around the Sun

Pink Floyd - Echoes (1971)
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INTRODUCTION

The micro world, in many of its manifestations, is still a mystery to us. Different branches
of physics are trying to solve these mysteries in various ways. The deeper we want to
penetrate elementary structures and particles, the larger the experimental facilities we
must build and the more energy we must use. However, experimental facilities of truly
cosmic scales and energies exist in the Universe and are available for our observation
and analysis. One such ”facility” is neutron stars (NSs).

Since the discovery of the first pulsar by Hewish et al. (1968), they have raised many
questions about their nature and structure. The equation of state, the cooling mechanism,
and the magnetic field dissipation are just a few of the significant questions about the
evolution of NSs. To solve these problems, ideally, we need to precisely measure the mass,
radius, temperature and magnetic field of a NS. However, measuring all these parameters
simultaneously is usually not so easy.

Some hints could be opened to us by studying nearby (. 500 pc), young, radio-quiet,
thermally-emitting isolated neutron stars, identified in a subtype called the “Magnificent
Seven” or M7 type (Popov and Prokhorov, 2002; Popov, 2023; Treves et al., 2001). This
name is used because only seven such objects have been found within a few hundred
parsecs so far, not counting candidates (Pires et al., 2022, 2009; Shevchuk et al., 2009).
The question of their origin and evolution is still under debate, but the lack of data on
a large sample of objects harms the completeness of our understanding of these objects.
Since we have not yet definitively detected other similar objects by observing a region of
our Galaxy within a radius where the soft X-ray emission is not absorbed, it is reasonable
to explore other possible detection methods.

The other problem arises because the M7-type NSs are isolated, so measuring their
mass precisely is difficult. The evolution of stellar systems composed of massive, hot
stars of OB spectral type (OBs) does not rule out the possibility that this system could
evolve so that one of the partners eventually becomes a NS and, with some probability,
an M7 NS. If such a NS could be found in a binary system, measuring its mass from the
interaction with the companion and radius with temperature from spectroscopy would
be possible.

The XMM-Newton space observatory provides high-quality spectra at energies >

0.3 keV due to its large collecting area (Schartel et al., 2022). It can potentially resolve
the spectral signatures of a NS hidden in the complex signal of the OB star’s line-driven
stellar winds. This will test a new method of searching for thermally emitting NSs as
hidden companions in systems with OBs.
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2 introduction

This thesis is devoted to analysing a sample of nearby OBs, within a radius of . 500 pc.
Using XMM-Newton archival observations, we searched for potential hidden companions
in OB’s spectra. Part i is devoted to a review of our knowledge of the nature and
physics of OBs and NSs. It covers their evolution, structure, and the mechanisms of
X-ray emission described by the physics of stellar winds from massive stars and the
cooling of NSs. It also gives an overview of the behaviour of those objects in binaries,
explaining the basic kinematics of the system and the accretion of matter onto a NS.
Part ii describes the techniques we used in our work. It includes a description of the
data reduction and spectral extraction from XMM-Newton data. Also, it covers a brief
description of the statistics and models used for fitting the spectra. The analysis results
and their interpretation and discussion are presented in Part iii.





Part I

T H E O RY





1
OB-TYPE STARS

This study focused on analysing X-ray spectra of hot, massive stars classified by O and B
spectral types. We aimed to explore a method for identifying a potential hidden neutron
star (NS) companion in the stellar system. This chapter provides an overview of the
most crucial parts of OB stars (OBs) physics related to our work. The Sec. 1.1 covers
the lifecycle of OBs, starting from their formation in the molecular cloud, through their
further evolution and nucleosynthesis, to the final stages of their evolution. The following
Sec. 1.2 describes the physics of a massive star’s stellar winds, which are considered the
primary source of X-ray emission from them, through mechanisms explained in the
Sec. 1.3. The last Sec. 1.4 briefly explains the kinematics of OBs in binaries, which is
essential for validating our method in this study.

1.1 lifecycle of ob star

1.1.1 Hertzsprung-Russell Diagram and Stellar Classification

The development of stellar astrophysics has enabled us to classify types of stars based
on their temperature, spectral characteristics, luminosity, mass, age, chemical compo-
sition, and colour (see Maíz Apellániz et al., 2024). One can use those parameters to
visualise the evolution of stars with the Hertzsprung-Russell diagram (HRD), indepen-
dently introduced by Hertzsprung (1911) and Russell (1914). This diagram illustrates the
relationship between the temperature of a star (spectral type, colour index, bolometric
correction, or ionisation) and its luminosity (absolute stellar magnitude) (see Fig. 1.1).
The HRD highlights several important branches. One of them is the main sequence

(MS). It runs diagonally on the plot, from the lower right corner to the upper left corner,
because stars which arrive on the MS then spend most of their lives there. While there,
they burn hydrogen reserves, which are then synthesised into helium. The other two
groups, giants and supergiants, have left the MS. These stars have high luminosity and
are actively burning their hydrogen reserves. In the case of supergiants, they have a
typical initial mass excess of ∼ 10 M� and are located in the upper part of the MS
with typical luminosities ∼ 104 − 106 L� and temperatures in the wide range ∼ 3000 −
30000 K. Giants are located approximately at the right part of the MS with luminosities
∼ 10− 104 L� and temperatures in the range ∼ 3000− 6000 K. The third group of white
dwarfs are compact (∼ 7000 km), have a high density (∼ 109 kg m−3), which is about
2 × 105 times the average density of the Earth (∼ 5.4 × 103 kg m−3) and have a typical

6



1.1 lifecycle of ob star 7

mass of 1/2M�. They are located in the lower left part of the HRD with luminosities
∼ 10−4 − 1 L� and temperatures in the range ∼ 6000 − 100000 K.

Figure 1.1: The HRD shows the relation between the temperatures and luminosities of the stars. The
star’s position gives information about its present stage of evolution and mass. Credit:
https://www.eso.org/public/images/eso0728c/

1.1.2 Protostar Formation

Hot, massive, blue stars belong to the O and B spectral classes on HRD. Their surface
temperatures range from 10000 K to 50000 K, with masses typically within ∼ 10 −
100 M�. Their life begins with the gravitational collapse of a molecular cloud. However,
collapse must satisfy some condition not collapsed (Peretto et al., 2013). One condition
describes the mass at which a cloud at a given temperature T and density ρ will be
unstable and the cloud started to collapse; it is called the Jeans mass MJ, defined as

MJ =

(
5kBT

GµmH

)3/2 ( 3
4πρ

)1/2

, (1.1)

https://www.eso.org/public/images/eso0728c/


8 ob-type stars

where kB is the Boltzmann constant, T is the temperature, G is the gravitational constant,
µ is the mean molecular weight, mH is the mass of the hydrogen atom, and ρ is the
density of the cloud. The median mass of a cloud to form a single O-type star must be
about 103 − 104 M� (Williams and McKee, 1997; Xu et al., 2023). This shows that more
massive molecular clouds tend to produce massive stars.
The collapse continues further in a time interval called the free-fall timescale tff, de-

scribed as,

tff =

√
3π

32Gρ
. (1.2)

where the free-fall time depends on the density of the molecular cloud, which can vary
with its size and mass. Peretto et al. (2013) found that tff ≈ 3 × 105 yr is a typical
value for OBs. During this period, the gas begins to accrete (see Sec. 2.1), increasing
temperature and beginning the stage of protostar formation. The denser part of the cloud
accumulates more matter, increasing its density, mass, and volume. The intensity of
accretion is described by the accretion rate Ṁ∗ ∝ Ltot, where Ltot is the total luminosity
of a protostar. Usually, Ṁ∗ > 10−4 M�yr−1 is necessary to overcome the barrier for the
birth of OBs (Hosokawa and Omukai, 2009; Wolfire and Cassinelli, 1987).

1.1.3 Further Evolution and Nucleosynthesis of Massive Stars

When the accretion stops, the core temperature exceeds 107 K and fusion reactions are
started in the core. The energy released from thermonuclear reactions stops the star
from further compression, and it enters the zero-age main sequence - the starting point
of a star’s life on the MS, when the star stably fuses hydrogen into helium. The time
that a star spends on the MS could be approximated by,

tMS = 1010 ×
(
M�
M

)2.5

yr, (1.3)

where M is the mass of the star (LeBlanc, 2010). Thus, for O-type stars tMS ≈ 5− 20 Myr,
and for a B-type star tMS ≈ 50 − 100 Myr. Being on the MS requires a star to have a
strong source of energy - the hydrogen reserves, which are burning in a star’s core very
actively, synthesising into helium via the CNO cycle. The C, N, and O nuclei act as
catalysts in a chain of reactions, the end product of which is the He nucleus.
Stars are stable when they are in hydrostatic equilibrium (HE). Consider a thin stellar

shell mass element dm = ρ(r)drdS, where ρ(r) is the density at a distance r from the
centre of a star, dr is the thickness of a shell and dS is the surface area of a shell element.
The situation is illustrated in Fig. 1.2. The force of gravity acting on that element is
described by,
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dFg = −Gm(r)
r2 dm = −Gm(r)

r2 ρ(r)drdS, (1.4)

and the outward force of pressure is,

dFp = (P(r)− P(r + dr))dS = −dP
dr

drdS. (1.5)

The total mass of a shell is a function of its respective radius,

m(r) =
∫ r

0
4πr2ρ(r)dr. (1.6)

The element is in HE when dFg + dFp = 01 . The equation of hydrostatic equilibrium,
therefore, is,

dP
dr

= −Gρ(r)m(r)
r2 . (1.7)

Figure 1.2: Scheme of a shell mass element dm and forces dFg and dFp acting on it. Reference: Stellar
Astrophysical Fluid Dynamics 2003

When the hydrogen supply is depleted, the star loses its primary energy source, the
core contracts under its weight, and the temperature rises. The hydrogen, still present
in a shell just outside the core, begins to burn, releasing even more energy than it did

1 For detailed derivation see http://astronomy.nmsu.edu/jasonj/565/docs/09_17.pdf

http://astronomy.nmsu.edu/jasonj/565/docs/09_17.pdf


10 ob-type stars

when burning in the core. Consequently, the outer layers expand due to the energy now
transferred to them, causing them to heat up. Eventually, the OBs could become a blue
or red supergiant, depending on its mass (Heger, 2012).
During the chemical evolution of the star, heavier elements are produced and accu-

mulate in the stellar core in so-called onion-layered shells, as shown in Fig. 1.3. Heavier
elements are burning inside those shells, increasing the temperature inside the star (Hol-
land and Turekian, 2003; Müller et al., 2016). Eventually, the star goes through several
stages of synthesising different elements: from He synthesising C (T ≈ 108 K) to Si
synthesising Fe (T ≈ 3 × 109 K). The end comes when the star accumulates Fe in its
core. Iron does not release energy during fusion, so the pressure in the core drops and
the core collapses under the star’s gravity. Gravitational collapse goes extremely fast
(υcollapse ≈ 0.23c) (Fryer and New, 2011). The compression of the stellar core is high
enough so its density is in order ∼ 1017 kg m−3, which is comparable to the density
of the atomic nucleus ρ0 = 2.8 × 1017 kg m−3. The so-called neutronisation of matter
occurs, in which protons and electrons are transformed into neutrons and also electron
neutrinos,

p + e− → n + νe. (1.8)

Figure 1.3: Onion-layered shell structure of a massive star before the core collapse. Reference: Arcones
and Thielemann (2022)

Most of the gravitational energy of the collapse (usually within 1053 ergs) is carried away
by the neutrino flux, which in milliseconds penetrates the layers of the star and rushes
out into space (see Reed and Horowitz, 2020). In this way, a Type II supernova erupts.
The schematic representation of the core collapse is shown in Fig. 1.4.
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1.1.4 Final Stages of Evolution

Once the star’s outer layers are shed, they leave behind a compact core. What happens to
it next depends on its mass. There is a Chandrasekhar limit, named after Subrahmanyan
Chandrasekhar, who discovered it in 1930. This is the limit of mass MCh ≈ 1.44 M�
(for non-rotating, non-magnetised white dwarfs), exceeding which electron degeneracy
pressure becomes insufficient to balance gravity (see Kalita et al., 2021). Another im-
portant one is the Tolman-Oppenheimer-Volkoff (TOV), sometimes called the Landau-
Oppenheimer-Volkoff (LOV) limit, first theorised by Lev Landau in 1932 (Ter Haar,
1965) and then formulated by Oppenheimer and Volkoff (1939), based on the work of
Tolman (1939). The modern value of the limit is in the range MTOV ≈ 2.5 M� (Margutti
et al., 2018; Metzger et al., 2010; Rosswog, 2007). If the mass of the star’s core is within
MCh < M < MTOV, the pressure of the degenerate neutron gas will stop further contrac-
tion, and then NS will form (see Y Potekhin, 2010). If M > MTOV, then no pressure can
stop further collapse, and a non-rotating NS (a rare situation for the universe because
stars are usually rotating) will collapse into a black hole (BH).

1.2 stellar winds

Hot stars have strong stellar winds, a stream of particles (electrons, protons, α and β

particles, etc.) driven away from the star’s surface by radiative pressure. Stellar winds
and their properties highly depend on the mass of the star. They are usually described
by two parameters: mass-loss rate Ṁ, typically expressed in units of (M� yr−1), and
terminal velocity υ∞, expressed in units of (km s−1). The physics of stellar winds is
complex and still not fully understood. The most important aspects of their properties
and kinematics are described in the following sections, with some of them to be used in
the next chapter, describing the origin of X-ray emission from OBs.

1.2.1 Mass-Loss Rate

Mass-loss rate, or Ṁ, stands for loss of a mass (typically in M�) over time (typically in
yr) eg. dM

dt . We can describe Ṁ as a function of wind’s density ρ and velocity υ, where
both will depend on the distance from the star r,

Ṁ = 4πr2ρ(r)υ(r). (1.9)

Ṁ is usually probed by getting information about ρ and υ. Analysis of Hα emission
lines in the star’s spectra provides information about the wind density ρ, and analysis
of ultra-violet (UV) lines gives information about the wind velocity, υ. The simplest
situation where Eq. (1.9) applies is stationary smooth spherical winds.
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Figure 1.4: Scheme of a core-collapse supernova scenario: (a) Massive star reached the final stage of its
evolution, and the onion-layered shells are formed in the core. Silicon fusion accumulated iron
in the core. (b) MCh is reached by the iron core and collapse begins. The black arrows show a
supersonic movement of the outer core, and the white arrows show a sub-sonic movement of
the inner core with higher density. (c) Compression leads to the formation of neutrons in the
inner core. An enormous amount of gravitational energy is released in the form of neutrinos.
(d) The Red arrows indicate the shock wave propagating outward, formed by the material
that bounced off and fell into the core. (e) The shock wave slows down as nuclear processes
dissipate energy but continues to move due to interactions with neutrinos. (f) The material
outside the inner core is ejected, leaving behind a degenerate remnant (Janka et al., 2007)
Credit: https://en.wikipedia.org/wiki/Supernova

Considering hot, massive stars, the situation with the winds is more complex because
their structure is not smooth, but rather clumped (Puls et al., 2009). The nature of that
inhomogeneous structure is still a matter of debate, but the main idea is that it’s related
to a line-driven instability (LDI) (Owocki and Puls, 1999). Line-driving is the mechanism
by which the radiation from a hot star is absorbed and scattered by the particles in the
star’s atmosphere. Due to this scattering, the material is propelled, and a stellar wind
is formed. LDI causes inhomogeneity of the wind structure, and it depends on the star’s
magnetic field. Hence, in hot stars with weak magnetic fields, it causes small-scale clumps,
and in magnetised stars, it forms large-scale clumps and cellular sheets (Driessen et al.,
2021, 2022). To quantitatively describe the LDI in terms of a magnetic field influence,
the so-called wind-magnetic confinement parameter η? is used (ud-Doula and Owocki,
2002),

η? =
B2R2

ṀB=0υ∞
, (1.10)

https://en.wikipedia.org/wiki/Supernova
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where B is the magnetic field strength of a star, R is the stellar radius, ṀB=0 is the
mass-feeding rate (Ṁ of an equivalent non-magnetic star) at terminal wind velocity υ∞.
Parameter η? tells us how much the magnetic field dominates the wind flow from the
stellar surface. If η? � 1, then the magnetic field dominates the wind flow; if η? � 1,
then the wind flow dominates over the magnetic field. Fig. 1.5 shows a simulation of
wind clumps with LDI influence, done by Driessen et al. (2021). They considered the
time evolution of the wind in situations of the non-magnetic (η? = 0), the moderately
magnetized (η? = 0.15) and the strongly magnetized (η? = 15) stars. It could be seen
that with higher η?, the wind becomes more structured and clumpy.

1.2.2 Terminal Velocity

Radiation emitted from the star’s surface drives winds and gives them acceleration.
Thus, their velocity is growing, starting from the photosphere. The maximum velocity is
reached far from the star’s surface in an environment without external forces acting on
the wind. Thus, velocity remains constant at a significant distance from the star. The
wind’s velocity profile is shown in Fig. 1.6, where the velocity of the wind v = υ(r)
plotted against the distance from the star in scale log(r/R∗ − 1), where r is the distance
from the star, and R∗ is the star’s radius.

