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Abstrakt

V této bakalářské práci se věnujeme studiu gravitačních vln. Cílem
je představit problematiku gravitačních vln a následně analyzovat
tři z nejzámnějších detekcí gravitačních vln GW150914, GW170814
a GW170817. V teoretické části uvedeme, co jsou to gravitační vlny,
jak je měříme a jaký je jejich fyzikální popis. Ve statistické části se
pokusíme analyzovat naměřená data zmíněných detekcí, vypočítat
teoretickou křivku k takzvané chirp function získané úpravou namě-
řených dat, a sestrojit spektrogramy, kde bude vizuálně znázorněn
chirp.



Abstract

In this bachelor thesis, we will examine gravitational waves. Our goal
is to introduce problems of gravitational waves, following up with
an analysis of three of the most known gravitational wave detections,
GW150914, GW170814, and GW170817. In the theoretical part, we will
explain what gravitational waves are, how to detect them, and their
physical background. The statistical part will be devoted to analyzing
measured data, calculating theoretical waveform of the so-called chirp
function that was obtained from measured data, and constructing
spectrograms where the chirpwill be visually displayed.
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Introduction

Waves as a phenomenon are a ubiquitous occurrence in physics. Usu-
ally, we can observe them as something that oscillators of some kind
can cause, for example, waves on a water surface (mechanical waves),
music (acoustic waves), or light (electromagnetic radiation), and we
can measure the energy that they contain. In most cases, we can under-
standwaves quite easily because we can actually see, perceive, or sense
them (usually mechanical or acoustic waves). With light, it is more
difficult to understand because of its dual nature (it can be perceived
as a particle and as a wave). We can also perceive the energy they
hold by, for example, feeling the waves hitting us while swimming in
the sea.

Another well-known phenomenon is gravity. It was explained by
Isaac Newton in the 17th century in his work "De motu corporum in
gyrum,"where he established it as a centripetal force [1]. InNewtonian
physics, we can say it is interaction based on the 3rd Newton’s Law
where actions (in this case gravitational interaction) of two objects
upon each other are of the same intensity but directed in the opposite
direction.

In 1915, Albert Einstein combined these two phenomena in his
work about the General Theory of Relativity. He derived an idea that
Gravity can be perceived as something generated by the curvature of
spacetime that was produced by embedded mass [2]. If such space-
time curvature experiences periodic disturbing, the transversal waves
propagate through it, called gravitational waves.

Now it is our job to study, acknowledge, and appreciate their na-
ture.
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1 Gravitational waves

This is the start of the theoretical part of this thesis:

The goal is to introduce all the ways howwe can perceive gravitational
waves (from nowGWs). We will start with the basics of how they look
in spacetime, their origin, following up with "catching" them and their
appearance after detection, and finally how they look after physical
formula description.

1.1 How to envisage them

GWs are, as already said, ripples in spacetime. To visualize it, let’s
say we have a massive bed sheet, preferably without elastics around
the perimeter. If we stretch it really tight and fix it only in the corners,
we will get a horizontally stretched surface; this is our spacetime.

Now, we can put something on it, for example, an orange ball. For
us, this will represent some object in space (it is round and heavy
compared to our "spacetime"). After putting our "astronomical object"
in the corner of our "spacetime" it will move straight to the center of
the bed sheet and a downswing in the middle of the bed sheet will
appear. This is how gravity makes ripples in spacetime.

Now, that we know what the interaction between an object and
spacetime looks like, we can visualize it as the gravitational interaction
of two objects. With our orange ball in the center, we will now use
a pink ball, firstly moving parallel to the one side of the bed sheet.
The pink ball would trace a spiral while moving closer to the orange
one. If both orange and pink balls were moving, we would see ripples
similar to this visualization of actual gravitational waves in figure 1.1.

3



1. Gravitational waves

Fig. 1.1: Visualization of the gravitational waves and the density
changes of two orbiting neutron stars. Credit: STAG Research Cen-
tre/Peter Hammond (University of Southampton).

1.2 Origin of gravitational waves

As a starting point, we need to mention that every physical object that
accelerates or is accelerating causes ripples in spacetime and therefore
produces GWs, but we need sizable ripples to detect them, ergo we
will talk about colossal events.

Detectable GWs are formed by some of the most arduous and
powerful processes in the Universe. The most important sources are
cataclysmic events such as two objects colliding; for example, black
holes, neutron stars, etc. In addition to the collision, the orbital move-
ment beforemay also be a source of GWs;we can also consider orbiting

4



1. Gravitational waves
without collision, namely in the case of rapidly spinning objects like
neutron stars that are imperfect spheres. [3].

Astronomers later defined four categories of GWs to distinguish
them and specify which systems or objects generate them. The four
categories are:

• Compact Binary Inspiral GWs,

• Continuous GWs,

• Stochastic GWs,

• Burst GWs.

Now, let us describe the classification:

Compact Binary Inspiral GWs are produced by enormous objects or-
biting each other. This type of GWs has subtypes based on
which objects are the binary members.
We could have BNS (Binary Neutron Stars) that are two neutron
stars orbiting each other, BBH (Binary Black Holes) that are two
black holes orbiting each other, and lastly NSBH (Neutron Star-
Black Hole Binary) that is pair of a neutron star and a black
hole.
Each variant has its unique pattern of GWs that depends on
the parameters of the pair (how heavy each object is, how
the orbit is directed towards the Earth, how far away from each
other they are, etc.). However, the main principle of making
the GWs is still the same and its called inspiral (as we could see
in Figure 1.1). [4]

Continuous GWs are expected to be produced by one massive spin-
ning object. A good example could be a non-perfectly spherical
neutron star. All the shape imperfections will generate GWs as
the neutron star spins. As the name indicates, the GWs do not
change frequency and/or amplitude in this case. [4]

5



1. Gravitational waves
Stochastic GWs are interfering GWs. Detecting a signal from two

sources would get us a "stochastic signal" which means, detect-
ing a very random pattern (not necessarily unanalyzable but
surely unpredictable).
These GWs are very difficult to detect because it is improbable
that two strong enough signals would interfere. We can recog-
nize this just by looking at the number of significant sources of
continuous or compact binary GWs. Another thing is that there
is a faint continuous stochastic signal where we think part of
it could be relic GWs from the Big Bang. By detecting it, we
would be able to see farther back into the Universe’s history.
[4]

Burst GWs, as the name indicates, come from unexpected short-
periodic sources. These signals are difficult to detect because,
as we all know, to be prepared for something unanticipated is
almost impossible. [4]

1.3 How we detect gravitational waves

1.3.1 History

Joseph Weber was the first person who tried to detect GWs in the 60s
of the 20th century, following the conclusions of the General Theory
of Relativity (GTR for short). He constructed 2-meter-long and 1-
meter-wide aluminum cylinders with resonance frequency 1660Hz
that could measure with 10−16 relative accuracy and wrote an article
about his discovery in 1969 [5]. His colleagues were sceptical about his
detections, which he allegedly did. Others also tried to build similar
detectors but no detections were achieved; one of them was Heinz
Billing in the early 1970s at the Max Planck Institute [6]. The lack of
success is because the detectors were turned to a single frequency
which, as we know today, is not met in GWs whose frequency rapidly
changes.

The first indirect detection of GWs was published in a scientific
paper by R. A. Hulse and J. H. Taylor in July 1974 in the Astrophysical
Journal. Hulse and Taylor measured binary pulsar PSR B1913+16 with

6



1. Gravitational waves
a decreasing orbital period, which agreed with GTR, and explained it
as a loss of energy emitted in the form of GWs [7].

Later, theGWsociety started using laser interferometry as themore
promising and advanced way of detecting GWs. The early prototypes
were built in the 70s of the 20th century. Currently, we have many
detectors based on laser interferometry. Now, we will introduce these
detectors and the principles they work on.

1.3.2 Brief introduction to the interferometry used in GW
detectors

Basics of interference

As it is known,wave interference is a basic termdescribing the addition
or subtraction of wave amplitudes. There are two options for how
waves can interfere:

1. Constructively,
2. Destructively.

Constructive interference increases the wave amplitude. We can eas-
ily write the resulting wave amplitude of constructive interfer-
ence W as a sum of the amplitudes of two waves interfering
W1,2,

W1 + W2 = W. (1.1)
The difference of phases ∆φ of the initial waves needs to be
an even multiple of π (applies for phase differences ∆φ =
. . . ,−2π, 0, 2π, . . . ) for the interference to be fully constructive.

Destructive interference is the complete opposite of constructive in-
terference, meaning the final product of the interference is zero.
Or, if we say it in a different lingo, the interference of the waves
will create a wave with an amplitude equal to zero. With this
knowledge, we can write the sum as

W1 + W2 = 0. (1.2)
For the destructive interference the difference of phases ∆φ of
the initial waves needs to be on the other hand an odd multiple
of π (applies for phase ∆φ = . . . ,−3π,−π, π, 3π, . . . ).

7



1. Gravitational waves
Thewaves have to be coherent (of the same type) for the interference to
work. The waves can be of any type if they meet this requirement (ex.:
mass, acoustic, surface, etc.). In our case, we will use electromagnetic
waves in the form of a laser that can accurately measure the relative
amplitude (strain) and phase of GWs. The usage of the laser also
meets the other two requirements which are a) the light we are using
needs to be monochromatic and b) the light cannot have a random
phase.

Michelson interferometer

As we introduced the technique of interferometry, now it is time to
introduce the tool of interferometry used in the vast majority of the de-
tectors of GWs, which is based on principles of the Michelson interfer-
ometer.

TheMichelson interferometer was first introduced in the American
Journal Of Science in an article "On the Relative Motion of the Earth
and the Luminiferous Ether" [8], where also the original scheme came
from (as seen in figure 1.2). If we use labeling from the picture and
the original comment from the article for the part labeled 1. in figure
1.2, the Michelson interferometer can be described as

sa . . . a beam of light,

ab . . .partly reflected beam of light,

ac . . .partly transmitted beam of light,

b,c . . .mirrors returning beams.

With this knowledge, we can figure out how the interferometer works.
At this moment, we know that a is some kind of beam splitter that

splits the beam of light into two parts perpendicular to each other.
From the mirror b is returning the partly reflected beam along ba and
from themirror c the partly transmitted beam along ca. After returning
to the beam splitter (via the same logic withwhich the beamwas split),
the partly reflected beam ba will become the partly transmitted beam
along ad and vice versa with the beam ca. After all, if the paths ab and
ac are of equal length, the two beams will interfere along ad.

8



1. Gravitational waves

Figure 1.2: The original scheme of Michelson interferometer. Credit:
[8]

Application

Now, that we know the technique and tool of interferometry, we need
to apply all this to measuring GWs, which is in essence quite un-
derstandable after our description. We know that if the beams are
equal and go through same-distance routes (which also implies that
the "arms" of the interferometer need to be of the same length), they
interfere destructively because they are in a counterphase. Now, let
us imagine some GWs passing through our interferometer. The laser
beams will interact with the GWs (because they are both of a wave
character) and the beamswillmeasure different shortening and length-
ening of detector arms while going through the two perpendicular
"arms" and back. Thanks to that, the beamswill interfere constructively
or destructively, and we can detect GWs.

9



1. Gravitational waves
1.3.3 Detectors of gravitational waves

GEO600

GEO600, built in 1995, is a GW detector located near Hannover, Ger-
many, operated by the Max Planck Institute for Astrophysics in com-
pany with partners from the United Kingdom. This ground-based
interferometric (extracting information from interferometry of GWs)
detector with 600 meters of arm’s length is part of a worldwide net-
work of GW detectors. This network also contains detectors LIGO,
Virgo, and KAGRA (we will talk about these detectors within their
subsection).[9]

Scientists from GEO600 collaborate with LIGO within the LIGO
Scientific Collaboration (LSC), where they focus on directly detecting
GWs for further exploration of fundamental physics [10]. They also
tightly cooperate with Laser Zentrum Hannover (LZH - independent
non-profit institute, where they research and develop laser technology
[11]) to help build lasers for Advanced LIGO (aLIGO - an exten-
sion of the "initial LIGO" used for the improvement of capabilities of
the detectors).

