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Abstrakt

V této práci představujeme potenciálně pozorovatelný efekt kvantové teorie gravi-
tace, předpověď porušení Lorentzovy invariance při dosažení Planckovy škály. Zaměřu-
jeme se na vákuovú disperzi a provádíme fenomenologickou analýzu rychlosti fotonů v
záblescích gama v závislosti na energii jako potenciální signatury disperze v Planckově
škále. Vyvíjíme simulační rámec, který generuje syntetické světelné křivky GRB a za-
vádí lineární časový posun v závislosti na energii. Poté jsme vyhodnotili dvě metody
detekce zpoždění: klasickou vzájemnou korelaci, oblíbenou metodu detekce zpoždění v
signálech, a novou metodu chybové korelace, která slibuje detekci subbinových zpoždění.
Systematicky měníme úroveň šumu, časové rozlišení a vložené zpoždění a mapujeme lim-
ity citlivosti každé metody. Uvádíme některé pozorovací požadavky nezbytné k testování
rozptylu ve vákuu pomocí současných a připravovaných přístrojů a diskutujeme o budouc-
nosti fenomenologické kvantové gravitace.

Abstract

In this thesis, we present a potentially observable effect of quantum gravity theory,
the prediction of Lorentz invariance violation when reaching the Planck scale. Focusing
on an in-vacuo dispersion, we conduct a phenomenological analysis of energy-dependent
photon speed in gamma-ray bursts as a potential signature of Planck-scale dispersion. We
develop a simulation framework that generates synthetic GRB light curves and imposes
a linear energy-dependent time shift. We then evaluated two delay detection methods:
classical cross-correlation, a popular method for delay detection in signals, and a novel
error-correlation method with a promise of detecting sub-bin delays. By systematically
varying noise levels, temporal resolution, and injected delay, we map each method’s sen-
sitivity limits. We present some observational requirements necessary to test in-vacuo
dispersion with current and upcoming instruments and discuss the future of phenomeno-
logical quantum gravity.
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Introduction

Modern theoretical physics confronts a profound challenge in unifying the principles of
quantum mechanics, which govern the behavior of particles at the smallest scales, with the
geometric description of gravity provided by general relativity. A wide class of quantum-
gravity theories suggests that, at energies approaching the Planck scale, spacetime itself
may exhibit a granular structure, leading to minute deviations in the speed of photon
propagation that are too small to detect in terrestrial experiments but could accumulate to
observable levels over cosmological distances.

Gamma-ray bursts (GRBs), the most luminous explosions known in the universe, emit
brief flashes of photons spanning several orders of magnitude in energy and travel billions
of light-years before reaching our detectors, making them ideal cosmic laboratories for
testing these tiny dispersion effects.

In this thesis, we address this question by first constructing a flexible, modular sim-
ulation of GRB light curves across multiple energy channels: we generate a light curve
common to all energies, then impose a controlled, energy-dependent shift in peak ar-
rival times to mimic the effect of in vacuo dispersion, and finally apply Poisson statistics
to introduce realistic photon-count fluctuations. We produce a comprehensive synthetic
burst dataset varying key observational parameters: signal-to-noise ratio, energy sepa-
ration between channels, and temporal resolution. We then systematically evaluate two
complementary analysis methods on these simulated data. The first is a classical cross-
correlation analysis, in which we compute the normalized correlation function between
low- and high-energy light curves and identify its maximum as the estimated lag. The
second is a novel error-correlation approach: we use the low-energy counts to predict
the high-energy counts based on their mean rate ratios, calculate the residuals between
predicted and observed high-energy counts, and then examine the lagged autocorrelation
of those residuals to reveal delays smaller than a single time bin.

Scanning injected delays from multiple time bins down to fractions of a bin while
adjusting noise levels and bin widths, we map the detection limits of each method and
quantify how energy bandwidth and timing precision influence sensitivity to Planck-scale
dispersion results that clarify the observational requirements for studying these effects and
form a basis for applying the pipeline to real GRB data.
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Chapter 1

Quantum theory of gravity

The search for a consistent and testable theory of quantum gravity is one of the most
important unsolved challenges in fundamental physics. At its core, Quantum gravity aims
to combine well-established principles of quantum mechanics, which govern the behavior
of particles on the smallest scale, with those of general relativity, which describes the
curvature of spacetime and the gravitational interaction on the cosmic scale. Gravity is of
a universal nature. Everything is in spacetime, subjected to its geometry, therefore gravity.
[1] Einstein’s theory so far explains everything from everyday life to the Universe as a
whole. The cosmic scales are measured in megaparsecs Mpc or gigaparsecs Gpc. 1Mpc =
3.09 ⋅1022m. And the observable universe is estimated to be around 14 Gpc.[2] General
relativity is a classical, non-quantum theory. Our current theories for all other interactions
are quantum and are described using the quantum framework, which is drastically different
from classical physics. Classical mechanics uses trajectories for bodies, and the equations
are determined by their initial positions and momentum. Quantum mechanics instead
features the wave function, and the relation to position, momentum, or other classical
concepts appears via the probability interpretation. Quantum mechanics describes the
realm of microphysics, the world of atoms, nuclei, and elementary particles. The smallest
scales observed by the Large Hadron Collider are of order 10−18m. Comparing that to the
cosmic scale mentioned above, we see that the difference of about 44 orders of magnitude.

1.1 Candidates for Quantum Gravity
Einstein’s theory, by itself, is incomplete. General relativity predicts the existence of
singularities, such as the centres of black holes or the Big Bang. At these singularities, the
predictive power of the theory fails. A quantum theory of gravity is expected to provide a
framework in which such singularities are resolved or avoided altogether, offering a more
complete description of nature.