This maximum velocity, reached by the stellar wind, is called the terminal velocity of
the wind or υ∞. Puls et al. (2008) showed that for hot, luminous stars, the typical values
are υ∞ ≈ 1000 − 3000 km s−1, which is the order of 1% of the speed of light, which is
much higher than the local speed of sound in the interstellar medium with typical values
υsound . 10 − 30 km s−1 (Lamers and Cassinelli, 1999).
The value of υ∞ is the most accessible parameter of a stellar wind one can obtain. It is

probed by analysis of absorption, recombination, emission, and P-Cygni resonance lines,
predominantly in the UV part of a star’s spectrum (see Yu et al., 2024). The P-Cygni
profile gives a more accurate determination of υ∞ since it shows blueshifted absorption
and redshifted emission at the same time, which allows one to determine the velocity by
analysing the line broadening via Doppler shift (see Dessart, L. and Owocki, S. P., 2005;
Owocki, 2004).

For comparison, Tab. 1 shows typical values of stellar and wind parameters of OBs and
the Sun, such as effective temperature Teff, mass M, terminal velocity υ∞, and mass-loss
rate Ṁ. The current Ṁ of the Sun is around 10−14 M� yr−1. If we take into account
the approximate lifespan of the Sun ∼ 1010 yr, we can calculate that the approximate
Ṁ of the Sun during its MS evolution will be ∼ 10−4 M�. This scenario is different for
massive stars. Typical Ṁ of OBs is in range 10−9 − 10−5 M� yr−1, and now, considering
their lifespan in order of 106 − 107 yr, the mass loss could be in range 10 − 100 M�.
This significant mass loss will affect the evolution of the massive stars. Over the last 70



14 ob-type stars

Figure 1.5: Wind density visualization using 3 different LDI models: (top) non-magnetic wind η? = 0,
(middle) moderately magnetized wind η? = 0.15, (bottom) strongly magnetized wind with
η? = 15. White lines represent magnetic field lines. Reference: (Driessen et al., 2021)
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Figure 1.6: Wind velocity v = υ(r) profile for a non-rotating O5 V star. It is plotted against log(r/R∗− 1),
where r is the distance from the star and R∗ is the star’s radius. The black dot shows the
sonic point, and a red dot marks the singular point of the CAK equation (see Sec. 1.2.3)
Reference: (Curé and Araya, 2023)

Table 1: Typical stellar wind parameters for OBs and Sun for comparison. References: [1]Krtička, J.
et al. (2021), [2]Kobulnicky et al. (2019), [3]Krtička, Jiří (2014), [4]Kobulnicky et al. (2019),
[5]Vink (2024), [6]Prinja et al. (1990), [7]Liu et al. (2019), [8]Granada et al. (2013), [9]Hunter
et al. (2008).

Type Teff (kK) M (M�) υ∞ (km s−1) Ṁ (M� yr−1)

Sun 6 1 ∼ 500[5] 10−14[5]

O 30-45[5] 20-60[5] 2000-3500[5] 10−7 − 10−5[5]

B 15-30[1][2][3] 3-15[8][9] 150-1000[6][7] 10−9 − 10−7 [3][4]

years, several models have been created (and are still being developed) to describe the
influence of stellar wind parameters on its dynamic and complex behaviour.

1.2.3 Kinematics of Stellar Winds

The pioneering attempt to build a model of stellar and, particularly, solar winds was
first proposed by Parker (1958). The derivative of υ with respect to its distance from
the star r in 1D is,

dυ

dr
=

dυ

dt
· dt

dr
=

a
υ

, (1.11)
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where a is the acceleration of the wind. The equation can be rearranged by multiplying
both sides by υ,

υ
dυ

dr
= a. (1.12)

For spherically symmetric wind, the equation relating inertia on the wind υ dυ
dr , gravita-

tional force −GM
r2 , pressure gradient dp(r)

dr and acceleration caused by other forces acting
on the wind a(r) is,

υ
dυ

dr
= −GM

r2 − 1
ρ

dp
dr

+ a(r). (1.13)

Typically, the acceleration that drives stellar wind is caused either by continuum electron
scattering, which transfers energy to the particles in the stellar atmosphere, or optically
thick line absorption, where photons are more likely to be absorbed and transfer their
energy. Both effects need to be taken into account. One way of describing these effects is
by analysing a star’s surface thermal velocity υth. It is a characteristical speed of particles
caused by their thermal motion in the stellar atmosphere and derived from Maxwellian
velocity distribution,

υth =

√
2kBTeff

µmu
, (1.14)

where Teff is the effective temperature of the star, µ is the mean molecular weight and mu
is the atomic mass unit. The efficiency of a radiation pressure that pushes the material
of the star away could be described by the Eddington factor Γ (see Gräfener et al., 2011).
Γ compares the radiation pressure of a star and the gravitational pull caused by the star.
The Eddington factor is defined as,

Γ =
κe− L

4πcGM
, (1.15)

where κe− is the electron scattering opacity of the wind and L is the luminosity of the
star. The value of Γ can be interpreted as follows:

• Γ < 1: gravitational pull is stronger than the radiation pressure, resulting in a
weak Ṁ.

• Γ = 1: the radiation pressure and gravitational pull are balanced. The star is at
its Eddington limit.

• Γ > 1: the radiation pressure is stronger than the gravitational pull, resulting in a
strong Ṁ.
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The fundamental work of Castor et al. (1975) (CAK) renewed the spherically symmet-
ric wind case from Eq. (1.13) to include the line-driven force. For that, they introduced
parameter α, which represents the ratio of the acceleration caused by absorption in opti-
cally thick lines and total radiative acceleration, and constant C, which absorbs the rate
of mass-loss, defined as,

C = ΓGMk
(

4π

Ṁυthκe−

)α

, (1.16)

where k represents the scaling of the magnitude of the radiative force, which depends
on line strength (see Castor et al., 1975; Maeder, 2009). The CAK model equation then
becomes,

υ
dυ

dr
= −GM

r2 + C
(

dυ

dr

)α

Sob
. (1.17)

Here, we ignore the gas pressure term since it is negligible compared to the radiation
pressure term, which is significantly above the sonic point of the wind. The vital term in
Eq. (1.17) is the Sobolev velocity gradient

(
dυ
dr

)
Sob

, which helps to approximate radiative
transfer when the wind velocity gradient is large (see Puls and Hummer, 1988).

An analytical solution of the Eq. (1.17) predicts that the wind velocity profile should
follow a beta-law,

υ(r) = υ∞

(
1 − R

r

)β

, (1.18)

where parameter β usually takes values in range ≈ 0.8− 1.0 (Castor et al., 1975; Lamers
and Cassinelli, 1999). If we will consider the case where β = 0.5 (see Kurfürst, 2024),
then the terminal velocity υ∞ will be defined as,

υ∞ = υesc

√
α

1 − α
, (1.19)

where υesc is the stellar escape velocity, defined as,

υesc =

√
2GM(1 − Γ)

R
. (1.20)

CAK showed that Ṁ depends on the mass of the star, M, it’s luminosity, L, the Edding-
ton factor, Γ, and also parameters α and k,

Ṁ ∝ (kL)
1
α M(1 − Γ)1− 1

α . (1.21)
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The complex spectral data, primarily from ionised iron atoms, provide reasonable pre-
dictions for terminal velocities involving LDI effects. For more details, I will refer the
reader to the works of Owocki (2015), Pauldrach et al. (1986), and Puls et al. (2008).
New approaches rely on hydrodynamic solutions for velocity stratification based on the

complex structures of stellar winds from hot stars. Müller and Vink (2008) used Lambert
W function in their work, where they were able to determine the acceleration of the wind
from the Monte-Carlo method (see Schulte-Ladbeck et al., 1993; Vink et al., 2001). There
are also existing approaches based on the integration of radiative acceleration through
all the frequencies of the spectrum, involving opacity κν and flux Fν,

arad =
1
c

∫
κνFνdν. (1.22)

Integration in the co-moving frame was performed by Gräfener, G. and Hamann, W.-R.
(2005) and Krtička, J. and Kubát, J. (2017). The main advantage of this approach is
that the Sobolev approximation is no longer needed, and it is equally appropriate for
describing optically thick and thin winds (Vink, 2024).

1.3 x-ray emission from ob stars

The X-ray spectrum of OBs is quite soft, with a broad peak at 0.1− 4 keV for most of the
stars except in peculiar cases, and is composed of metallic lines with ionisation stages
corresponding to a narrow temperature range for single and binary star systems (see
Sec. 4.1.1 in Güdel and Nazé, 2009). The existence of a correlation between the X-ray
luminosity LX and bolometric luminosity Lbol was suggested by Harnden et al. (1979)
and then confirmed for unabsorbed X-ray by Pallavicini et al. (1981) and Sciortino et al.
(1990),

Lunabs
X ≈ 10−7Lbol. (1.23)

For different energy bands, the relation LX − Lbol is different, with tight correlation in
soft (0.5− 1 keV) and medium (1− 2.5 keV) bands, but in hard band (2.5− 10 keV) the
correlation breaks down (Antokhin et al., 2008; Sana et al., 2007).
The question about the origin of X-ray emission from OBs is still not fully answered.

One of the leading hypotheses suggests that shock-heated plasma in the stellar wind is
the primary source of X-ray emission in OBs. As mentioned in Sec. 1.2.1, the stellar
wind is unstable and has a non-uniform velocity structure. The faster-moving matter in
the wind overruns the slower-moving matter, forming shocks that should be heated and
distributed throughout the entire wind. Lucy and White (1980) proposed that forward
shocks between fast and slow-moving matter in the wind are the primary source of X-ray
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emission, but then Owocki et al. (1988), using hydrodynamics simulations, point to the
presence of reverse shocks, decelerating the fast-moving, low-density matter.

Nevertheless, the emission predicted by both models was lower than the observed
X-ray flux from OBs. To explain this, a new model was proposed by Feldmeier et al.
(1997), suggesting that the collision of dense, heated, shock-compressed shells leads to
X-ray emission with values below those observed by a factor of 2 − 3. The model states
that X-ray emission is generated mainly from 1 or 2 of such shocks (always < 5 shocks),
located within tens of stellar radii from the star. The model was also adjusted to explain
short-term variability due to the dynamic nature of the fading and growth of the shocks,
which was not observed. Feldmeier et al. (1997) suggested that wind is fragmented, so
individual X-ray fluctuations are smooth over the whole wind, making X-ray emission
appear relatively constant. Typically, emission produced by the plasma should be soft,
as mentioned earlier, in the range 0.5 − 1 keV (Petit et al., 2013; Rauw, 2022; Vaiana
et al., 1981; Waldron and Cassinelli, 2007).

It is also important to mention other possible sources of X-ray emission, such as
large-scale magnetospheres, where the wind is channelled along the magnetic field lines,
causing harder X-ray emission in the upper limit of (2− 5 keV) (Petit et al., 2013; Rauw,
2022), and collisions of relativistic electrons which could boost a small fraction of UV
photons via Compton scattering (Pollock, 1988).

1.4 ob stars in binaries

The probability of finding a OBs in a binary system is high and estimated to be around
70% (Kaczmarek, T. et al., 2011; Preibisch et al., 2002). One type of binary is so-called
spectroscopic binaries, where the stars can be resolved by observing the periodic move-
ment of their spectral lines. The periodic movement of the spectral lines is caused by the
movement of the stars around their common centre of mass. Measuring this movement
allows us to determine multiple parameters of the system, such as the orbital period and
the star’s masses. Some of the orbital parameters, such as the inclination of the orbital
plane to the observer’s view, could sometimes be approximated to be the same as the
inclination of the rotational plane of the OB star.

The method has limitations for OB stars because the spectral lines are broad due
to their high temperature, making it difficult to resolve their movement precisely. This
section will briefly describe the method of measuring the radial velocity (RV) of OB
stars in binary systems, which is one of the most critical parameters for determining the
mass of the stars in the system.
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1.4.1 Radial Velocity

The stars are moving in space relative to us with some velocity υ. It is possible to split it
into two components: transverse velocity υθ, perpendicular to the line of observer sight,
and RV υr, parallel to the line of sight. The situation where observer looking at the star’s
which has a observed velocity v = υ is shown in Fig. 1.7.

Figure 1.7: Scheme of transverse υθ = vθ and radial υr = vr components of the star’s observed velocity
υ = v at the angle θ between the line of sight and the direction of the star’s motion. Refer-
ence: Carroll and Ostlie (2017)

The radial component could be measured by the Doppler shift of the spectral line wave-
lengths ∆λ relative to their rest wavelengths λ0, which occurs when the star is moving
towards or away relative to the observer. The RV then could be expressed as,

υr =
∆λ

λ0
c, (1.24)

where c is the speed of light. If υr > 0, the star is moving away from the observer
(its spectra are red-shifted), and if υr < 0, the star is moving towards (its spectra are
blue-shifted).
Considering the case of binary systems, the RV varies due to the motion of the stellar

system components around the centre of their masses (for more details see Feng et al.,
2025). This variation is periodic, which creates a RV curve, where the RV change could
be described by so-called RV semi-amplitude K, illustrated in Fig. 1.8. The RV semi-
amplitude is usually reasonable to express for the host star, the more massive of the
stars in the binary, as,
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K1 =

(
2πG

P

) 1
3 M2

M1
(M1 + M2)

1
3

sin i√
1 − e2

, (1.25)

where K1 is the semi-amplitude of the host star RV curve, P is the orbital period, M1

is the mass of the massive star, and M2 is the mass of the less massive companion, i
is the inclination angle of the orbit relative to the observer, and e is the eccentricity of
the orbit. It is easy to see that by knowing the system’s orbital period, inclination, and
eccentricity, one can obtain the masses of two components, and the same is true for the
other way around. The inclination of the star’s rotational plane could be derived from
the rotational velocity υe sin i as,

sin i =
Protυe sin i

2πReff
, (1.26)

where Prot is the rotational period of the star around its axis and Reff is the effective
radius of the star. Both values can be obtained from spectroscopic analysis.

Figure 1.8: Simple sinusoidal RV curve, where the RV is plotted against time. The period P indicates
the time between two consecutive maxima or minima of the curve, and the semi-amplitude
K is the maximum change in the RV. Credit: https://sites.astro.caltech.edu/~srk/
BlackHoles/Literature/RV_Derivation.pdf

1.4.2 Line Broadening

However, spectroscopic measurements of the RV via Doppler shift of spectral lines, shown
in Eq. (1.24) for OBs, are not so straightforward. The high temperature of OBs leads
to a rapid motion of atoms in their atmosphere. The movement of atoms causes their
spectral lines to appear broader than they should be (see Fig. 1.9). The broadening can
mask the Doppler shift, increasing the uncertainty of the RV measurements (Drew et al.,
2022). The other effects contributing to the broadening of spectral lines are rotational

https://sites.astro.caltech.edu/~srk/BlackHoles/Literature/RV_Derivation.pdf
https://sites.astro.caltech.edu/~srk/BlackHoles/Literature/RV_Derivation.pdf
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broadening, macroturbulence, and microturbulence (see Simón-Díaz, S. and Herrero, A.,
2007, 2014). For binary systems with wide orbits and small changes in RV, the broadening
could absorb the K value, hiding visible changes in the RV, making it impossible to
measure precisely.

Figure 1.9: Doppler broadening of spectral lines. Black solid line represents an unbroadened line profile,
and red dashed line represents broadened line profile. Credit: https://en.wikipedia.org/
wiki/Doppler_broadening

summary

To summarise, the physics of massive, hot stars is a complex and dynamic process. They
have typical temperature of around 10000− 50000K and masses in the range 10− 100 M�.
Forming from the collapse of a molecular cloud, they go through various evolutionary
stages, eventually ending their lives as NS or BH.
During their lifetime, they lose a mass with a rate of Ṁ ≈ 10−9 − 10−5 M� yr−1,

through powerful stellar winds with terminal velocities υ∞ ≈ 150 − 3500 km s−1, driven
by radiation pressure. The wind structure is complex, with small-scale and large-scale
clumps caused by LDI, depending on the star’s magnetic field strength. The velocity
throughout the wind is also inhomogeneous, forming 1 or 2 (<5) shocks of dense, heated
plasma. The shocks and the clumps are considered the primary sources of X-ray emission
from OBs. The emission is relatively soft with a peak at 0.1 − 4 keV.

https://en.wikipedia.org/wiki/Doppler_broadening
https://en.wikipedia.org/wiki/Doppler_broadening
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The OBs are also often found in binary systems, where the probability of finding
one is around 70%. The binaries could be resolved spectroscopically, where the periodic
Doppler shift of the spectral lines allows us to measure the stars’ RV. Knowing the
RV semi-amplitude K, the orbital period P, and the inclination i of the system, one can
derive the masses of the stars in the system. The limitation is, however, that the spectral
lines are broad due to the high temperature of OBs. It makes resolving the Doppler shift
difficult, especially for wide binaries with small changes in RV.