LIGO

Laser Interferometer Gravitational-Wave Observatory (LIGO for short),
built from 1994 to 2002 is a national facility for GW research located in
the United States. It consists of two multi-kilometer-scale GW detec-
tors, one based in Hanford, Washington, and the other in Livingston,
Louisiana. They operate in unison to detect then GWs together.

LIGO is, as mentioned, also one of the detectors of a worldwide
GW-detecting network. We also mentioned aLIGO (Advanced LIGO)
and "initial LIGO". These are models of LIGO built through the years.
The initial LIGO is the original LIGO instrument engaged in science
observations from 2002 to 2010. From the end of the Initial LIGO
project until 2014, both LIGO detectors were rebuilt to join another
project called aLIGO which, as said, improved detectors by enhancing
their sensitivity. To this day, engineers from LIGO try to make it more
and more sensitive to detect more signals.[12]

LIGO is also planning a sister detector in India (we still do not
know where exactly) named very suitably LIGO-India . The detec-
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1. Gravitational waves
tor would become part of the worldwide network and a member of
a collaborative project between the LIGO laboratory in the USA and
a consortium of Indian research institutions. The LIGO-India project
was approved in 2016 and since then it has been actively worked on
by both India and USA. [13]

The LIGO detector made its first official detection of GWs after
installing aLIGO named GW150914 together with Virgo as LSC (LIGO
Scientific Collaboration) and Virgo Collaboration which we will ana-
lyze in the statistical part of this thesis. [14]

Virgo

Virgo, built from 1997 to 2003 (when it was inaugurated) is an inter-
ferometric detector located in the countryside near Pisa, Italy. Before
the year 2000, the building of Virgo was supervised by the Italian
Institute for Nuclear Physics INFN (Istituto Nazionale di Fisica Nucleare)
and the French National Centre for Scientific Research CNRS (Centre
National de la Recherche Scientifique). These two institutes were the ones
that approved the proposal to build Virgo and in the year 2000, they
established the European Gravitational Observatory (EGO for short) .
EGO was primarily created to take care of maintaining and operating
the Virgo detector, now it is also in the management of the infrastruc-
ture of the site, the computing center, and the promotion of a variety
of R&D (research and development) activities.

Later came an upgrade of Virgo called Advanced Virgo. This
project aimed to improve detection capabilities similar to aLIGO in
2014. It was completed in 2017 and was ready to join LIGO for the sec-
ond observation period. During this period, the LVC (LIGO Virgo
Collaboration) detectedGW170817whichwas accompanied by an elec-
tromagnetic glint observed both from the Earth and space [15] [16].
Three days before the LVCdetectedGW170814 by all detectors, the first
time that all detectors had picked up any part of a GW. Similar to
GW150914, these events were remarkable hence we will include them
in the statistical part of this thesis as well.

11



1. Gravitational waves
KAGRA

Kamioka Gravitational Wave Detector (KAGRA for short) also known
as Large Scale Cryogenic Gravitational Wave Telescope (LCGT), built
from 2010 to 2019 is an underground cryogenic detector managed
by the Institute for Cosmic Ray Research (ICRR) of the University of
Tokyo located in Kamioka mines, which is in the city of Hida in Gifu,
Japan.

As previously mentioned, KAGRA being an underground interfer-
ometer allows for improved noise reduction. Situated underground,
we can better isolate it from seismic noise and keep the interferometer’s
mirrors cold enough to reduce thermal noise, thusmaking the detector
detect a wider range of frequencies. [17]

The KAGRA is quite the new detector which means, it was not
running during the first (O1) and second observation (O2) run with
its "colleagues" LIGO and later Virgo. KAGRA joined them at the end
of the third observation run (O3) in the first half of 2020 and since
May 2023 they will all work together on observation run four (O4).
[18]

Einstein Telescope

The Einstein Telescope (ET) is yet to be built, a European underground
third-generation GW detector that would be used for further observa-
tions of mergers (especially black hole mergers). Its location is not yet
decided but the candidates for its placement are Sardinia, Netherlands,
or Germany [19]. Its planned construction beginning is around 2026
and the goal is to start observations in 2035. [20]

LISA

Laser Interferometer Space Antenna (LISA for short) is an anticipated
space project from NASA (National Aeronautics and Space Adminis-
tration) and since 2024 from ESA (European Space Agency). [21]

LISAwill be a space interferometer composed of three spacecraft in
a triangular formation (with side lengths in millions of kilometers). It
will orbit the Sun in a path similar to Earth’s orbit, but about a hundred
times farther from Earth than the distance to the Moon. Being in space
means it will not have to deal with seismic noise. [22]

12



1. Gravitational waves
It will work on the time delay interferometry principle which is

different from the ground interferometers we discussed till this point.
Time delay interferometry adds time dependence to the interferometry.
The basis is the same as in an Earth interferometer (as we explained
in subsection 1.3.2) but because the sides of the triangle will be of
different lengths (as it is in space-based detectors), the laser light will
arrive to the photodetectors at different times which means we need
to add the time delay for it to detect "nothing" (so that the laser beams
interfere in counterphase and thus cancel each other out). [23]

Thanks to LISA, we would be able to observe and detect distant
systems like EMRIs (Extreme Mass Ratio Inspirals - smaller stellar
mass black holes).

13





2 General Theory of Relativity

In this chapter, we will introduce the theory used to understand grav-
itation in problems of GWs.

We will go through the history of creation, refusal, and final ac-
ceptance of the theory as well as its wording with an explanation of
mathematical principles used in the resulting and generally accepted
formulation.

2.1 The origin of GTR

In 1905, Albert Einstein (from now on only AE) published, among
others, 4 papers in which he explained the photoelectric effect, Brow-
nian motion, etc., and especially the paper introducing the special
theory of relativity (from now on only STR) where he states that
speed of light is finite and sets it as a constant, now having the value
c = 299792458ms−2.

Later, he realized that STR did not include accelerating objects and
was missing an explanation of gravity. So AE, with mathematical help
from his dear friend Marcel Grossmann, tried to solve these problems
and shed light on these two omitted factors [24]. In 1915 AE published
a paper on GTR where he presented the field equations, now known
as Einstein field equations (for short EFE) , defined as

Rµν −
1
2

R gµν + Λgµν =
8πG

c4 Tµν. (2.1)

2.2 Mathematical form and characterization of EFE

In this section, we will discuss the equation (2.1) for clarity. We will
start from the left and continue to the right. Our main source for
explanation will be the book General Relativity - An Introduction for
Physicists [25].
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2. General Theory of Relativity
2.2.1 Einstein’s tensor

Einstein’s tensor contains the first and the second terms in EFE. It is
a formal simplification, so we don’t need to write the full equation
when we don’t need to. The definition can be denoted by equation
(2.2)

Gµν = Rµν −
1
2

R gµν. (2.2)

The particular terms in the equation are gµν which is a metric tensor,
Rµν which is a Ricci curvature tensor and R which is a Ricci scalar.
The Ricci components are explained in subsections 2.2.2 and 2.2.3.

To explain the metric tensor gµν, we first need to say that GW
formalism is difficult to build because of its nonlinearity. We need
to consider that ripples in spacetime are very weak because we are
far away from the source. After considering all this, we can linearize
the gravitational field. We will work with just slight deformation of
Minkowski flat spacetime defined by tensor (2.3) with a small devia-
tion hµν.

ηµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (2.3)

With this in mind, we can describe our linearized metric tensor for
small spacetime perturbations as

gµν ≃ ηµν + hµν +O(hµν)
2, |hµν| ≪ 1. (2.4)

2.2.2 Ricci curvature tensor

Tensor Rµν is the curvature tensor representing how volume in the
curved space differs from volume in an Euclidean space [26]. To re-
mind us what an Euclidean space is, it is a space where parallel lines
do not cross/cross in infinity, and the sum of angles in a triangle (on
a flat surface) is 180◦.

The Ricci tensor can be written in matrix representation as a 4 × 4
symmetric matrix, as seen in (2.5). The tensor Rµν has 2 indices, µ
and ν. These indices define different matrix components and they take
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2. General Theory of Relativity
the values µ, ν = 0, 1, 2, 3,

Rµν =


R00 R01 R02 R03
R10 R11 R12 R13
R20 R21 R22 R23
R30 R31 R32 R33

 . (2.5)

We can also write Ricci curvature tensor in term of Christoffel symbols,

Rij = ∂kΓk
ij − ∂jΓk

ik + Γk
ijΓ

m
km − Γk

imΓm
jk , (2.6)

where Γk
ij is called the Christoffel symbol, written in Einstein’s no-

tation. We can apprehend i, j, and k the same as µ and ν, which we
already explained. The following relation defines the general form of
Christoffel symbols,

Γk
ij =

1
2

gkm(∂jgmi + ∂igmj − ∂mgij), (2.7)

where gkm with any of the aforesaid indexes is a metric tensor.
Ricci tensor, besides a generalmathematical/geometrical definition,

has also a particular meaning in EFE. It describes changes in the space-
time volume that was disturbed by gravitational waves. To explain
it more illustratively, it quantifies the volume between two geodesics
(the shortest possible line between two points or two events in space-
time in given metrics) that were parallel in the first place but now,
because of spacetime curvature caused by GWs, they are not. [26]

2.2.3 Ricci scalar

Ricci scalar (also known as scalar curvature) is a scalar quantity de-
fined at each point of the Riemann space [25]. Once again, to better
understand what Riemann space is, it is a manifold where we canmea-
sure angles and distance of tangential vectors (one of these manifolds
is for example Euclidean space mentioned in 2.2.2).

Ricci scalar is also defined as a trace of Ricci curvature tensor and
can be written in Einstein’s notation as

R = gµνRµν = Ra
a . (2.8)
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2. General Theory of Relativity
It can also be written in term of Christoffel symbols as

R = gµν(Γλ
µν,λ − Γλ

µλ,ν + Γσ
µνΓλ

λσ − Γσ
µλΓλ

νσ), (2.9)

where the notation Γλ
µν,λ means the same as ∂λΓλ

µν.

2.2.4 Cosmological constant

The last component on the left side of the equation is metric gµν

multiplied by cosmological constant Λ. This constant, said AE, was
the "biggest blunder" in his work [25]. The constant at this point has
many forms and is used in many variations of EFE. It might be strange
that a constant can have many forms but the changes are not random.
The main goal of the cosmological constant is to make our universe
stationary and, within many models of the universe that exist, each
one requires a different value.

2.2.5 Constants

The first component on the right side of the equation is a fraction
made out of constants. In literature about GTR, you can usually find
it labeled as Einstein’s gravitational constant κ where

κ =
8πG

c4 . (2.10)

Newtonian constant of gravitation

The Newtonian constant of gravitation G (also used κ) is a physical
constant usually used in Newton’s law of universal gravitation which
in its scalar form is given as

F = G
m1m2

r2 . (2.11)

Its value is G = 6.674 × 10−11 Nm2 kg−2.

Speed of light

As mentioned in chapter 2.1, c is a constant speed of light defined
by AE in his paper on STR. Once again, we will mention its value as
c = 299792458ms−1.
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2. General Theory of Relativity
2.2.6 Energy-momentum tensor

The last term of EFE is the Energy-momentum tensor Tµν which de-
scribes the matter distribution. If we raise the indices in this tensor,
we can construct it from the following equation,

Tµν = (ϵ + p) uµuν − pgµν. (2.12)
In this equation, ϵ = ρc2 is the energy density,(ρ is the density of
matter), p is the scalar pressure, uµuν is the tensorial product of the 4-
velocities in an arbitrary coordinate system, and gµν is the metric. This
product helps us to get all matrix components of the tensor Tµν as
seen in (2.13) with explicit formulas for the components in (2.14),

Tµν =


T00 T01 T02 T03

T10 T11 T12 T13

T20 T21 T22 T23

T30 T31 T32 T33

 , (2.13)

T00 = (ϵ + p) u0u0 − p = γ2
(

ϵ + β2p
)

,

T0i = Ti0 = (ϵ + p) u0ui =
γ2

c
(ϵ + p) ui, (2.14)

Tij = (ϵ + p) uiuj + pδij =
γ2

c2 (ϵ + p) uiuj + pδij,

where i, j now take the values 1, 2, 3, β = u/c, γ =
(
1 − u2/c2)−1 is

the Lorentz factor, and δij is the Kronecker delta. In equations (2.14),
behind the tensor, a new variable appears which is just a different
form of a 4-velocity written as uµ = γ (c, u⃗), where c is the speed of
light and u⃗ is a 3-velocity.