A variety of approaches have been proposed to reconcile gravity with quantum me-
chanics. One of them is a well-known string theory that proposes that the fundamental
particles are not point-like but rather one dimensional ’strings’ whose vibrational modes
give rise to particles and forces. [3] Another candidate is Loop Quantum Gravity (LOQ),
which presents a canonical quantisation of general relativity. All of the potential candidates
have one thing in common, and that is, they all propose that the space-time itself may have

– 3 –



4 Chapter 1. Quantum theory of gravity

a structure on a microscopic scale. Scales where we expect quantum effects of gravity to
become relevant is the Planck scale derived by Max Planck.

1.1.1 Planck scale
The Planck scale at which the quantum effects and gravitational interactions become
intertwined. It is derived from three fundamental constants:

• The speed of light c. The upper limit at which matter or energy can travel through
space.

• The Gravitational constant G, presenting a value that fixes the absolute value of
interaction strength.

• The reduced Planck constant h̵, is the Planck constant divided by 2π and serves as
the fundamental quantum of action in quantum mechanics.

Combining these four constants, we get Planck units like Planck length, time, and mass.

lP =
√

h̵G
c5 ≈ 1.616 ⋅10−35m, (1.1)

tP =
√

h̵G
c3 ≈ 5.39 ⋅10−44s, (1.2)

mP =
√

h̵c
G
≈ 2.18 ⋅10−8kg. (1.3)

For our work, the most important is the derived relation, the Planck energy :

EP =
√

h̵c5

G
≈ 1.22 ⋅1028eV (1.4)

Although this scale is beyond the reach of our current particle accelerators, it serves as a
benchmark for the theoretical framework in quantum gravity research. The only apparatus
close enough to the Planck energy are Gamma-ray bursts (GRBs).

1.2 Mathematical framework of Quantum Gravity and
Noncommutative spacetime

General relativity describes gravity as the curvature of the smooth spacetime, while quan-
tum mechanics governs the behaviour of energy and matter at an extremely small scale.
It is expected that at distances approaching the Planck length (≈ 10−35m), the concept of
continuous spacetime breaks down. Instead, many theories suggest that the space becomes
discrete and can be modeled using noncommutative geometry.

In noncommutative spacetime models, introduce a fundamental length scale and alter
familiar relationships like the dispersion relation. These modifications are not only of
theoretical interest but may also lead to observable effects in astrophysical phenomena.
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1.2.1 Noncommutative geomtry
In ordinary quantum mechanics, the commutation between position and momentum:

[x, p] = ih̵ (1.5)

leads to the Heisenberg uncertainty principle. Similarly, it can be argued, see [4], that
at these scales (Planck scale), one can’t measure the position of a particle to arbitrary
precision. This means that we have two position operators that do not commute.

[x̂i, x̂ j] = iΘ̂i j (1.6)

Natural right-hand side of the equation that is rotationally invariant given by [5] [6] is

Θ̂i j = 2λεi jkx̂k, (1.7)

where ε is the Levi-cita tensor and λ is a constant with a dimension of length that dictates
the scale of space quantumness. In the limit where λ → 0, the commutator vanishes and one
recovers the original quantum mechanics relation that describes ordinary three-dimensional
space.

1.2.2 Modified dispersion relation
In classical relativistic physics, the dispersion relation for massless particles (photons) is
given by the well-known equation

E2 = p2c2, (1.8)

this equation is derived under the assumption that spacetime is continuous, where the
coordinates commute and can be precisely measured.

However, assuming the noncommutativity, the concept of an exact position is replaced
by uncertainty. Constructing such space, see [5], provides a starting kit for quantum
mechanics: the Hilbert space of states Ψ, the position operator x̂i, and the Hamiltonian Ĥ.
The velocity was defined in [?] and the relation between the velocity operator and the free
Hamiltonian has been found,

Ĥ0 =
1−
√

1−m2λ 2v̂2

mλ 2 = mv̂2

2
+ m3v̂4

8
λ

2+O(λ 4). (1.9)

The usual relationship is recovered in the limit λ → 0. It is plausible that the dispersion law
sensitive to the scale of E f (fundamental energy scale that might be the Planck scale but

can be of a different order) will have a similar form, one can replace p2

2m → pc. Using the

Legendre transformation p̂ = ∂ Ĥ0
∂ v̂ =

mv̂
√

1−m2v̂2λ 2
, setting the maximal achievable energy to

E f = 1/mλ 2, therefore λ → 1/
√

mEF and considering only energy eigenstates that satisfy
Ĥ0Ψ = Eψ , see [?], we obtain the square of energy

E2(p) = E2
F
⎛
⎝

1−
√

1− 2pc
EF +2pc

⎞
⎠

2

= p2c2⎛
⎝

1− 3pc
EF
+O(E−2

F )
⎞
⎠
. (1.10)

This agrees with laws commonly used in other works [7] [8]. The correction term,
though small at low energies, may lead to significant observable effects over astronomical
distances, as discussed later in 2.1.





Chapter 2

Phenomenology

The quantum gravity problem has been studied for over 90 years [9], assuming that no
guidance could be provided from experiment. The Quantum gravity phenomenology
focuses on closing the gap between General relativity and quantum mechanics by looking
for experimental signatures of a fundamentally quantum space. Instead of waiting for a
complete theory of everything to emerge from top-to-bottom theories like string theory
or Loop Quantum gravity, we adopt a new bottom-up approach. We develop models that
introduce small, often Planck scale suppressed deviations from classical physics and then
identify experiments that may amplify these tiny effects into measurable signals.

Quantum gravity phenomology is motivated by the idea that while the Plank scale is
extremely small (≈ 10−35m), certain experimental context such as the long travel distances
or extreme energies of cosmic events can act as natural amplifiers where even the miniscule
modification in energy dispersion relation can become detectable. In this thesis, we will
mostly focus on the time flight delay, but we will also mention the threshold anomaly.