2
NEUTRON STARS

NSs are a highly compact and dense type of stars. They are named this way because
their interiors are composed mainly of neutrons at extremely high densities. With typical
masses ∼ 1 − 2 M� and radius around ∼ 10 − 14 km the density of matter in such star
is around ∼ 1018 kg m−3, which is an order higher than the normal nuclear density
ρ0 = 2.8 × 1017 kg m−3 (see Y Potekhin, 2010).
They were theorised by Baade and Zwicky (1934), less than two years after James

Chadwick (1932) discovered a neutron. According to them, NSs were a result of a su-
pernova explosion. Another version states that NSs were predicted by Lev Davidovich
Landau in 1932 during a meeting with Niels Bohr and Léon Rosenfeld (see Shapiro and
Teukolsky, 1983). Most likely, this version is incorrect because the meeting between them
took place in 1931, which makes it difficult to predict the existence of NSs before the
discovery of the neutron itself. Nevertheless, Landau foresaw the existence of stars with
masses > 1.5 M�, in which within exists a region where the density of a matter is so
high that the atomic nuclei are clumping, forming one giant nucleus (Ter Haar, 1965).
The first NS was discovered as a radio pulsar by Hewish et al. (1968). An explanation

of these observations was then given by Gold (1969). Since then, the theory and obser-
vations of NSs have progressed rapidly. Every year, more than a dozen works on this
topic are published, and each couple of years, new types of NSs are discovered (see Y
Potekhin, 2010).
NSs have many unique properties and behaviours related to the extreme states of

matter, which allows us to test various theoretical models. It is also possible to approach
from a different angle and open up new theories, enabling us to interpret the observations
in new ways. Even though our understanding of NS physics has improved substantially
over the last half of the century, NSs are still understudied, and more questions will likely
arise despite the intense attention they have received from various scientific groups.
Our work aims to find candidates for a specific type of radio-quite, thermally emitting

NSs in binaries with OB stars. This type of NS is scarce and valuable for developing
and validating NS’s cooling mechanism models. The problem is that all known NSs of
that type (called magnificent seven, e.g. M7) are isolated, so it is impossible to measure
their mass, only approximate precisely. However, the theory of NS’s cooling combines
information about its mass, radius, and temperature. Finding such an object in a binary
system will allow us to measure its mass from its orbital parameters. At the same time,
the spectral analysis will determine the radius and temperature. It will enable us to
test and adjust the models of NS’s cooling, pushing our understanding of NS’s physics

24
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further, potentially leading to resolving the question about NS’s equation of state. From
the previous chapter, we know that OB stars are often found in binary systems, with a
probability around 70%, and at the end of their life, they could explode as a supernova,
leaving behind a NS. Such systems exist, but none is confirmed to contain a radio-quite,
thermally emitting NS as a companion of an OB star (Zhang et al., 2004).

This chapter is a brief review of the current understanding of NS physics. It starts
with a short introduction to the lifecycle of NSs and general properties in Sec. 2.1. Then,
it covers types of NSs and their parameters in Sec. 2.2. The next Sec. 2.3 provides an
overview of our current understanding of a NS’s structure and composition, followed by
a background on the relativistic effects significant for the NSs. The section ends with a
description of the NS’s cooling mechanisms. The Sec. 2.4 combines the information from
the previous sections and uses it to introduce thermally emitting, radio-quite, isolated
NSs, which is the primary focus of this work. Sec. 2.5 focuses on the general mechanisms
of X-ray emission from NSs, especially from the M7. The last Sec. 2.6 gives a short
overview of the interaction between stellar winds of OB stars and the NSs in a binary
system, which could result in the accretion of the material from the OB star onto the
NS. Knowing the physics behind the interactions between the two stars, it is possible to
validate potential candidates for binary systems and put additional constraints on the
orbital parameters, which needed to be combined with one from Sec. 1.4.

2.1 lifecycle of neutron star

It was mentioned already in Sec. 1.1.4 that a NS is a possible final product of the MS
star evolution (see Strom, 1979). Type II supernovae are now considered the primary
mechanism through which NSs are formed (Arnett, 1996). NSs typically have an initial
temperature in the range 1010 − 1011 K and higher. Still, as they cool down, they release
energy via neutrinos from their core and electromagnetic radiation from their surface
(detailed in section 2.3.3). Strong magnetic fields are also a primary characteristic of
NS, which evolve and change their configuration over the NS’s lifetime. Most known
NSs have magnetic fields that are not possible to recreate in the laboratory, with values
ranging from 108 to 1015 G, depending on the type of NS. Inside the NS, magnetic field
strength could be even higher (see Dall’Osso et al., 2009).

The rotation is the most accessible and useful parameter for characterising a NS.
During the core collapse, angular momentum is conserved. For the spherically symmetric
star, the angular momentum is defined as,

L = Iω ≈ MR2ω, (2.1)

where I is the moment of inertia, ω is the angular velocity, M is the mass and R is the
radius of the star. The initial radius of a massive star could be in the range of tens of solar
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radii (Underhill et al., 1979). The radius of a NS is around 10− 15 km. That decrease in
the radius leads to a dramatic increase in the angular velocity. Nonetheless, the rotational
energy of a NS is not constant over its lifetime. Depending on the environment, it can
decrease or increase (spinning down and spinning up of a NS). NS rotation slows down
mainly due to the loss of angular momentum and rotational energy. It is directed through
various mechanisms, such as neutrino emission and gravitational waves (see Negreiros
et al., 2014; Prakash, 1994). For the pulsars (one of the types of NSs, see Sec. 2.2), spin-
down rate Ṗ = dP

dt (dimensionless quantity) is the function of a magnetic field strength.
At the same rotational period, P (typically in seconds), a pulsar with a stronger magnetic
field, B, will emit more energy and slow down faster. The relation between the period,
the period derivative Ṗ, and the magnetic field strength measured in gauss G is given
by,

B ∼ 1019.5

√
ṖP
1 s

G. (2.2)

The period derivative Ṗ is a measure of the rate of change of the period of a pulsar, which
is related to the loss of rotational energy. Ultimately, a single NS will lose its rotational,
thermal, and magnetic energy and ”shut down”.
On the other hand, if the NS is in a binary system, its evolution could have a much

more interesting scenario. A NS’s rotation can speed up in binary star systems, usually
due to accretion - a process during which the gravitation field of a NS pulls the material
from its companion and directs it along the magnetic field lines so that matter splits and
flows towards each pole. The falling of the material along these two funnels, combined
with the NS orbital motion around its companion, results in a torque acting on the NS,
which increases its rotation perpendicular to the magnetic field lines. If the companion
occupies its Roche lobe, accretion could be intense enough to make the NS a bright X-ray
source and form an accretion disk around it. If the mass of accreted material overcomes
the TOV limit, the NS will collapse into a BH. If the NS companion is also a compact
object, such as a white dwarf or another NS, their orbital parameters could change due
to gravitational wave emission, which will carry away the system’s angular momentum
over time and decrease the radius of the orbit. Eventually, two objects will merge and
form either a more massive NS or a BH if the mass of the system exceeds the TOV limit
(see Burns, 2020).

The main factors directing NS evolution and its observed appearance are: magnetic
field, rotation and accretion.
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2.2 types of neutron stars

Depending on the configuration of the star, several types of NSs could be the final result
of a supernova collapse. The first discovered type were radio pulsars, which are rotating
NSs with strong magnetic fields B ∼ 1012 G (Manchester et al., 2005). They emit coherent
beams of radio waves from their poles, focused by the magnetic field. Radio pulsars can be
divided into two categories: normal and millisecond pulsars. Normal pulsars are isolated
NSs with rotational periods from tens of milliseconds to several seconds (see Harding,
2013). Millisecond pulsars are NSs with rotational periods in milliseconds range and less,
usually formed in binaries and probably had an accretion phase in their past, which sped
up their rotation (see Manchester, 2017). Their magnetic fields are smaller than those of
normal radio pulsars B ∼ 108 − 1010 G (Bisnovatyi-Kogan, 2006). Another peculiar type
of NSs are the magnetars. They have extremely strong magnetic fields B ∼ 1014 − 1015 G
(Mereghetti, 2008) through which they manifest themselves (see Popov, 2023). It is
also important to mention central compact objects (CCOs), which are young, thermally
emitting NSs located in supernova remnants, with magnetic fields B ∼ 1010 − 1011 G;
additionally, disrupted recycled pulsars (DRPs), with a period greater than 20 ms, and
magnetic fields in order of 1010 G, are thought to be potential descendants of CCOs (see
De Luca, 2017; Gotthelf et al., 2013; Gourgouliatos et al., 2020). Certainly, it is not a
comprehensive list covering all members of the NS zoo; therefore, I refer the reader to the
reviews Harding (2013) and Popov (2008, 2023). XDINSs (X-ray dim isolated neutron
stars) will be discussed in detail in Sec. 2.4.

The so-called P − Ṗ diagram is a useful visual representation of NS families. Here, the
rotational period P is plotted against period time derivative Ṗ (or sometimes log Ṗ). The
example of P − Ṗ diagram showed in Fig. 2.1. It was already mentioned in Sec. 2.1 that
P − Ṗ and P are related to the magnetic field strength B of a pulsar. It is also possible to
approximate the age of a pulsar t, assuming it is isolated and does not accrete matter:

t ≈ tPSR ≡ P
2Ṗ

, (2.3)

where tPSR is the characteristic age of a pulsar. The diagram combines all the information
about those parameters and shows distinguishable groups of NSs. Using the diagram, we
can also track the evolution of NSs, which, for example, are going through spin-down or
spin-up processes 1.

1 For a more detailed explanation, see: Condon and Ransom (2016) ”Chapter 6: Pulsars”, or https:
//secretofthepulsars.com/the-data/how-ns-capture-theory-explains-p-p-dot-diagram/

https://secretofthepulsars.com/the-data/how-ns-capture-theory-explains-p-p-dot-diagram/
https://secretofthepulsars.com/the-data/how-ns-capture-theory-explains-p-p-dot-diagram/
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Figure 2.1: NSs populations on the P − Ṗ diagram. Isolated pulsars (black dots), pulsars in binaries (cir-
cled dots), magnetars (blue crosses), XDINSs (magenta asterisks), CCOs (filled red stars),
DRPs (open blue stars). Black dashed lines show the characteristic age and magnetic field
strength. Blue solid lines show the death line for radio pulsars and the spin-up limit. Ref-
erence: Gotthelf et al. (2013)

2.3 physical properties

The following description of the NS structure was taken from Y Potekhin (2010). Au-
thor’s terminology could be different from the one used in other works on the topic. The
author provides a detailed description of the NS structure, which I will summarise here.
The main goal of this section is to provide a brief overview of the NS structure and its
physical properties, which are important for understanding the cooling mechanisms of
NSs. For our work it is also important to understand the relativistic effects, which are
significant for the NSs, because of their high mass, small radius and thus extremely high
density, to properly interpret the observations. Still it is worth to mentioned that our
knowledge of the NS structure is still incomplete, so some parts could be more speculative
than others.
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2.3.1 Structure

In typical NSs, it is possible to distinguish two regions: the core and the outer layers.
In turn, the core is divided into inner and outer and outer layers on solid crust and
liquid ocean. The schematic cross-section of a NS, with information about approximate
dimensions and density of each layer, as well as their composition, is shown in Fig. 2.2.

Figure 2.2: Neutron star schematic cross-section. The picture showed each layer and its name, the com-
position of the layers shown on the right side, and physical dimensions and the logarithm of
density shown on the left side. Division on core and crust is shown by black solid lines, and
subdivisions are shown by dashed lines. Reference: Y Potekhin (2010)

The inner core occupies the central region of a NS; the radius could reach several
kilometres, and densities are usually & 2ρ0 (ρ0 = 2.8 × 1017 kg m−3). The inner core is
present in NSs with masses & 1.4 − 1.5 M�; in the less massive NSs, the core density
could not reach 2ρ0. The composition and properties of the inner core are currently a
matter of debate. Resolving the problem involves the development of theoretical models
for proper observation interpretation, as well as vice versa. The outer core has a thickness
of around several kilometres and densities in the range 0.5− 2ρ0. We think that the outer
core is a superfluid composed mainly of neutrons, superconducting protons, electrons and
muons (see Haensel et al., 2007).

The solid crust of a NS’s outer layers is divided into inner and outer. The inner crust
typically has a thickness∼ 1− 2 km and density going from ρdrip ≈ (4− 6)× 1014 kg m−3

to ∼ 0.5ρ0. At ρdrip, neutrons start to drip out of the nuclei, and at ∼ 0.5ρ0, nuclei
start to merge. The pressure is maintained mainly by the degenerated neutrons pressure
and strong interactions. Nuclei form a crystal lattice supported by the Coulomb forces.
The outer crust has a thickness of around several hundred meters and typical densities
1014 kg m−3 (Chamel, 2007); it is mostly composed of electron-ion plasma everywhere
except the region closer to the surface, where the density could not reach 109 kg m−3.
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The pressure is maintained mainly by the degenerated electrons. The border between
the inner and outer crust is a point where ρ = ρdrip.
It is also possible that the mantle region, located between the core and the inner crust,

is present (Pethick and Potekhin, 1998). Mantle could be formed of several layers where
the nuclei take different phases, such as nuclei matter with neutron cylinders inside it
(tube phase), or with neutron spheroids (swiss cheese phase), cylindrical shape nuclei
(spaghetti phase) and planar (lasagna phase).

Another two important regions are the ocean and the atmosphere. An ocean is a layer
mainly composed of fully or partially ionised atoms and degenerate electrons. Ocean
bottom is located at the upper border of the outer crust, where it started to melt at
the corresponding density ρmelt ≈ 109 − 1012 kg m−3 (Baiko and Chugunov, 2018). The
atmosphere is a layer of plasma to which the ocean is smoothly transiting. Its thickness
depends on an effective surface temperature such that: for Teff ≈ 105.5 K the thickness is
around several millimetres, and for Teff ≈ 106.5 K the thickness could reach tens of cen-
timetres. The thermal electromagnetic spectrum is formed in the atmosphere, carrying
the information about the effective temperature of a surface, gravitational acceleration,
magnetic field parameters, mass, radius and chemical composition of a NS (more details
in Sec. 2.5).

2.3.2 Relativistic Effects

As we have seen, NSs are compact, extremely dense objects, for which the effects of
general relativity (GR) play a significant role in describing their behaviour (Misner
et al., 1973). For NSs, the significance of GR effects is described by the parameter of
compactness χg,

χg =
rg
R

, (2.4)

where rg is a Schwarzschild radius and R is the radius of a NS. The Schwarzschild radius
is defined as,

rg =
2GM

c2 ≈ 2.95M
M�

km, (2.5)

where M is the mass of a NS, and c is the speed of light. The gravitational acceleration
on the surface is defined as,

g =
GM

R2
√

1 − χg
≈ 1.328 × 1012√

1 − χg

M
M�

1
R2 m s−2, (2.6)

where R is in units of 106 cm.
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A canonical NS has: M = 1.4 M�, R = 10 km, and gNS = 2.425 × 1012 m s−2, which
is around 2.48 × 1011 gE (where gE = 9.8 m s−2 is the gravitational acceleration on the
surface of Earth). For typical NSs, GR effects impact tens of per cent on its observable
temperature, radius and luminosity. By that, for example, the frequency of photons in
a local inertial frame ν0 will be redshifted by zg to the observer ν∞,

zg =
ν0

ν∞
− 1 =

1√
1 − χg

− 1. (2.7)

Due to this effect, the spectrum from a thermal emission will be shifted to longer wave-
lengths. Thus, the measured effective temperature T∞

eff will be lower than the real effective
temperature Teff of the NS surface,

T∞
eff = Teff

√
1 − χg. (2.8)

It is not only the temperature affected by the GR effects. The observed radius R∞ of a
NS will also be greater than the real radius R,

R∞ = R(1 + zg) =
R√

1 − χg
. (2.9)

For a canonical NS R∞ = 13 km. The full photon luminosity of a NS in its rest frame
Lγ will also be redshifted as,

L∞
γ = Lγ(1 − χg). (2.10)

2.3.3 Cooling

NSs begin to cool down almost immediately after their birth. After approximately 20 s,
NSs become transparent to neutrinos. The temperature distribution in the core soon
reaches equilibrium and remains in that state until the end of the NSs life. The crust
and core have different temperatures, and the crust is hotter at the beginning of the NS’s
life. Then, after the cooling wave reaches the surface (∼ 10 − 100 yr), the cooling will
continue in a quasi-stationary regime (see Potekhin et al., 2015). In the quasi-stationary
regime, neutrino cooling and photon cooling are the two processes through which cooling
occurs. The neutrino cooling stage takes ∼ 105 yr. During this time, physical processes,
e.g. direct Urca and modified Urca (murca) processes, produce neutrinos in the core,
which are then emitted into space, carrying the energy from the core and eventually
cooling it down (Yakovlev et al., 2001). The direct Urca process has two main reactions:
direct beta decay and inverse beta decay (electron capture),
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n → p + e− + ν̄e, (2.11)

is a neutron beta decay, where ν̄e is the electron antineutrino, and,

p + e− → n + νe, (2.12)

is an inverse beta decay (electron capture), where νe is the electron neutrino. The murca
process involves the same beta and inverse beta decay reactions but with an additional
nucleon in the reaction,

n + n → n + p + e− + ν̄e (2.13)

and

n + p + e− → n + n + νe (2.14)

are in the neutron branch,

p + n → p + p + e− + ν̄e (2.15)

and

p + p + e− → p + n + νe (2.16)

are in the proton branch. Murca processes are less efficient at cooling than direct Urca
processes, but they dominate in cold NSs (Bottaro et al., 2024).
The following stage is the final photon cooling stage, which starts at the age of

t & 105 yr. It is where the temperature in the core decreases enough so that reactions
producing neutrinos are weaker than the heat transfer from the core through the crust
to the surface.
Knowing this, it is possible to build a theory describing the relationship between a NS’s

effective temperature and age. Existing models now consider different combinations of
NS parameters, such as mass, radius, magnetic field (including its strength and configu-
ration of field lines), chemical composition, and thermal conductivity of the crust, which
determines Lγ. From the thermal spectra, we can get information about the effective
temperature of a NS Teff, which is the measured spectral maximum (if we consider the
Plank spectrum and neglect interstellar absorption and other correcting effects). The
effective temperature of the NS can then be used to calculate the intensity and thus
flux F∞ from the star. Consider the star at a distance D, flux could be converted to
luminosity L∞

γ as,
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L∞
γ = 4πD2F∞. (2.17)

From that the effective radius R∞
eff of the star’s emitting area is,

R∞
eff =

√
L∞

γ

4πσ(T∞
eff)

4 , (2.18)

However, as already mentioned, NSs are dynamically evolving objects, and over time,
their temperature and luminosity will change due to structural changes involving thermal
conductivity and neutrino emission intensity, both of which depend on the mass and
radius of a NS (Yakovlev et al., 2005). We can utilise this fact and build a theoretical
model for the cooling process that estimates the mass and radius of a NS, using its
measured age and effective temperature from observations. On the other hand, if we will
know the mass of a NS, we can estimate the composition of its core and crust.