For further explanation of the matrix components, we define T00

as the energy density of particles in the matter, T0i and Ti0 as the en-
ergy flux ×c−1 in the i-direction (or the momentum density ×c in
the i-direction) and Tij as the rate of flow of the i-components of mo-
mentum per unit area in the j-direction. This definition of the matrix
components is the reason for the name energy-momentum tensor [25].
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3 Answering the question about analysis

This chapter is the start of the statistical part of this thesis:

Our goal in this part is to analyze three of the most significant de-
tections of GWs. To be more precise, GW150914 , detected on 14th
September 2015 by LIGO just after upgrading the detector via project
aLIGO in the first observation run (O1), GW170814, detected on 14th
August 2017 by LIGO and Virgo collaboration in the second run (O2),
and last but not least GW170817 detected three days later on 17th
August 2017 also by LIGO and Virgo collaboration in the second run
(O2), and plot their waveforms.

3.1 Why are we doing the analysis?

Before we start, we should think about if and how this analysis benefits
us as physicists and as a society. Usually, we (as astronomers) observe
the universe by electromagnetic radiation (ER - ex.: X-rays, visible
light, radio and microwaves, etc.) which gives us information and a
specific view of the universe (even if the view is different from scientist
to scientist, they are still very much complementary).

The GWs, however, are not of electromagnetic character and they
are fundamentally unrelated to ER which gives us a new instrument
to identify the universe. It is (as the name of this thesis indicates) a
new window into space. Thanks to them, we observe space through
ripples in a "sheet" of space-time and let us "see" the most distant parts
of the universe. Of course, we can observe far Cosmos thanks to some
of our most powerful telescopes that work on ER but some discrepan-
cies can be resolved by GW observation. GWs almost do not interact
with matter (on the other hand ER can be absorbed, reflected, etc.).
Hence, they are better candidates for observing "the past" because, on
their way to us, most of the GW does not fade away. They still carry
information about the event without "losing" information and without
distortion. [27]

Of course, GWs are not the "perfect tool" for discovering all that is
in the Cosmos. They come to us as a weak signal that a person cannot
feel. We need extremely perceptive detectors (as we mentioned in
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section 1.3.3, there had to be many upgrades of the original detectors,
and we are still working on better equipment) because we have to
subtract the influence of mechanical waves and other disturbances
here on Earth (especially seismic quakes or thermal noise) that can be
interfering with the signal of GWs. We are aiming to better solve these
issues by building detectors underground (ex.: KAGRA and Einstein
Telescope in section 1.3.3) where we can much more efficiently isolate
them from seismic waves and anthropogenic perturbations, or we are
trying to send detectors to space (LISA in section 1.3.3) where there
are no significant factors that would bring noise into the signal.

Still, even if GWs are somehow a "fixer-upper", so are the other
ways to observe the universe. To conclude, we as a society are curious
and will use and study anything new that is given to us just because
of the question "What if. . . ?".

3.2 How to analyze GWs data

3.2.1 Where we got the means used for analysis?

This thesis’s main goal is to understand the issues associated with cal-
culations of an accurate theoretical function that we can later compare
to real data from GWOSC. The point of this subsection is to derive
the formulas we need for analysis. Some formulas in this section will
be taken as "fixed", meaning we will not be discussing where they
came from; they have their stated form for the sake of the length and
clarity of this thesis. Of course, there is no way formulas can just "come
out of the blue" so we will be referencing textbook Gravitational Waves:
Volume 1: Theory and Experiments as our main source [28].

Before anything else, we will write down our "foundation stone"
a quadrupole radiation formula, first derivated by AE, which links to-
tal energy release and quadrupole moments (3.1). This is not the real
foundation stone, but it will be ours. This equation needed to be de-
rived from something but unfortunately this "something" it is beyond
the scope of this thesis, therefore wewill not bementioning the origins.

dEgw
dt

=
G

5c5

〈 ...
Qab

...
Qab

〉
, (3.1)
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where on the left-hand side is a time derivation of energy or the total
energy release (later labeled as Lgw as the GWs’ Luminosity) and on
the right-hand side

...
Qab and

...
Qab are third derivatives of quadrupole

moments that take the form of tensors, where the different positions
of the indexes mean they are inverse forms of each other (in our case
it does not matter because they are identical as will be derived later
and shown via formulas (3.12)), G is Newton’s gravitational constant,
and c is a speed of light.1

As our "cement", wemust definewhatwewill use the formula (3.1)
for and how to expand it. We already mentioned that we would work
with two detections of GWs (mentioned in subsection 1.3.3 and at
the beginning of this chapter 3). TheseGWswere created bymergers of
two stellar-mass black holes in the case of GW150914 and GW170814,
and by binary neutron star merger in the case of GW170817. In all
these cases they are binary systemwith the center-of-mass coordinates
on a 2D xy plane. In our case, we will call the system "binary star" or
BS for short in general.

The BS has fixed parameters, which are:

1. Masses of the stars m1 and m2, total mass M, and a reduced
mass µ,

M = m1 + m2, µ =
m1m2

m1 + m2
. (3.2)

2. Separation of the stars a.

3. Angular frequency

Ω =

√
GM
a3 . (3.3)

4. Total orbital energy

Eorb =
1
2

(
m1a2

1 + m2a2
2

)
Ω2 − Gm1m2

a
= −GµM

2a
. (3.4)

1. As you will see, there are reoccurring constants that are used repeatedly, this is
why there is the table 3.1 in section 3.2.3 with all of them covered for clarity. They
can also be found in the section Index 5.

23



3. Answering the question about analysis

In equation (3.4), we simplified the term in brackets as µa2 by deriving
this term from the moment of inertia by setting the coordinates of
the central mass as zero. This is, exactly, why we defined our BS in
the center-of-mass coordinates; to make it simpler. Thanks to this and
to the choice of the coordinate system to make our BS move only in
xy plane (meaning the coordinate z is always zero), we can define
the coordinates of the circular motion as

x0(tret) = R cos Ωtret, y0(tret) = R sin Ωtret, z0(tret) = 0. (3.5)

We can also derive components of the alreadymentioned quadrupole
moment tensor. We will implicitly implement equations (3.5) into
the conventionally defined quadrupole moment tensor of the energy
density of the source,

qij(t) =
∫

yiyjT00(t, y)d3y. (3.6)

In (3.6), we can see the term T00 which we know from subsection 2.2.6
is the first component of the energy-momentum tensor. For the for-
mulation of the T00 term, we also need the trajectories of the objects A
and B from our BS which are defined as

x1
A = R cos Ωt, x2

A = R sin Ωt, (3.7)
x1

B = −R cos Ωt, x2
B = −R sin Ωt. (3.8)

Now we can write the T00 term explicitly as

T00(t, x) = M δ(x3)
[
δ(x1 − R cos Ωt) δ(x2 − R sin Ωt)+

+ δ(x1 + R cos Ωt) δ(x2 + R sin Ωt)
]

, (3.9)

where x1,x2, and x3 are components of the vector x.
The explicit entry of the components, their second and third deriva-

tives as functions of retarded time (a time when the field began to
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propagate from the point where it was emitted to an observer) are

q11(tret) = µR2 cos2 Ωtret,

q22(tret) = µR2 sin2 Ωtret, (3.10)
q12(tret) = µR2 sin Ωtret cos Ωtret,

q̈11(tret) = −2µR2Ω2 cos 2Ωtret,

q̈22(tret) = 2µR2Ω2 cos 2Ωtret, (3.11)
q̈12(tret) = −2µR2Ω2 sin 2Ωtret,

...q 11(tret) = 4µR2Ω3 sin 2Ωtret,
...q 22(tret) = −4µR2Ω3 sin 2Ωtretr, (3.12)
...q 12(tret) = −4µR2Ω3 cos 2Ωtret,

where q12 = q21 thanks to the symmetry of the tensor while other
components vanish. The matrix will look as follows,

...q ij(tret) = 4µR2Ω3

 sin 2Ωtret − cos 2Ωtret 0
− cos 2Ωtret − sin 2Ωtret 0

0 0 0


ij

. (3.13)

The 3 × 3 tensor that will form from the components of (3.13) is
traceless, meaning that the trace of the matrix is zero (can be easily
verified by the definition of the trace).

Plugging the components from (3.12) to the Einstein’s quadrupole
radiation formula (3.1), we will get

Lgw =
32Gµ2R4Ω6

5c5 =
32G4µ2M3

5c5R5 , (3.14)

where the additional parameters emerged from the substitution of all
the products of the corresponding elements of two identical matrices
(3.13) into the formula (3.1). As we mentioned, the luminosity Lgw is
stated as a time derivation of energy. The BS loses energy by emitting
gravitational radiation, so for the system to remain in equilibrium, the
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distance between the components of the BS needs to decrease. From
(3.14), we can get the rate of the two bodies’ distance shrinking,

Lgw = −dEorb
dt

= −GµM
2R2

dR
dt

. (3.15)

For better understanding, we will rearrange the equation to express
the rate of shrinking, so it is

dR
dt

= −64G3µM2

5c5R3 . (3.16)

With the knowledge of decreasing orbital distance of the two bodies
in BS, we can express the frequency increase as

ḟ
f
=

Ω̇
Ω

= −3Ṙ
2R

, (3.17)

where Ω is an angular frequency defined in (3.3) and Ω̇ is its time
derivative. Therefore, we can introduce an initial or the present separa-
tion Rinit and then, from equation (3.16), the BS will merge in the GW
inspiral time (see the following equation (3.18)). The tGW depends
on how we choose our initial separation Rinit, meaning that we can
choose an orbital distance long time before the collision or closer to
the time of merger,

tGW = − 5c5

64G3µM2

∫ 0

Rinit
R3 dR =

5c5R4
init

256G3µM2 . (3.18)

As long as Ω̇ ≪ Ω2, we are in the quasi-circularmotion regime (almost
but not quite circular motion in a human language).

We can also see from (3.17) that as long as this inequality condition
is fulfilled, |Ṙ| is much smaller than the tangential orbital velocity
Vϕ = RΩ (derivation: Ṙ = −2

3 R Ω̇
Ω = −2

3 RΩ Ω̇
Ω2 = −2

3Vϕ
Ω̇
Ω2 ) which

means the approximation of a circular orbit with a slowly varying
radius is then applicable.

Now, as we established our BS earlier on page 23, we can define
formulas for GW polarisation amplitudes (3.19) and their explicit
form (3.20), [28]

h+(t, z) =
G

c4r
(q̈11 − q̈22), h×(t, z) =

2G
c4r

q̈12, (3.19)
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h+(t, n) =
4GµR2Ω2

c4r

(
1 + cos2 θ

2

)
cos (2Ωtret + 2ϕ) , (3.20)

h×(t, n) =
4GµR2Ω2

c4r
cos θ sin (2Ωtret + 2ϕ) . (3.21)

Now, as you have noticed, there is an orbital frequency Ω as well
as two angles θ and ϕ. All those relations can be substituted in terms
of the frequency f of GWs (that is twice the orbital frequency). With
our approximation of circular orbit (where Ω∆tret = ∆ϕ), the origin
of time can be shifted so that we get the introduced form of (3.20),
where Ωtret + ϕ → Ωtret, as

h+(t, n) =
4GµR2(π f )2

c4r

(
1 + cos2 θ

2

)
cos (2π f tret) , (3.22)

h×(t, n) =
4GµR2(π f )2

c4r
cos θ sin (2π f tret) . (3.23)

With this newly adjusted form, we can easily see that if we would
observe the GWs pole-on (θ = 0), the amplitudes are identical. At
the same time, the phase is shifted by π/2, meaning the wave is
circularly polarised, whereas if we observe the system equator-on
(θ = π/2), the h× is equal to zero and h+ is of half magnitude com-
pared to the pole-on observed case, and the wave is linearly polarized.

