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Abstrakt

Morfologie galaxií je rozhodující informací při studiu jejich formování a evoluce.
Množství dat, které bylo pořízeno celými prohlídkami před deseti lety je v
součastnosti pořizováno v průběhu jediné noci. Očekávané veliké prohlídky,
které budou dokončeny v blízké budoucnosti, budou produkovat ješte mnohem
více dat mnohem lepšího rozlišení. Toto nesmírné množství dat již nemůže být
klasifikováno lidmi, takže vývoj a použití automatického zpracování je logickým
a nevyhnutelným krokem. Naše práce vychází z výherního řešení „Galaxy
Challenge”, kterým byla konvoluční neuronová síť. Tuto síť jsme modifikovali,
aby byla lépe přizpůsobena klasifikování galaxií po jejím natrénování na větším
množství anotovaných galaxií, než které bylo poskytnuto v „Galaxy Challenge”.
Naše síť správně klasifikovala více než 85% eliptických a 87% spirálních galaxií
z našeho testovacího datasetu. Největší vědecký přínos naší práce vidíme v
budoucím zkoumání závislostí mezi vztahem morfologie galaxií s prostředím
v kterém se nachádzejí a červeným posunem, které bude potřebovat ohromné
množství klasifikovaných objektů.

Abstract

Morphology of galaxies is a crucial information for studying their formation
and evolution. Data volumes of entire survey’s decade ago are being produced
in a single night. Large surveys which are due to be released in near future
are expected to produce even more data and of much higher quality. This vast
amount of data can no longer be classified by humans, so development and usage
of artificial programs is logical and necessary step. We present convolution neural
network as a solution to galaxy classification. Our work is based on winning
solution of Galaxy Challenge, which was a convolutional neural network. We
modified this network to be more suitable for future training on larger dataset of
classified galaxies, than that provided in Galaxy Challenge. Our neural network
correctly classified more than 85% elliptical and 87% spiral galaxies of our testing
dataset. The biggest scientific impact of our work lies in future determination of
the galaxy morphology density relation as a function of redshift, which requires
vast numbers of objects being classified.
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Chapter 1

Introduction

1.1 Morphology of galaxies

1.1.1 Galaxy morphology impact

Fraction of morphological distorted galaxies increases with their redshift which
means, that morphology of galaxies has strong correlation with redshift. Mor-
phology of galaxies in high redshifts is also a key element for cosmology and its
studying of our Universe development. For example, if we live in an accelerating
universe, most elliptical galaxies would form at redshifts z > 1, however, most
elliptical galaxies in decelerating universe would form at z < 1 (Abraham and
van den Bergh (2001)).

There has been whole study made about galaxy correlations as a function of
morphological type (Davis and Geller (1976)) whose results indicate, that differ-
ences in galactic morphology are not just results of environmental interactions
which are significant long after era of galaxy formation. Even the correlation
of nature and evolution of galaxy clustering with morphological characteristics
of galaxies in big clusters and small groups has been discussed for many years
(Spitzer and Baade (1951), Field and Saslaw (1971), Oemler (1974), Gunn and
Gott (1972), Karachentsev and Karachentseva (1975)). Elliptical and lenticular
galaxies are dominant in central regions of rich compact clusters while containing
just few spirals and irregular galaxies. In comparison, less dense clusters contain
many spiral galaxies, similarly distributed as galaxies in field. More elliptical
galaxies are also found in small groups which have short crossing times compared
with looser groups where are not that many elliptical galaxies as in small groups.

Automatic galaxy classification applied on near-future surveys will provide
tremendous amount of morphology classified galaxies enabling us to study
evolution of galaxies in much better detail than hitherto possible. We will be
able to measure ratio of different morphological types of galaxies depending on
redshift, on local spacial density (galaxies being in clusters, near clusters or in
field) and much more.

1



1.1 Morphology of galaxies 2

Figure 1.1: Hubble galaxy classification scheme (Hubble (1926)).

1.1.2 Hubble galaxy classification scheme

Hubble galaxy classification scheme (Figure 1.1) divides galaxies according to
their morphology into 4 categories.

Elliptical galaxies are smooth, featureless objects appearing as ellipses in
images. They are marked with letter E and number representing their degree of
ellipticity. For example, E0 are spheroid elliptical galaxies and E7 (which are
not shown in the Figure 1.1) are at the edge of their ellipticity.

Spiral galaxies have disk-like structure with usually 2 spiral arms. They
are characterized by massive star formation inside of those spiral arms. Their
central bulge is similar to elliptical galaxies, it is elliptical, without big star
formation and with larger concentration of stars. Spiral galaxies are further
divided into spirals with a bar structure in the centre and without it. Spiral
galaxies without a bar and with a bar are marked with letter S, SB respectively.
Both sub-categories of spiral galaxies have also a small latter (a, b, c) indicating
looseness of their spiral arms. For instance, Sa is a spiral galaxy without a bar
and with tighter spiral arms than Sc which is also without a bar but with loose
spiral arms.

Lenticular galaxies are the third category of Hubble galaxy classification
scheme. They are characterized with the central bulge and disk-like structure
as spiral galaxies, but without visible spiral arms and they do not have active
significant star formation. Lenticular galaxies are further divided into two types,
S0 without a bar structure and SB0 with a bar-like structure.

Last category is including irregular galaxies marked as Irr. Small Magel-
lanic Cloud is an example of such galaxy. Irregular galaxies have very distorted
shapes without spiral arms or galactic bulge as spiral galaxies have.
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1.1.3 Hubble-de Vaucouleurs galaxy classification scheme

Figure 1.2: Hubble-de Vaucouleurs galaxy classification scheme (de Vaucouleurs
(1959)).

Hubble-de Vaucouleurs galaxy classification (de Vaucouleurs (1959)) is an
extension of original Hubble galaxy classification (Hubble (1926)) first described
by Gérard de Vaucouleur in 1959. De Vaucouleur was not satisfied with Hub-
ble’s classification of spiral galaxies only according to tightness of their spiral
arms and presence or absence of a bar rising from galactic nuclei. He was arguing
that it does not adequately describe full range of observed galaxy morphologies.
He retained Hubble’s basic division of galaxies into ellipticals, spirals, lenticulars
and irregulars but argued that rings and lenses are very important morphology
structures of spiral galaxies, thus he improved Hubble’s galaxy classification
of more complex classification of spiral galaxies based on three morphological
characteristics.

All spiral galaxies mark start with S following by few other letters. First
additional marking letter describes properties of galactic bar. Those which have
bars are marked as SB, without bars as SA and galaxies which are having slight
indication of a bar, but it is not prominent as in SB galaxies, have marking SAB.

Second criterion determines whether galaxies posses ring-like structures
(additionally marked with (r)), or not (additionally marked with (s)). Transition
galaxies have additional mark (s). Those types are not in the Figure 1.2.

Third criterion determines tightness of spiral arms. It is an extension of
basic Hubble’s spiral arm tightness classification having 5 categories (a, b, c,
d, m) instead of Hubble’s tree (a, b, c). This distribution describes better the
crossing of spirals into irregulars. Large Magellanic Cloud with its classification
in Hubble-de Vaucouleurs system as SB(s)m is a representation for the last
category of tightness criterion called m.

Category Im is out of spirals and its representative is a Small Magel-
lanic Cloud.
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1.1.4 The ATLAS3D comb diagram

Figure 1.3: New comb diagram proposed by ATLAS3D team (Cappellari et al.
(2011)).

E. Hubble though, that the elliptical galaxies evolve into the lenticular
galaxies, which further evolve into the spiral galaxies. This opinion gave rise to
terms “early types”, which are elliptical and lenticular galaxies, and “late types”,
which are spiral galaxies (we will not use those terms in order to avoid miss
interpretation). However, nowadays opinion is exactly opposite. It seems more
likely that the spiral galaxies further evolve into the lenticular galaxies, which
further evolve into the elliptical galaxies due to processes such as ram-pressure
stripping (Book and Benson (2010)) and galactic merging.