The problem arises when we consider the measurements of a T∞
eff as an output parame-

ter from spectral fitting, which is usually a complicated process involving the adjustment
of several fit model parameters. In the end, T∞

eff is a best guess estimated from the ob-
served spectrum, so any conclusions are strictly model dependent. The best candidates
for testing these models are isolated NSs (which we will discuss in more detail in Sec. 2.4)
because they do not have any additional emission source, except of thermal radiation
from the surface. But the problem with isolated NSs is that measuring their mass, as
independent parameter, directly from gravitational interactions is impossible, since they
are isolated. For that reason, thermally emitting NS in binary, without any additional
emission sources, are the best candidates for testing cooling models.

Different models of NS cooling curves relates to crust chemical composition or mag-
netic field strength (Potekhin et al., 2003). In Fig. 2.3 cooling curves for normal and
accelerated cooling are shown. The nature of cooling depends on the mass of a NS. The
cooling also depends on the chemical composition of the crust, which could be composed
of iron, lighter nuclear-composed matter or partially replaced crust. In Fig. 2.4 along
with chemical composition, the magnetic field strength is also considered. Both figures
compares the models with known T∞

eff and log t of some NS’s reported in the work of
Yakovlev et al. (2008).

2.4 thermally emitting radio-quiet isolated neutron stars

As mentioned in Sec. 2.3.3, the best candidates for testing cooling models are isolated
NSs. Their spectra generated in the atmosphere are mainly thermal, which allows us
to measure T∞

eff more precisely. They do not show radio emission (radio quiet), firstly
discovered by Walter (1998). Members of this group of NSs are CCO and XDINSs
(Haberl, 2007; de Luca, 2008). XDINSs are nearby objects (. 500 pc), originating from
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Figure 2.3: Models of NS cooling based on crust chemical composition. The black dots represent known
NSs with measured effective temperatures and ages, along with their uncertainties, as re-
ported in the work of Yakovlev et al. (2008). Solid curves represent iron crust, dotted curves
represent crust fully replaced by lighter nuclear-composed matter, dashed curves represent
partially replaced crust. The red curves related to the mass of a NS 1.3 M� going through
normal cooling, blue curves related to the mass 1.5 M� going through accelerated cooling.
Reference: (Potekhin et al., 2015)

the local starforming structure, the Gould Belt (Popov et al., 2005). They have spin
periods in range 3.45 s . P . 11.37 s from which by magnetic-dipole Eq. (2.2) magnetic
fields was estimated as B & 1013 − 1014 G (Mereghetti, 2008; Pires et al., 2014). They
also have relatively weak luminosities (∼ 1031 − 1032 erg s−1) and soft X-ray emission
with temperatures (. 100 eV) (Popov, 2023).

The confirmed members of the so-called ”magnificent seven” (M7) are RX J1856.5-
3754, RX J0420.0-5022, RX J1605.3+3249, RX J2143.0+0654, RX J0720.4-3125, RX
J0806.4-4123, and RX J1308.6+2127 (see Popov and Prokhorov, 2002; Popov, 2023;
Treves et al., 2001). Nevertheless, several more objects with similar properties are known:
Calvera, 2XMM J104608.7-594306 and 4XMM J022141.5-735632, but their spin periods
are not fit with those from M7 family (except 4XMM J022141.5-735632 for which the
period is not known yet) (Pires et al., 2022, 2009; Shevchuk et al., 2009). Regarding
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Figure 2.4: Models of NS cooling based on crust chemical composition and magnetic field strength. Ev-
erything is the same as in Fig. 2.3, but the crust is mainly composed of iron. Solid curves
represents B = 0 G, dotted curves represents B = 1015 G, dashed curves represents B = 1014 G.
Reference: (Potekhin et al., 2015)

their origins, it is suggested that M7 stars may be descendants of NSs born as magnetars
(Popov et al., 2010). The locations of the M7 stars and candidates are shown in Fig. 2.5.

XDINSs are essential for studying the evolution, behaviour, and properties of NSs
because they allow us to test cooling models by directly measuring their effective tem-
perature. Unfortunately, it is hard to measure their mass since they are isolated, and
no kinematic information is available. Finding thermally emitting NSs in a binary sys-
tem would allow us to place new constraints on theoretical models and enhance our
understanding of NS physics.

2.5 x-ray emission from a neutron stars

NS’s X-ray emission depends on their evolutionary stage and environment. As mentioned
in Sec. 2.3.1, thermal emission from the surface is one of the primary sources of X-ray
emission. In Sec. 2.3.3, we discussed how high-energy photons are generated in an atmo-
sphere and emitted from the surface, cooling the NS. Thermal emission is very soft with
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Figure 2.5: The figure shows the location of each star M7 star (dots) and candidates Calvera, 2XMM
J104608.7-594306 and 4XMM J022141.5-735632 (stars) in the Gould Belt. For mapping, we
used the Aitoff projection in galactic coordinates.

temperatures around 100 eV, and for the case of XDINSs, could be very well modelled
by a black body spectrum, also taking into account NS magnetic field parameters, which
causes pulsations and variations in X-ray spectrum (De Grandis et al., 2021; Malacaria
et al., 2019; Qiao and Liu, 2019).
The other source of emission is accretion from the companion star. As it was mentioned

in Sec. 2.1, in binary systems, NSs could accrete matter from their companions, which
will result in hard X-ray emission produced not only by the accretion disk but also by
the companion object, which is funnelled onto the NS’s magnetic poles. The accretion
regime depends on the type of matter flowing from the companion. A case of slow matter
flow (not a supernova explosion) could be a stellar wind or Roche lobe overflow. Material
accreting on a NS could cause hard X-ray emission from the hot accretion disk as well
as soft emission from the heating of the atmosphere, which also produces characteristic
features in the spectrum, such as cyclotron lines (Schulz et al., 2020; Sokolova-Lapa
et al., 2021). Qiao and Liu (2019) indicated that the power-law component in low-level
accreting NSs contains the main contribution from the accretion flows and that the
thermal component is produced mainly from the surface.
High-resolution spectroscopy of M7 type NSs revealed the presence of broad absorption

features at energies 100− 700 eV and narrower features at higher energies (Sanwal et al.,
2002). Some of those features at energies 100− 300 eV have been interpreted as cyclotron
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absorption, caused by the interaction of protons with the NS magnetic field (so-called
proton cyclotron resonance (for review see Baldeschwieler, 1968)) (Haberl, F. et al.,
2003; Kerkwijk et al., 2004), while Bignami et al. (2003) showed that electron cyclotron
features are also present, but appear at higher energies. Some of the features correspond
to atomic transitions of ionised helium or iron; analysing them helps to understand the
composition of the atmosphere (Cottam et al., 2002; Rauch, T. et al., 2008).

2.6 neutron stars in binaries

Suppose the NS is in a binary system with an OB-type star, which has a strong stellar
wind; accretion of a wind onto the NS could occur. However, for accretion to occur,
conditions such as the distance between the NS and OB star, the wind velocity at that
distance, their masses and the orbital velocity of a NS should be satisfied. This section
provides a way of estimating those parameters based on the X-ray luminosity of the NS,
which then could be used to put constraints on the stellar system orbital parameters
such as orbital period and distance between the stars.

2.6.1 Accreting Neutron Stars

Accreting NSs are usually bright X-ray sources with luminosities in the range 1033 −
1034 erg s−1. To achieve such values, the accretion rate should be in the range 1010 −
1016 kg s−1 or 10−7 − 10−13 M� yr−1 (Mushtukov et al., 2015a,b; Qiao and Liu, 2020). If
the NS does not occupy the Roche lobe of its companion, such accretion rates could be
achieved in binary systems through intense flowing matter from the companion in the
form of stellar wind. The X-ray luminosity of a NS in such a system could be estimated
as,

LX ≈ ξ1m3
nsṀ

(ms + mns)
2
3 P

4
3 Rυ(r)4

(
1 +

(
υorb(r)

υ(r)

)2
) 1039 erg s−1, (2.19)

where ξ1 is a factor in order 1, mns and ms are the masses of a NS and its companion in
solar masses, Ṁ is the mass loss rate of a companion in 10−6 M� yr−1, P is the orbital
period of a NS in 10 days, r is the distance from the companion star at which NS is
located, υ(r) is the velocity of wind, derived from Eq. (1.18) in 108 cm s−1, υorb(r) is
the orbital velocity of a NS, which could be obtained using vis-viva equation2, R is the
radius of a NS in 106 cm. It is easy to see that to begin the accretion process only from

2 Vis-viva equation: https://phys.libretexts.org/Courses/Prince_Georges_Community_College/
General_Physics_I%3A_Classical_Mechanics/57%3A__Celestial_Mechanics/57.10%3A_The_Vis_
Viva_Equation

https://phys.libretexts.org/Courses/Prince_Georges_Community_College/General_Physics_I%3A_Classical_Mechanics/57%3A__Celestial_Mechanics/57.10%3A_The_Vis_Viva_Equation
https://phys.libretexts.org/Courses/Prince_Georges_Community_College/General_Physics_I%3A_Classical_Mechanics/57%3A__Celestial_Mechanics/57.10%3A_The_Vis_Viva_Equation
https://phys.libretexts.org/Courses/Prince_Georges_Community_College/General_Physics_I%3A_Classical_Mechanics/57%3A__Celestial_Mechanics/57.10%3A_The_Vis_Viva_Equation
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stellar wind as the source of matter, a NS should be as close to its companion as possible
(see Chapter 5 in Lipunov, 1992).

summary

The information presented in this chapter is a very dense and brief overview of the NS’s
physics. There is much more knowledge and problems open to discussion. Concerning
this study, it is crucial to remember the typical parameters of a canonical NS, such as
mass M ≈ 1.4 M�, radius R ≈ 10 km. Considering relativistic effects, the observed
radius is R∞ ≈ 13 km.
Their magnetic fields occupy a wide range, depending on the NS’s type, taking the

values B ≈ 1012 − 1015 G. NSs are rotators with a spin period which is not constant
and changes over time, spinning down or up, depending on the NS’s environment. The
spin period P and its time derivative Ṗ are related to the magnetic field strength, which
could be approximated using Eq. (2.2). Combining information about P, Ṗ and B, one
can study NS populations and their evolution on the P − Ṗ diagram (see Fig. 2.1).
The structure of a NS and its physical properties are still not fully understood and

require the validation of existing theoretical models and the development of new ones.
The dynamic evolution of mass, radius, temperature and magnetic field of a NS is one
of the vital bricks in the wall of knowledge about NSs that needs to be understood.
A possible way of solving the problem is the development of precise models of a NS’s
cooling process. The models relate the NS’s temperature to its age, which depends on
the combination of all the parameters mentioned above. Simontaneously obtaining the
data about NS’s mass, radius, temperature and magnetic field would put new constraints
on existing models, allowing us to in the future to approximate the evolution of a NS’s
parameters and thus understand the NS’s structure and its physical properties better.
Measuring the NS’s temperature precisely is a problem since it could originate from

several sources, such as thermal emission from the surface, accretion or interactions of
matter around the NS with its magnetic field. From all of them, thermal emission gives
the best information about the physics going on inside a NS rather than outside of
it. So, the best candidates for testing the cooling models are thermally emitting NSs.
Unfortunately, known, thermally emitting NSs are isolated, and it is hard to obtain
their mass directly from the orbital parameters of a binary system, which could be with
another star. M7 type NSs have a typical temperature around 100 eV, emitting in soft
X-ray, and their luminosities are in the range 1031 − 1032 erg s−1. We observed only
nearby objects (. 500 pc) since the ISM will absorb the soft X-ray emission.
Knowing that the possible result of a OB star evolution could be a NS, we can search

for M7 type of NSs in binary systems with OB stars. This will resolve the problem of
measuring the mass of a NS and give us information about its effective temperature and
radius, thus developing more accurate cooling models.
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The constraints on the potential system could be set using the X-ray luminosity of a
NS. a NS should have the X-ray luminosity the same or higher than the one calculated
from Eq. (2.19) to begin accreting the wind from the OB star on itself. It can help us
estimate the distance between the NS and OB star if we do not observe any signs of
accretion in the system.
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INSTRUMENTATION

The analysis of the complex X-ray spectra from OBs, with potential spectral signa-
tures of NSs, requires high-resolution spectroscopy, especially in the soft X-ray band
(0.3 − 1 keV). The best instrument available to us is the XMM-Newton space observa-
tory. This chapter will cover instrumental details of XMM-Newton and the influence of
the astrophysical and instrumental backgrounds on the obtained data. The first Sec. 3.1
summarises XMM-Newton optical design, its detectors and their technical features af-
fecting the observations. The second Sec. 3.2 explains several astrophysical processes
and instrumental effects that affect the data quality and need to be considered during
its analysis.

3.1 xmm-newton

3.1.1 Instrument Description

The High Throughput X-ray Spectroscopy Mission, also known as the X-ray Multi-Mirror
Mission (XMM-Newton), was launched on December 10, 1999, and remains a powerful
instrument for studying the cosmos in X-rays. It flies on a highly elliptical orbit with an
apoapsis of 115000 km, a perigee of ≈ 6000 km and a period of ≈ 48.87 h.
Due to the high energies, X-rays are inherently hard to reflect and, therefore, hard

to focus due to their high penetration power and high absorption by materials (Jin et
al., 2016). However, it is still possible to achieve this using mirrors, which avoid the
transmission and absorption of photons by reflecting them at small grazing angles, as
shown in Fig. 3.1. The cost of doing so, is a smaller effective area and longer focal lengths
of such systems, but this has been mitigated by adding more mirrors into nested shells,
which will also increase the cost and mass of the mirror optics. XMM-Newton works
based on this principle. The single and multiple mirror systems are shown in Fig. 3.2.
The observatory features three European Photon Imaging Camera (EPIC) CCD de-

tectors with sensitivity in the range 0.3− 12 keV, named EMOS1, EMOS2 (standing for
Metal-Oxide-Silicon), and EPN. Fig. 3.3 shows the camera’s field of view and the assem-
bly of the CCD detectors. Energetic photons, such as X-rays, can interact with matter
primarily through four processes: elastic scattering, photoelectric absorption, Compton
scattering, and electron-positron pair production. Except for elastic scattering, all other
methods result in the transfer of partial or complete photon energy to the electron’s en-
ergy, in this case, the detector material. The CCD chip uses those effects to detect and

40
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Figure 3.1: Schematic representation (not scaled to real angles) of an optical and X-ray photon beam re-
flection on the mirror surface. Upper image shows intermediate incident angle, and lower
image shows grazing angle. Credit: https://imagine.gsfc.nasa.gov/observatories/
technology/xray_telescopes1.html

Figure 3.2: Upper image X-ray telescope system with one set of mirrors, focusing incoming X-ray beam
of photons on the detector, and lower image shows the X-ray telescope with several sets of
shells, containing several mirrors, focusing more photons on the detector. Credit: https:
//imagine.gsfc.nasa.gov/observatories/technology/xray_telescopes1.html

https://imagine.gsfc.nasa.gov/observatories/technology/xray_telescopes1.html
https://imagine.gsfc.nasa.gov/observatories/technology/xray_telescopes1.html
https://imagine.gsfc.nasa.gov/observatories/technology/xray_telescopes1.html
https://imagine.gsfc.nasa.gov/observatories/technology/xray_telescopes1.html
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Figure 3.3: Field of view of XMM-Newton EPIC cameras. The left images show EMOS1 and EMOS2
CCD detectors assembly, and the right image shows the EPN detector. Shaded area represents
a circle of a radius 30′. Credit: https://xmm-tools.cosmos.esa.int/external/xmm_user_
support/documentation/uhb/epic.html

read the information about the energy of incoming photons (stored in the Pulse Height
Amplitude (PHA) and, after gain correction,n converted into Pulse Invariant (PI) col-
umn 1), position (stored in the x and y detector coordinates columns) and the time of the
photon ping on the detector. This photon information, along with many other variables,
creates a so-called event list, combining all the information about the detected photons
and the instrument and satellite housekeeping data.
During CCD readout, photons could arrive at the detector and be recorded at the

wrong y-axis position (RAWY axis) as an Out-of-Time (OoT) event, causing contami-
nation of the event list, which depends on detector readout mode2. The effects of OoT
events are shown in Fig. 3.4, illustrating contaminated, simulated, and cleaned images.
For example, in the Full Frame mode, the fraction of OoT event for EMOS detectors
is around 0.35%, while for EPN, it is around 6.3%. Simply put, the energies of photons
detected by a CCD pixel could be either undercorrected (resulting in lower energy) or
overcorrected (resulting in higher energy). Cleaning the data from Oot events is necessary
during reprocessing (see Sec. 4.1).