For further consideration, we take equation (3.15) and modify it
by plugging it in the definition of dR

dt (3.16) (which is actually Ṙ) and
in the definition of Ω (3.3) (where the a is now R),

Ω̇ = −3Ω
2R

Ṙ =
96G7/2µM5/2

5c5R11/2 =
96G5/3 (µM2/3) Ω11/3

5c5 (3.24)

We now rearrange the equation (3.24) to express an explicit mass
containing term (the product in brackets µM2/3) in the dimension of
mass [g] which means, we need to raise this product to the power of
3/5 andmove it on one side. On the order side, wewill get an equation
containing Ω and its derivative Ω̇ observable due to the propagation
of GWs. The equation now takes the form

µ3/5M2/5 =

(
5
3

)3/5 c3

8G
Ω̇3/5Ω−11/5. (3.25)

27



3. Answering the question about analysis

Thanks to this set expression, we can now define the product on
the left-hand side as a "chirp mass" Mc. This form and its modified
version only for primary and secondary masses, m1, m2, now is

Mc = µ3/5M2/5 =
(m1m2)

3/5

(m1 + m2)
1/5 , (3.26)

and can be measured from observation, thanks to the connection with
objects’ masses.

Implementing the chirp mass Mc as a canonical quantity, we de-
fine "the chirp" as a rapid frequency increase ḟ . Taking our modified
equation for Ω̇ (3.24) with the perception of the definition Ω = π f
(meaning the angular frequency Ω is two times lower than the fre-
quency f of the GWs), implying the wave has two peaks during one
orbit, we can rewrite the equation as follows,

ḟ =
96
5

c3

G
f

Mc

(
G
c3 π fMc

)8/3

. (3.27)

By integrating the equation (3.27) as
∫ d f

f 11/3 =
96
5

c3

G
1

Mc

(
G
c3 πMc

)8/3 ∫ tcoal

t
dt, (3.28)

we see that the frequency f formally diverges at the finite time →
the time of coalescence tcoal. We can now rewrite the equation of
frequency f of GWs in terms of the time remaining until merger (time
remaining to tcoal) as

f (t) =
1
π

(
c3

GMc

)5/8 [ 5
256 (tcoal − t)

]3/8

. (3.29)

Now, inserting the equations (3.27) and (3.29) to the formula (3.17)
will lead to an expression

Ṙ
R

= −2 ḟ
3 f

= − 1
4 (tcoal − t)

, (3.30)
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which we can integrate as the change of the radius according to time;
it will give ∫ R

R0

dR
R

= −
∫ t

t0

dt′

4 (tcoal − t′)
,

that is, R(t) =
(

tcoal − t
tcoal − t0

)1/4

, (3.31)

where R0 is the value of R at the initial time t0. Within this, we have to
consider that after a long phase in which the R is decreasing relatively
smoothly, there is a plunge phase where our approximation of a quasi-
circular orbit is no longer valid.

By rearranging the equation (3.27), we can get expression for chirp
mass Mc as

Mc =
c3

G

(
5
96

π−8/3 f−11/3 ḟ
)3/5

, (3.32)

which we can substitute into the angle-independent part of equations
either (3.22) or (3.23). We obtain (after some algebra and denomina-
tion of the general distance r to the luminosity distance D) the scaling
amplitude h0 as

h0 =
4
D

(
GMc

c2

)5/3 (π f
c

)2/3

. (3.33)

In this lowest orderNewtonian approximation, the amplitudes depend
on object masses m1 and m2 only through the chirp mass Mc. By
simple inversion, we can thus calculate the luminosity distance D,

D =
4
h0

(
GMc

c2

)5/3 (π f
c

)2/3

, (3.34)

which is a method of measuring the luminosity distance using only
GW observables. This is extremely useful as an independent distance
indicator in astronomy.

The amplitude of the emitted GWs depends on the angle between
the line of sight and the axis of angular momentum; that’s why the for-
mulas for amplitudes (3.22) and (3.23) contain angular factors. Thanks
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3. Answering the question about analysis

to this, we can also say that the relative strength of the two polariza-
tions also depends on the angle, which is why it is the best when
we actively use more than one detector for observing GWs. Not only
we are more likely to detect them but it is more likely to get clearer
and stronger signal which can help us to construct full waveform and
deduce much more details about the orbit of the BS. Great example
is the well-studied "the Hulse-Taylor pulsar" where we were able to
deduct the time of merger, period change, masses of the two neutron
stars that it consists of and how far the BS is.

3.2.2 Where to obtain data?

We now need to obtain data that we can analyze. All data used in this
thesis are from GWOSC (Gravitational Wave Open Science Center).
The GWOSC has a database of every detection of GWs to this day with
classifications of the data types: pre-confident data released before
the catalogization and confident data released in the catalog, which
are supplied by worldwide detectors.

For this thesis,wewill be using the data published inAGravitational-
Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and
Virgo during the First and Second Observing Runs (GWRC-1 for short).
If labeled as confident, LIGO and Virgo marked them as relevant
based on the correct determination of time of the detection and correct
interval of frequency, to classify it as the real detection of GWs. In
the GWTC-1-confident catalog, the classification of data is based on
how long we want data around the event and in which interval of
frequencies we want the strain time-series data to be sampled. For our
use, we chose data detected within 32 seconds around the events with
a sampling rate of 4096 Hz. [29]

3.2.3 What else is needed for calculations?

Now that we know how to calculate values of our needed parameters
and where to find data of the mergers, all we need is to assign precise
values of physical constants used in the formulas. We will use SciPy
[30] and its package scipy.constants, where we can find values valid
to many decimal places (depending on howwell we, as a society, were
able to measure them). As promised in section 3.2.1, in this paragraph
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is a table with all the constants that occur in the formulas introduced
and some of the unit conversions used. 2

Table 3.1: Overview of used constants and conversions.

Value / Conversion
Parsec to meter 1pc = 3.086 × 1016 m
Solar mass to kilogram 1M⊙ = 1.998 × 1030 kg
Newton’s gravitational constant G = 6.674 × 10−11 m3 · kg−1 · s−2

Speed of light c = 299792458.0m · s−1

We also need to establish the merger’s qualities as discussed in
section 3.2.1.

Table 3.2: Used parameters of mergers GW150914, GW170814, and
GW170817.

GW150914 GW170814 GW170817
t (s) (GPS) 1126259462.4 1186741861.5 1187008882.4
D (Mpc) 440+150

−170 600+150
−220 40+7

−15
m1 (M⊙) 35.6+4.7

−3.1 30.6+5.6
−3.0 1.46+0.12

−0.10
m2 (M⊙) 30.6+3.0

−4.4 25.2+2.8
−4.0 1.27+0.09

−0.09

In the table 3.2 the quantities are t for a GPS time (Global Position-
ing System time) in seconds, D is a luminosity distance inMegaparsecs
and m1,2 are primary and secondary mass in solar masses.

2. Of course, we did not write the constant correctly to all of the decimal places
that are known, this is just to grasp what the values approximately are. The accurate
values used are available at the official website of SciPy.
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4 Analysis and calculation of theoretical wave-
form

Now that all is ready, we can start processing data:

We used the most basic packages for plotting and basic mathematical
calculations Numpy, Matplotlib, and already mentioned SciPy. Only
packages that stand out are packages ReadLigo and H5py. These are
used for reading the datasets used in this analysis. For measured data
(MD for short), we used code from the tutorials made specifically by
GWOSC to help us get through common data analysis. For this part,
we got help from a tutorial "SIGNAL PROCESSING WITH GW150914
OPEN DATA" [31] and its updated version "BINARY BLACK HOLE
SIGNALS IN LIGO OPEN DATA" [32]. Our version of the used code
for analysis is listed in Appendix A.

4.1 GW150914

GW150914 is the first detection of gravitational waves, that confirmed
explanation of GWs by GTR, so it is highly appropriate and suitable
to analyze it first and show how we are doing it, so we can later apply
it to the events GW170814 and GW170817.

4.1.1 Measured data

Before starting, let us remind ourselves that we worked with the MD
from GWOSC. We were following the code in subsection A.1.2 which
we adopted from the mentioned tutorials ([31] and [32]).

In figure 4.1, there are raw data plotted to show 10 seconds around
the event (5 seconds before and 5 seconds after) for both aLIGO detec-
tors H1 (in Hanford, Washington) and L1 (in Livingston, Louisiana).
In this case, we can put them together because the data are not much
different from each other (later we will slightly shift L1 data which
will be mentioned again).
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4. Analysis and calculation of theoretical waveform

Figure 4.1: Raw Advanced LIGO strain data near GW150914.

The raw data mainly consist of low-frequency noise so we need
to process them to see the signal, that is why we are going to whiten
the data with Fast Fourier Transform (FFT for short) and Ampli-
tude Spectral Density (ASD for short). The whitening is crucial in
every data analysis in astrophysics. It is also very convenient because
we do not need any information about the spectral lines so we only
work with measured data. Whitening means, we are dividing the data
by the noise amplitude spectrum. Thanks to that, we can better see
the weak signals. Plotting the data in the Fourier domain will give us
a picture of how the frequency contents of the data look. The ASDs
are a way to visualize the frequency contents and represent the square
root of the power spectral densities (PSDs) , which are obtained by
averaging the squares of the fast Fourier transforms (FFTs) of the data.
Thanks to that, we can better extract the weak signals.

We plotted data in the frequency interval from 10Hz to 2000Hz
because the data below this interval is not properly calibrated and even
if they were, there is very high noise so we cannot extract the proper
GWs strain there. On the other hand, the data cannot capture frequency
above theNyquist frequency (the highest achievable frequency)which
can be expressed by a sampled signal as a fnyq = f /2. This means
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that our highest frequency is fnyq = 2048Hz which is not a problem
because the GW150914 has a detectable range of 20Hz to 300Hz [31].

We are also bandpassing the data. By bandpassing , we are letting
pass only frequencies of the chosen interval of frequencies and oth-
ers are suppressed. As was mentioned in the paragraph above, our
interval is from 20Hz to 300Hz. We also shifted the data from L1 by
7ms so both H1 and L1 are lined up [31].3 The plotted ASDs and the
whitened data are shown in figures 4.2 and 4.3

Figure 4.2: ASDs of Advanced LIGO data near GW150914.

Now we can already see an intensifying wave ready for the theo-
retical waveform (TW for short) to be plugged in.

3. In [31], they did not shift the data so the event is happening at the zero time, but
later they shifted the non-relativistic form they are plugging in. For our convenience,
we chose the opposite way and shifted the data so that later it is evident where our
calculations took us.
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Figure 4.3: Whitened Advanced LIGO strain data near GW150914.

4.1.2 Theoretical waveform

Now that we whitened the data, we will plot our TW using the code
in subsection A.1.3. For the TW, we used formulas (3.29) and (3.33) to
calculate the frequency and the amplitude used in the wave function.
As can be seen, we used the scaling amplitude h0 (meaning we did
not use the angular factors). We used it as an approximation so we
do not need to calculate the angles. When we got our parameter, we
simply plugged it into a basic formula describing the wave,

w = A cos ωt, (4.1)

where A = h0 and ω = 2π f . We defined time t as an interval that
corresponds to the time interval we used for whitened data so the TW
and MD fit nicely with each other.

After calculations and plotting, while the silhouette of our TW
looks nice when we plot it over MD, it does not fit quite well when
we only use the values from table 3.2 without adding or subtracting
the deviation; the collision corresponds and fits nicely but the farther
we are from tcoal, there are some deviations. We tried many combina-
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tions of values and uncertainties as seen in figures 4.4 and 4.5 before
ending up with the version depicted in figure 4.6.

For the TW to fit like Cinderella’s shoe, some tweaking was nec-
essary. After trials and errors, we found out the luminosity distance
D should be used with minus uncertainty (the uncertainty that is
subtracted from the parameter’s value), and masses m1,2 with minus
uncertainty and subtraction of 6.5 M⊙ which is quite the correction, as
6.5 M⊙ is in the primary star’s mass almost 1/6 and for the secondary
star it is roughly 1/5. We will comment more on that in the conclusion
in the chapter 5.