The elliptical and lenticular galaxies seem to be much more interesting than
we though. It is nearly impossible to visually distinguish the gas and dust lacking
face-on disks of stars from much rounder spheroids of elliptical and lenticular
galaxies. This is a reason for debates which continue for decades about a fraction
of hidden disks-like systems in the elliptical and lenticular galaxies.

We though that elliptical and lenticular galaxies rotate very slowly in com-
parison with spiral galaxies. It is explained as a reason of chaotic star rotation in
elliptical and lenticular galaxies which nearly nulls angular momentum of those
galaxies compared to massive rotation speed of stars in spiral galaxies, where
nearly all stars rotate in similar direction inside of the spiral disk. However,
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according to study of Cappellari et al. (2011) who studied star velocities of 260
elliptical and lenticular galaxies, around 66% of those galaxies rotate extraordi-
nary fast, due to fact, that they possess disk-like structure. This disk does not
have gas, dust and rapid star formation as disks of spiral galaxies, which also
makes it less visible.

ATLAS3D (Cappellari et al. (2011)) team divide elliptical and lenticular
galaxies into two groups called “slow rotators” and “fast rotators”. Slow rotators
are spheroidal elliptical or lenticular galaxies without disk-like structure. Fast
rotators exhibit disk-like structure similar to those of spiral galaxies only without
gas, dust and rapid star formation. They also point to strong evolutional relation
of spiral galaxies with those fast rotators. Fast rotators seem to be old spiral
galaxies which already consumed majority of their gas and dust for star formation.
Fast and slow rotators can not be optically distinguished (as they have been
classified as same morphological objects until now). However, by star velocity
measurements all inclinations of those galaxies can be strictly classified as fast
and slow rotators. Those are reasons why ATLAS3D team considers Hubble
galaxy classification inadequate and propose new scheme for galaxy morphology
classification (1.3) based on star velocities.

Measurement of star velocities requires spectroscopic observations. Star
velocities can not be measured just based on morphology. However, for first, we
need to have morphology classified galaxies in order to find candidates (elliptical
and lenticular galaxies) for spectroscopic measurements of star velocities to
further distinguish those candidates to fast and slow rotators.

1.1.5 Morphology density relation

Morphology density relation (Figure 1.4) describes the relation between galaxy
morphology shapes and environment they are located in.

Morphology density relation shows, that field environment consists mainly of
spiral galaxies with just a few elliptical and lenticular galaxies. As environment
density rises, representation of spiral galaxies decreases while representation of
elliptical and lenticular galaxies increases. Elliptical and lenticular galaxies are
mainly located in clusters of high densities.

Morphology density relation shows that galaxy evolution is strongly connected
with environment. Future surveys with automatic image classification techniques
will allow us to study such relationships in much greater detail.

1.2 Galaxy Zoo projects

1.2.1 First Galaxy Zoo project

The First Galaxy Zoo project started in 2007 (Lintott et al. (2008)). People who
participated at this project classified images of galaxies which were extracted
from the Sloan Digital Sky Survey (SDSS) (York et al. (2000)). Then they had to
classify those galaxies according to the decision tree of this Galaxy Zoo project,
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Figure 1.4: Morphology density relation of galaxies from 55 rich clusters studied
by Dressler (1980). It shows the fraction of galaxy population as a function of
log of projected density in galaxies Mpc−2. Distribution of the galaxies over the
bins of projected density is shown in upper histogram. E are elliptical galaxies,
S0 lenticular galaxies and S + Irr are spiral and irregular galaxies.
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which included only the most basic questions like if the galaxy is elliptical, spiral
or mergers. For those, that were classified as spiral galaxies, classifiers were
further asked to choose if the spiral arms were rotating clockwise, anticlockwise
or if they were edge-on. This has a particular meaning for determining the
rotation of galaxy.

Every galaxy was presented to multiple people, which helped to estimate
probabilities of morphological types. It is vital to keep in mind, that even people
do not agree in types of galaxies, which means that automatic classification
techniques can not give results without deviations. According to Lintott et al.
(2008) nearly one million of galaxies were classified in this first project of Galaxy
Zoo.

1.2.2 Second Galaxy Zoo project

Galaxy Zoo 2, which is the second project of Galaxy Zoo, resulted in more than
16 million classifications of galaxy morphology of more than 300 000 galaxies
(Willett et al. (2013)). Like in the previous project, this project took images from
SDSS (York et al. (2000)). The main difference is that people had to describe
galaxies according to more sophisticated decision tree (image of decision tree
(Figure 1.5), decision tree in words (Table 2.7)) than in first Galaxy Zoo. Those
innovations were, for example, in defining the relative strengths of galactic bulges
and spiral arms, determining the shapes of edge-on disks, as well as whether
bars or bulges are included or not. Citizen scientists provided great results.
Compared with professional astronomers, their accuracy was more than 90%
(Willett et al. (2013)).

1.2.3 The Galaxy Challenge

The Galaxy challenge was an international online challenge distributed on Kaggle
platform and supported by Winton Capital. Its goal was developing an algorithm
for automatic computer classification of galaxies according to their morphology.
Galaxy Challenge used labeled data from Galaxy Zo 2 crowd-sourcing project.
Its winner is Sander Dieleman with his solution Dieleman et al. (2015). He built
and trained convolutional neural networks for galaxy classification based on their
morphology.

1.3 Increasing data volumes
The same data volumes, which were produced by entire surveys a decade ago, are
nowadays possible to acquire during a single night. Moreover, a real-time data
analysis is usually desired. This enormous and growing amount of data must be
analysed in an automatic and sophisticated way. Crowd-sourcing projects can
not be applied to such large data volumes that will be provided by surveys in
near future (Figure 1.6).
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Task Questions Responses Next
01 Is the galaxy simply smooth smooth 02

and rounded with no sign of features or disk 07
a disk? star or artifact end

02 Could this be a disk viewed yes 09
edge-on? no 03

03 Is there a sign of a bar yes 04
feature through the centre no 04
of the galaxy?

04 Is there any sign of a yes 10
spiral arm pattern? no 05

05 How prominent is the no bulge 06
central bulge, compared just noticeable 06
with the rest of the galaxy? obvious 06

dominant 06
06 Is there anything odd? yes 08

no end
07 How rounded is it? completely round 06

in between 06
cigar-shaped 06

08 Is the odd feature a ring, ring end
or is the galaxy disturbed lens or are end
or irregular? disturbed end

irregular end
other end
merger end
dust lane end

09 Does the galaxy have a rounded 06
bulge at its centre? boxy 06
If so, what shape? no bulge 06

10 How tightly wound do the tight 11
spiral arms appear? medium 11

loose 11
11 How many spiral arms 1 05

are there? 2 05
3 05
4 05
more than four 05
can’t tell 05

Table 1.1: The Galaxy Zoo decision tree in words. It consists of 11 tasks
and 37 possible responses. The numbers of tasks does not represent their
order in decision tree. Texts in “Questions” and “Responses” were displayed to
participants together with the icons in Figure 1.5.
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Figure 1.5: This image represents the flowchart of decision tree of Galaxy Zoo 2
[2]. It begins in the centre at the top. The colour represents the relative depth
of questions in the decision tree. Those outlined in brown are asked for every
galaxy. Green colour represents one step, blue two steps and purple three steps
below branching points in decision three.

1.4 Large sky surveys

1.4.1 Introduction

There is enormous amount of a high quality image data of galaxies, which are
not sufficiently analysed and even more are about to be made. Literally, tens of
billions “superb” (as LSST developers say) images are yet to come. The future
of analysing such tremendous amount of data lies in automatic processing and
machine learning techniques such as convolutional neural networks that are
arguably one of nowadays best tools for classification of such amount of image
data. We would like to introduce some of currently working large surveys and
the LSST which is right now under construction.