1 For more detail, see: https://heasarc.gsfc.nasa.gov/docs/xmm/abc/node6.html
2 OoT affect on detectors: https://xmm-tools.cosmos.esa.int/external/xmm_user_support/

documentation/uhb/epicoot.html

https://xmm-tools.cosmos.esa.int/external/xmm_user_support/documentation/uhb/epic.html
https://xmm-tools.cosmos.esa.int/external/xmm_user_support/documentation/uhb/epic.html
https://heasarc.gsfc.nasa.gov/docs/xmm/abc/node6.html
https://xmm-tools.cosmos.esa.int/external/xmm_user_support/documentation/uhb/epicoot.html
https://xmm-tools.cosmos.esa.int/external/xmm_user_support/documentation/uhb/epicoot.html
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Figure 3.4: OoT effects on image. The Upper left picture shows the image of a bright point source, taken
by EPN for the energy band (2 − 10) keV. Here, OoT events are visible as a vertical strip
going from the source to the top of the image. Upper right picture shows modelled OoT events
distribution, lower left picture shows original image with subtracted OoT events, and lower
right picture is cleand for soft band (0.2− 2) keV. Credit: https://xmm-tools.cosmos.esa.
int/external/xmm_user_support/documentation/uhb/epicoot.html

3.1.2 Data Structure

The raw observational data is stored in Observation Data Files (ODF), which contain
information about events, housekeeping data and telemetry. Observation data from the
XMM-Newton Science Archive3 contains ODF files and also Pipeline Processing Sub-
system Data (PPS), which is a data product of processed ODF files, using standard
processing pipelines, and Current Calibration Files (CCF), needed for raw detector data
calibration before analysis (event cleaning, energy calibration, etc.), required for XMM-
Newton Science Analysis System (SAS) data processing (more details about calibration
will be in Sec. 4.1). One can use PPS data for quick look analysis, but it is recommended
to reprocess the data from the raw ODF files using SAS.

3 XMM-Newton Science Archive: https://nxsa.esac.esa.int/nxsa-web/#search

https://xmm-tools.cosmos.esa.int/external/xmm_user_support/documentation/uhb/epicoot.html
https://xmm-tools.cosmos.esa.int/external/xmm_user_support/documentation/uhb/epicoot.html
https://nxsa.esac.esa.int/nxsa-web/#search
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3.2 astrophysical and instrumental background

The observed X-ray flux originates from both the source and the background. The main
contributions to the background are both instrumental and astrophysical. As mentioned,
X-ray photons can interact with matter, sometimes transferring energy to its atoms.
When a photon interacts with the spacecraft, it can trigger X-ray fluorescence, visible
as emission lines with characteristic frequencies corresponding to the specific elements
from the spacecraft materials. This creates instrumental noise in the spectrum. The most
common lines been observed by (Leccardi, A. and Molendi, S., 2008; de Plaa et al., 2006),
showed in Tab. 2.

Table 2: Modeled instrumental emission lines for XMM-Newton EPIC cameras. ”+” means that the line
is present in the spectrum, ”-” means that it is not present. Reference: (Grange, Y. G. et al.,
2011)

Element Energy (keV) EMOS EPN
Al Kα 1.486 + +
Al Kβ 1.557 + +
Si Kα 1.740 + -
Si Kβ 1.835 + -
Ti Kα 4.51 - +
Cr Kα 5.41 + +
Fe Kα 6.40 + -
Ni Kα 7.47 - +
Cu Kα 8.04 - +
Cu Kβ 8.90 - +
Zn Kα 8.63 + +
Zn Kβ 9.57 - +
Au Lα 9.72 + +

The Sun, as the closest astronomical X-ray source to us, also seriously contaminates
observations with its emission, the effects of which could be highly variable and un-
predictable. Contamination mostly comes from soft proton flares from the Sun with
energies (. 100 keV). The spectra of such flares are variable, making predictions about
their correlation between intensity and spectral shape unclear. Solar-wind protons likely
accelerated inside Earth’s magnetosphere, gaining the energy of tens or even hundreds
keV (Mineo, T. et al., 2024). It is essential to verify the presence of soft proton contami-
nation, which can be detected by analysing the light curves of the source and background
(see Sec. 4.2).
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Table 3: Common SWCX emission lines. Credit: https://heasarc.gsfc.nasa.gov/docs/xmm/esas/
cookbook/node67.html#tab:swcx-ener

Element Energy (keV)
C VI 0.37
C VI 0.46
O II 0.57
O VII 0.57
O VIII 0.65
Ne IX 0.92
Ne IX 1.02
Mg XI 1.35

Another vital contribution to the background from the Sun is solar wind charge ex-
change (SWCX), which occurs when ions in the solar wind collide with hydrogen in
Earth’s exosphere or with the interstellar medium passing through the solar system.
Ions then pick up electrons, which typically reach a highly excited state. Then, it will
radiatively decay, contaminating observation. Prominent emission lines are shown in
Tab. 3.

summary

XMM-Newton is a powerful instrument for analysing X-ray spectra from objects like
OBs and NSs. It has three CCD detectors, EMOS1, EMOS2 and EPN, with suitable
energy ranges for our analysis. The data reduction and analysis require considering
the instrumental and astrophysical backgrounds, which could affect the quality of the
observational data.

https://heasarc.gsfc.nasa.gov/docs/xmm/esas/cookbook/node67.html#tab:swcx-ener
https://heasarc.gsfc.nasa.gov/docs/xmm/esas/cookbook/node67.html#tab:swcx-ener
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4
DATA HANDL ING

This chapter presents the methods used in our work to process the data from XMM-
Newton. Sec. 4.1 describes the calibration and filtering of the data and the spectra
extraction process. Sec. 4.2 introduces the light curves of the source and background. It
also helps to check the data’s quality and select the most suitable ones.

4.1 calibration and spectra extraction

The data from XMM-Newton was processed by a pipeline used by Breuer et al. (2024),
which has the following steps:

1. Downloading raw data from the archive.
2. Processing (cleaning, ordering, etc.) the data using SAS v.201.
3. Extracting spectra and light curves of the object and background from the cleaned

data.
4. Fitting the spectra using XSPEC v.122 (more detailed in Sec. 5.2).

We obtained ObsIDs of selected objects using XMM-Newton libraries from astroquery.
The data, in the form of ODF and PPS files, were downloaded from the XMM-Newton
Science Archive.
For our purposes, we reprocessed ODF files using routines: cifbuild, which will gen-

erate Calibration Index File (CIF), which will index calibration files relevant to our
observation and odfingest, which processes ODF files and creates SAS ODF Summary
File which keeps the data about ODFs. Further processing of raw ODF data into cal-
ibrated event lists was performed using routines epchain and emchain, which apply
energy, timing, and detector position calibrations, flag bad events and bad pixels, and
create cleaned event files *EVLI*.FIT for EPN detector and *EMOS1/2*EVENLI*.FIT
for EMOS1/2.
Then, the pn-filter and mos-filter routines were used to filter the event list for

background flares (e.g., soft proton contamination), producing a Good Time Intervals
file, which is used as a filter to generate a cleaned event list as output. The last step,
atthkgen, generates an attitude housekeeping file, which interpolates the spacecraft’s

1 All routines description could be found on: https://xmm-tools.cosmos.esa.int/external/xmm_user_
support/documentation/sas_usg/USG/

2 https://heasarc.gsfc.nasa.gov/xanadu/xspec/

50

https://xmm-tools.cosmos.esa.int/external/xmm_user_support/documentation/sas_usg/USG/
https://xmm-tools.cosmos.esa.int/external/xmm_user_support/documentation/sas_usg/USG/
https://heasarc.gsfc.nasa.gov/xanadu/xspec/
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pointing direction during the observation and produces a file for correcting the sky
coordinates of the events.

Figure 4.1: Combined field of view (FOV) images from EPN, EMOS1 and EMOS2 detectors of ζ Pup
ObsID: 0095810401. On a) showed the whole FOV of the detectors, on b) the central part of
the FOV image with source and the selected region around it (green circle), c) the background
region.

From the cleaned event lists, we produce sky images, on which we select circular
source and background regions for spectrum extraction, as shown in Fig. 4.1. In the
case of ι Ori, we also selected the region of a point source in our object area. Before
spectrum extraction, we checked if the CCD chip on which the source and background
regions were selected was still optimally operational and not operating in an anomalous
mode. Extraction begins by removing point sources (if provided) from the clean event
list using the evselect routine. evselect applies selected criteria to the event lists and
isolates events based on their coordinates, energy ranges, and time intervals. It can also
remove the specified regions from a source region if necessary. Then evselect selects
events located in the source region according to an expression for the quality filter, for
EPN: (FLAG==0) && (PATTERN<=4), for EMOS: (FLAG==0) && (PATTERN<=12), where
the quality parameters are,

• FLAG==0: Good events only. Additionally, it excludes events close to CCD gaps
or bad pixels,
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• PATTERN<=4: Single and double events only,
• PATTERN<=12: Single, double, triple, and quadruple events.

The spectra are extracted from the whole PI channel intervals: for EPN, [0:20479] and
EMOS, [0:11999] and then binned for EPN to 5 channels per bin and EMOS to 15
channels per bin. Then, we performed OoT correction of our source spectra by extracting
the OoT event list from the source region to get the corrected source spectrum.
Background spectra were extracted in the same way as source spectra, but before

extracting OoT spectra, backscale routine was performed on background and source
regions to calculate their area. It also considers any bad pixels or chip gaps and writes
the result into the BACKSCAL keyword of the extracted event list SPECTRUM table. The
OoT correction was also performed in the same manner.
We then created a detector map to generate a Response Matrix File (RMF) and a

weighted Auxiliary Response Matrix/File (ARF) using evselect, which makes a 2D
image in detector coordinates of clean events, where each pixel in the X and Y direction
of the output image will be binned to 100 detector units wide. The RMF was then
generated using rmfgen associating the appropriate photon energy to each instrument
channel. The ARF was then generated using arfgen, which creates a file containing
information about the effective area, filter transmission, and other energy-dependent
efficiencies (i.e. the efficiency of the instrument in revealing photons).
As the final step, we grouped the spectra using grppha, which modifies the FITS

files’ headers by attaching RMF and ARF and groups spectral channels into a specified
number per bin. This allows the grouped spectra to be used for fitting. The grouping
was done in two ways: 1) for WStat statistic to minimally 20 counts per bin, 2) for
Chi2DataVar spectra is binned minimally to 30 per bin, so the number of counts in
each bin is large enough so that the Poisson distribution could converge into a Gaussian
(more detailed in Sec. 5.1). Such binning values were also chosen to minimise the effects
of short-term variability in the source count rate.

4.2 light curves

The quality of the ObsIDs was checked by analysing Quick and Dandy Plotter (QDP)
light curves using PGPLOT3. QDPs helps to visually inspect the background flaring and
soft photon contamination of the data by showing the number of photons detected by
the detectors during some time (usually seconds), showing count rate (e.g. counts per
second) over an observation time interval. If the count rate remains constant during that
interval, background activity is low, and the data are suitable for analysis. Fluctuations
in the count rate can be reduced through data processing, allowing only suitable periods
of observation to be accepted. However, the data is sometimes too contaminated in many

3 https://heasarc.gsfc.nasa.gov/ftools/others/qdp/node177.html?QuickLinksMenu=/vo/

https://heasarc.gsfc.nasa.gov/ftools/others/qdp/node177.html?QuickLinksMenu=/vo/
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parts of the observation, and it is better to reject the entire ObsID. The same is true if
the flaring was present during the whole observation; then, despite the constant count
rate, the data would be useless. The examples of the normal light curve with negligible
flaring and the contaminated light curve with noticeable flaring are shown in Fig. 4.2.
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Figure 4.2: The upper figure shows an example of a negligibly contaminated light curve. of ζ Pup (ObsID:
0561380101) from EMOS1 detector. The lower figure shows an example of a contaminated
light curve of ζ Pup (ObsID: 0159360101) from the EMOS1 detector. For each figure, the top
subplot shows a count rate histogram, which displays the distribution of counts per second
within the selected time interval. The middle and bottom subplots show the source and
background light curves, respectively. The green part of the light curve shows the accepted
observation period, while the dark part shows the periods of background flaring.



5
SPECTRAL MODEL ING

This chapter describes the statistics for fitting the spectra and the XSPEC additive model.
Sec. 5.1 briefly introduces WStat and Chi2DataVar statistics, which are used for fitting
the spectra. Sec. 5.2 describes the model with which we fitted the spectra, and Sec. 5.3
describes the fitting process.

5.1 statistics

For fitting, we used two types of statistics: WStat (a Poisson log-likelihood function
including background) and Chi2DataVar (for Gaussian-like data with subtracted back-
ground). They differ in howWStat is used when the spectra are binned to a small number
of counts per bin (< 20), which is the case for Poisson count distributions. In contrast,
χ2 statistics is used when the number of counts per bin is large enough (> 20 − 30)
so that a Poisson distribution converges asymptotically to Gaussian. The reasons for
using two different statistics are to cross-validate our fit results and check if they are
dependent on binning or statistical choice, to assess the sensitivity of uncertainty es-
timation to the statistics used, and to verify whether results diverge due to different
background handling in WStat and Chi2DataVar. The description of both statistics
given below was taken from the XSPEC documentation: https://heasarc.gsfc.nasa.
gov/xanadu/xspec/manual/XSappendixStatistics.html.

5.1.1 WStat

The general idea of parameter estimation is to maximise the likelihood function L, which
is defined as the total probability P of observing the data given the model parameters.
For Poisson distribution the probability of observing Si counts in the i-th bin, given a
model µi,

P(Si|µi) =
e−µi µSi

i
Si!

. (5.1)

Since we have source counts Si and background counts Bi, obtained for the same souce
exposure time ts, the model µi is given by,

µi = tsmi + tbbi = ts(mi + bi), (5.2)

55

https://heasarc.gsfc.nasa.gov/xanadu/xspec/manual/XSappendixStatistics.html
https://heasarc.gsfc.nasa.gov/xanadu/xspec/manual/XSappendixStatistics.html
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where mi is the source model, bi is the background model and tb is the background
exposure time (in our case, the same as ts). Since we are not modelling the background
but instead using background spectra from selected background regions, which are also
properly backscaled, the background model will be the background spectra. The total
likelihood for both source and background regions will then be,

L =
N

∏
i=1

(ts(mi + bi))Si e−ts(mi+bi)

Si!
(tbbi)Bi e−tbbi

Bi!
. (5.3)

If we take the log of the likelihood function and multiply it by 2, we will get,

W = 2
N

∑
i=1

tsmi + bi(ts + tb)−Si ln(tsmi + tsbi)− Bi ln(tbbi)−Si(1− ln(Si))− Bi(1− ln(Bi)),

(5.4)
and now the question is merely how to maximise the likelihood function to obtain the
best fit for the source spectrum model mi.

5.1.2 Chi2DataVar

If the number of counts in each bin is large enough, the Poissonian distribution could
be approximated by a Gaussian, which allows the use of χ2 statistics. The likelihood for
Gaussian data is given by,

L =
N

∏
i=1

1
σi
√

2π
e
− (yi−mi)2

2σ2
i , (5.5)

where yi is the observed data, mi is the model and σi is the errors of the data. Taking
the twice negative log of the likelihood function and dropping the constant terms, we
get chi-square χ2 statistics,

χ2 =
N

∑
i=1

(yi − mi)2

σ2
i

. (5.6)

In Chi2DataVar, errors are not supplied but estimated from the data itself,

σ2
DV, i = N(i, S) +

(
A(S)
A(B)

)2

N(i, B) (5.7)

where N(i, S) is counts in i-th source bin, N(i, B) is counts in i-th background bin,
A(S) is the on-source area defined as BACKSCAL * EXPOSURE from the source data and
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A(B) is the off-source area defined as BACKSCAL * EXPOSURE from the background data.
The background term N(i, B) appears if the background is subtracted from the source
spectrum. So the final formula for Chi2DataVar statistics is,

χ2
DV =

N

∑
i=1

(Di − Mi)2

σ2
DV, i

, (5.8)

where Di is the background-subtracted data and Mi is the model.
To check the quality of the fit, we are using the reduced chi-square χ2

ν,

χ2
ν =

χ2

ν
=

1
n − k

n

∑
i=1

(Di − Mi)2

σ2
DV, i

, (5.9)

where ν is the number of degrees of freedom, n is the number of data points and k is the
number of fitted parameters. The interpretation of the reduced chi-square is as follows,

• χ2
ν ≈ 1: the model fits the data well,

• χ2
ν < 1: the model is overfitting the data and or overestimating the errors,

• χ2
ν > 1: the model is underfitting the data, or the errors are underestimated.