37



4. Analysis and calculation of theoretical waveform

Figure 4.4: Comparing TW to the MD of GW150914 while chang-
ing the parameters from table 3.2: a) values without uncertainties,
b) values while adding uncertainties, c) adding uncertainty only in
luminosity distance, d) adding uncertainties to both masses.
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Figure 4.5: Comparing TW to the MD of GW150914 while chang-
ing the parameters from table 3.2: e) values while subtracting un-
certainties, f) subtracting uncertainty only in luminosity distance, g)
subtracting uncertainties to both masses, h) subtracting uncertain-
ties from themselves (D = 440 − 20 Mpc, m1 = 35.6 + 1.6 M⊙, m2 =
30.6 − 1.4 M⊙).
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Figure 4.6: Final TW showcased on whitened strain data near
GW150914.

4.1.3 Spectrograms

Lastly, let us plot a short time-frequency spectrogram with a color
gradient displaying an amplitude corresponding to the frequency
otherwise called "loudness" or "strength" of the signal (in our case
the lighter the color is, the higher is the value of the amplitude). With
these, we can obtain a visual representation of how the frequency
varies with time. For comparison, we will be plotting both raw and
whitened data. It might be obvious but just in the following case: we
cannot plot bothH1 andL1 together, although stated in subsection 4.1.1
that the H1 and L1 are not much different, in the case of spectrograms
it is always better to do everything one by one.

On the spectrograms in figures 4.7 and 4.8, you can see very promi-
nent horizontal lines at 500, 1000, and 1500 Hz; when we look back at
the figure 4.2 you can see a correlation with the vertical lines on our
ASDs graph. These lines are multiples of 500 Hz that are harmonics
of the "violin modes" of the fibers holding the mirrors of the aLigo
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interferometers. Also, we can see quite a lot of excess power below
approx. 20 Hz [32].

The main focus should be on a very faint white line around zero
time. This gives us a clue to where the "chirp" could be. At the end,
the chirp will be there so let us zoom in and use whitened data to help
us to see it better.

Figure 4.7: Time-frequency spectrogram of aLIGO H1 raw strain data
near GW150914. The sense of the colorbar is explained at the start of
the section 4.1.3.
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Figure 4.8: Time-frequency spectrogram of aLIGO L1 raw strain data
near GW150914.

Figure 4.9: Time-frequency spectrogram of aLIGOH1whitened strain
data near GW150914.
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Figure 4.10: Time-frequency spectrogram of aLIGO L1 whitened
strain data near GW150914.

Now, thanks to our intuition and zooming in on that faint line,
the iconic "chirp" of the merger on the spectrograms in figures 4.9
and 4.10 is depicted as a bold white "whoosh". The figures show us
the definition of chirp - the rapid frequency growth before the collision.

4.2 GW170814

Let us continue chronologically with GW170814. This detection was
also "The first" with GWs because for the first time, GWswere detected
by the all then operating detectors (meaning both detectors of aLigo
and also Virgo, during the LVC)

4.2.1 Measured data

For this detection and later also for GW170817 (also mentioned at
the beginning of the section 4.1), we essentially followed the same
steps applied to the GW150914. Every detection of GWs is unique
and different, therefore, we need to change some intervals and values.
Even though we are using the same code, the version for this detection
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will have its section in the appendix (A.2 with the code for the TW in
subsection 4.2.2 and for spectrograms in subsection 4.2.3).

In the following order, we plotted the raw data, the ASDs, and
the whitened data. For the raw data in figure 4.11, we see that the

Figure 4.11: Raw Advanced LIGO strain data near GW170814.

Hanford detector H1 has a much bigger strain, but as we mentioned
in the section 4.1 where we analyzed the GW150914; this data is not
the best to look for signal without any "cleaning". As seen in 4.13, it
did not influence the final whitened data when the standard approach
without any tweaking was used. Also, we chose a smaller time interval
so the peaks can be seen because if we decided to choose a longer one,
it would look like some "data forest" which is even more confusing
than the raw data itself, so let us keep it simple. Lastly, there is an
evident difference from GW150914 which is that the signals overlap
each other; at the first sight, it could look like the data is not beauti-
fully separated as in the previous case and we were too lazy to do
that, which is not true. About the data itself: we are not sure if it is
caused by GWOSC or just by the nature of the data, but we will not
be questioning the data anymore because all of the data are from the
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GWTC-1-confident catalog and we are putting trust in the scientist
that proclaimed them confident.

Figure 4.12: ASDs of Advanced LIGO data near GW170814.

When it comes to ASDs in figure 4.12, we can easily see the vertical
lines that will copy to the spectrograms as horizontal lines as seen in
figures 4.17 and 4.18. Thankfully, we did not need to change anything
in case of frequency interval or Nyquist frequency here because we are
still using the aLIGO data that were measured by the same detectors
with the same parameters as GW150914.
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Figure 4.13: Whitened Advanced LIGO strain data near GW170814.

Final whitened data in figure 4.13 are not as clearly defined as in
the previous case but we can still observe some "waviness" in there.
After plugging in the TW, it will all come together.

4.2.2 Theoretical wavefunction

Now for the TW, we chose the corresponding data for this event from
the table 3.2. While analyzing, we encountered the same problem
as with GW150914, meaning we had to try out all the combinations
of values and uncertainties as can be seen in figures 4.14 and 4.15.
For all the other steps we did the same as with GW150914 meaning
the calculation of parameters and plugging them into a basic wave
equation. The final graph with both MD and TW is depicted in figure
4.24.
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Figure 4.14: Comparing TW to the MD of GW170814 while chang-
ing the parameters from table 3.2: a) values without uncertainties,
b) values while adding uncertainties, c) adding uncertainty only in
luminosity distance, d) adding uncertainties to both masses.
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Figure 4.15: Comparing TW to the MD of GW170814 while chang-
ing the parameters from table 3.2: e) values while subtracting un-
certainties, f) subtracting uncertainty only in luminosity distance, g)
subtracting uncertainties to both masses, h) subtracting uncertain-
ties from themselves (D = 600 − 70Mpc, m1 = 30.6 + 2.6 M⊙, m2 =
25.2 − 1.2 M⊙).

As can be seen once again, none of the combinations were able to
fit the MD data nicely so we needed to add corrections. This time, our
correction applied to masses m1,2 by adding 4.6 M⊙ while using all
values from table 3.2 with the minus uncertainties. Whilst the TW fits
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as snuggly as we were able to make it to, it is not of the best occurrence
because a) it needed to be added without any previous reasoning (we
did not do anything that explicitly needed this correction) and b) it is
different from the GW150914 correction which could mean it is not
a statistical error. We will discuss this matter later in the conclusions,
in the chapter 5.

Figure 4.16: Final TW showcased on whitened stain data near
GW170814.

4.2.3 Spectrograms

Lastly, let us look at the spectrograms.Aswe said earlier in theGW170814
analysis (4.2.1) in the raw data spectrograms in figures 4.17 and 4.18,
we can see the ASDs vertical lines turned into horizontal lines and on
x-axis when the time equals to zero, we can see small faint vertical
line which as we know is a clue where the chirp is.

In the whitened data spectrograms, we can see once again the chirp
as a white "whoosh" which is more defined in the case of the L1
detector in figure 4.20. There is a very wild-looking background for
the H1 whitened data spectrogram in figure 4.17 so if we do not know
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what we are looking at and what we are looking for, it would be a
tough nut to crack.

Figure 4.17: Time-frequency spectrogram of aLIGO H1 raw strain
data near GW170814.

Figure 4.18: Time-frequency spectrogram of aLIGO L1 raw strain
data near GW170814.
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Figure 4.19: Time-frequency spectrogram of aLIGO H1 whitened
strain data near GW170814.

Figure 4.20: Time-frequency spectrogram of aLIGO L1 whitened
strain data near GW170814.
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4.3 GW170817

Last but not least (actually the "biggest" detection in terms of observa-
tion), we will analyze the detection of GW170817. This detection is
important because it was not only detected via the GW detectors but
also by gamma-ray detectors (and the following afterglows) thanks
to the short gamma-ray burst that accompanied the GWs.

4.3.1 Measured data

As was done before, in this section would normally be an analysis
of MD where we would showcase a progress from raw, quite nasty-
looking data to pleasant wave formation in the whitened data. In
this case, it is not possible. The data is very diverse when it comes
to the datasets from each aLIGO detector and even when it comes
to frequencies in the same dataset. This might be because it was a
powerful signal compared to the time of quiescence and the fact that
it was accompanied by the gamma-ray burst.

Even though this is the case, it would be a shamenot to demonstrate
how it turned out because it is still an analysis of the data. It might
not be usable but at least it will show that not all things go the way
we want and also it could serve as a reassurance for those who are
racking their brains over this data and wondering where they went
wrong. So, in the figures 4.21, 4.22, and 4.23, we can see our attempts
to analyze the data.

At the first sight, the raw data in figure 4.21 looks somewhat like
the GW170814 raw data pictured in figure 4.11. In both cases, we
needed to choose a smaller time interval so it looks presentable, yet
the outcomes are as different as chalk and cheese. Also in the case of
GW170817, the chirp is shifted to t = −1 s. The same goes for theASDs
in figure 4.22 where we would not be able to tell if the data will end
up in the same way as in our two previous attempts.

In figure 4.23,we see the problem. There is noway,we can bandpass
the data in one time interval that would show us the big chirp detected
on the L1 detector and simultaneously show the data detected on
the H1 detector. In this thesis, we are trying to analyze the data so
they can sit on each other and complete each other, so this data leads
to no purpose. Even if we could successfully separate the data, there
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would be more complications that we will mention in conclusions in
the chapter 5.

Figure 4.21: Raw Advanced LIGO strain data near GW170817.

Figure 4.22: ASDs of Advanced LIGO data near GW170817.
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Figure 4.23: Whitened Advanced LIGO strain data near GW170817.
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4.3.2 Theoretical wavefunction

This subsection is only to expose more of our fiasco, yet again, we
think it is important to show this, so one can see all we did to try to
make it all work.

Basically, in figure 4.24, we can see how inadequate is the TW on
MD. We used the values from table 3.2 without using uncertainties.
We did not include our trials as we did for GW150914 and GW170814
(subsections 4.1.2 and 4.2.2) because all of them were as ill-fitting as
this one.

Figure 4.24: Final TW showcased on whitened strain data near
GW170817.

4.3.3 Spectrograms

When it comes to the spectrograms, it is better. We can easily see the
clues where the chirp should be and on the whitened data where
the chirp is. Also, as said before in subsection 4.3.1, the chirp is not
happening in time equal to zero but around t = −1 s.
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Figure 4.25: Time-frequency spectrogram of aLIGO H1 raw strain
data near GW170817.

Figure 4.26: Time-frequency spectrogram of aLIGO L1 raw strain
data near GW170817.
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Figure 4.27: Time-frequency spectrogram of aLIGO H1 whitened
strain data near GW170817.

Figure 4.28: Time-frequency spectrogram of aLIGO L1 whitened
strain data near GW170817.

As expected (based on our whitened data in figure 4.21), the L1
detector has striking vertical flash thanks to the simultaneous gamma-
ray beammainly detected on the L1 detector. On the other hand, theH1
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has a beautiful wide chirp going on that can be seen on both raw and
whitened data spectrograms. It is wider because we chose a smaller
interval, if we chose a larger interval it would look more like chirps
for the two events analyzed before (subsections 4.1.3 and 4.2.3).
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5 Conclusions

Our goal within this thesis was to analyze three of the most known
gravitational wave detections and couple them with a calculated theo-
retical waveform that would fit measured data obtained fromGWOSC.

In the first chapter, we showed how they look while warping
the spacetime and where they come from. We explained that they can
come from not only a collapsing system but also from non-perfectly
spherical neutron stars. We continued with the chapter by explain-
ing how to detect gravitational waves. We introduced some history
of gravitational wave detectors following up with a small interfer-
ometry lecture that is used in the detectors. Lastly, we listed one of
the most important gravitational wave detectors that are functioning
and detecting at this moment with some that will soon be built.

The second chapter presents the basis of The General Theory of Rel-
ativity. We dived into the history of the origin, and later to the "found-
ing block", the Einstein field equation. We discussed the equation and
explained every part of it.

The third chapter is the start of our analysis.We introduced reasons
and tools for analysis and we dipped toes to some of the parameters
that will be needed for the analysis.