2.1 Time flight delay
A clear implication of the modified dispersion relation, such as in 1.10, is that the speed at
which the waves propagate depends on their wavenumber. The space, due to its granular
structure, acts as a dispersive medium for particle propagation. One can imagine such
a situation as two photons of two different energies being emitted from the same source
simultaneously, but being detected at different times. At first glance, the correlation to
the speed of light due to quantum gravity might seem minuscule. For a typical photon
with energy E << EF , the correlation is of order E/EF [9]. In terrestrial experiments,
where the E might be in the range MeV-GeV compared to the Planck energy (≈ 1019GeV ),
such effects would be utterly negligible. However, even such a small effect can lead to an
observable delay when the photons travel cosmological distances. It is not uncommon for
GRB that time-traveled before reaching Earth detectors to be of order T ∼ 1017s.

2.1.1 Derivation from exact space models
To calculate the flight-time delay from the modified dispersion relation 1.10 according to
[5] we first need to replace momentum by the comoving momentum p/a and transform the

– 7 –



8 Chapter 2. Phenomenology

velocities using v = ∂H
∂ p and we get

v(E) = ca−1( aEF

aEF +2pc
)

3/2

. (2.1)

Next we replace a = 1
1+z and integrate to find distance traveled by the received signal

x(z,E) = c
H0
∫

z

0
( EF/(1+ z′)

EF/(1+ z′)+2pc
)

3/2
dz′√

Ωm(1+ z′)3+ΩΛ

. (2.2)

More importantly, we can now calculate the time difference of photons with different
energies. So now if E = pc

∆t(E1,E2,z) =
c

H0
∫

z

0

⎛
⎝
( EF/(1+ z′)

EF/(1+ z′)+2p1c
)

3/2

−( EF/(1+ z′)
EF/(1+ z′)+2p2c

)
3/2⎞
⎠

⋅ dz′√
Ωm(1+ z′)3+ΩΛ

= − 3c
H0

∆E
EF
∫

z

0

(1+ z′)dz′√
Ω(1+ z′3)+Ω

+O((E/EF)2).

(2.3)

2.1.2 Observational considerations
Using the relation 2.3, [5] calculated ∆t for the GRB 221109A. This extraordinarily bright
GRB was detected in 2022 and its peak luminosity as measured by Fermi Gamma-ray
Burst Monitor 1047W over its 1.024s interval [11]. The source of this signal was close
with z = 0.1505 and the used value for the energy difference was ∆E = 99.3GeV. The
cosmological parameters used for the calculation were H0 =67.3km ⋅ s−1Mps−1, Ωm =0.315,
ΩΛ = 0.685, and for the cut-off energy EF ≈Ep. With these values, the time difference was
∆t = 1.83s. This delay is within reach of some current detectors, like Fermi Gamma-ray
space telescope, if we could identify low-energy and high-energy photon that left the source
simultaneously.

2.2 Threshold anomaly
Modification to the modified dispersion relation also affects the propagation of particles
through the vacuum. However, this medium is vacuum only in the first approximation
since it’s filled, among other things, with background photons.

In a classical scenario assuming the trivial dispersion relation, the collision of a high-
energy photon (with energy E) with a low-energy background photon (with energy EB),
a reverse process to the electron-positron annihilation may occur as long as the energy of
the high-energy photon satisfies

E > Eth =
m2

e

Eb
. (2.4)
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This follows the conservation of four-momentum, and me is the mass of an electron. High-
energy photons traversing distances on the order of megaparsecs or gigaparsecs interact
with background or CMB photons (with Eb = 10−3eV), resulting in attenuation. Yet, such
high-energy photons have been detected from these distant sources, creating a paradox.
One example of GRB reaching these energy scales is GRB 221009A, for which the distance
was estimated to be 724Mpc with peak energies at least 18TeV.

2.2.1 Minimal mass of particle production

The interaction between two photons can create a particle with mass m =
√

EEb/c2. If
m is smaller than the mass of any particle, interaction does not occur. Here, Eb is fixed,
and it is the energy of the background photons. By increasing E, the mass of an electron
is reached, and interaction is allowed to occur. Therefore, photons with sufficiently high
energies disappear from the flux.

Considering the dispersion law (1.10), the finite value of EF leads to a reduction in the
obtainable mass. Consequently, even for very high energies E, the pair production process
is suppressed, and the intergalactic space becomes effectively transparent.

The minimal mass of a particle produced by the high-energy photon with the momentum
p as calculated in [5]

m = 1
2c2

√
E2(p)−(pc)2+2EB(E(p)+ pc)

= 1
2c2

¿
ÁÁÁÀE2

F
⎛
⎝

1−
√

1− 2pc
EF +2pc

⎞
⎠

2

− p2c2+2EB
⎛
⎝

EF
⎛
⎝

1−
√

1− 2pc
EF +2pc

⎞
⎠
+ pc
⎞
⎠

≈m0(1−
3(pc)2
8EFEB

)+⋯

(2.5)

where m0 =
√

pcEB/c2 is the unmodified threshold for the pair production. We now observe
that the modified version reduces the obtained mass and suppresses the pair production.
This result is sensitive to the chosen value of EB.





Chapter 3

Gamma-ray data simulation

It is essential to create controlled and reproducible data sets to analyze the temporal
behaviour of GRBs across different energy channels. Given the complex nature of real
astronomical observations, we first simulate a set of synthetic GRB light curves based on
physically motivated models.

The gamma ray burst simulation is governed by a set of parameters that define its
spectrum and temporal characteristics. The parameters include spectral indices and specific
energies to describe the band function 3.2 and time characteristics for the evolution of the
GRB.

The simulation begins by constructing a temporal grid spanning an entire time range
with evenly spaced time steps. The grid represents an observational window in which the
GRB develops.