The probability of obtaining χ2 value as observed or larger χ2
obs, assuming the model is

correct, is given by p-value p,

p = P(χ2 ≥ χ2
obs) =

∫ ∞

χ2
fχ2(x, ν)dx, (5.10)

where fχ2(x, ν) is the probability density function for a χ2 distribution. For calculating
the p-value, we used scipy.stats.chi2.sf() function1 , which defines the probability
density function as,

fχ2(x, ν) =
1

2
ν
2 Γ

(
ν
2

) x
ν
2−1e−

x
2 , (5.11)

where Γ is the gamma function and x is the dummy variable of integration. Interpretation
of the p-value is as follows:

• p ≥ 0.05: the data is consistent with the model,
• p < 0.05: the model provides a poor-quality fit.

1 scipy.stats.chi2: https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.chi2.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.chi2.html
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5.2 xspec

We fit our data with various XSPEC models2 such as, (tbabs) (A), (apec) (APEC) and
(bbody) (BB), which are described below. Using these models, we created an additive
model:

M(E) = AISM × [Aa × APECa + Ab × APECb + Abb × BB] , (5.12)

where AISM is the Galactic interstellar medium (ISM) absorption defined by (tbabs)
and presented in Tab. 8 as NH column, APECa and APECb are the two collisional
ionisation thermal (apec) components, BB is the black body thermal component defined
by (bbody) model, Aa, Ab and Abb are individual absorption by (tbabs) for each thermal
component.

5.2.1 The Tuebingen-Boulder ISM Absorption (tbabs)

Along the line of sight, X-ray emission from the source, carrying its spectra Isource, usually
suffers from absorption by material in ISM, mostly from neutral hydrogen atoms and
heavier elements. (tbabs) models the total photoelectric cross-section of the ISM phases,
σISM, specifically the sum of gas, molecules, and grains cross sections,

σISM = σgas + σmolecules + σgrains. (5.13)

The σISM is then normalized to the total hydrogen number density NH, which then could
be used to determine Isource,

Iobs = Isourcee−σISMNH (5.14)

In our model, AISM is frozen at a constant value from the NH column in Tab. 8 for
each star, other components Aa, Ab and Abb were free to be fit with initial guess values
(see Tab. 4).

5.2.2 Astrophysical Plasma Emission Code (apec)

In optically thin plasma, free electrons with enough kinetic energy tend to collide with
atoms, knocking out bounded electrons and making neutral atoms positively charged.
This process is called ionisation. After some time, positively charged ions can capture
free electrons back. This process is called recombination. The electron will not always

2 Information about XSPEC models available on: https://heasarc.gsfc.nasa.gov/xanadu/xspec/
manual/node130.html

https://heasarc.gsfc.nasa.gov/xanadu/xspec/manual/node130.html
https://heasarc.gsfc.nasa.gov/xanadu/xspec/manual/node130.html
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Table 4: The table shows initial guess values and their minimal and maximal ranges (defined by the
XSPEC) for the photoelectric absorption model components Aa, Ab and Abb. Parameter status
indicates the parameter is frozen, free or linked (see Sec. 5.3) Notation Ax.nH means the values
of parameter nH (neutral hydrogen column density) for model component Ax. All units are in
1022 atoms cm−2.

Parameter Value Min value Max value Parameter status
AISM.nH NH 0 106 frozen
Aa.nH 0.5 0 106 free
Ab.nH 0.2 0 106 free
Abb.nH 0.1 0 106 free

fall into the ground energy level of the atom but rather on some higher one. After
some time, when the electron drops from a higher atom energy level to a lower one, it
will emit a photon with energy equal to the difference between the two energy levels
- in our case, X-ray photon (see Urdampilleta, I. et al., 2017). In hot plasma (such as
in a star’s coronae), it could be in a dynamic balance of ionisation and recombination,
called collisional ionisation equilibrium (Dopita and Sutherland, 2003). The (apec) model
describes X-ray emission from collisionally-ionised diffuse gas using four parameters:
plasma temperature kT in keV, which controls the shape of the spectrum continuum and
emission lines, metal abundance Z in solar units, saying how much of elements C, N, O,
Ne, Mg, Al, Si, S, Ar, Ca, Fe, Ni are in the plasma, redshift z, and normalisation norm,
defined as,

norm =
10−14

4π[DA(1 + z)]2

∫
nenHdV 10−14 cm−5, (5.15)

where DA is the angular diameter to the source in cm, dV is the volume element in cm3,
ne is the electron density in cm−3 and nH is the hydrogen density in cm−3.
In our model, we used two (apec) components to model the OBs spectrum, as sug-

gested by (Güdel and Nazé, 2009, see Chap. 4) and (Nazé, Yaël et al., 2018, see Sec. 3.2).
In the case of the second work, they used three (apec) components instead. Initial guess
values for the parameters of the (apec) components are presented in Tab. 5. We freeze
the redshift parameter to 0 since the sources are nearby, and the abundance parameter
of APECb was linked to the free abundance parameter of APECa, from the assumption
of homogeneous chemical composition throughout the stellar wind. (see Tab. 5).
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Table 5: The table shows initial guess values and their minimal and maximal ranges (defined by the
XSPEC) for the (apec) model components APECa and APECb. kT has units in keV, Abundance
in solar units, redshift is dimensionless, and the normalisation is in 10−14 cm−5.

Parameter Value Min value Max value Parameter status
APECa.kt 0.8 0.008 64 free
APECa.Abudance 0.5 0 5 free
APECa.redshift 0 -0.999 10 frozen
APECa.norm 1 0 1024 free
APECb.kt 0.3 0.008 64 free
APECb.Abudance 0.5 0 5 linked to APECa

APECb.redshift 0 -0.999 10 frozen
APECb.norm 0.1 0 1024 free

5.2.3 Black Body (bbody)

If the spectrum of an object depends only on its temperature, it could be modelled as an
ideal black body spectrum. In XSPEC, the (bbody) model is defined by two parameters:
temperature kT in keV and normalization K, defined as,

K =
L

D2 erg s−1 kpc−2, (5.16)

where L is the luminosity in units of 1039 erg s−1 and D is the distance to the source in
units of 10 kpc. The black body spectrum then is given by,

A(E) =
K × 8.0525E2dE
(kT)4(eE/kT − 1)

cm−3s−1keV−1. (5.17)

where dE is a differential energy element. In our case, we used the (bbody) model to
model the soft X-ray emission from the potential thermally emitting NS companion, as
their spectrum is expected to be thermal. Knowing that the luminosity of the object
with radius R and temperature T is given by,

L = 4πR2σT4 erg s−1, (5.18)

from Eq. (5.16), it is possible to calculate the radius of the emitting area R in km using
the formula,

R =

√
K × D2

4πσT4 km, (5.19)



5.3 fitting 61

where σ is the Stefan-Boltzmann constant and T is the temperature of the black body
in K. The initial guess values used in fitting are presented in Tab. 6.

Table 6: The table shows initial guess values and their minimal and maximal ranges (defined by the
XSPEC) for the (bbody) model. kT has units in keV and norm is in 1037 erg s−1 kpc−2

Parameter Value Min Value Max Value Parameter status
BB.kT 0.08 0.0001 200 free
BB.norm 0.001 0 1024 free

5.3 fitting

We performed fitting using package (sherpa) v.4.15 3, which has the following steps:

1. Setting fitting parameters such as statistics, method, confidence level, abundance,
photoelectric cross-section, cosmological parameters, etc.

2. Loading the spectra and response files.
3. In the case of using Chi2DataVar statistics, subtracting the background from the

source spectra.
4. Setting the model and its parameters.
5. Step-by-step fitting of the model to the data.
6. Plotting the results.

As a fitting method, we set robust neldermead (Nelder-Mead), with covariance esti-
mation 3σ confidence interval (i.e. 99.7%). Sampling algorithm for Bayesian inference
(MCMC) was set to metropolismh (Metropolis-Hastings), with defaultprior parame-
ter usage for sampling. Elemental abundance for apec and (tbabs) models was set to
wilm (Wilms et al., 2000), photoelectric cross-section was set to verner (Verner et al.,
1996), and cosmological parameters were set to: H0 = 70 km/s/Mpc (Hubble constant),
q0 = 0 (deceleration parameter), Λ0 = 0.73 (cosmological constant)4.
Fitting was performed in a step-by-step way. We first fit the normalisation parameters

for the APECa, APECb, and BB components while all other parameters were frozen.
After fitting the normalisation parameters, we thawed the kT parameters for all three
components and refitted them. The third step was to thaw the photoelectric absorption
parameters Aa, Ab and Abb and fit them. The last step was to fit the linked abundance
parameters via the APECa component. The benefit of this step-by-step fitting approach
is that when the first line of parameters is fitted and the fit of the second line begins,
the first line’s parameters are also readjusted to achieve the best-fit result.

3 Sherpa documentation available on: https://cxc.cfa.harvard.edu/sherpa/
4 Taken as default values from: https://heasarc.gsfc.nasa.gov/xanadu/xspec/manual/node117.html

https://cxc.cfa.harvard.edu/sherpa/
https://heasarc.gsfc.nasa.gov/xanadu/xspec/manual/node117.html
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6
RESULTS

This chapter presents the results of our analysis. We explained the selection of candidates
and filtering individual ObsIDs for our study in Section 6.1. The spectral analysis results
performed on selected OB stars are presented in Section 6.2. This section describes the
general behaviour of the sample and the peculiar behaviour of ζ Pup, which showed a
stable black-body effective radius and effective temperature values corresponding to one
M7 type NS would have.

6.1 ob-type stars selection

For analysis, we obtained XMM-Newton archival observations of 9 OBs, taken from the
catalogue by Pradhan et al. (2023). In Tab. 7, archival data for each object, including its
observational ID (ObsID), observation date, total exposure for all the observations on
the object combined in units of ks, and the total counts for the EMOS1, EMOS2, and
EPN detectors. The total counts were extracted for the energy intervals EMOS1-EMOS2
(1 − 12 keV) and EPN (1 − 15 keV). The selected star’s position in the sky in galactic
coordinates is shown in Fig. 6.1.

Table 7: XMM-Newton observations of 9 selected nearby OBs. The table lists the name of the star, the
XMM-Newton observation IDs, the dates of the observation start, the total exposure time in
ks, and the total counts from the EMOS1, EMOS2, and EPN CCD detectors. The total counts
are extracted for energy intervals: EMOS1-EMOS2 (1 − 12 keV) and EPN (1 − 15 keV).

Object ObsIDs Dates Total exposure
(ks) Total counts (cts)

EMOS1 EMOS2 EPN
β Cru 0761090201 2015-07-19 97 41557 45930 206072

γ Cas 0651670201, 0651670301,
0651670401, 0651670501

2010-07-07, 2010-07-24,
2010-08-02, 2010-08-20 75.8 491400 313690

HD 42054 0402121401 2007-04-11 15.7 2495 2458 5811

ζ Pup

0095810401, 0157160401,
0159360901, 0414400101,
0159361301, 0561380101,
0561380501, 0561380601,
0561380701, 0561380901,
0561381001, 0561381101,
0810870101, 0810871301,
0810871401, 0810872101

2000-10-15, 2002-11-10,
2005-12-03, 2007-04-09,
2008-10-13, 2009-11-04,
2012-11-03, 2013-10-08,
2015-04-28, 2016-04-04,
2017-04-04, 2018-04-16,
2019-04-14, 2020-04-15,
2021-04-17, 2023-04-18

942.6 1749620 1761393

HD 110432 0504730101, 0840760201 2007-09-04, 2019-07-21 97.7 53989 56637
ι Ori 0112660101 2001-09-15 23.2 21798 21699 66370
τ Sco 0112540101 2001-08-20 23.2 38866 33974 113305
θ Car 0101440201 2002-08-13 44.3 8432 8595 20144
ζ Oph 0862230101 2020-09-09 86 50144 48122 177427

66
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Figure 6.1: The figure shows each star’s location from the Milky Way sample. For mapping, we used the
Aitoff projection in galactic coordinates.

The parameters OBs related to our work, such as the spectral type, distance d in pc,
effective temperature Teff in K, wind’s terminal velocity υ∞ in km s−1, mass-loss rate Ṁ
in M�yr−1, and molecular hydrogen column density NH in 1022 atoms cm−2 are listed
in Tab. 8. Most of the parameters were taken from the work of Pradhan et al. (2023),
and the distance was calculated from Gaia parallax measurements available on Gaia
Archive1. For γ Cas the temperature was taken from Sigut and Jones (2007), for ζ Pup
the mass-loss rate was taken from Cohen et al. (2010) and for HD 110432 the mass-loss
rate was taken from Codina et al. (1984).

The stars were selected based on their spectral type (O and B), distance (d . 500 pc),
and the availability of XMM-Newton observations. Number of available ObsIDs for each
object is: β Cru (1), γ Cas (4), HD 42054 (1), ζ Pup (16), HD 110432 (2), ι Ori (1), τ Sco
(1), θ Car (1), and ζ Oph (1). To check the quality of the observations, we analysed QDP
light curves for each star, determining the level of flaring activity and contamination. We
concluded that,

• β Cru: The light curve is stable, with a small portion of the observation at the end
of it having been filtered.

1 Gaia Archive: https://gea.esac.esa.int/archive/

https://gea.esac.esa.int/archive/
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Table 8: The table shows the spectral type of a selected star, distance to them d, their effective tem-
perature Teff, terminal velocity of a stellar wind υ∞, mass loss rate Ṁ, and molecular hy-
drogen column densities NH. Except for the distance, all values were taken from the work
of Pradhan et al. (2023); see that work for detailed references on each value. The distances
and their errors were calculated from Gaia parallax measurements available on Gaia Archive:
https://gea.esac.esa.int/archive/. References: [1]Sigut and Jones (2007), [2]Codina et al.
(1984), [3]Cohen et al. (2010).

Object Spectral type d (pc) kTeff (K) υ∞ (km s−1) Ṁ (M�yr−1) NH (1022 atoms cm−2)

β Cru B1 IV 85 ± 7 27000 420 10−9 0.0034674
γ Cas B0.5 IVe 168 ± 3 25000[1] 1800 0.014791
HD 42054 B5 Ve 291 ± 5 17860 1684 0.0060256
ζ Pup O4 I(n)fp 332 ± 11 39000 2485 (2.5 ± 0.2)× 10−6[3] 0.008913
HD 110432 B0.5 IVpe 438 ± 15 39000 1121 3 × 10−9[2] 0.33113
ι Ori O8.5 III + B0.2 V 412 ± 13.5 32900 2195 10−9.49 0.015849
τ Sco B0 IV 145 ± 11 32000 1000 10−9.3 0.0302
θ Car B0.5 Vp + 140 ± 4 31000 482 0.019055
ζ Oph O9.2 IVnn 135 ± 12 32500 1470 10−7.03 0.048978

• γ Cas: All the light curves have a bad quality, with mostly constant flaring activity.
Observations were taken right after each other, explaining similar contamination
levels.

• HD 42054: The light curve is generally bad since the flaring occurred at the be-
ginning of the observation and rejected most of the time intervals for EMOS1 and
EMOS2, and for EPN, almost all time intervals were filtered.

• ζ Pup: Selected light curves are good quality, with a small portion of observational
time filtered.

• HD 110432: For ObsID 0504730101, the light curve is acceptable, with a little
flaring activity at the middle and the end of the observation. For ObsID 0840760201,
the light curve is good and stable.

• ι Ori: The light curve mostly has a bad quality, with half of the observational time
being rejected due to flaring activity for all three detectors.

• τ Sco: The light curve is acceptable, with almost a third of the observational time
being filtered due to the flaring activity.

• θ Car: The light curve is relatively good, with a third of the observational time
being filtered due to the flaring at the end of the observation.

• ζ Oph: The light curve is good, with a small portion of observational time filtered
due to the flaring activity at the very end of the observation.

The light curves for each star and all available detectors are presented in Appendix A.
Since only a few ObsIDs are available for most of the objects, we accepted them, even

https://gea.esac.esa.int/archive/
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if they showed a bad quality. The exception is ζ Pup, which was a calibration target for
XMM-Newton2, and had a lot of ObsIDs, from which we selected only the good ones.

6.2 spectral analysis

We performed a fitting of X-ray spectra on nine selected objects from Tab. 7 and 8 with
the XSPEC model introduced in Eq. (5.12),

M(E) = AISM × [Aa × APECa + Ab × APECb + Abb × BB] .