In the last fourth chapter, the fun begins. We started analyzing the
obtained data from GWOSC. As goes for GW150914 and GW170814
with the measured data from GWOSC, everything went well but
the theoretical waveformwas quite the bumpy ride. We found out that
we needed to correct the values of masses used in calculations (m1,2)
for the theoretical waveform to fit and couple nicely themeasured data.
The problem is that the correction was not the same at both events
meaning we cannot say it is a statistical error. The corrections were
also big fractions of the masses themselves (ranging from 15% to 20%
of the used masses). With the help of published papers on studied
events, we were able to find out that the models are hard to determine
because of the uncertainties and basically the scientists have their own
special methods to do this [14] [33] [34]. If we would compare our
two-formula approach to calculate the waveform and their special
methods, we would find out that maybe therein lies the rub. When it
comes to GW170817, the only thing testing the information of the data

59



5. Conclusions

are the spectrometers. On the other hand, while doing research for
this thesis, we found out that the chirp function made from the mea-
sured data of this event is nowhere to be found. Even in the paper
about this event, there is only one figure that could be compared to
our measured data and that is the raw LIGO-Livingston data that
were cleaned differently than we did in our analysis with added glitch
model ([34] figure 2). By that, we can predict that the data itself is
not the best for the analysis we are doing.
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A Appendix

A.1 Codes with steps for GW150914

As mentioned in the main text we will be using code provided by
GWOSC from their listed tutorials with some changes.[31][32]

A.1.1 Packages

Step 1 - Importing packages We wrote all the calculations and plot-
ted the data in Python programming language so for us to be
able to start it is important to import packages that we will
use in making theoretical waveforms as well as in processing
measured data from GWOSC.

1 import numpy as np
2 from scipy import signal
3 from scipy. interpolate import interp1d
4 from scipy. signal import butter , filtfilt ,

iirdesign , zpk2tf , freqz
5
6
7 % matplotlib inline
8 % config InlineBackend . figure_format = ’retina ’
9 import matplotlib . pyplot as plt
10 import matplotlib .mlab as mlab
11 import h5py
12
13
14 import readligo as rl
15
16 import scipy. constants as const

Listing A.1: Importing packages

A.1.2 Measured data

Step 2 - Importing data and defining factors We used data down-
loaded from GWOSC as mentioned in subsection 3.2.2

1 #H1
2 fn_H1 = ’H- H1_GWOSC_4KHZ_R1 -1126259447 -32. hdf5 ’
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3 strain_H1 , time_H1 , chan_dict_H1 = rl. loaddata (

fn_H1 , ’H1’)
4
5 #L1
6 fn_L1 = ’L- L1_GWOSC_4KHZ_R1 -1126259447 -32. hdf5 ’
7 strain_L1 , time_L1 , chan_dict_L1 = rl. loaddata (

fn_L1 , ’L1’)
8
9 # sampling rate:

10 fs = 4096
11
12 #both H1 and L1 will have the same time vector , so:
13 time_EV = time_H1
14
15 #the time sample interval ( uniformly sampled !)
16 dt = time_EV [1] - time_EV [0]

Listing A.2: Importing data and defining factors

Step 3 - Ploting raw data Where we also defined the time of the
event that will be used in further codes.

1 tevent = 1126259462.4 # GPS time of the event
2 deltat = 5. # seconds around the

event
3
4 # index into the strain time series for this time

interval :
5 indxt = np.where (( time_H1 >= tevent - deltat ) & (

time_H1 < tevent + deltat ))
6
7 plt. figure ()
8 plt.plot( time_H1 [indxt]-tevent , strain_H1 [indxt],

label=’H1 strain ’, color=’c’)
9 plt.plot( time_L1 [indxt]-tevent , strain_L1 [indxt],

label=’L1 strain ’, color=’lightpink ’)
10 plt. xlabel (’time (s) since ’+str( tevent ))
11 plt. ylabel (’strain ’)
12 plt. legend (loc=’lower right ’)

Listing A.3: Plotting raw data

Step 4 - Defining FFT/Interpolations of the ASDs These are the first
steps to whitening the data.
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1 # number of sample for the FFT:
2 NFFT = 1*fs
3 fmin = 10
4 fmax = 2000
5 Pxx_H1 , freqs = mlab.psd(strain_H1 , Fs = fs , NFFT =

NFFT)
6 Pxx_L1 , freqs = mlab.psd(strain_L1 , Fs = fs , NFFT =

NFFT)
7
8 # We will use interpolations of the ASDs computed

above for whitening :
9 psd_H1 = interp1d (freqs , Pxx_H1 )
10 psd_L1 = interp1d (freqs , Pxx_L1 )
11
12 # plot the ASDs:
13 plt. figure ()
14 plt. loglog (freqs , np.sqrt( Pxx_H1 ),label=’H1 strain ’

, color="c")
15 plt. loglog (freqs , np.sqrt( Pxx_L1 ),label=’L1 strain ’

, color =’lightpink ’)
16 plt.axis ([fmin , fmax , 1e-24, 1e -19])
17 plt.grid(’on’)
18 plt. ylabel (’ASD ( strain /rtHz)’)
19 plt. xlabel (’Freq (Hz)’)
20 plt. legend (loc=’upper center ’)

Listing A.4: FFT and ASDs

Step 5 - Function to whiten the data Weare transformingdata from
the Fourier domain back to the frequency domain, deciding it
by the ASDs.

1 # function to whiten data
2 def whiten (strain , interp_psd , dt):
3 Nt = len( strain )
4 freqs = np.fft. rfftfreq (Nt , dt)
5
6 # whitening : transform to freq domain , divide

by asd , then transform back ,
7 # taking care to get normalization right.
8 hf = np.fft.rfft( strain )
9 white_hf = hf / (np.sqrt( interp_psd (freqs) /dt

/2.))
10 white_ht = np.fft.irfft(white_hf , n=Nt)
11 return white_ht
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12
13 # now whiten the data from H1 and L1:
14 strain_H1_whiten = whiten (strain_H1 ,psd_H1 ,dt)
15 strain_L1_whiten = whiten (strain_L1 ,psd_L1 ,dt)

Listing A.5: Whitening function and whitening of data

Step 6 - Bandpassing and plotting whitened data Now let us define
the interval of frequencies that we will "let through" for the
band passing and plot the whitened data.

1 # We need to suppress the high frequencies with
some bandpassing :

2 bb , ab = butter (4, [20.*2./ fs , 300.*2./ fs], btype=’
band ’)

3 strain_H1_whitenbp = filtfilt (bb , ab ,
strain_H1_whiten )

4 strain_L1_whitenbp = filtfilt (bb , ab ,
strain_L1_whiten )

5 k=0
6
7 # plot the data after whitening :
8 # first , shift L1 by 7 ms , and invert .
9 strain_L1_shift = -np.roll( strain_L1_whitenbp ,int

(0.007* fs))
10
11 plt. figure ()
12 plt.plot(time_EV -tevent -0.0215 , strain_H1_whitenbp ,’

c’,label=’H1 strain ’)
13 plt.plot(time_EV -tevent -0.0215 , strain_L1_shift ,’

lightpink ’,label=’L1 strain ’)
14
15 plt.xlim ([ -0.1 ,0.05])
16 plt.ylim ([ -4 ,4])
17 plt. xlabel (’time (s) since ’+str( tevent ))
18 plt. ylabel (’whitented strain ’)
19 plt. legend (loc=’lower left ’)

Listing A.6: Bandpassing and final look at the data

A.1.3 Theoretical waveform

Step 1 - Defining parameters Just so we do not need to write the
numerical values over and over again.
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1 N=1000 # numbers of steps used in plotting
2 pc = const. parsec # parsec
3 Mpc = 1.e6*pc # megaparsec
4 pi=const.pi #pi
5 G= const. gravitational_constant # gravitational

constant
6 c_light = const. speed_of_light #speed of light
7 # choosing of the time of the collision , we chose 0

because the measured data from GWOSC are
adjusted so the collision is at time zero

8 t_coal =0.
9 #with t_coal and t_max we are defining time

interval where we want to calculate our
theoretical waveform

10 t_max = 0.3
11 m_1 =(35.6 -3.1 -6.5) *1.98840987 e+30 # Primary mass
12 m_2 =(30.6 -4.4 -6.5) *1.98840987 e+30 # Secondary mass
13 dist =(452. -170) *Mpc # Luminosity distance
14
15 # definition of parameters used for chirp mass

calculation
16 M_tot=m_1+m_2
17 numerator =m_1*m_2
18 denominator =M_tot
19
20 m_chirp =( numerator **(3./5.) )/( denominator **(1./5.) )

#chirp mass
21
22 time_WF = np. linspace ( t_coal +t_max/N,t_max , N,

endpoint = True) #time ( inverted )
23 neg_time_WF = -1.* time_WF

#time interval used as a x values
for plot

Listing A.7: Shortcuts for values

Step 2 - Calculating needed parameters Using the formulas men-
tioned in subsection ??.

1 f=(1./ pi)*(( c_light **3./(( G* m_chirp ))) **(5./8.) )
*(5./(256.*( t_coal + time_WF ))) **(3./8.) #
frequency

2
3 h_0 =4./ dist *(G* m_chirp / c_light / c_light ) **(5./3.) *(

pi*f/ c_light ) **(2./3.) # amplitude

Listing A.8: Calculation of parameters for wave function
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Step 3 - Plotting the wave The final step is to pluck the parameters

into basic wave formula also mentioned in subsection ??.
1 # Plotting
2 waveform = h_0*np.cos (2.* pi*f* time_WF )
3
4 plt.plot( neg_time_WF ,waveform , ’-’,color=’dimgrey ’)
5 plt.xlim(-t_max , t_coal )
6 plt. xlabel (’time (s) since 1126259462.4 ’)
7 plt. ylabel (’strain ’)
8 plt.title(’Theoretical waveform for data near

GW150914 ’)

Listing A.9: Calculation of parameters for wave function

A.1.4 Combination of MD and TW

1 #now plotting whitened data with theoretical waveform
2
3 plt. figure ()
4 plt.plot(time_EV -tevent -0.0215 , strain_H1_whitenbp ,’c’,

label=’H1 strain ’)
5 plt.plot(time_EV -tevent -0.0215 , strain_L1_shift ,’lightpink

’,label=’L1 strain ’)
6 plt.plot( neg_time_WF ,( waveform /10e -22) , ’-’,color=’

dimgrey ’,label= ’TW’)
7
8
9 plt.xlim ([ -0.1 ,0.05])
10 plt.ylim ([ -4 ,4])
11 plt. xlabel (’time (s) since ’+str( tevent ))
12 plt. ylabel (’whitented strain ’)
13 plt. legend (loc=’lower left ’)

Listing A.10: Combining MD and TW

A.1.5 Spectrograms

Step 1 - Plotting the raw data We started by defining the time in-
terval, following up with defining the FFS we are going to use,
and choosing the colormap so everything can be read. In the
end, we plotted it.
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1 if make_plots :
2 # index into the strain time series for this

time interval :
3 indxt = np.where (( time_EV >= tevent - deltat ) & (

time_EV < tevent + deltat ))
4
5 # pick a shorter FTT time interval , like 1/8 of

a second :
6 NFFT = int(fs /8)
7 # and with a lot of overlap , to resolve short -

time features :
8 NOVL = int(NFFT *15./16)
9 # and choose a window that minimizes " spectral

leakage "
10 window = np. blackman (NFFT)
11
12 # the colormap is all - important !
13 spec_cmap =’gist_gray ’
14
15
16 # Plot the H1 spectrogram :
17 plt. figure ( figsize =(10 ,6))
18 spec_H1 , freqs , bins , im = plt. specgram (

strain_H1 [indxt], NFFT=NFFT , Fs=fs , window =
window ,

19
noverlap =NOVL , cmap=spec_cmap , xextent =[- deltat ,
deltat ])

20 plt. xlabel (’time (s) since ’+str( tevent ))
21 plt. ylabel (’Frequency (Hz)’)
22 plt. colorbar ()
23 plt.axis ([- deltat , deltat , 0, 2000])
24
25
26 # Plot the L1 spectrogram :
27 plt. figure ( figsize =(10 ,6))
28 spec_H1 , freqs , bins , im = plt. specgram (

strain_L1 [indxt], NFFT=NFFT , Fs=fs , window =
window ,

29
noverlap =NOVL , cmap=spec_cmap , xextent =[- deltat ,
deltat ])

30 plt. xlabel (’time (s) since ’+str( tevent ))
31 plt. ylabel (’Frequency (Hz)’)
32 plt. colorbar ()
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33 plt.axis ([- deltat , deltat , 0, 2000])

Listing A.11: Making and plotting spectrogram of raw data

Step 3 - Plotting the whitened data Same as step one but using the
whitened data.