The GRB’s behavior is then modeled using two concepts. The temporal evolution of
GRB’s intensity is characterized by a function that dictates its rise and decay. Prior to its
peak, the intensity is defined by a simple power-law increase, and the post-peak intensity
is modeled by a combination of power-law decay and exponential decay. The specific rates
of rise, decay, and peak time are defined as the input parameters.

The spectral distribution of GRB emission is represented using the Band function,
a widely used model for fitting GRBs. The function smoothly transitions between two
power-law regimes at a defined peak energy. More about the Band function in section 3.2.

By combining the time-dependent light curve with the spectral model, the simulation
calculates the expected photon flux at each moment in time across different energy bands.
Each energy band is then integrated over the specified energy range. To recreate more
realistic observational conditions, Poisson statistics are applied to generate photon counts
at each point in time in each energy band. The final output is a set of simulated photon
counts that encapsulates the expected trends and variability dictated by the initial model
parameters.

Furthermore, for the purposes of this thesis, energy-dependent peak delay is added
into the simulation. For each energy band, the peak time is determined linearly between a
predefined minimum and maximum peak time based on the average energy of the bin.

– 11 –
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3.1 Simulation method
The simulation is based on two core components

• Spectral shape: Modelled using band function, more described in 3.2, which de-
scribes the photon flux density set by a set of parameters

• Temporal evolution: Modelled using a parametric light curve function characterised
by a rise phase controlled by the rise index and a decay phase, a power-law decay
modulated by the exponential damping

The photon counts are then simulated across multiple predefined energy channels, each
characterized by a lower and upper energy limit, and for each channel, an average energy
value is determined the expected peak time of the flux.

The peak time tpeak for each energy is determined by linearly mapping the average
energy to a temporal window defined by parameters tmin and tmax using equation

tpeak = tpeak,min+
⟨E⟩−Emin,tot

Emax,tot−Emin,tot
(tpeak,max− tpeak,min) . (3.1)

This approach produces a systematic shift in the peak times, where higher-energy bands
can exhibit different peak timings compared to lower-energy bands. This feature provides
a controlled framework for testing analytical methods to detect and quantify peak time
differences using current observational technologies.

The total flux over the energy range is computed using numerical integration. Photon
counts for each energy band and each time step are then sampled from a Poisson distribution
around the expected value given by the product of spectral flux, light curve, and a noise
factor. The noise is modeled using Python’s numpy library function numpy.random.poisson
and then scaled down as needed for the analysis. The structure of the code is explained in
the pseudocode below.

Algorithm 1 Simulation of GRB Light Curves
1: Load simulation parameters (spectral model, time bounds, energy bands, light curve

shape)
2: Generate uniform time array ti, i = 1, . . . ,n
3: for each energy band [Emin,Emax] do
4: Compute average energy Ē
5: Map Ē linearly to peak time tpeak within the allowed time window

6: for each time ti do
7: for each energy band do
8: if ti < tpeak then
9: Compute rising phase: L(ti) = (ti/tpeak)r

10: else
11: Compute decay phase: L(ti) = (tpeak/ti)d ×e−(ti−tpeak)/tpeak

12: Calculate spectral flux F(E) using the Band function
13: Integrate F(E) over [Emin,Emax] to find expected photon counts
14: Apply Poisson noise to simulate observed counts
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3.2 Band Function
Gamma-ray bursts (GRBs) are the most luminous explosions in the universe, releasing
energy in the form of gamma rays. A key aspect of analyzing GRBs is understanding
their emission spectra, which is well described by the Band function introduced in [12].
The function is a smoothly broken power-law including a low energy component, a peak
energy, and a high energy power law tail that best describes the spectral character of most
GRBs. While the Band function is purely an empirical model, its physical origin has been
subjected to an intense study in the past years. The function is still widely used to fit GRBs
today.

Traditionally, the spectrum of GRBs has been connected to synchrotron radiation
from relativistic electrons in the jet. The recent studies [14] suggest that shear particle
acceleration in structured GRB jets plays a role in shaping the overall spectrum.

3.2.1 Mathematical formulation
The Band function describes the GRB photon spectrum N(E) as a broken power law :

N(E) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

A( E
100 keV)

α
e−E/E0, E < (α −β)E0

A( E
100 keV)

β [(α−β)E0
100 keV ]

α−β

e(β−α), E ≥ (α −β)E0,

(3.2)

where A is a normalization constant.
The low-energy index α describes how the GRB spectrum behaves at low photon

energies. Energies below Epeak. Typical observed values are : −1.5 ≤ α ≤ −0.5 [12] [13].
β , the high-energy spectral index, describes the steepness of the GRB spectrum at photon
energies above Epeak. Typical values fall in the range: −3.5 ≤ β ≤ −2.0 [13]. The peak
energy Epeak is the energy at which the νFν spectrum peaks. νFν is the spectral energy
distribution representing the power per unit logarithmic frequency interval emitted by an
astrophysical source, where ν is frequency and Fν is the spectral flux density derived as
Fν = dF

dν
. The hardness of the spectrum is E2N(E) it is proportional to νFν and is related

to the break energy E0 by
Epeak = (2+α)E0. (3.3)

Epeak represents the dominant energy scale of the GRB and is correlated with GRB
luminosity and jet properties. Its values vary depending on the type of GRB, like long or
short GRBs. Example of a spectrum of a GRB 1B91127 as fitted in [12] can be seen in
figure 3.1.