Our goal was to model the simplest case, where the X-ray emission from OB star could
be approximated by two thermal plasma components (APECa, APECb) and the emis-
sion from a potential NS surface would be described by a black-body component (BB).
Individual absorption (Aa, Ab, Abb) was applied to each component, and the absorption
by the ISM (AISM), with values NH taken from Tab. 8, was applied to the whole model.

The fitting was done for two statistics, WStat and Chi2DataVar, to cross-validate
the results from both. WStat and Chi2DataVar require different binning of the spec-
tra to follow the requirement distribution (Poissonian and Gaussian for WStat and
Chi2DataVar, respectively). For WStat, we binned the spectra to 15 counts per bin, and
for Chi2DataVar, we binned the spectra to 30 counts per bin. The justification for such
binning is that the objects are bright and thus have a lot of counts over the exposure
time.

The fitting results contain statistics output parameters and fit parameters from each
component in the model (except AISM). For WStat statistics, the output is the fit statis-
tics W, degrees of freedom dof, and reduced fit statistics Wν. For Chi2DataVar, it is the
fit statistics χ2, dof, and reduced fit statistics χ2

ν. The fit parameters for APECa are the
hydrogen column density NH in 1022 atoms cm−2, temperature kT in keV, abundance
in solar units, and normalisation in 10−12 cm−5. The fit parameters for APECb are the
same as for APECa, but without abundance, since it was linked to the abundance of
APECa, assuming homogeneous chemical composition throughout the stellar wind. BB
parameters are the hydrogen column density NH in 1022 atoms cm−2, temperature kT
in keV, and normalization in 104 erg s−1 kpc−2. The black-body component normalisa-
tion K relates to the luminosity L of the object and the distance D to it. Knowing the
distance from Tab. 8, we calculated the luminosity of the object L in 1032 erg s−1 using
Eq. (5.16),

K =
L

D2 erg s−1 kpc−2.

2 XMM-Newton Routine Calibration Programme: https://xmm-tools.cosmos.esa.int/external/xmm_
user_support/documentation/uhb/routinecal.html

https://xmm-tools.cosmos.esa.int/external/xmm_user_support/documentation/uhb/routinecal.html
https://xmm-tools.cosmos.esa.int/external/xmm_user_support/documentation/uhb/routinecal.html
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The radius of the BB component emitting area R in km have been then calculated from
the normalization K, the temperature kT of BB, and distance D using Eq. (5.19),

R =

√
K × D2

4πσT4 km.

The statistics output parameters, fit parameters for APECa, APECb, BB components,
and calculate radius and luminosity values for each object’s ObsID are presented in
Tab. 9 and 10.

The individual fits for each object done with WStat are available in Appendix B. The
plot contains information about source and background spectra obtained from available
detectors. The best-fit model is shown as blue (EMOS1), red (EMOS2), and green (EPN)
lines. The residual plot at the bottom shows the difference between the data and the
model. The change in the fit statistics W over the fit length, which we set to 5000 iter-
ations, is shown in the top plot. It helps to analyse the goodness of a fit convergence.
Ideally, we want to see W decreasing and stabilising over time. The first 100 iterations
were burned-in, so the fit would try to converge to some best-fit values, which we will
accept. The corner plot shows the distribution of the fit parameters. It gives information
about the statistical uncertainty of the parameters within 1σ interval, as well as the cor-
relation between the parameters. The correlation between the parameters could provide
information about the degeneracy of the parameters and the possible physical interpre-
tation of their values in the context of the model. The fits for Chi2DataVar are presented
in Appendix C. The plot of a statistics change and corner plot are not available.

6.2.1 Behavior of the Sample

Most of the objects show a poor quality of fit. Reff and kTeff values of a BB component
for all objects’s ObsIDs are consistent with each other throughout both statistics. Only
HD 42054 has a significantly different radius value for WStat (RBB,W = 49 ± 3 km)
and Chi2DataVar (RBB,χ

2 = 0.3 ± 0.1 km). The error bars were different throughout
statistics, but the mean values are consistent with each other in the uncertainties range.

6.2.1.1 ζ Pup

Among all the sources, in over almost 25 years of observations, only ζ Pup showed rela-
tively stable black-body effective radius and effective temperature values, corresponding
to one M7 type NS would have. For ζ Pup, dof are in the range 315-360 and reduced
χ2

ν values are in the range 4.5-6.1. The mean values of Reff and kTeff for 3σ confidence of
ζ Pup are given by,
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RBB,W = 10.9 ± 3.5 km, TBB,W = 74.9 ± 8.1 eV,

RBB,χ2 = 10.9 ± 0.9 km, TBB,χ2 = 73.7 ± 1.8 eV.

For fit results with WStat the ζ Pup ObsId 0561380601 showed a significantly large
uncertainties, while for Chi2DataVar all uncertainties are small and consistent with
each other.

The variation could be seen in changes of ζ Pup Reff and kTeff values. We checked
if the variation is caused by the solar activity by plotting values of Reff and kTeff for
both statistics over the time of observations and including the data about solar activity
over the same period. The solar activity data was taken from Clette and Lefèvre (2015).
The results are shown in Fig. 6.4 and 6.5. From visual analysis, we found no obvious
correlation between the Reff and kTeff values and the solar activity. The only peculiar
behaviour was observed for ObsID 0561380601, which has the largest uncertainties in
WStat, while the maximum solar activity was observed around 2014.
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Figure 6.2: Calculated effective radius Reff for all star’s sample ObsIDs. Upper plot shows the results
for WStat, lower plot shows the results for Chi2DataVar. The red dashed line marks visible
radius R∞ = 13 km of a canonical NS with M = 1.4M� and R = 10 km.
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Figure 6.3: Measured effective temperature kT for all star’s sample ObsIDs. Upper plot shows the results
for WStat, lower plot shows the results for Chi2DataVar. The red dashed line marks the
temperature kT = 100 eV as the upper limit of typical M7 type NS surface temperature.
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Figure 6.4: Plot of effective radius Reff for ζ Pup ObsIDs from WStat and Chi2DataVar statistics. The
red line shows WStat results, and the blue line shows Chi2DataVar results. The red dashed
line marks the canonical neutron star radius R∞ = 13 km. The solar activity represented by
the daily number of sunspots is marked by orange line.

Figure 6.5: Plot of effective temperature kT for ζ Pup ObsIDs from WStat and Chi2DataVar statistics.
The red line shows WStat results, and the blue line shows Chi2DataVar results. The red
dashed line marks the canonical neutron star temperature kT = 100 eV. The solar activity
represented by the daily number of sunspots is marked by orange line.



7
DISCUSS ION

This chapter interprets the result of the previous chapter’s analysis and discusses the
limitations of the model used and the statistical confidence of the results. In Sec. 7.1, we
discuss the limitations of the model used in the analysis, while in Sec. 7.2, we discuss the
statistical confidence of the results. In Sec. 7.4 we discuss reasons for poor statistics of
fits. Then, in Sec. 7.3, we give an overview of the fit’s quality and results for the whole
sample. Finally in Sec. 7.4 gives a general overview of our knowledge about the origin
and evolution of ζ Pup, and discusses the possibility of a neutron star companion. Here,
we also set constraints on the orbital parameters of the potential binary system. The
last Sec. 7.5 discusses the possibility of further analysis we can perform to validate the
absence or existence of a potential neutron star companion of ζ Pup.

7.1 model limitations

From correspondence with Prof. Yaël Nazé, whose work (Nazé, Yaël et al., 2018, see
Sec. 3.2) inspired our approach, we found out that the model used is a significant sim-
plification of reality. Individual absorptions generally yield good results and have some
physical justification (temperature stratification). For most stars, the spectra have lower
noise and a single absorption with 1-2 thermal components is sufficient. The intention is,
however, to fit the observed spectrum, so the parameters should never be taken at face
value. The winds are complex, with distributed shocks all over (and that’s not precisely
what such XSPEC models are).

For us, the model is degenerate, and it is impossible to say if the obtained parame-
ters are the only possible solution to the problem. More specific models describing the
behaviour of the shock-driven wind should lead to a better physical justification of any
parameters after fitting OBs spectra. On the other hand, complicating the model even
more (e.g., adding more thermal components with individual absorption) will fit the
data better. Still, degeneracy will be even worse in this case.

7.2 statistical confidence

In our case, the degeneracy of the model could lead to poor statistics, with χ2
ν > 4.5

and p-value � 0.05 for all fitted spectra of ζ Pup. It might indicate that the model
poorly explains the data and underestimates errors, with an insignificant probability of
the null hypothesis, which, in our case, the model used is correct. On the other hand,
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in the case of ζ Pup, Nazé et al. (2012) pointed out that due to the high quality of the
data (a large number of counts), statistical errors are smaller than the systematic ones,
mostly coming from the calibration uncertainties of the instrument and in atomic sides.
That will not allow fit statistics such as χ2 to get values close to 1.0, even if the model
is correct.

7.3 general overview on sample

Most of the objects in our sample showed a bad fit quality and sometimes meaningless
results. It could be due to the complex nature of emissions from them. For example,
β Cru, γ Cas, HD 110432, ι Ori, and θ Car are confirmed or suspected binary systems
(Aerts et al., 1998; Lopes de Oliveira et al., 2007; Nemravová, J. et al., 2012; Stickland
et al., 1987; Walborn, 1979). A companion’s presence leads to a more complex spectrum,
which our model cannot adequately describe. γ Cas, HD 42053 and HD110432 also
showed a presence of a hard X-ray emission in the spectra, for which our model is not
designed (Nazé and Robrade, 2023; Rauw et al., 2022). Other objects, such as τ Sco and
ζ Oph, showed no interesting behaviour. Which is also affected by the fact that they
have only one ObsID.

7.4 potential neutron star companion of ζ Pup

The relative long-term stability of ζ Pup effective radius mean values:

RBB,W = 10.9 ± 3.5 km, RBB,χ2 = 10.9 ± 0.9 km ,

which are, taking into account the uncertainties, lying very close to the canonical neutron
star observed radii R∞ = 13 km, and effective temperature mean values:

TBB,W = 74.9 ± 8.1 eV, TBB,χ2 = 73.7 ± 1.8 eV,

which are also in the range of known M7 type NSs temperatures kT < 100 eV, indicates
a peculiar behaviour of the object, exactly what we were looking for.

The studies done by Schilbach, E. and Röser, S. (2008) and van Rensbergen et al.
(1996) suggest different birthplaces of ζ Pup, where first proposed Vela R2 (distance ≈
800 pc) and Vela OB2 (distance ≈ 450 pc) stellar associations, the second one suggested
Trumpler 10 (distance ≈ 300 pc) OB association. Both origins are unsatisfactory because
of inconsistencies in the ages of the associations and the star and the distances from the
star to the associations. In contrast, the star’s velocity does not lead to them. More
recent work by Woermann et al. (2001) suggests Gum Nebula as the possible birthplace
of ζ Pup. Considering the runaway nature of the star, there have been speculations about
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the presence of a component in a binary system with ζ Pup, which then exploded as a
supernova, given the gravitational kick to ζ Pup, making it a runaway star (Howarth
and van Leeuwen, 2019; Ramiaramanantsoa et al., 2018). The absence of data suggesting
the binary nature of ζ Pup in the present time does not exclude the possibility of a
potential NS companion. Still, it makes it less likely to be the case. Nevertheless, we
have conducted additional analysis, combining the known and obtained data, to better
understand the behaviour of the potential binary system by putting constraints on its
orbital parameters.

7.4.0.1 Constrains on the Stellar System

We used ζ Pup mass and inclination measurements done by Howarth and van Leeuwen
(2019), where the mass of ζ Pup is M1 = 22.1 ± 4.6 M� and the inclination is i =

33.2◦ ± 1.8◦. We assumed the star’s inclination is the same as the inclination potential
system orbital plane. However, it is important to mention that if the models of ζ Pup
being in a binary system in the past, with a supernova explosion at the end, are correct,
then the kick could potentially lead not to the ejection of the partner, but to changes
in the orbital parameters such as the inclination of the orbital plane and eccentricity. It
is possible to speculate about the kick’s power. The kick could be less powerful if the
binary system were wide initially, preserving most initial orbital parameter values.
To obtain the minimal period Pmin and semi-major axis amin of the NS orbit, we set

the value of ζ Pup radial velocity semi-amplitude K1 from Eq. (1.25),

K1 =

(
2πG

P

) 1
3 M2

M1
(M1 + M2)

1
3

sin i√
1 − e2

,

to the uncertainty of radial velocity measurement υr = −26.9 ± 3.6 km s−1 done by
Borisov et al. (2023), so K1 = 3.6 km s−1. We also assumed that the potential NS
companion mass is equal to the mass of the canonical NS M2 = 1.4 M�. With the last
assumption that the eccentricity of the orbit is equal to zero, we calculated the minimum
period of the orbit, rearranging the terms of Eq. (1.25) as,

Pmin =
2πG
K3

1

(
M2

M1

)3

(M1 + M2)

(
sin i√
1 − e2

)3

.

The minimum semi-major axis of the orbit amin was calculated using Kepler’s third law,

amin =

(
P2G(M1 + M2)

4π2

) 1
3

.

The obtained values are:
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Pmin = 0.56 ± 0.25 years, amin = 1.94 ± 0.47 AU .

Additionally, we calculated pulsar X-ray luminosity LX for both statistics using Eq. (2.19),

LX ≈ ξ1m3
nsṀ

(ms + mns)
2
3 P

4
3 Rυ(r)4

(
1 +

(
υorb(r)

υ(r)

)2
) 1039 erg s−1,

where ξ1 = 1, ms = M1, mns = M2, Ṁ value was taken from Tab. 8, P = Pmin,
R = RBB,W for WStat and R = RBB,χ2 for Chi2DataVar. υorb at a distance amin from
the OB star using vis-via equation defined as,

υorb =

√
G(M1 + M2)

(
2
r
− 1

a

)
,

where r = a = amin. The wind velocity at the distance amin using Eq. (1.18), where
the radius of the OB star was assumed to be the effective radius Reff = 13.5 ± 0.52 R�
from work of Howarth and van Leeuwen (2019) and β = 0.5. Obtained values of X-ray
luminosities are:

LX,W,teor = (3.6 ± 2.1)× 1032 erg s−1 , LX,χ2,teor = (3.6 ± 1.8)× 1032 erg s−1 ,

while the observed mean values are:

LX,W = (5.0 ± 2.3)× 1032 erg s−1 , LX,χ2 = (4.8 ± 0.6)× 1032 erg s−1 .

As we can see, the observed values are consistent with each other, considering statis-
tics cross-validation, and are slightly higher than the theoretical values. Our effective
luminosity Leff of ζ Pup BB component is also variable over time. We plotted its values
for both statistics for all ObsIDs in Fig. 7.1, marking the theoretical values of LX, teor
and their uncertainties. We also checked the correlation of Leff with the solar activity,
shown in Fig. 7.2, represented by the daily number of sunspots, but we did not find any
significant correlation.

The observed values of LX are higher than the theoretical ones, which in theory should
enable the accretion of the wind on NS. However, we do not observe any hard X-ray emis-
sion features, indicating the presence of accretion. Thus, we put additional constraints
on the system, decreasing the distance between the stars, which leads to a decrease in
orbital period duration, consequentially increasing the X-ray luminosity. We recovered
the period Prec and semi-major axis arec of the system from observed LX,χ2 values and
got,
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Figure 7.1: Calculated effective luminosity Leff for all ζ Pup ObsIDs. Upper plot shows the results for
WStat, lower plot shows the results for Chi2DataVar. The blue dashed line and grey area
around it marks the theoretical predictions X-ray luminosity including its uncertainty, for
WStat LX = (3.6± 2.1)× 1036 erg s−1, and Chi2DataVar LX = (3.6± 1.8)× 1036 erg s−1, for
obtained orbital parameters.
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Figure 7.2: Plot of effective luminosity Leff for ζ Pup ObsIDs from WStat and Chi2DataVar statistics.
The red line shows WStat results, and the blue line shows Chi2DataVar results. The solar
activity represented by the daily number of sunspots is marked by orange line.
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Prec = 0.46 ± 0.08 years, arec = 1.7 ± 0.2 AU ,

From that, we calculated the radial velocity semi-amplitude K1,rec, again, assuming the
same parameters of the system as before, except for new period value,

K1,rec = 3.9 ± 0.6 km s−1.

The recalled values are consistent with the minimal period and theoretical luminosity
values. Prec lying in the range of Pmin uncetrtainty, and K1, which we assumed to be
equal 3.6 km s−1, is also lying in the range of K1,rec uncertainty.
For that, we simulated the values of LX for the same system parameters, but with

orbital period values going from 0.4 to 2 years. The results of the simulation are shown
in Fig. 7.3, along with the observed LX and theoretical LX, teor values, including their
uncertainties. We also indicated the minimal period Pmin and recovered period Prec,
including their uncertainties.
We suggest that the true orbital period could be 0.4 . P . 0.6 years, consistent with

the values of Pmin and Prec. The semi-major axis could be in the range of 1.5 . a . 2.0
AU. It will explain observed LX and the absence of accretion features in the spectrum.