1.4.2 Sloan Digital Sky Survey (SDSS)

Creators of Sloan Digital Sky Survey (SDSS) developed their own filter system
called u’ g’ r’ i’ z’, which is practically same as Gunn griz filter system (Oke
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Figure 1.6: “Increasing data volumes of existing and upcoming telescopes: Very
Large Telescope (VLT), Sloan Digital Sky Survey (SDSS), Visible and In- frared
Telescope for Astronomy (VISTA), Large Synoptic Survey Telescope (LSST) and
Thirty Meter Telescope (TMT).” (Kremer et al. (2017))

and Gunn (1983), Schild (1984)). The CCD chip of SDSS camera is divided
into six columns, one for each filter. As the telescope scans the sky, pictures are
being taken sequentially on every filter with time steps equal to the motion of
telescopes in order to take a picture of exactly same field on sky in each of the
six filters. (York et al. (2000))

SDSS made many major discoveries in the field of astrophysics. For example,
its images of quasars allowed us to look back to the times when our universe
was old only few billion years and showed that black holes had a stage of rapid
early growth.

1.4.3 Dark Energy Survey (DES)

The Dark energy Survey (DES) is an international collaborative project. Its
main goals are to map hundreds of millions of galaxies, to detect thousands of
supernovae and to find patterns of cosmic structure, which may help to reveal
properties of mysterious dark energy that is believed to accelerate the expansion
of our Universe. DES is searching southern skies and it began on August 31,
2013. (The Dark Energy Survey Collaboration (2005))

Over the time period of five years, from 2013 to 2018, DES is recording
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Figure 1.7: According to [3] this picture represents “The SDSS system response
curves. The responses are shown without atmospheric extinction (upper curves)
and as modified by the extinction at 1.2 airmasses (lower curves). The curves
represent expected total quantum efficiencies of the camera plus telescope on the
sky.”

information from 300 million galaxies. It also uses a fraction of its time to
discover thousands of supernovae by observing small patches of sky almost once
a week. [5]

The DES uses a CCD camera mounted on a Blanco 4-m telescope at Cerro
Telolo Inter-American Observatory (CTIO). The survey is carried out using 5
filters, where 4 are those from SDSS (g, r, i and z). Fifth filter is Y (400 -
1050 nm) plus it has 3 additional slots for possible installation of other filters.
(Honscheid et al. (2008))

The accuracy of determining photometric redshifts (photo-z’s) of galaxies will
be dependent also on the galaxy type. (The Dark Energy Survey Collaboration
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(2005))

1.4.4 The Panoramic Survey Telescope and Rapid Response
System (Pan-STARRS)

The first project of the PAN-STARRS projects, the Pan-STARRS observatory,
embarked in May 2010. The observations were carried using 5 filters, gP 1, rP 1,
iP 1, zP 1 and yP 1 seeing the sky in visible and near infrared spectrum. It was also
the first project that intended to find asteroids that could threaten the Earth.
For this purpose, continuous and repeating scanning of the sky was carried out
12 times in five years. (Magnier et al. (2013))

During four years of observing, pan-STARRS collected information of exten-
sive quality about over 3 billion stars, galaxies and other sources [6].

1.4.5 The intermediate Palomar Transient Factory (iPTF)

The iPTF is a project built upon a previous Palomar Transient Factory (PTF),
which started in March 2009. It uses the 48inch Schmidt telescope (P48) at
the Palomar Observatory equipped with a camera, which has two filter options
R and g. The iPTFs main goal is to search for young supernovae and fast
transients. (Cao et al. (2016))

The iPTF will changeover to the Zwicky Transient Factory (ZFT) in 2017.
The ZFT will be using reworked version of the same telescope as the iPTF, but
it will use a new camera, which will enable an every night full scan of a visible
sky and will directly lead to the LSST era.

1.4.6 Large Synoptic Sky Survey (LSST)

The LSST is currently under construction in Chile. In its ten-year survey LSST
will provide more than 37 billion images of galaxies [7] with its 3.2 billion-pixel
camera. It is due to start observing in 2019. The LSST observations will be
carried out using 6 filters u, g, r, i, z and y. Every image will be of the size
equivalent to 40 full moons (almost 10 square degrees of the sky). The LSST
will be able to map the whole sky in just a few days (Ivezic et al. (2008)). One
of its main objectives is discovering new transients. Those are objects which
change brightness over time. Some may have period of tens of years, while others
just of a few seconds. Some of those changes will be caused by extremely rare
events. It is expected that the LSST will see millions of transients per night
where real-time data analysis is needed for follow-up observations. The LSST
will provide about 30 terabytes of images per night, which is approximately 60
times more than for the SDSS.

The LSST will provide images with such resolution that it is expected to
discover many faint objects, which are impossible to observe today. It will be
able to detect objects 10 million times fainter than visible with human eye. This
is very important mainly for cosmology, because fainter galaxies are further away
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not just in space, but also in time. The distribution of morphological types of
those faint galaxies will be crucial for better understanding the evolution of our
Universe itself.

The LSST data will be used to make the three-dimensional cosmic map with
unprecedented depth and detail. This map will serve to various purposes. For
example, for locating the dark matter, characterizing properties of the dark
energy, tracking the transient objects and studying our Galaxy into much greater
details. It will be also used to protect the Earth by detecting and tracking
asteroids that might impact the Earth.

The LSST will use its observations of several billion galaxies to study their
masses and influence on the distortion of space-time. Those measurements will
be also used to further understand the dark matter and dark energy. Particularly
the influence of dark matter on the development of structure of the Universe on
a cosmic scale and how dark energy behaves with cosmic time or with redshift.

Redshift z is crucial for study of the dark energy and physics related with it.
The spectroscopic measurement of redshift requires huge amount of observing
time, which makes it impossible to be done for billions of galaxies that will be
observed by the LSST. This is a reason why the developers of the LSST want
to use photometric redshift measurement instead. One of possible technique
to estimate the photometric redshift is a machine-learning based on the neural
networks. (LSST Dark Energy Science Collaboration (2012))

1.5 Related work
Machine learning techniques, but mainly artificial neural networks, have been
used in astronomy research for more than two decades starting with their
application on star-galaxy discrimination (Odewahn et al. (1992), Bertin (1993))
and classification of galaxy spectra by Folkes et al (1996). More recent example
is their usage for photometric redshift estimation (Collister and Lahav (2004)).



Chapter 2

Neural networks as a solution to image
recognition

2.1 Introduction
In this chapter, we describe the neural networks. It starts with comparison of
biological and mathematical neuron, continues with explanation of feed-forward
neural networks and their components and ends with description of convolutional
neural networks and their specifics.

2.2 Comparison with biological brain
Neural networks took an inspiration in biological neural systems. Neurons are
the basic computation units of the brain (Figure 2.1). They are connected with
synapses. Mathematical neurons, which are used in artificial neural networks,
mimic the behaviour of the biological neurons.

The biological neurons receive input signals (electric impulses and chemicals)
through their dendrites and produce an output signal via an axon, where the
neuron connects to other neurons with synapses to other dendrites of other
neurons. A neuron is triggered and active only if the combination of its input
signals reaches some threshold condition resulting in transferring its information
to the successor neurons.

Each connection between mathematical neurons has its weight. The math-
ematical model of neuron (Figure 2.1) calculates weighted sum of its inputs
and activates only if this sum reaches its treshold condition. If the treshold is
reached, mathematical neuron applies the non-linear function on the result of
the weighted sum and sends this information to other neurons.

2.3 Single-hidden-layer neural networks
The single-hidden-layer neural networks consists of an input layer followed by
one hidden layer, which is followed by an output layer. The hidden layer is any
layer between the input layer and the output layer. Following equations show an
output of the hidden layer h and an output of the output layer y.