3.2.2 Physical origin of the Band function
While the Band function is a great empirical fit, its physical origin is still debated. In
standard models, the GRB is linked to synchrotron radiation from electrons accelerated in
internal shocks within the relativistic jet. In contrast, [14] proposes a structured jet model
in which the GRB consists of a Jet Core and a Mixed Jet-Cocoon. In picture 3.2 we can
see the GRB jet core structure and cocoon structure.
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Figure 3.1: Spectrum of GRB 1B91127 fitted by [12] with α = −0.968, β = −2.427, and
break energy E0 = 149.5

Figure 3.2: The schematic diagram of the jet-cocoon structure. [14]



Chapter 3. Gamma-ray data simulation 15

Jet Core

This is a narrow, highly collimated outflow with ultrarelativistic speed. In the core, internal
shocks occur as shells of material with slightly different speeds collide. These shocks are
sites for efficient particle acceleration via first-order Fermi acceleration. This leads to a
population of electrons with a broken power-law energy distribution. The intense magnetic
fields in the core (typically B jet ∼ 106G)[14] enable these electrons to produce synchrotron
radiation that dominates the keV-MeV portion of the spectrum.

Mixed Jet-Cocoon

A transitional zone between the jet core and the surrounding cocoon. It’s characterized by
a radially decreasing velocity profile. This velocity shear provides a mechanism for shear
acceleration. Electrons injected into the MJC region gain energy as they repeatedly cross
layers with different velocities, leading to an electron energy distribution distinct from that
produced by shocks. The MJC region emits both via synchotron radiation and through the
synchotron self-Compton process, where photons are upscattered by the same population
of electrons into higher energies.

The combined emission from the jet core and the MJC region results in the overall
spectral energy distribution that is well described by the band function. The smooth break
in the spectrum and the presence of the additional components (such as X-ray excess) are
a natural consequence of the interplay between shock and shear acceleration. [14] applies
this model to explain the prompt gamma-ray spectra of bright GRBs 090926A, 131108A,
and 160509A, whose spectra distinctly show two components or a Band cut function shape.





Chapter 4

Delay detection

In the previous chapter, we detailed the simulation of GRB data incorporating an energy-
dependent dispersion. Here, we develop and compare two methods for detecting the
introduced delay. The first method is the traditional cross-correlation, which, while widely
used, suffers from limited sensitivity when the delay is smaller than the temporal bin width
used to collect the data. To overcome this limitation, we introduce a new method, here
referred to as error-correlation, this method predicts the counts in higher energy channels
and compares them to the actual channel counts. We aim to reveal the subtle correlation
structure introduced by the dispersion.

In this chapter, we outline the data analysis techniques: we explain the conventional
cross-correlation approach and introduce the error-correlation method, which systemati-
cally scans for time shifts by analyzing the correlation between residuals in consecutive time
bins. Finally, we present results from both methods, discuss their relative performance,
and consider the challenges of detecting such small delays.

4.1 Cross-correlation
Cross-correlation is a fundamental method in signal processing, statistics, and time series
analysis. It is a measure of similarity of two series as a function of displacement of one
relative to the other and is essential for detecting time shifts, periodicities, or the degree of
similarity between two signals.

4.1.1 Definition
For two discrete signals x[t] and y[t] the cross-correlation function rxy[k] is defined as

rxy[k] = f (x⋆y)[n] =
∞

∑
t=−∞

x[n]y[n+k], (4.1)

the parameter k is the lag or time shift between the two signals. A value of k = 0 corresponds
to no shift, while positive or negative values correspond to shifting one signal relative to
another. Similarly, for continuous signals it is defined as

rxy(k) = f (x⋆y)(k) = ∫
∞

−∞

x(t)y(t +k)dt. (4.2)

– 17 –
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In many applications, it is useful to normalize the cross-correlation to obtain a value
between −1 and 1. This normalization is analogous to the Pearson correlation coefficient
for two signals. A common normalization is

ρxy[k] =
rxy√

rxx[0]ryy[0]
, (4.3)

where rxx[0] and ryy[0] are the auto-correlations at zero lag, which represent the variance of
the signal. The logic of my cross-correlation calculation code is shown in the pseudocode
below.

Algorithm 2 Cross-Correlation Analysis Method

1: for each pair of energy bands (Ci,C j) do
2: Compute discrete cross-correlation (Ci∗C j)(τ)
3: Identify lag τmax where cross-correlation is maximum
4: Retrive time lags relative to the lowest energy band
5: Perform linear regression to model:

measured lag τ j as a linear function of energy E j
6: Fit model: τ j = a×E j +b
7: Calculate residuals: ∆τ j = τ j −(aE j +b)

4.2 Error-correlation
According to certain quantum gravity theories, high-energy photons could travel at slightly
different speeds compared to their lower-energy counterparts, resulting in subtle time
delays in their arrival times.

In this chapter, we present a method for detecting such time delays using an error
correlation analysis approach. Unlike traditional cross-correlation techniques that may be
limited by the temporal resolution of the data, our method leverages the prediction error
between a low-energy reference channel and higher-energy channels. By analyzing the
normalized correlations of these errors at different time lags, we aim to reveal systematic
shifts that could indicate the presence of vacuum dispersion.

4.2.1 Theory
Observations of GRBs are typically recorded as photon counts in discrete time intervals
(time bins). Each bin represents an integrated photon count over a short period. In addition,
photon counts are measured across multiple energy channels that cover different energy
ranges. In our analysis, we assume that the lowest energy channel is least affected by the
vacuum dispersion and, therefore, can serve as a reference channel.

In GRB observations, the data are collected in discrete time bins Tbin. Under the
null hypothesis, these channels are time-aligned. But can differ in total amplitude or
noise amplitude. However, if a delay ∆t exists and ∆t < Tbin a small fraction of photons
δ = ∆t/Tbin ends up in the next bin. The number of these photons can be very small, even
δ = ∆t ⋅Nbin < 1.
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First, we predict the counts in the higher energy channel. Assuming that the channels
differ only in the scaling factor, the predicted counts for channel two in time t are given by
4.4.