1 if make_plots :
2 # plot the whitened data , zooming in on the

signal region :
3
4 # pick a shorter FTT time interval , like 1/16

of a second :
5 NFFT = int(fs /16.0)
6 # and with a lot of overlap , to resolve short -

time features :
7 NOVL = int(NFFT *15/16.0)
8 # choose a window that minimizes " spectral

leakage "
9 window = np. blackman (NFFT)

10
11 # Plot the H1 whitened spectrogram around the

signal
12 plt. figure ( figsize =(10 ,6))
13 spec_H1 , freqs , bins , im = plt. specgram (

strain_H1_whiten [indxt], NFFT=NFFT , Fs=fs ,
window =window ,

14
noverlap =NOVL , cmap=spec_cmap , xextent =[- deltat ,
deltat ])

15 plt. xlabel (’time (s) since ’+str( tevent ))
16 plt. ylabel (’Frequency (Hz)’)
17 plt. colorbar ()
18 plt.axis ([ -0.5 , 0.5, 0, 500])
19
20
21
22 # Plot the L1 whitened spectrogram around the

signal
23 plt. figure ( figsize =(10 ,6))
24 spec_H1 , freqs , bins , im = plt. specgram (

strain_L1_whiten [indxt], NFFT=NFFT , Fs=fs ,
window =window ,

25
noverlap =NOVL , cmap=spec_cmap , xextent =[- deltat ,
deltat ])
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26 plt. xlabel (’time (s) since ’+str( tevent ))
27 plt. ylabel (’Frequency (Hz)’)
28 plt. colorbar ()
29 plt.axis ([ -0.5 , 0.5, 0, 500])

Listing A.12: Making and plotting spectrogram of raw data

A.2 Code for GW170814

As goes for this detection and later the GW170817, we will not be
including steps for the code. We were following the same steps so it
will not be necessary.

1 # importing packages
2
3 import numpy as np
4 from scipy import signal
5 from scipy. interpolate import interp1d
6 from scipy. signal import butter , filtfilt , iirdesign ,

zpk2tf , freqz
7
8
9 % matplotlib inline

10 % config InlineBackend . figure_format = ’retina ’
11 import matplotlib . pyplot as plt
12 import matplotlib .mlab as mlab
13 import h5py
14
15
16 import readligo as rl
17
18 import scipy. constants as const
19
20 # H1
21 fn_H1 = ’H- H1_GWOSC_4KHZ_R1 -1186741846 -32. hdf5 ’
22 strain_H1 , time_H1 , chan_dict_H1 = rl. loaddata (fn_H1 , ’H1

’)
23
24 # L1
25 fn_L1 = ’L- L1_GWOSC_4KHZ_R1 -1186741846 -32. hdf5 ’
26 strain_L1 , time_L1 , chan_dict_L1 = rl. loaddata (fn_L1 , ’L1

’)
27
28 # sampling rate:
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29 fs = 4096
30
31 # both H1 and L1 will have the same time vector , so:
32 time_EV = time_H1
33
34 # the time sample interval ( uniformly sampled !)
35 dt = time_EV [1] - time_EV [0]
36
37 # calculation of our theoretical waveform
38 N=1000
39 pc = const. parsec
40 Mpc = 1.e6*pc
41 pi=const.pi
42 G= const. gravitational_constant
43 c_light = const. speed_of_light
44 t_coal =0.
45 t_max = 0.3
46 m_1 =(30.6 -3.0 -4.6) *1.98840987 e+30
47 m_2 =(25.2 -0.3 -4.6) *1.98840987 e+30
48 dist =(600 -220)*Mpc
49
50 M_tot=m_1+m_2
51 numerator =m_1*m_2
52 denominator =M_tot
53
54 m_chirp =( numerator **(3./5.) )/( denominator **(1./5.) )
55
56
57 time_WF = np. linspace ( t_coal +t_max/N,t_max , N, endpoint =

True) #time ( inverted )
58 neg_time_WF = -1.* time_WF

#time
59
60 f=(1./ pi)*(( c_light **3./(( G* m_chirp ))) **(5./8.) )

*(5./(256.*( t_coal + time_WF ))) **(3./8.) # frequency
61
62 h_0 =4./ dist *(G* m_chirp / c_light / c_light ) **(5./3.) *(pi*f/

c_light ) **(2./3.) # amplitude
63
64 waveform = h_0*np.cos (2.* pi*f* time_WF )
65
66
67
68 # Plotting
69 plt.plot( neg_time_WF ,waveform , ’-’,color=’dimgrey ’)
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70 plt.xlim(-t_max , t_coal )
71 plt. xlabel (’time (s) since 1126259462.4 ’)
72 plt. ylabel (’strain ’)
73
74 # Show the plot
75 plt.show ()
76
77 # plot raw +- 3 seconds around the event:
78 tevent = 1186741861.5
79 deltat = 3.
80
81 # index into the strain time series for this time

interval :
82 indxt = np.where (( time_H1 >= tevent - deltat ) & ( time_H1 <

tevent + deltat ))
83
84 plt. figure ()
85 plt.plot( time_H1 [indxt]-tevent , strain_H1 [indxt],label=’H1

strain ’, color=’c’)
86 plt.plot( time_L1 [indxt]-tevent , strain_L1 [indxt],label=’L1

strain ’, color=’lightpink ’)
87 plt. xlabel (’time (s) since ’+str( tevent ))
88 plt. ylabel (’strain ’)
89 plt. legend (loc=’lower right ’)
90
91 # number of sample for the fast fourier transform :
92 NFFT = 1*fs
93 fmin = 10
94 fmax = 2000
95 Pxx_H1 , freqs = mlab.psd(strain_H1 , Fs = fs , NFFT = NFFT)
96 Pxx_L1 , freqs = mlab.psd(strain_L1 , Fs = fs , NFFT = NFFT)
97
98 # We will use interpolations of the ASDs computed above

for whitening :
99 psd_H1 = interp1d (freqs , Pxx_H1 )

100 psd_L1 = interp1d (freqs , Pxx_L1 )
101
102 # plot the ASDs:
103 plt. figure ()
104 plt. loglog (freqs , np.sqrt( Pxx_H1 ),label=’H1 strain ’,

color="c")
105 plt. loglog (freqs , np.sqrt( Pxx_L1 ),label=’L1 strain ’,

color =’lightpink ’)
106 plt.axis ([fmin , fmax , 1e-24, 1e -19])
107 plt.grid(’on’)
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108 plt. ylabel (’ASD ( strain /rtHz)’)
109 plt. xlabel (’Freq (Hz)’)
110 plt. legend (loc=’upper center ’)
111
112
113 # function to whiten data
114 def whiten (strain , interp_psd , dt):
115 Nt = len( strain )
116 freqs = np.fft. rfftfreq (Nt , dt)
117
118 # whitening : transform to freq domain , divide by asd ,

then transform back ,
119 # taking care to get normalization right.
120 hf = np.fft.rfft( strain )
121 white_hf = hf / (np.sqrt( interp_psd (freqs) /dt /2.))
122 white_ht = np.fft.irfft(white_hf , n=Nt)
123 return white_ht
124
125 # now whiten the data from H1 and L1 , and also the NR

template :
126 strain_H1_whiten = whiten (strain_H1 ,psd_H1 ,dt)
127 strain_L1_whiten = whiten (strain_L1 ,psd_L1 ,dt)
128
129 # function to whiten data
130 def whiten (strain , interp_psd , dt):
131 Nt = len( strain )
132 freqs = np.fft. rfftfreq (Nt , dt)
133
134 # whitening : transform to freq domain , divide by asd ,

then transform back ,
135 # taking care to get normalization right.
136 hf = np.fft.rfft( strain )
137 white_hf = hf / (np.sqrt( interp_psd (freqs) /dt /2.))
138 white_ht = np.fft.irfft(white_hf , n=Nt)
139 return white_ht
140
141 # now whiten the data from H1 and L1 , and also the NR

template :
142 strain_H1_whiten = whiten (strain_H1 ,psd_H1 ,dt)
143 strain_L1_whiten = whiten (strain_L1 ,psd_L1 ,dt)
144
145 # We need to suppress the high frequencies with some

bandpassing :
146 bb , ab = butter (4, [20.*2./ fs , 300.*2./ fs], btype=’band ’)
147 strain_H1_whitenbp = filtfilt (bb , ab , strain_H1_whiten )
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148 strain_L1_whitenbp = filtfilt (bb , ab , strain_L1_whiten )
149 k=0
150
151 # plot the data after whitening :
152 # first , shift L1 by 7 ms , and invert . See the GW150914

detection paper for why!
153 strain_L1_shift = -np.roll( strain_L1_whitenbp ,int (0.007*

fs))
154
155 plt. figure ()
156 plt.plot(time_EV -tevent -0.0215 , strain_H1_whitenbp ,’c’,

label=’H1 strain ’)
157 plt.plot(time_EV -tevent -0.0215 , strain_L1_shift ,’lightpink

’,label=’L1 strain ’)
158
159 plt.xlim ([ -0.1 ,0.05])
160 plt.ylim ([ -4 ,4])
161 plt. xlabel (’time (s) since ’+str( tevent ))
162 plt. ylabel (’whitented strain ’)
163 plt. legend (loc=’lower left ’)
164
165 #now plotting whitend data with theoretical waveform
166
167 plt. figure ()
168 plt.plot(time_EV -tevent -0.024 , strain_H1_whitenbp ,’c’,

label=’H1 strain ’)
169 plt.plot(time_EV -tevent -0.024 , strain_L1_shift ,’lightpink ’

,label=’L1 strain ’)
170 plt.plot( neg_time_WF ,( waveform /10e -22) , ’-’,color=’

dimgrey ’,label= ’TW’)
171
172
173 plt.xlim ([ -0.1 ,0.05])
174 plt.ylim ([ -4 ,4])
175 plt. xlabel (’time (s) since ’+str( tevent ))
176 plt. ylabel (’whitented strain ’)
177 plt. legend (loc=’lower left ’)
178
179 # spectograms
180 make_plots = 1
181 eventname = ’GW170814 ’
182 plottype = "png"
183
184 if make_plots :
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185 # index into the strain time series for this time

interval :
186 indxt = np.where (( time_EV >= tevent - deltat ) & (

time_EV < tevent + deltat ))
187
188 # pick a shorter FTT time interval , like 1/8 of a

second :
189 NFFT = int(fs /8)
190 # and with a lot of overlap , to resolve short -time

features :
191 NOVL = int(NFFT *15./16)
192 # and choose a window that minimizes " spectral

leakage "
193 window = np. blackman (NFFT)
194
195 spec_cmap =’gist_gray ’
196
197 # Plot the H1 spectrogram :
198 plt. figure ( figsize =(10 ,6))
199 spec_H1 , freqs , bins , im = plt. specgram ( strain_H1 [

indxt], NFFT=NFFT , Fs=fs , window =window ,
200 noverlap =NOVL

, cmap=spec_cmap , xextent =[- deltat , deltat ])
201 plt. xlabel (’time (s) since ’+str( tevent ))
202 plt. ylabel (’Frequency (Hz)’)
203 plt. colorbar ()
204 plt.axis ([- deltat , deltat , 0, 2000])
205
206 # Plot the L1 spectrogram :
207 plt. figure ( figsize =(10 ,6))
208 spec_H1 , freqs , bins , im = plt. specgram ( strain_L1 [

indxt], NFFT=NFFT , Fs=fs , window =window ,
209 noverlap =NOVL

, cmap=spec_cmap , xextent =[- deltat , deltat ])
210 plt. xlabel (’time (s) since ’+str( tevent ))
211 plt. ylabel (’Frequency (Hz)’)
212 plt. colorbar ()
213 plt.axis ([- deltat , deltat , 0, 2000])
214
215 if make_plots :
216 # plot the whitened data , zooming in on the signal

region :
217
218 # pick a shorter FTT time interval , like 1/16 of a

second :
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219 NFFT = int(fs /16.0)
220 # and with a lot of overlap , to resolve short -time

features :
221 NOVL = int(NFFT *15/16.0)
222 # choose a window that minimizes " spectral leakage "
223 window = np. blackman (NFFT)
224
225 # Plot the H1 whitened spectrogram around the signal
226 plt. figure ( figsize =(10 ,6))
227 spec_H1 , freqs , bins , im = plt. specgram (

strain_H1_whiten [indxt], NFFT=NFFT , Fs=fs , window =
window ,

228 noverlap =NOVL
, cmap=spec_cmap , xextent =[- deltat , deltat ])