14
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Figure 2.1: Comparison of biological neuron on the left and mathematical neuron
on the right [8].

h = f1(W1x1 + b1) (2.1)

y = f2(W2x2 + b2) (2.2)

f1 is the non-linear function applied on the input layer and f2 on the hidden
layer. x1 is an input and x2 is an output vector of the hidden layer, which is an
input of an output layer. W1 and W2 are the matrixes of weights, which will be
learned by the neural network together with the bias parameters b1 and b2. Bias
enables to shift the activation function to the left or to the right. For example,
lets consider an input of the mathematical neuron to be a number 2, adding a
bias would allow an output of 0, which would not be possible otherwise. This
makes neural networks more flexible and usually improves their performance.
Rectified linear unit (ReLU) is nowadays most commonly used lon-linear function.
Sigmoid function od hyperbolic tangent are also in use.

Sigmoid function
σ(z) = 1

1 + e−z
. (2.3)

Hyperbolic tangent

σ(z) = e2z − 1
e2z + 1 . (2.4)

Rectified linear unit (ReLU)

σ(z) = max(0, z). (2.5)

Where z = wx + b, w is a matrix of weights, b is a bias parameter and x
represents input data.

2.4 Deep Neural Networks
What distinguishes the deep neural networks from the single-hidden-layer neural
networks is their depth. The number of hidden layers defines the neural networks
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depth. Traditional machine learning uses simple neural networks composed of
one input layer and one output layer, at most with one hidden layer between.
So word deep is a strictly defined technical term for neural networks with more
than one hidden layer (those will be further explained).

In deep neural networks, each layer of neurons is being trained on different
features. Those features are based on previous layer’s output.

Neurons in deeper layers exhibit higher level of abstraction and respond to
more complex patterns in the input images as can be seen in Figure (2.2).

Figure 2.2: Feature visualization of CNN trained on ImageNet (Zeiler and Fergus
(2013).

2.5 Architecture of Standard Feed-forward Neural
Network

The information flow in a standard feed-forward neural network, as its name
indicates, continuous straightforwardly from the input to the output, without
any loops. Information is always fed forward and never returns back as, for
example, in recurrent neural networks, which will not be further discussed in
this work.

The feed-forward neural networks architecture (Figure 2.3) consists of neurons
and layers. The first layer is called input layer. It represents an information
entry to the network. Then there is a number of hidden layers and finally the
output layer, which calculates the output of neural network. The number of
hidden layers can not be declared by some strict rules as well as an amount of
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input layer

hidden layer 1 hidden layer 2 hidden layer 3

output layer

Figure 2.3: Image of feed-forward neural network consisting of one input layer,
three hidden layers and one output layer [4].

neurons for each hidden layer. Different architectures were proposed for different
purposes. When creating neural network for a new task, it is recommended to
start with an architecture that works for a similar problem, and than to try
adjust its properties. The feed-forward architecture is often of the first choice for
its simplicity. An important property of this architecture is that all the layers are
fully connected to the adjacent layers. Every single neuron of the layer connects
to all the neurons in adjacent layers, but does not have any connection with
neurons in the other layers. [4]

This results in very large number of parameters, which is the main difference
and disadvantage in comparison with the convolutional neural networks.

The output of layer j is a vector and it is calculated by following formula

xj = fj(Wjxj−1 + bj), (2.6)

where xj−1 is the input to j-th layer with matrix of weights Wj , vector of
biases bj and non-linear activation function fj

2.6 Loss function
Any neural network can be seen as a nonlinear function

y = f(x;w),

where x is an input (an image of galaxy in our work), y is an output vector
(probabilities of different galaxy morphology types) and w is a set of trainable
parameters. For example, for the single hidden layer feed-forward neural network
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from equations (2.1) and (2.2) of Table 2.7. The set of trainable parameters
would be w = {W1,b1,W2,b2}. We will use wi to denote single parameter
from this set (e.g. one coefficient of one of the weight matrices or bias vectors).
To train the neural network, we have a set of N training examples consisting
of inputs {x1,x2, . . . ,xN , } and corresponding desired (ground true) outputs
{t1, t2, . . . , tN , } (e.g. the human annotations of galaxy morphologies from the
Galaxy Challenge). We need to define a loss function measuring the quality
of particular parameter set w based on computing the error between predicted
output vectors yn and ground true vectors tn. There are many possible loss
function. To be consistent with the metric used for the Galaxy Challenge, we
have used Mean Square Error as the loss function in our work

L(w) = 1
2N

N∑
n

|tn − yn|2 = 1
2N

N∑
n

D∑
d

(tnd − ynd), (2.7)

where ynd is d-th element of the D-dimensional vector yn (and similarly for tnd).

2.7 Gradient Descent (GD)
The learning process of neural network is based on searching for the combination
of learnable parameters providing the lowest error of the loss function. We will
use the gradient of the loss function to find a direction along which we should
change our weight vector. This direction will be mathematically guaranteed to
be the direction of the fastest descent of the loss function (LeCun et al. (1999)).

wi := wi − α
∂

∂wi
L (2.8)

This update of weights is simultaneously performed for all values of weights
(i = 1, ... , number of weights). Parameter α is called the learning rate. Its
function is to manually change the gradient update. it is often used in actual
training because weights tend to increase far too much in each iteration, which
would make them diverge an “over correct”.

The gradient descent is an optimization method, which updates all the
weights at once after running through all samples in the training dataset once
(this is called an epoch). However, its alternative, the stochastic gradient descent
(SGD), updates the weights progressively after a subset of the training sample
from the training dataset.

2.8 Back-propagation
The back-propagation is a learning process of neural network. It uses the gradient
descent method to find the minimum of a loss function. The solution of learning
problem is a combination of weights with minimum loss function. The back-
propagation could be divided into two repeating phases. The network is firstly
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given a vector as its input. It is propagated through the whole network resulting
in an output. The networks output is compared with the desired output by
using a loss function, which calculates error values for every single neuron in the
network starting at the output layer and propagating through the whole network.
The phase consists of updating all of the weights by desired optimization function.

2.8.1 Dropout and Vanishing gradient problem

Traditional neural networks used just few hidden layers. It was hard to learn
deeper layers with many layers applying non-linearities. Gradient information
would vanish during propagation through layers, which made it difficult to learn
parameters of lower layers (Hochreiter et al. (2001), Glorot et al. (2011)).

The dropout is a regularization technique, which reduces the vanishing
gradient problem. When applied on a layer, the dropout randomly sets output
values of previous layer to zero with probability p. p is typically chosen to be 0.5.
The dropout is applied in every single sample presented to the network, creating
almost certainly new, unique neural network (Figure 2.4(b)) for every sample.
Those dropped out neurons are not participating in the learning process. The
neurons can not rely on the active presence of the other neurons, which makes
them more robust and less like to memorize the data (overfitting).

Figure 2.4: Illustration of dropout.

2.9 Convolutional neural networks
The convolutional neural networks make an assumption, that their input is an
image. This assumption allows great simplifications, which results into reducing
the amount of parameters in the network. Convolutional neural networks have
their inputs and outputs of each layer organized as 3-dimensional matrix, where
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the locality of the neighbouring elements in the matrix is significant. ([1], LeCun
et al. (1999))

2.9.1 Convolutional layer

The input of convolutional layer is a stack of feature maps (for example the colour
rgb channels of an image). The convolutional layer takes this input and convolves
it with its features resulting in an output of different feature maps. Filters of
deeper convolutional layers have a shape of 3-dimensional matrix, so they could
operate across all feature maps and provide 3-dimensional convolution.