NP
2 (t) =N1(t) ⋅

⟨N2⟩
⟨N1⟩

, (4.4)

where the N1(t) is the photon count in the reference channel at time t and ⟨N1⟩, ⟨N2⟩ are
the mean counts over all bins in channel 1 and channel 2, respectively. The scaling factor
takes care of the different amplitudes.

Now, we can take the prediction of NP
2 and the real value of N2 as two random and

independent data points and check how wrong our estimate was by computing

ε(t) =NP
2 (t)−N2(t).

In the absence of any time delay, the residuals ε(t) are expected to be random and
uncorrelated from bin to bin.

When a small delay is present, a fraction of photons, approximately δ ⋅Nbin, does not
fall into the expected bin but is recorded in the subsequent bin. This causes the residual in
one bin to decrease (if photons are lost) and the residual in the following bin to increase
(if photons are gained). This method quantifies this effect by calculating the correlation
between residuals in selected bins

C = ⟨ε(t) ⋅ε(t +τ)⟩ (4.5)

Under zero delay, this correlation is expected to be near zero (or at a baseline level
determined by noise). However, if a delay is present, the asymmetry in the residuals
between successive bins will lead to a significant deviation of C(t) from zero. How the
error-correlation is calculated in my code is shown in the pseudocode below.

Algorithm 3 Error Correlation Analysis Method
1: Select the lowest energy band as the reference channel Cref
2: for each higher energy channel C j do
3: Estimate predicted counts as:

Cpredicted
j (t) =Cref(t)×

mean(C j)
mean(Cref)

4: Calculate prediction error:
ε j(t) =Cpredicted

j (t)−C j(t)
5: for each lag τ do
6: Compute lagged normalized error correlation:

r j(τ) =
1

n−τ ∑
n−τ−1
t=0 [ε j(t)ε j(t +τ)]
1
n∑

n−1
t=0 [ε j(t)2]

7: Collect r j(τ) for all channels and all lags





Chapter 5

Interpretation of results

5.1 Simulated Data

The primary objective of this chapter is to present the simulated datasets used to evaluate
the performance of two delay detection methods: cross-correlation and residual error
correlation. Since real gamma-ray burst (GRB) data are often affected by limited resolution,
observational noise, or incomplete energy coverage, a controlled simulation framework is
essential. It allows us to systematically test under which conditions a time delay between
energy channels can be detected, and where the methods fail.

Each dataset represents a synthetic GRB event generated using a Band function spec-
trum, combined with a time-dependent intensity profile and a tunable, energy-dependent
peak time delay. Across multiple simulation runs, three key variables were systematically
varied:

• Temporal resolution — to simulate different observational instruments,

• Noise level — to assess robustness to statistical fluctuations,

• Injected delay magnitude — to evaluate detection thresholds for both methods.

Band Function Parameters

The spectral shape of the GRB was modeled using the Band function with fixed parameters
across each dataset. These parameters were based on real spectral fits from some of the
most energetic GRBs observed. Multiple light curves were generated for each configuration
by varying the temporal resolution. Within each such subset, the injected peak delay
between energy channels was gradually reduced to test the sensitivity limits of the detection
algorithms. Lastly, everything was also generated with scaled-down and without noise
levels to further test the limits of the methods

Each combination of parameters was run independently to evaluate both detection
methods in a variety of scenarios, from ideal noiseless data to low-resolution, high-noise
data mimicking weak GRBs. In the figure below 5.1 are simulated light curves with Band
parameters of GRB 221009A [11].

– 21 –
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Figure 5.1: Simulated GRB light curves with band parameters of GRB 221009A with
photon noise scaled to 5%.

5.2 Poisson (Photon) Noise
Photon noise arises from the discrete, independent arrival of photons [20]. If the expected
number of photons in a time bin is µ , the probability of measuring exactly N photons is

P(N;µ) = µNe−µ

N!
, (5.1)

with
E[N] = µ, Var[N] = µ, (5.2)

so that the signal-to-noise ratio scales as

SNR = µ√
µ
=√µ. (5.3)

Thus, although absolute fluctuations grow with the signal, the relative noise decreases
as photon counts increase, setting a fundamental, signal-dependent floor on measurement
accuracy.

In the simulation, we take the model’s ideal counts per bin, multiply them by a single
noise factor to form the Poisson rate parameters, draw independent Poisson samples, and
then divide by noise factor to restore the original scale. By increasing noise factor,
the relative noise decreases; by decreasing it, the noise increases. This is how we can
control SNR in the code.

5.3 Cross-correlation method results
The first method tested for detecting energy-dependent time delays in the simulated GRB
data was cross-correlation. This classical signal processing technique is widely used to
estimate time shifts between two signals. It is particularly suitable for cases where the
signals share a similar shape but may be offset in time.
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Methods

For each simulated GRB dataset, the cross-correlation function was computed between
the photon count time series of the high-energy and low-energy channels. The aim was to
determine the lag that maximizes the similarity between the two signals. This was done
using the normalized cross-correlation, which measures the similarity while accounting
for variations in amplitude and scale.

The maximum of the cross-correlation function gives the estimated lag between chan-
nels, expressed in units of time bins. A peak at lag = 0 indicates that the signals are
synchronized, while a peak at lag = 1 or more indicates that one channel leads or lags the
other by a full time bin.

This procedure was applied to each simulation run across different noise levels, temporal
resolutions, and injected delay values. Special attention was given to comparing the lowest
and highest energy channels, where the artificial delay introduced in the simulation was
the most pronounced.

The results show that the cross-correlation method performs well when the introduced
delay is equal to or greater than the size of a time bin. In these cases, the method consistently
identifies the correct lag between energy channels. When the delay is smaller than one bin,
the method occasionally detects a shift, but the estimated delay is often inaccurate due to
its limited resolution. As the delay decreases further, the method typically fails to register
any shift at all and incorrectly indicates that the signals are synchronized. This confirms
that cross-correlation is fundamentally limited to detecting delays no smaller than one time
bin.