7.5 future work

Possible future work could solve the model degeneracy problem by creating new models
and performing Bayesian X-ray analysis to find the best one, from which we can obtain
more reasonable parameters (Buchner, 2016).
New studies done by El-Badry (2024) and El-Badry et al. (2024) suggest that binary

systems at several kpc distances with orbital periods of around 1 year could be detected
by analysing high-precision astrometry data from the Gaia mission. Potentially, we could
test the same methods on ζ Pup Gaia data and put even more constraints on the potential
system parameters or even detect the companion.
We could also perform dynamic simulations of the system’s parameters, considering

the eccentricity of the orbit and the inclination of the orbital plane. This might help us
predict the system’s behaviour, which we could potentially observe in archival data or
in future observations.
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Figure 7.3: Plot of LX as a function of orbital period P. The blue dashed line shows the simulated values
of LX. The green line and area marks observed LX value and its uncertainty, the purple
dashed line and area marks theoretical LX, teor value and its uncertainty. The black dotted
line and area marks the minimum period Pmin and its uncertainty, and the red dotted line
and area marks the recovered period Prec and its uncertainty.





CONCLUS ION

We analysed the spectra of nine nearby (. 500 pc) OB stars obtained from XMM-Newton
archival data. We aimed to search for possible traces of NS spectral signatures hidden
within the complex signal of the OB star’s line-driven stellar winds. We conclude that
no signatures of a potential thermally emitting NS companion were found for most of
the stars from our sample.

However, we obtained peculiar results from ζ Pup spectra fitting. It shows mostly
stable effective radius of RBB,W = 10.9 ± 3.5 km, RBB,χ2 = 10.9 ± 0.9 km and temper-
ature kTBB,W = 74.9 ± 8.1 eV, kTBB,χ2 = 73.7 ± 1.8 eV values over the whole period of
observations. The errors correspond to the 3σ confidence level. Comparing these values
with the canonical neutron star radius R∞ = 13 km and the typical range of known
M7-type neutron star temperatures kT < 100 eV, the result could be interpreted as
a possible signature of a hidden NS. From obtained and available data on ζ Pup, we
put the constraints on the period and semi-major axis of the potential binary system,
where 0.4 . P . 0.6 and 1.5 . a . 2.0 AU. ζ Pup in a system, such orbital parameters
could have an RV semi-amplitude of K1 = 3.9 ± 0.4 km/s. This value lies within the
uncertainty range of our current measurement abilities on OB stars.

We want to notice that the model used in this work significantly simplifies reality.
The model is degenerate, and it is impossible to say if the obtained parameters could
be physically justified. New, more specific models, which describe the behaviour of the
shock-driven wind, should lead to a better physical justification of any parameters after
fitting OBs spectra. The quality of the data affected the statistics, with χ2

ν > 4.5 and
p-value � 0.05 for all fitted spectra of ζ Pup. It might indicate that the model poorly
explains the data and underestimates errors. However, the high quality of the data (a
large number of counts) leads to smaller statistical errors than systematic ones, which
affects the fit statistics, making it impossible to get χ2 values close to 1.0, even if the
model is correct.

We could improve the model by experimenting with its different components in future
work. Also, we could try to perform a Bayesian analysis of the model parameters, which
will qualitatively describe and compare various models with each other. Possibilities of
the new data releases from the Gaia mission, in combination with the latest methods of
astrometry analysis such as El-Badry (2024) and El-Badry et al. (2024), could potentially
allow us to detect the hidden companion of ζ Pup. A new simulation of the system’s
parameters dynamics, considering the eccentricity of the orbit and the inclination of the
orbital plane, might give us hints on the system’s behaviour, which we could potentially
observe in archival data or in future observations.
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Part IV

A P P E N D I X





A
SOURCE AND BACKGROUND QDP L IGHT CURVES .

The following figures show the object’s ObsIDs QDP light curves for available EMOS1,
EMOS2 and EPN data. The green datapoints are accepted counts, while the black are
rejected counts, due to the background flaring activity or soft photon contamination.
The upper subplot shows the histogram of the count rate distribution over the obser-
vational time. The middle subplot shows the source count rate in counts per second
(counts/s) over the observational time. The bottom subplot shows the background count
rate. The QDPs helps to filter the ObsIDs, visually inspecting them on the presence of
contamination of some sort (e.g. background flaring, soft photon contamination).
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Figure A.1: QDP lightcurves for β Cru (ObsID: 0761090201): (top) EMOS1, (middle) EMOS2, (bottom)
EPN.
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Figure A.2: QDP lightcurves for γ Cas (ObsID: 0651670201): (top) EMOS1, (bottom) EMOS2.
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Figure A.3: QDP lightcurves for γ Cas (ObsID: 0651670301): (top) EMOS1, (bottom) EMOS2.
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Figure A.4: QDP lightcurves for γ Cas (ObsID: 0651670401): (top) EMOS1, (bottom) EMOS2.
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Figure A.5: QDP lightcurves for γ Cas (ObsID: 0651670501): (top) EMOS1, (bottom) EMOS2.
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Figure A.6: QDP lightcurves for HD 42054 (ObsID: 0402121401): (top) EMOS1, (middle) EMOS2, (bot-
tom) EPN.
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Figure A.7: QDP lightcurves for ζ Pup (ObsID: 0095810401): (top) EMOS1, (bottom) EMOS2.



0 1 2 3 4 5

0
1

0
0

0
2

0
0

0
3

0
0

0

N

Count Rate (counts/s)

/home/artem/LMAO/HD66811/xmm/0157160401/analysis20/mos1S003−hist.qdp

Count Rate HistogramFit Lims: Blue

Select Lims: Red

ObsID: 0157160401

Fit Norm:  2766.6
Fit Width:   0.125 c/s
Fit Center:   0.411 c/s
h_imme:   0.423
h_totl:   0.050
l_imme:   0.456
l_totl:  −0.115

0 5000 104 1.5×104 2×104 2.5×104 3×104 3.5×104 4×1040
.1

0
.2

0
.5

C
o

u
n

t 
R

at
e 

(c
o

u
n

ts
/s

)

Time (s)

FOV Light Curve

0 5000 104 1.5×104 2×104 2.5×104 3×104 3.5×104 4×104

0
0

.1
0

.2

0 1 2 3 4 5

0
1

0
0

0
2

0
0

0
3

0
0

0

N

Count Rate (counts/s)

/home/artem/LMAO/HD66811/xmm/0157160401/analysis20/mos2S004−hist.qdp

Count Rate HistogramFit Lims: Blue

Select Lims: Red

ObsID: 0157160401

Fit Norm:  2755.2
Fit Width:   0.123 c/s
Fit Center:   0.410 c/s
h_imme:   0.391
h_totl:   0.059
l_imme:   0.488
l_totl:  −0.088

0 5000 104 1.5×104 2×104 2.5×104 3×104 3.5×104 4×1040
.1

1
0

.2
0

.5

C
o

u
n

t 
R

at
e 

(c
o

u
n

ts
/s

)

Time (s)

FOV Light Curve

0 5000 104 1.5×104 2×104 2.5×104 3×104 3.5×104 4×104

0
0

.1
0

.2

Figure A.8: QDP lightcurves for ζ Pup (ObsID: 0157160401): (top) EMOS1, (bottom) EMOS2.
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Figure A.9: QDP lightcurves for ζ Pup (ObsID: 0159360901): (top) EMOS1, (bottom) EMOS2.
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Figure A.10: QDP lightcurves for ζ Pup (ObsID: 0414400101): (top) EMOS1, (bottom) EMOS2.



0 1 2 3 4 5

0
2

0
0

0
4

0
0

0

N

Count Rate (counts/s)

/home/artem/LMAO/HD66811/xmm/0159361301/analysis20/mos1S005−hist.qdp

Count Rate HistogramFit Lims: Blue

Select Lims: Red

ObsID: 0159361301

Fit Norm:  4716.4
Fit Width:   0.093 c/s
Fit Center:   0.420 c/s
h_imme:   0.231
h_totl:   0.059
l_imme:   0.264
l_totl:  −0.029

0 104 2×104 3×104 4×104 5×104 6×1040
.1

1
0

.2
0

.5
2

C
o

u
n

t 
R

at
e 

(c
o

u
n

ts
/s

)

Time (s)

FOV Light Curve

0 104 2×104 3×104 4×104 5×104 6×104

0
0

.2
0

.4

C
o

u
n

t 
R

at
e 

(c
o

u
n

ts
/s

)

0 1 2 3 4 5

0
1

0
0

02
0

0
03

0
0

04
0

0
0

N

Count Rate (counts/s)

/home/artem/LMAO/HD66811/xmm/0159361301/analysis20/mos2S006−hist.qdp

Count Rate HistogramFit Lims: Blue

Select Lims: Red

ObsID: 0159361301

Fit Norm:  4183.4
Fit Width:   0.107 c/s
Fit Center:   0.501 c/s
h_imme:   0.281
h_totl:   0.043
l_imme:   0.368
l_totl:  −0.036

0 104 2×104 3×104 4×104 5×104 6×1040
.1

1
0

.2
0

.5
2

C
o

u
n

t 
R

at
e 

(c
o

u
n

ts
/s

)

Time (s)

FOV Light Curve

0 104 2×104 3×104 4×104 5×104 6×104

0
0

.2
0

.4
0

.6

Figure A.11: QDP lightcurves for ζ Pup (ObsID: 0159361301): (top) EMOS1, (bottom) EMOS2.
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Figure A.12: QDP lightcurves for ζ Pup (ObsID: 0561380101): (top) EMOS1, (bottom) EMOS2.
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Figure A.13: QDP lightcurves for ζ Pup (ObsID: 0561380501): (top) EMOS1, (bottom) EMOS2.
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Figure A.14: QDP lightcurves for ζ Pup (ObsID: 0561380601): (top) EMOS1, (bottom) EMOS2.
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Figure A.15: QDP lightcurves for ζ Pup (ObsID: 0561380701): (top) EMOS1, (bottom) EMOS2.
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Figure A.16: QDP lightcurves for ζ Pup (ObsID: 0561380901): (top) EMOS1, (bottom) EMOS2.
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Figure A.17: QDP lightcurves for ζ Pup (ObsID: 0561381001): (top) EMOS1, (bottom) EMOS2.
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Figure A.18: QDP lightcurves for ζ Pup (ObsID: 0561381101): (top) EMOS1, (bottom) EMOS2.
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Figure A.19: QDP lightcurves for ζ Pup (ObsID: 0810870101): (top) EMOS1, (bottom) EMOS2.
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Figure A.20: QDP lightcurves for ζ Pup (ObsID: 0810871301): (top) EMOS1, (bottom) EMOS2.
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Figure A.21: QDP lightcurves for ζ Pup (ObsID: 0810871401): (top) EMOS1, (bottom) EMOS2.
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Figure A.22: QDP lightcurves for ζ Pup (ObsID: 0810872101): (top) EMOS1, (bottom) EMOS2.
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Figure A.23: QDP lightcurves for HD 110432 (ObsID: 0504730101): (top) EMOS1, (bottom) EMOS2.
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Figure A.24: QDP lightcurves for HD 110432 (ObsID: 0840760201): (top) EMOS1, (bottom) EMOS2.
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Figure A.25: QDP lightcurves for ι Ori (ObsID: 0112660101): (top) EMOS1, (middle) EMOS2, (bottom)
EPN.
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Figure A.26: QDP lightcurves for τ Sco (ObsID: 0112540101): (top) EMOS1, (middle) EMOS2, (bottom)
EPN.
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Figure A.27: QDP lightcurves for θ Car (ObsID: 0101440201): (top) EMOS1, (middle) EMOS2, (bottom)
EPN.
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Figure A.28: QDP lightcurves for ζ Oph (ObsID: 0862230101): (top) EMOS1, (middle) EMOS2, (bottom)
EPN.





B
SPECTRAL F ITS WITH WSTAT .

The following figures shows the spectral fits of the selected objects using WStat. Each
figure contains the plot of the source and background spectra, from the available detec-
tors. The best fit model is shown as a blue (EMOS1), red (EMOS2), and green (EPN)
lines. The residual plot at the bottom shows the difference between the data and the
model. The change in the fit statistics W over the length of the fit, which we set to
5000 iterations, is shown in the top plot. The corner plot shows the distribution and
uncertainties of the fit parameters within 1σ interval, as well as the correlation between
the parameters.
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C
SPECTRAL F ITS WITH CHI 2DATAVAR .

The following figures show the spectral fits of the selected objects using Chi2DataVar.
Each figure contains the plot of the source and background spectra, from the available
detectors. The best fit model is shown as a blue (EMOS1), red (EMOS2), and green
(EPN) lines. The residual plot at the bottom shows the difference between the data and
the model.
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Figure C.1: Fit of the β Cru (ObsID: 0761090201) spectrum using Chi2DataVar. χ2
ν = 5.12
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Figure C.2: Fit of the γ Cas (ObsID: 0651670201) spectrum using Chi2DataVar. χ2
ν = 1.80



0.3 0.4 0.5 0.6 1 2 3 4
10 3

10 2

10 1

100

Fl
ux

 (c
ou

nt
s s

−
1
 c

m
−

2
 k

eV
−

1
)

0651670301 mos1 (74902 cts)
mos1, backgound
0651670301 mos2 (85100 cts)
mos2, backgound

0.3 0.4 0.5 0.6 1 2 3 4
Energy (keV)

5

0

5

R
es

id
ua

ls

Figure C.3: Fit of the γ Cas (ObsID: 0651670301) spectrum using Chi2DataVar. χ2
ν = 5.30
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Figure C.4: Fit of the γ Cas (ObsID: 0651670401) spectrum using Chi2DataVar. χ2
ν = 4.35
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Figure C.5: Fit of the γ Cas (ObsID: 0651670501) spectrum using Chi2DataVar. χ2
ν = 2.07
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Figure C.6: Fit of the HD 42054 (ObsID: 0402121401) spectrum using Chi2DataVar. χ2
ν = 1.26
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Figure C.7: Fit of the ζ Pup (ObsID: 0095810401) spectrum using Chi2DataVar. χ2
ν = 7.57
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Figure C.8: Fit of the ζ Pup (ObsID: 0157160401) spectrum using Chi2DataVar. χ2
ν = 12.73
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Figure C.9: Fit of the ζ Pup (ObsID: 0159360901) spectrum using Chi2DataVar. χ2
ν = 7.64
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Figure C.10: Fit of the ζ Pup (ObsID: 0159361301) spectrum using Chi2DataVar. χ2
ν = 7.11
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Figure C.11: Fit of the ζ Pup (ObsID: 0414400101) spectrum using Chi2DataVar. χ2
ν = 6.77
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Figure C.12: Fit of the ζ Pup (ObsID: 0561380101) spectrum using Chi2DataVar. χ2
ν = 8.39
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Figure C.13: Fit of the ζ Pup (ObsID: 0561380501) spectrum using Chi2DataVar. χ2
ν = 7.26
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Figure C.14: Fit of the ζ Pup (ObsID: 0561380601) spectrum using Chi2DataVar. χ2
ν = 7.43
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Figure C.15: Fit of the ζ Pup (ObsID: 0561380701) spectrum using Chi2DataVar. χ2
ν = 6.57
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Figure C.16: Fit of the ζ Pup (ObsID: 0561380901) spectrum using Chi2DataVar. χ2
ν = 7.14
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Figure C.17: Fit of the ζ Pup (ObsID: 0561381001) spectrum using Chi2DataVar. χ2
ν = 8.22
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Figure C.18: Fit of the ζ Pup (ObsID: 0561381101) spectrum using Chi2DataVar. χ2
ν = 7.25
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Figure C.19: Fit of the ζ Pup (ObsID: 0810870101) spectrum using Chi2DataVar. χ2
ν = 9.42
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Figure C.20: Fit of the ζ Pup (ObsID: 0810871301) spectrum using Chi2DataVar. χ2
ν = 7.02



0.3 0.4 0.5 0.6 1 2 3 4

10 3

10 2

10 1

100

Fl
ux

 (c
ou

nt
s s

−
1
 c

m
−

2
 k

eV
−

1
)

0810871401 mos1 (142441 cts)
mos1, backgound
0810871401 mos2 (136174 cts)
mos2, backgound

0.3 0.4 0.5 0.6 1 2 3 4
Energy (keV)

10

0

10

R
es

id
ua

ls

Figure C.21: Fit of the ζ Pup (ObsID: 0810871401) spectrum using Chi2DataVar. χ2
ν = 7.27
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Figure C.22: Fit of the ζ Pup (ObsID: 0810872101) spectrum using Chi2DataVar. χ2
ν = 8.99
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Figure C.23: Fit of the HD 110432 (ObsID: 0840760201) spectrum using Chi2DataVar. χ2
ν = 2.08
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Figure C.24: Fit of the HD 110432 (ObsID: 0504730101) spectrum using Chi2DataVar. χ2
ν = 1.27
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Figure C.25: Fit of the ι Ori (ObsID: 0112660101) spectrum using Chi2DataVar. χ2
ν = 1.73
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Figure C.26: Fit of the τ Sco (ObsID: 0112540101) spectrum using Chi2DataVar. χ2
ν = 2.49
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Figure C.27: Fit of the θ Car (ObsID: 0101440201) spectrum using Chi2DataVar. χ2
ν = 1.73
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Figure C.28: Fit of the ζ Oph (ObsID: 0862230101) spectrum using Chi2DataVar. χ2
ν = 3.93
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