This can be implemented by replacing the matrix-vector product f(Wjxj−1)
in equation (2.6) with a sum of convolutions. The input of layer j is represented
as a set of K matrices X(k)

j−1 with k = 1 ... K. Each of this matrices represents
different feature map. Representation of the output feature maps X(l)

j , l = 1 ... L
are represented by following formula (Dieleman et al. (2015))

X(l)
j = f

( K∑
k=1

W(k,l)
j ∗X(k)

j−1 + v
(l)
j

)
. (2.9)

Matrices W(k,l)
j represent the filters of layer j and b(l)

j represents the bias
of feature map l. Mark * represents the 2-dimensional convolution, which has
following formula

X[i, j] ∗H[i, j] =
∑

k

∑
l

X[k, l]H[i− k, j − l], (2.10)

where i and j are filter width and height, X is the input and H is the filter.
The neurons in a convolutional layer are connected only to a small region of

previous layer in comparison with fully connected layers in feed-forward neural
networks (Figure 2.5) ([1], LeCun et al. (1999)).

The parameters of convolutional layer consist of set of learnable filters (LeCun
et al. (1999)). In this case, the network is learning filters that become active
when seeing some feature. The first convolutional layer learns to recognize just
the most basic features like for example differently rotated edges and coloured
blotches. Deeper layers learn more complex features. The interpretation of those
features is much harder as they do not have classic 3 spacial dimensions of width,
height and depth.

Each convolutional filter has a set of filters and each of them will produce a
separate 2 dimensional depth slice. The output volume is produced by stacking
the depth slices along the depth dimension. Each neuron in the convolutional
layer is connected just locally with an input in the height and width dimensions,
but always fully in depth dimension. This region of connection is called the
receptive field of neuron, which is equivalent with a filter size.
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Figure 2.5: Comparison of architectures of fully connected neural network (left)
and convolutional neural network (right) [1].

Figure 2.6: The left showss an example of an input image of volume 32×32×3
(where 3 is the rgb colour dimension ) and the first convolutional layer with
neurons. The left side of the picture depicts a receptive field, which shows the
local connection of neurons in the spatial dimension, but full connection in depth.
All of those 5 neurons in the example are looking at the same receptive field. On
the right side is a scheme of mathematical neuron. Those neurons are similar
to those in the regular neural networks, producing dot product of their weights
with the input, followed by non-linearity. The difference is in their connectivity,
which is now restricted in the width and height dimensions. ([1], LeCun et al.
(1999))

Output of convolutional layer

The output of a convolutional layer is specified by 3 hyper-parameters, filter size,
stride and padding. Number of feature maps determines the depth dimension of
output.

Stride defines how the filter is moving on the picture, how many pixels does
it jump in its movement. It will be better explained on an example. Suppose
that we have image of dimensions 32×32×3 and filter 5×5×3. With stride 1 the
output of this convolutional layer would have sizes 27×27×3.

Padding (Figure 2.7) is adding zeros to the spacial dimension of the image.
Adding padding +2 to the example above will give us an image of dimensions
36×36×3. Applying the convolution with filter of sizes 5×5×3 and stride 1 will
give output of 32×32×3.
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Figure 2.7: Illustration of padding +2 applied on image of size 32×32×3 (depth
dimension is not illustrated)

Parameter sharing

Number of parameters can be dramatically reduced by parameter sharing. It is
based on the idea, that if one feature is useful for computation at some spatial
position, than it should be useful for computation at a different position. In
other words, this makes constraint for the neurons in the same depth slice to use
the same weights and bias. Depth slice is a single two-dimensional slice of depth
of convolutional layer. (For example, volume of size 42×42×69 has 66 depth
slices, each of size 42×42). Practical usage of this is in back-propagation, every
neuron will still compute the gradient for its own weights, but these gradients
will be added up across each depth slice and updating only single set of weights
per slice. [1], LeCun et al. (1999))

2.9.2 Pooling layer

The pooling layer reduces the spacial dimension of the representation given by
a convolutional layer, which results to decrease of the amount of parameters
and the number of computations in a network. Pooling works independently on
every depth slice of its input. It has a stride parameter similar to that of a filter
of convolutional layer. Pooling usually applies MAX operation. For instance,
lets consider pooling of filter size 2×2 applied with stride 2 (Figure 2.9). This
pooling would apply MAX operation on 4 numbers in each of its steps, returning
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Figure 2.8: An illustration of a convolution with filter size 3×3×5, where 5 is
filters depth, applied on 3 rgb colour dimensional image, for example classical
JPEG image [7].

just the maximum value of those four. It downsamples every depth dimension
by 2, which reduces the data volume to 25%. (Ranzato et al. (2007))

Figure 2.9: Illustration of max pooling with filter size 2×2 and stride 2.

2.9.3 Non-linearity as an activation function

Convolutional neural networks use non-linear activation functions similar to
the regular neural networks. Nowadays standard non-linearity is ReLU. It
has several computational advantages in comparison with other non-linearities
like, for example, the sigmoid function or the hyperbolic tangent. Using ReLU
activation decreases the problem with vanishing gradient (Hochreiter (1998),
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Glorot et al. (2011)). Another thing is that neurons that use ReLU increase
sparsity in the hidden layers (Glorot et al. (2011)). Another benefit is the
increase of effectiveness of gradient descent during back-propagation due to
ReLU’s piecewise linear nature. For instance, according to Krizhevsky et al.
(2012) implementation of their convolutional neural network with ReLU non-
linearity made their network six times faster than equivalent networks with
hyperbolic tangent non-linearity.

2.9.4 Fully connected layer

The fully connected layers used in a convolutional neural networks are similar to
the one, used in regular neural networks (Figure 2.3). Each neuron is connected
with every single neuron in the previous layer.Their activations are also computed
using a matrix multiplication followed by adding a bias offset.

2.9.5 Architecture of Convolutional Neural Network (CNN)

Figure 2.10 is an example of architecture of convolutional neural network. It
shows a CNN which is made to classify pictures of digits. Size of the input layer
is 32×32, which is also size of training images. Second layer is a convolutional
layer which has 28×28 feature map size and convolutional filter (also called
kernel) of size 5×5. Output of this convolutional layer is of 28×28 size. Third
layer is a sub-sampling layer. Its output is 14×14 and its filter dimension is
2×2 which means, that it sub-samples its input dimension (which is an output
of second layer, convolutional layer) 2 times in width and height dimensions.
Fourth layer is again a convolutional layer with feature map dimension 10×10
and filter dimension 5×5. It is again followed by sub-sampling layer. The spacial
dimension of fifth layers filter is 2×2 and output dimension 5×5, so it again
sub-samples 2 times. Following layer is sixth layer, which is a fully connected
layer followed by non-linearity. This layer classifies its inputs to specific classes,
giving them probabilities of being certain digit.

Figure 2.10: An example of architecture of a convolutional neural network [9].



Chapter 3

Application of neural networks to images of
galaxies

3.1 Dataset
Our dataset consists of 61 578 424×424×3 JPEG rgb colour images of galaxies
from SDSS. All galaxies are centred in images. All the images have been
labeled by citizen scientists participating in Galaxy Challenge resulting. The
labels consist of 37 numbers corresponding to answers given to the participants.
The participants were first given already classified galaxies to determine their
accuracies and to give their classifications credibility. Because every galaxy was
classified by several people (between 40 to 50), in order to improve classification
accuracy, these numbers can be represented as probabilities of a galaxy being of
a particular morphological type.

3.2 Data augmentation
Our data augmentation and preprocessing done in our work is based on the work
of Dieleman et al. (2015). We used python (van Rossum (1995)), sci-kit image
(van der Walt et al. (2014)) and numpy module (Dubois et al. (1996)) for all
data augmentation and preprocessing.

We make random augmentations of images in every epoch. Epoch is a period
in which neural network trains once on all training images. Images are supplied
to the network by a generator. The generator takes raw images as the input,
makes all transformations to make sixteen 45×45×3 images of every raw image
(those transformations are further described in section “Data preprocessing”) and
yields them in batches as the input to neural network. A random augmentation
is applied on the raw images before all those transformations and it consists of
random shift in range (-4, 4) pixels, random rotation in range (0, 360) degrees
and random zoom in range (1/1.3, 1.3). Those augmentations are small enough
to preserve all the morphological shapes of galaxies, but big enough to decrease
the neural networks overfitting.