Figures 5.2 and 5.5 compare the injected time delays with those recovered by the cross-
correlation method on the same light-curve data, first with Poisson noise at the 1% level
and then at 50%. As these plots show, when the noise level is high, even cross-correlation
cannot reliably recover the true delay.

(a) (b)

Figure 5.2: (a) Delay detected by cross-correlation relative to the lowest energy channel.
(b) Delay input to the simulated data was tested on an 8-second GRB with a temporal
resolution of 0.01 seconds. With Poisson noise scaled down to 1% its original value.
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(a) (b)

Figure 5.3: (a) Delay detected by cross-correlation relative to the lowest energy channel.
(b) Delay input to the simulated data tested on an 8-second GRB with a temporal resolution
of 0.01 seconds and Poisson noise scaled down to 50%.

5.4 Error-correlation method results

While the error correlation method shows theoretical potential for detecting small energy-
dependent time delays between energy channels, it currently does not provide a reliable or
accurate estimate of the delay in time units, especially when observational noise is present.

The method is based on computing prediction errors between a reference energy channel
and others, and then evaluating the correlation of those residuals at different time lags. In
the ideal case, with no noise and well-defined delay, a clear pattern of correlation emerges,
typically peaking at the lag corresponding to the approximate time offset. This has been
observed in noiseless simulations with injected sub-bin delays, where the correlation
function shows a distinguishable structure not captured by the classical cross-correlation
method.

However, in more realistic scenarios involving statistical fluctuations or background
noise, this structure quickly disappears. Even moderate levels of Poisson noise significantly
reduce the correlation signal, making it difficult to distinguish true temporal shifts from
random variations in photon counts. As a result, the method fails to provide consistent or
trustworthy estimates of the delay under noisy conditions, which are typical in gamma-ray
burst (GRB) observations.

In Figure 5.4, I present four detections from error-correlation, all tested on data with
the same Band function parameters but different delays and noise levels. When some
delay is detected, the correlation seems to be going up, indicating a steady error at t and
t + τ . However, when presented with higher levels of noise, the method fails before the
cross-correlation. The length of the burst was 8s, the temporal resolution was 0.01 seconds,
and the delay for tests in figure 5.4 was set to 0.04 seconds, so the method had a problem
detecting the delay even when the delay was larger than the size of the time bin.

Although the method shows great sensitivity when no noise is added to the simulation.
Comparison of error-correlation on the same data set, one with delay present and the other
when not, is shown in figure 5.5.
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(a) (b)

(c) (d)

Figure 5.4: Error-correlation method for detecting delay tested on simulated GRB light
curve with length of 8 seconds, temporal resolution 0.01 seconds and embedded delay 0.04
seconds through the energy channels with the Poisson noise scaled down to for (a) 50%,
(b) 10%, (c) 1% and (d) without noise

(a) (b)

Figure 5.5: Error-correlation method for detecting delay tested on simulated GRB light
curve with length of 8 seconds, temporal resolution 0.01 seconds, and embedded delay just
0.003 seconds in (a) and 0 in (b)

5.5 Comparison
Based on the tests, with the noise present, the cross-correlation seems to be performing
better; however, when the noise becomes too big, even the cross-correlation can’t retrieve
the delay. In this section, I provide some comparisons of how both of these methods
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(a) (b)

(c) (d)

Figure 5.6: (a) Simulated GRB lightcurve data with Poisson noise scaled down to 50%
and time bin width 0.02 seconds, (b) the input delay, (c) cross-correlation results, (d)
error-correlation results.

performed in various conditions.
In figure 5.6 as we can see the noise was relatively low in high energy channels as the

time-bin size was big and enough photons could be detected, but as the counts in high
energy channels become lower, the noise dominates the simulation and both methods fail
to detect the delay. We can see a similar result in figure 5.8 where the noise was scaled
down even lower, but since the size of the time-bin was much smaller, the counts were low
and noise again dominated in the higher energy channels.

In figure 5.7, the noise was set low, and by error-correlation, we can see a slight peak
in the first lag, indicating a sub-bin size delay. These data are, however, very clean and
unrealistic from a real observation.

5.6 Future of phenomenological quantum gravity
Over the past two decades, theoretical proposals in quantum gravity phenomenology have
matured into observational considerations. The foundational ideas proposed in the late 90s
in [15] have since inspired a wave of experimental efforts to detect these effects using data
from GRBs or other high-energy sources.

With the continued evolution of instrumentation and satellite technology, the future of
phenomenological quantum gravity rests on the development and deployment of highly spe-
cialised observatories. The next-generation missions must combine wide energy coverage,
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(a) (b)

(c) (d)

Figure 5.7: (a) Simulated GRB lightcurve data with Poisson noise scaled down to 1% and
time bin width 0.05 seconds, (b) the input delay, (c) cross-correlation results, (d) error-
correlation results.

high temporal resolution, and cosmological distance reach.
Space-based and ground-based telescopes are being explicitly designed to address

the core questions of phenomenological quantum gravity. The Fermi Gamma-ray space
telescope, operational since 2008, has already provided some constraints on the observation
of Lorentz invariation variation through its observations of short GRBs, most notably GRB
090510. The lack of detectable delay between photons of different energies placed lower
bounds on the quantum gravity energy scale exceeding 1019GeV [16]. The next frontier,
however, lies in the mission optimised for detecting tiny dispersion effects.

5.6.1 Grail Quest
Grail Quest is a flagship-scale mission to investigate quantum gravity via high-energy
transients. According to [17], the mission was submitted for consideration within ESA’s
Voyage 2050 program. As of 2025, the mission is still not formally approved or funded;
however, it continues to represent one of the most ambitious experimental frameworks for
probing quantum gravity phenomenology using gamma ray bursts.