229 plt. xlabel (’time (s) since ’+str( tevent ))
230 plt. ylabel (’Frequency (Hz)’)
231 plt. colorbar ()
232 plt.axis ([-1, 1, 0, 1000])
233
234
235
236 # Plot the L1 whitened spectrogram around the signal
237 plt. figure ( figsize =(10 ,6))
238 spec_H1 , freqs , bins , im = plt. specgram (

strain_L1_whiten [indxt], NFFT=NFFT , Fs=fs , window =
window ,

239 noverlap =NOVL
, cmap=spec_cmap , xextent =[- deltat , deltat ])

240 plt. xlabel (’time (s) since ’+str( tevent ))
241 plt. ylabel (’Frequency (Hz)’)
242 plt. colorbar ()
243 plt.axis ([-1, 1, 0, 1000])

Listing A.13: Whole code used for analysis of GW170814
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A.3 Code for GW170817

1 # importing packages
2
3 import numpy as np
4 from scipy import signal
5 from scipy. interpolate import interp1d
6 from scipy. signal import butter , filtfilt , iirdesign ,

zpk2tf , freqz
7
8
9 % matplotlib inline
10 % config InlineBackend . figure_format = ’retina ’
11 import matplotlib . pyplot as plt
12 import matplotlib .mlab as mlab
13 import h5py
14
15
16 import readligo as rl
17
18 import scipy. constants as const
19
20 # H1
21 fn_H1 = ’H- H1_GWOSC_4KHZ_R1 -1187008867 -32. hdf5 ’
22 strain_H1 , time_H1 , chan_dict_H1 = rl. loaddata (fn_H1 , ’H1

’)
23
24 # L1
25 fn_L1 = ’L- L1_GWOSC_4KHZ_R1 -1187008867 -32. hdf5 ’
26 strain_L1 , time_L1 , chan_dict_L1 = rl. loaddata (fn_L1 , ’L1

’)
27
28 # sampling rate:
29 fs = 4096
30
31 # both H1 and L1 will have the same time vector , so:
32 time_EV = time_H1
33
34 # the time sample interval ( uniformly sampled !)
35 dt = time_EV [1] - time_EV [0]
36
37 # calculation of our theoretical waveform
38 N=1000
39 pc = const. parsec
40 Mpc = 1.e6*pc
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41 pi=const.pi
42 G= const. gravitational_constant
43 c_light = const. speed_of_light
44 t_max = 0.1
45 m_1 =1.46*2.*1. e30
46 m_2 =1.27*2.*1. e30
47 numerator =m_1*m_2
48 M_tot=m_1+m_2
49
50 denominator =M_tot
51
52 m_chirp =( numerator **(3./5.) )/( denominator **(1./5.) )
53
54
55 time_WF = np. linspace ( t_coal +t_max/N,t_max , N, endpoint =

True) #time ( inverted )
56 neg_time_WF = -1.* time_WF

#time
57
58 f=(1./ pi)*(( c_light **3./(( G* m_chirp ))) **(5./8.) )

*(5./(256.*( t_coal + time_WF ))) **(3./8.) # frequency
59
60 h_0 =4./ dist *(G* m_chirp / c_light / c_light ) **(5./3.) *(pi*f/

c_light ) **(2./3.) # amplitude
61
62 waveform = h_0*np.cos (2* pi*f* time_WF )
63
64 plt.plot( neg_time_WF ,waveform , ’-’,color=’dimgrey ’)
65 plt.xlim(-t_max , t_coal )
66
67 # Show the plot
68 plt.show ()
69
70 tevent = 1187008882.39
71 deltat = 2.
72
73 indxt = np.where (( time_H1 >= tevent - deltat ) & ( time_H1 <

tevent + deltat ))
74
75 plt. figure ()
76 plt.plot( time_H1 [indxt]-tevent , strain_H1 [indxt],’c’,label

=’H1 strain ’)
77 plt.plot( time_L1 [indxt]-tevent , strain_L1 [indxt],’

lightpink ’,label=’L1 strain ’)
78
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79 plt. xlabel (’time (s) since ’+str( tevent ))
80 plt. ylabel (’strain ’)
81 plt. legend (loc=’lower right ’)
82
83 NFFT = 1*fs
84 fmin = 10
85 fmax = 2000
86 Pxx_H1 , freqs = mlab.psd(strain_H1 , Fs = fs , NFFT = NFFT)
87 Pxx_L1 , freqs = mlab.psd(strain_L1 , Fs = fs , NFFT = NFFT)
88
89
90
91 psd_H1 = interp1d (freqs , Pxx_H1 )
92 psd_L1 = interp1d (freqs , Pxx_L1 )
93
94
95
96 plt. figure ()
97 plt. loglog (freqs , np.sqrt( Pxx_H1 ),’c’,label=’H1 strain ’)
98 plt. loglog (freqs , np.sqrt( Pxx_L1 ),’lightpink ’,label=’L1

strain ’)
99

100 plt.axis ([fmin , fmax , 1e-24, 1e -19])
101 plt.grid(’on’)
102 plt. ylabel (’ASD ( strain /rtHz)’)
103 plt. xlabel (’Freq (Hz)’)
104 plt. legend (loc=’upper center ’)
105
106 # function to whiten data
107 def whiten (strain , interp_psd , dt):
108 Nt = len( strain )
109 freqs = np.fft. rfftfreq (Nt , dt)
110
111 # whitening : transform to freq domain , divide by asd ,

then transform back ,
112 # taking care to get normalization right.
113 hf = np.fft.rfft( strain )
114 white_hf = hf / (np.sqrt( interp_psd (freqs) /dt /2.))
115 white_ht = np.fft.irfft(white_hf , n=Nt)
116 return white_ht
117
118 # now whiten the data from H1 and L1 , and also the NR

template :
119 strain_H1_whiten = whiten (strain_H1 ,psd_H1 ,dt)
120 strain_L1_whiten = whiten (strain_L1 ,psd_L1 ,dt)
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121
122 # We need to suppress the high frequencies with some

bandpassing :
123 bb , ab = butter (4, [30.*2./ fs , 200.*2./ fs], btype=’band ’)
124 strain_H1_whitenbp = filtfilt (bb , ab , strain_H1_whiten )
125 strain_L1_whitenbp = filtfilt (bb , ab , strain_L1_whiten )
126
127
128
129 # plot the data after whitening :
130 # first , shift L1 by 7 ms , and invert . See the GW150914

detection paper for why!
131 strain_L1_shift = -np.roll( strain_L1_whitenbp ,int (0.007*

fs))
132
133 plt. figure ()
134 plt.plot(time_EV -tevent , strain_H1_whitenbp ,’c’,label=’H1

strain ’)
135 plt.plot(time_EV -tevent , strain_L1_whitenbp ,’lightpink ’,

label=’L1 strain ’)
136
137 plt.xlim ([ -1.1 , -0.95])
138 plt.ylim ([ -30 ,30])
139 plt. xlabel (’time (s) since ’+str( tevent ))
140 plt. ylabel (’whitented strain ’)
141 plt. legend (loc=’lower left ’)
142
143
144 #now plotting with Waveform
145
146 plt. figure ()
147 plt.plot(time_EV -tevent , strain_H1_whitenbp ,’c’,label=’H1

strain ’)
148 plt.plot(time_EV -tevent , strain_L1_whitenbp ,’lightpink ’,

label=’L1 strain ’)
149
150 plt.plot( neg_time_WF -1.0017 ,( waveform /(10e -23)), ’-’,

color=’dimgrey ’, label=’TW’)
151
152 # 1.0017
153 #0.992
154 plt.xlim ([ -1.10 , -0.95])
155 plt.ylim ([ -30 ,30])
156 plt. xlabel (’time (s) since ’+str( tevent ))
157 plt. ylabel (’whitented strain ’)

85



A. Appendix
158 plt. legend (loc=’lower left ’)
159
160 make_plots = 1
161 eventname = ’GW170817 ’
162 plottype = "png"
163
164 if make_plots :
165 # index into the strain time series for this time

interval :
166 indxt = np.where (( time_EV >= tevent - deltat ) & (

time_EV < tevent + deltat ))
167
168 # pick a shorter FTT time interval , like 1/8 of a

second :
169 NFFT = int(fs /8)
170 # and with a lot of overlap , to resolve short -time

features :
171 NOVL = int(NFFT *15./16)
172 # and choose a window that minimizes " spectral

leakage "
173 # (https :// en. wikipedia .org/wiki/ Spectral_leakage )
174 window = np. blackman (NFFT)
175
176 spec_cmap =’gist_gray ’
177
178
179 # Plot the H1 spectrogram :
180 plt. figure ( figsize =(10 ,6))
181 spec_H1 , freqs , bins , im = plt. specgram ( strain_H1 [

indxt], NFFT=NFFT , Fs=fs , window =window ,
182 noverlap =NOVL

, cmap=spec_cmap , xextent =[- deltat , deltat ])
183 plt. xlabel (’time (s) since ’+str( tevent ))
184 plt. ylabel (’Frequency (Hz)’)
185 plt. colorbar ()
186 plt.axis ([- deltat , deltat , 0, 2000])
187
188 # Plot the L1 spectrogram :
189 plt. figure ( figsize =(10 ,6))
190 spec_H1 , freqs , bins , im = plt. specgram ( strain_L1 [

indxt], NFFT=NFFT , Fs=fs , window =window ,
191 noverlap =NOVL

, cmap=spec_cmap , xextent =[- deltat , deltat ])
192 plt. xlabel (’time (s) since ’+str( tevent ))
193 plt. ylabel (’Frequency (Hz)’)
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194 plt. colorbar ()
195 plt.axis ([- deltat , deltat , 0, 2000])
196
197 if make_plots :
198 # plot the whitened data , zooming in on the signal

region :
199
200 # pick a shorter FTT time interval , like 1/16 of a

second :
201 NFFT = int(fs /16.0)
202 # and with a lot of overlap , to resolve short -time

features :
203 NOVL = int(NFFT *15/16.0)
204 # choose a window that minimizes " spectral leakage "
205 # (https :// en. wikipedia .org/wiki/ Spectral_leakage )
206 window = np. blackman (NFFT)
207
208 # Plot the H1 whitened spectrogram around the signal
209 plt. figure ( figsize =(10 ,6))
210 spec_H1 , freqs , bins , im = plt. specgram (

strain_H1_whiten [indxt], NFFT=NFFT , Fs=fs , window =
window ,

211 noverlap =NOVL
, cmap=spec_cmap , xextent =[- deltat , deltat ], vmin =-40,
vmax = -20)

212 plt. xlabel (’time (s) since ’+str( tevent ))
213 plt. ylabel (’Frequency (Hz)’)
214 plt. colorbar ()
215 plt.axis ([-2, 1, 0, 700])
216
217 # Plot the L1 whitened spectrogram around the signal
218 plt. figure ( figsize =(10 ,6))
219 spec_H1 , freqs , bins , im = plt. specgram (

strain_L1_whiten [indxt], NFFT=NFFT , Fs=fs , window =
window ,

220 noverlap =NOVL
, cmap=spec_cmap , xextent =[- deltat , deltat ])

221 plt. xlabel (’time (s) since ’+str( tevent ))
222 plt. ylabel (’Frequency (Hz)’)
223 plt. colorbar ()
224 plt.axis ([-2, 1, 0, 1000])

Listing A.14: Whole code used for analysis of GW170817
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