25
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3.3 Data preprocessing
Neural networks highly benefit from larger training datasets.

For creating a larger dataset, we make use of the fact that galaxies are
invariant to rotations and translations. If we flip the image of galaxy, rotate or
translate it, it will always be the same galaxy, which means that the same label
can be used for all of the new versions of the galaxy.

All the additional augmentations we make are done to as described in
previous section already randomly augmented raw images. The raw images (after
augmentation) are firstly flipped. Then both versions, (flipped and not flipped),
are rotated by 45 degrees in anti-clockwise direction, which makes 4 different
views of 1 raw image. Figure 3.1 shows an example of those transformations on
image with id 448630. All those 4 views still have dimensionality 424×424×3.

The next step is cropping those images to 207×207×3 and downsampling by
factor of 3 into 69×69×3 dimensions. This transformation is shown in Figure 3.2.

The last step creates 4 new versions of every of those four 69×69×3 images.
Every 69×69×3 image is cut to four 45×45×3 partially overlapping images. The
overlapping part is in the centre of the image in order to gain more information
about the galactic nuclei, as more of the questions that the neural network is
trained to answer are about the features in the galactic nuclei then further away.

All of those transformations of raw images into 16 45×45×3 images needs to
be done to classification as well.

This process creates exactly 16 times larger dataset and significantly improved
the performance. Another benefit from the increased amount of training data
lies in the reduction of the overfitting effect. The reason is very logical and
simple: it is more difficult for a neural network to simply memorize 16 times
more images.

We decided to keep the first 6400 images of the dataset for the testing. Those
images were not participating in any form in the actual training. The last 6
170 images from the dataset were selected for validation purposes so the neural
network was trained only on the remaining 49 008 images.
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(a) (b) (c) (d)

Figure 3.1: (a) raw image, (b) flipped raw image, (c) rotated raw image by 45
degrees, (d) flipped and rotated raw image by 45 degrees. Rotations are made
in anti-clockwise direction.

(a) (b) (c) (d)

Figure 3.2: Downsampling and cropping transformation performed at images
from Figure 3.1 resulting in images of 69×69×3 dimensionality.

(a) (b) (c) (d)

Figure 3.3: Four 45×45×3 dimensional images. They are cropped versions of
the image from Figure 3.2a and rotated to have their galactic nuclei in bottom
right corner. The same transformations are performed on the other three images
from Figure 3.2 as well, which results in 16 times larger dataset.

3.4 Presented Neural network
We present an innovation (Table 3.2) of the S. Dielemans neural network (Diele-
man et al. (2015), Figure 3.4, Table 3.1). It is based on a combination of ideas,
which gave rise to the inception neural network module (Szegedy et al. (2014))
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and the “bottleneck” architecture. We build our neural network using Keras
(Chollet et al. (2015)) environment with Theano (Theano Development Team
(2016)) backend.

(a) (b)

Figure 3.4: The architecture of the S. Dielemans (Dieleman et al. (2015)) neural
network split to 2 parts for clarity ((b) continues below (a)).

type features filter size non-linearity initial weights
1 convolution 32 6×6 ReLU N (0,0.01)
1p max-pooling - 2×2 - -
2 convolution 64 5×5 ReLU N (0,0.01)
2p max-pooling - 2×2 - -
3 convolution 128 3×3 ReLU N (0,0.01)
4 convolution 128 3×3 ReLU N (0,0.1)
4p max-pooling - 2×2 - -
5 dense 2048 - maxout (2) N (0,0.001)
6 dense 2048 - maxout (2) N (0,0.001)
7 dense 37 - constrains N (0,0.01)

Table 3.1: The architecture of the S. Dielemans neural network (Dieleman et al.
(2015)). Convolutional layers 1, 2 and 4 are followed by max-pooling layers. All
max-pooling layers (1p, 2p and 4p) have 2×2 filter size and stride 2. Initial
biases were everywhere 0.1 except of the dense layers 5 and 6 with initial biases
0.01.
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type features filter size non-linearity
1 convolution 32 6×6 ReLU
1p max-pooling - 2×2 -
2 convolution 64 5×5 ReLU
2p max-pooling - 2×2 -
3a convolution 128 1×1 ReLU
3b convolution 128 1×1 ReLU
3bb convolution 128 3×3 ReLU
3c convolution 128 1×1 ReLU
3cc convolution 128 5×5 ReLU
3d max-pooling - 2×2 -
3dd convolution 128 1×1 ReLU

3merger merger 512 - ReLU
4 convolution 128 3×3 ReLU
4p max-pooling - 2×2 -
5 dense 2048 - ReLU
6 dense 2048 - ReLU
7 dense 37 - constrains

Table 3.2: The architecture of the presented neural network. The inception
module consists of layers starting with number 3. Layer 3merger concatenates
the filters of layers 3a, 3bb, 3cc and 3dd. This merged layer is an input of
convolutional layer 4, which is a “bottleneck” of our architecture. All layers are
initialized with glorot-uniform initialization (Glorot and Bengio (2010)) (except
of max-pooling layers which do not have any weights.

3.4.1 Inception module

The basic idea of the inception module is to connect the information from further
away of observed point with information very close to observed point (Szegedy
et al. (2014)). This is exactly what concatenation of convolutions with filter sizes
5×5(3c), 3×3(3bb) and 1×1(3a, 3dd) does. Because galaxy morphology is not
of a homogeneous distribution, but is characterized by different distribution of
matter in space (mainly spiral, merger and irregular galaxies) we found this idea
perfectly fitting for our task.

Original inception module used in GoogleNet (Szegedy et al. (2014)) does not
have similar numbers of feature maps (numbers in column features in Table 3.2)
for all of its convolutional layers, but they decreased for convolutional layers with
bigger kernel sizes. It was made like this because the creators of the inception
module worked on a task where the spacial correlation between points very close
close to each other was much stronger than further away. This is why they
originally decreased numbers of feature maps with increasing the filter sizes in
the convolutional layers in the inception module. We found that the original
architecture of inception module did not gave us as good results, as if all layers
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had same number of features, which is in our opinion due to the fact that the
morphology of galaxies has strong correlation even between points further away.

2p

3b

3bb

3merger

3c

3cc

3d

3dd

3a

Figure 3.5: Implementation of inception module in our network (Table 3.2).

3.4.2 Bottleneck

Deep neural networks have a problem with non-learning neurons they might be
more than 20% in a very well working neural networks). Bottleneck layer is a
layer which has significantly lower dimensionality than its neighbouring layers.
Decrease of the dimensionality is helpful because it decreases the learning time,
but the main reason we use the bottleneck is that it increases the networks
robustness and reduces the overfitting. The neurons with higher activations tend
to pass through bottleneck more than those with lower activations (Tishby et al.
(2000)). It can be also seen as a layer reducing the sensitivity to the noise in the
data. Bottleneck layer in our networks is convolutional layer 4 shown in Table
3.2.

3.4.3 How does our convolutional neural network see the world

In Figures 3.6 and 3.7, of the first convolutional layer 1 in our neural network
(Table 3.4) are shown the filters. In general, first layers usually detect the most
basic shapes. For example, filters 3.6k and 3.7c seem to detect edges. Filters
3.6l and 3.7g looks like curve detectors. Neural networks do not use only one
filter for classification, but combination of all.

All of this gets much more complicated when the information passes to the
deeper layers as they do not have classic 3 rgb spacial dimensionality as images
do. Those layers are learning more complex features with increasing depth.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 3.6: Filters 1-16 of first convolutional layer of our architecture.
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Figure 3.7: Filters 17-32 of first convolutional layer of our architecture.
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Results

4.1 Classification of selected galaxies
We tested our neural network on 6 400 images of SDSS and 5 additional images.
Those were images of galaxies M51 (Figure 4.1, 4.3), NGC 1365 (Figure 4.2),
M51 (Figure 4.4) and UGC 12336 (Figure 4.5). We preprocessed those images
manually into 424×424×3 spacial dimensionality, so they could be classified by
our neural network.