At its core, Grail Quest proposes to deploy a constellation of hundreds to thousands of
3U-6U nanosatellites, each located at low Earth orbit. As proposed in [17] every satellite
would be equipped with :

• an array of GAGG (Gadolinium-Aluminium-Gallium Garnet) crystal scintillators for
detecting gamma-rays in the 20 keV to several MeV range,
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(a) (b)

(c) (d)

Figure 5.8: (a) Simulated GRB lightcurve data with Poisson noise scaled down to 5%
and time bin width 0.002 seconds, (b) the input delay, (c) cross-correlation results, (d)
error-correlation results.

• Silicon Drift Detectors (SDDs) surrounding the scintillators for additional sensitivity
in the soft X-ray range,

• tungsten shielding on the detector housing to suppress background noise from cosmic
X-rays and particle interactions,

• an ultra-precise onboard timing system, capable of resolving photon arrival times
down to 10–100 nanoseconds.

These detectors would operate independently but coordinate via GPS and inter-satellite
coordination links, allowing for temporal triangulation of high-energy photon arrivals
across the constellation. This architecture transforms the fleet of satellites into a single
synthetic instrument with a collective effective area and field of view far superior to any
single satellite observatory.

5.6.2 Mission HERMES

The HERMES (High Energy Rapid Modular Ensemble of Satellites) missions represents
one of the most innovative experimental platforms in modern high-energy astrophysics
[18]. Conceived as a pathfinder for larger constellation-based missions, HERMES is a
distributed network of nanosatellites designed to detect and localise GRBs and other high-
energy transients using high-precision timing techniques. Notably, HERMES is the first



Chapter 5. Interpretation of results 29

mission designed to use temporal triangulation to reconstruct the position of astrophysical
events with high angular precision, without relying on onboard imaging.

The HERMES comprises a fleet of 3U CubeSats 30×10×10 centimeters, deployed in
low Earth orbit. The advantage of this architecture lies in its modularity. A failure of one
satellite does not compromise the mission’s capabilities, as the remaining units continue
to operate independently. Each satellite will be equipped with:

• A GAGG (Gadolinium-Aluminium-Gallium Garnet) scintillator array for gamma-ray
detection in the 20 keV to 0.5 MeV range,

• An array of Silicon Drift Detectors (SDDs) integrated within the scintillator blocks
to detect soft X-rays between 2 keV and 20 keV,

• Tungsten shielding around the sides and bottom of the detectors to minimise back-
ground noise from the cosmic X-ray background,

• A high-precision GPS-synchronised clock providing timing accuracy at 100 mi-
croseconds, crucial for both source localisation and time-of-flight measurements.

HERMES has been conceived with three primary scientific goals in mind. To detect
and localise high-energy transients with an accuracy of several arcminutes. To investigate
GRB emission mechanisms by capturing the prompt emission phase with high timing
precision, HERMES can help to resolve the substructure of GRB light curves. And most
importantly for us and the most ambitious goal is the search for quantum gravity effects,
particularly through in vacuo dispersion.

The HERMES Pathfinder launched as part of the SpIRIT mission in 2023 and has
already demonstrated in-orbit functionality [19]. The successful operation of these units
validates the feasibility of the full HERMES constellation.





Conclusions

In this thesis, we presented a comprehensive, step-by-step simulation and analysis pipeline
to assess the detectability of tiny, energy-dependent arrival-time shifts in gamma-ray burst
light curves. We began by describing our framework for generating synthetic bursts in mul-
tiple energy channels, imposing controlled, linear delays proportional to photon energy,
and then applying Poisson noise to simulate realistic photon statistics. We systematically
varied three key observational parameters: noise levels, time-shift between energy chan-
nels, and temporal resolution to produce a suite of datasets spanning injected delays from
several time bins down to sub-bin scales.

We then applied and compared two delay-detection algorithms. The classical cross-
correlation method reliably recovers whole-bin delays when photon counts are high but
fails to resolve sub-bin shifts or in lower-count regimes.The cross-correlation required the
noise to be scaled down to at least 10% of its original value to be able to reliably detect
delay.

The novel error-correlation technique, by predicting high-energy counts from the low-
energy channel, computing residuals, and examining their lagged autocorrelation, achieves
sub-bin sensitivity when the noise is scaled down to 1% or lower, otherwise shows lower
sensitivity than cross-correlation. In its present form, the method serves more as a qual-
itative indicator than a quantitative tool. It can suggest the presence of a small delay in
idealized, clean data, and under such conditions, it shows greater sensitivity than cross-
correlation. But it cannot currently extract the actual delay value, especially not in seconds
or with sub-bin precision, and it fails in the presence of even moderate noise. In summary,
while the error correlation method represents a conceptually interesting approach, its cur-
rent implementation is limited to noise-free simulations and offers no practical advantage
over existing methods when applied to real or noisy data.

By mapping each method’s detection threshold across our parameter grid, we quantified
the trade-offs inherent in observational design. Finer time bins improve sub-bin recovery
yet raise statistical noise. A wider energy range could help with the delay detection as it
would increase the predicted delay between low- and high-energy channels. These results
translate into quantitative guidelines and show that current instruments with millisecond
timing and moderate effective area could probe delays only in bright, low-noise, spectrally
broad bursts.

We recognize several limitations that future studies should address: our use of simple,
single-pulse light curves and linear delay models omits complex spectral evolution and
multi-pulse structure, and our noise modeling neglects instrumental noise. Follow-on work
should incorporate realistic instrument noise and apply this validated framework to archival
GRB datasets to derive empirical constraints on energy-dependent photon dispersion.

– 31 –
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Overall, this thesis establishes a transparent, reproducible blueprint for simulating
GRB observations, benchmarking delay-detection methods, and defining the observational
regimes required to test phenomenological models of quantum gravity-induced dispersion.
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