Figure 4.1: Image of galaxy M51 captured by students of Faculty of Sci-
ence, Masaryk University Department of Theoretical Physics and Astrophysics
in observatory of city Vyškov. This image is a collage made of multiple
images in different bands combined together to classical rgb JPEG image
by Mgr. Filip Hroch, PhD. Our neural network made following predictions
P (elliptical) = 0.2%; P (spiral) = 94.6%; P (star or artifact) = 5.3%.
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Figure 4.2: Figure of galaxy NGC 1365 taken by DES (The Dark Energy
Survey Collaboration (2005)). Our neural network made following predictions
P (elliptical) = 3.1%; P (spiral) = 79.7%; P (star or artifact) = 17.2%.

4.2 ROC curves
The receiver operating characteristic curve (ROC) characterizes quality of a
detection system as a trade-off between the probability of miss (Miss) against
probability of false alarm (FA). The closer the curve copies the left vertical axis
and the bottom horizontal axis, the more accurate the detection system is. The
closer the curve comes to the shape of the diagonal curve connecting points [0,
100] and [100, 0], the less accurate it is. We show the ROC curves as our results
according to the tasks (Table 2.7) of the Galaxy Challenge.
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Figure 4.3: Figure of galaxy M31 1365 taken by Pan-STARRs (Magnier et al.
(2013)). Our neural network made following predictions P (elliptical) = 33.2%;
P (spiral) = 64.5%; P (star or artifact) = 0.2%.
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Figure 4.4: Figure of galaxy M51 1365 taken by Pan-STARRs (Magnier et al.
(2013)). Our neural network made following predictions P (elliptical) = 0.2%;
P (spiral) = 97.8%; P (star or artifact) = 1.9%.
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Figure 4.5: Figure of galaxy UGC 12336 taken by DES (The Dark Energy
Survey Collaboration (2005)). Our neural network made following predictions
P (elliptical) = 75.8%; P (spiral) = 1.2%; P (star or artifact) = 24.0%.



4.2 ROC curves 38

Task Questions P1 [%] P2 [%] P3 [%] P4 [%] P5 [%]
01 smooth 0.2 3.1 33.2 0.2 75.8

features or disk 94.6 79.7 64.5 97.8 1.2
star or artifact 5.3 17.2 0.2 1.9 24.0

02 edged-on− yes 3.6 8.3 23.7 1.7 0.0
edged-on−no 91.0 71.4 40.8 96.0 0.1

03 bar− yes 16.3 42.5 12.0 35.3 0.0
bar−no 74.7 28.9 28.7 60.6 0.0

04 spiral arm pattern− yes 89.3 52.6 25.7 95.8 0.0
spiral arm pattern−no 1.7 18.8 15.1 0.3 0.1

05 no bulge 0.8 11.2 5.1 4.8 0.0
just noticeable 18.8 15.0 14.8 28.7 0.0
obvious 52.5 27.5 14.4 44.7 0.0
dominant 18.9 17.7 6.4 17.8 0.0

06 anything odd− yes 63.7 99.3 62.4 64.0 36.8
anything odd−no 36.2 0.7 37.6 36.0 63.2

07 completely round 0.1 0.9 0.0 0.1 49.7
in between 0.0 1.0 14.1 0.1 26.1
cigar-shaped 0.0 1.1 19.1 0.0 0.0

08 ring 15.4 19.5 6.1 12.6 1.2
lens or arc 8.9 0.8 0.0 4.6 2.8
disturbed 10.7 3.0 14.2 7.9 5.4
irregular 4.0 0.0 17.7 0.3 3.5
other 17.7 45.0 12.0 18.2 19.7
merger 7.1 30.1 12.4 20.3 0.4
dust lane 0.0 0.0 0.0 0.0 0.0

09 rounded 2.3 4.4 15.9 1.1 0.0
boxy 0.3 0.9 2.6 0.2 0.0
no bulge 0.9 2.9 5.2 0.4 0.0

10 tight 34.7 2.3 7.8 41.7 0.0
medium 37.5 16.2 8.5 41.1 0.0
loose 17.2 34.0 9.4 13.0 0.0

11 1 16.3 3.8 3.8 8.6 0.0
2 22.3 40 9.5 43.1 0.0
3 9.3 0.1 0.6 13.5 0.0
4 0.2 0.0 0.0 0.7 0.0
more than four 19.3 5.8 0.4 14.8 0.0
can’t tell 21.8 2.8 11.5 15.1 0.0

Table 4.1: Table of classifications provided by our neural network. P1 corresponds
to Figure 4.1, P2 to Figure 4.2, P3 to Figure 4.3, P4 to Figure 4.4 and P5 to
Figure 4.5.
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Figure 4.6: Figure of ROC curves for TASK 01, category “elliptical” (Table 2.7)
with treshold at 0.5.
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Figure 4.7: Figure of ROC curves for TASK 01, where our neural network
classified the object as elliptical or spiral galaxy, star or artifact (Table 2.7).
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Figure 4.8: Figure of ROC curves for TASK 02, where our neural network had
to choose if is the galaxy edged-on od faced-on (Table 2.7).
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Figure 4.9: Figure of ROC curves for TASK 03, in which our neural network
classified the galaxy according to presence of a bar (Table 2.7).
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Figure 4.10: Figure of ROC curves for TASK 04, whether galaxy consists of
spiral arms or not (Table 2.7).
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Figure 4.11: Figure of ROC curves for TASK 05, about classification whether
galaxy has no bulge, just noticeable, obvious or dominant bulge (Table 2.7).
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Figure 4.12: Figure of ROC curves for TASK 06, in which the network determines
whether there is anything odd (Table 2.7).
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Figure 4.13: Figure of ROC curves for TASK 07, where our neural network
classifies elliptical galaxies into round, cigar-shaped or in between (Table 2.7).
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Figure 4.14: Figure of ROC curves for TASK 08, where odd miscellaneous
features like rings, dust lanes, lenses, arcs, disturbances, irregularities, mergers
or other are being classified (Table 2.7). 2.7).
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Figure 4.15: Figure of ROC curves for TASK 09, in which the bulge is classified
as either rounded, boxy, or missing (Table 2.7).
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Figure 4.16: Figure of ROC curves for TASK 10, where our neural network decides
whether the spiral arms are wound tightly, loosely, or in-between (medium).”
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Figure 4.17: Figure of ROC curves for TASK 11, where our neural network
decides how many spiral arms the galaxy has (Table 2.7).
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Discussion and Future plans

5.1 Discussion

5.1.1 Classification of selected galaxies

The classification accuracy of the people participating in the Galaxy Challenge
decreased with the more complex questions deeper in the decision tree (Figure 1.5).
This is the reason why our neural networks accuracy decreases with the increasing
complexity of morphology classification. We can not expect our network to
produce perfect results for questions that even people disagree about. For
example, classification of both pictures of galaxy M51 (Figure 4.1 and 4.4) of
tasks 01 (probabilities of 94.6% (Figure 4.1) and 97.8% (Figure 4.4) of spiral
category), task 02 (probabilities of 91.0% (Figure 4.1) and 96.0% (Figure 4.4)
of edge-on−no category) and task 04 (probabilities of 89.3% (Figure 4.1) and
95.8% (Figure 4.4) of spiral arm pattern− yes category) proved great results.
On the other hand, classification of task 03 for NGC 1365 (Figure 4.2) correctly
gave bigger value for bar− yes ccategory, but it is not as good, as in the example
with M51. This is exactly due to fact, that even people participating in Galaxy
Challenge performed worse at classification of more complex tasks.

We want to stress, that the probabilities for the categories deeper in the
decision tree (Figure 1.5) do not sum to 100%, instead they must sum to their
“parent” category. For example, the probabilities of the categories of task 03
(bar− yes and bar−no) must sum to the probability given to the category
edge-on−no of task 02.

The classification of UGC 12336 (Figure 4.5) nicely excluded the possibility
of the spiral galaxy category by giving it only 1.2% probability. However, the
network gave 24.0% probability for the star or artifact category and 75.8%
probability for the elliptical category. It happened because of the presence of a
parasite stars near the centre of the image.

5.1.2 ROC curves

Figure 4.6 shows ROC curve for TASK 01 category “elliptical” with chosen
threshold of 0.5. All points of ROC curves are defined by certain threshold
value. Different threshold values corresponds to the different combination of
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the probability of false alarm FA [%] and probability of miss Miss [%]. FA
for this example of TASK 01 “elliptical” category would happen, if networked
classified spiral galaxy as an elliptical. Miss would happen for classification
of elliptical galaxy as a spiral galaxy. Our networks results are FA = 12.0%
andMiss = 14.7%. It means, that our network classified 12.0 % of spiral galaxies
in our testing dataset as elliptical galaxies and 14.7% of elliptical galaxies in our
testing dataset as spiral galaxies for threshold value = 0.5. TASK 01 is basically
not a binary problem, there is also the category “star or artifact”, but we do
not consider its share as relevant because our test dataset consists of 3493 spiral
galaxies, 2745 elliptical galaxies and only 2 stars or artifacts.

Figure 4.7 of ROC curves of TASK 01 (2.7) shows, that the curve for the
category “star or artifact” copies exactly the left vertical and bottom horizontal
axis. In this case, this does not mean perfect, 100% result. However, it indicates
that our 6 400 test images included just very few answers for the “star or
artifact” category. It is vital to understand that stars or artifacts are really easily
distinguishable from galaxies, which is why those few examples in our dataset
were perfectly classified.

Figure 4.8 shows that the classification of “edge-on− yes” spiral galaxies was
much easier than the classification of “edge-on− no” spiral galaxies for our neural
network. We interpret this as the fact that the “edge-on− no” spiral galaxies can
be miss classified as elliptical galaxies more likely than the “edge-− yes” spirals.

Figure 4.9 shows a similar situation as Figure 4.8. The detection of barred
spiral galaxies was much easier due to the fact that the bar structure is kind of
unique structure, which makes it easier for a neural network to classify.

The classification of the spiral galaxies with arm patterns was very good
in comparison with the classification of the spiral galaxies without spiral arm
patterns (Figure 4.10). This may be mainly result of the similarity between the
elliptical galaxies and the spiral galaxies lacking the spiral arm patterns.

The ROC curve corresponding to the detection of spiral galaxies with domi-
nant bulge (Figure 4.11) can not be reliable as it consists only of a few points.
This is a consequence of poor representation of this morphological type in our
test dataset. The same applies to ROC curve of galaxies without bulge.

Figure 4.12 shows two ROC curves for TASK 06 (Table 2.7).
Figure 4.13 shows ROC curves for TASK 07 (Table 2.7). It shows that the

classification of completely round elliptical galaxies is easier than classification
of the other types.

The ROC curves showd in Figure 4.14 have nice tendency to copy the left
vertical and the bottom horizontal axis, but they are made only of few points,
so they can not be considered reliable. The ROC curves for the categories “lens
or arcs” and “dust lane” could not be showd as there were no data for them in
our test dataset.

Figure 4.15 shows that most of the spiral galaxies in our test dataset consists
of rounded bulges because the ROC curve for “rounded” category consists of
most points.
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Figure 4.16 shows that the classification of the spiral galaxies with medium
tight spiral arms resulted with better performance than the classification of
spiral galaxies with tight spiral arms. It also shows that the representation of
spiral galaxies with loose spiral arms is much poorer that the other two types.

Figure 4.17 nicely shows that the majority of the spiral galaxies in our test
dataset consists of the spiral galaxies with 2 spiral arms because the ROC curve
for this category consists of most points (most answers). The other categories
do not even have enough points to be reliably described.

5.2 Future plans

5.2.1 Discovering and classifying galaxies

There are several ways we can continue our work. Our neural network was
trained on 424×424×3 JPEG rgb colour images of galaxies which were in the
centre of the images. Therefore, our network can only classify images similar
to the training images (images with centred galaxy and same dimensionality
and format). One possible future improvement of our network is to training our
network so that it could find all galaxies in its input images and classify them.

5.2.2 Gravitational Lenses

A very interesting field of study is discovering gravitational lenses. For example,
gravitational lenses are used to understand the nature of mysterious dark matter.
The light is bend around the massive galaxy between us and the distorted galaxy
much further away due to the gravitational influence. The light passing from
the distant galaxy is not bended only due to the influence of the gravity of the
ordinary matter of galaxy that is lensing the light, but also because of the gravity
of the mass of the dark matter around the galaxy. The gravitational lenses can
be used to measure perturbations in fluctuations of the dark matter particles
(Moustakas et al. (2009)). Stage 1 of the crowd-sourcing Zooniverse project
called Space warps (Marshall et al. (2016)) already made a great observations.
Over 37 000 participants made more than 11 million classifications in a period
of 8 months. Stage 1 resulted in 3381 candidates for gravitational lenses. Those
were further examined in Space warps Stage 2 (More et al. (2016)) resulting in
29 promising of 59 total gravitational lenses candidates. The goal of this search
was to identify the gravitational lens candidates possibly missed by the robots,
which previously searched for the gravitational lenses in Canada France Hawaii
Telescope (Kalirai et al. (2001)) images. Those new classifications can be used
to re-train the existing robots, or, what we consider as our possible future goal,
to make even better classifier.
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5.2.3 Supernovae

Discovering supernovae as soon as possible is crucial for analysing the properties
of stars exploded to form the supernovae and processed of explosions start up and
proceeding. Supernovae (particularly type Ia) are also important for astronomy
and cosmology for calculating distances in the universe. The Ia supernovae
are used as “standard candles” because they always explode under very similar
conditions having same absolute magnitude. Other supernovae types can be
used to calculate distances as well. Zooniverse project Snapshot Supernova is a
crowd-sourcing project aimed to discover new supernovae using images from Sky
Mapper telescope (Keller et al. (2007)) and Public ESO Spectroscopic Survey
of Transient Objects (Smartt et al. (2015)). More than 40 000 participating
volunteers provided more than 1.9 million classifications resulting in another
dataset, which can be used to train neural networks for discovering supernovae.



Chapter 6

Summary and Conclusion

6.1 Summary
We present convolutional neural network as a solution to galaxy classification.
Our neural network correctly classified more than 85% elliptical and 87% spiral
galaxies of our testing dataset. It also proved to be capable of detecting bars,
spiral patterns, and bulges in spiral galaxies. Even though its success rate was
lower for the progressively more detailed tasks, such as identifying the shape of
the bulge or finding dust-lanes, future training on larger dataset is expected to
substantially improve our network. The biggest scientific impact of our work lies
in future determination of the galaxy morphology density relation as a function
of redshift, which requires vast numbers of objects being classified.

6.2 Conclusion
Invention of artificial algorithms for data processing is inevitable and logical step
forward together with tremendous enlargement of vast datasets, which is, and
will not be possibly processed otherwise.

Our implementation of convolutional neural network proved great results
for morphology classification of galaxies. It can be used right now for various
astrophysical purposes. For example, if we want to select galaxies of precise
morphological type from an unclassified sample, we can use our network to make
predictions for all of them. Afterwards, we would select just those, for example,
with 95% probability of needed category. On the other hand, if we needed to
select as much, for example elliptical galaxies, as possible, we could look for
those, with probabilities of being an elliptical galaxy greater, than some still
acceptable value. This approach would lead to finding more objects, but with
greater amount of miss classified spiral galaxies as an elliptical galaxies.

Our network can be also further retrained on larger training dataset of
classified galaxies, which will increase its performance.
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