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Abstrakt
V této bakalářské práci se zabýváme vlivem kadence a rozptylu dat na přesnost
určení parametrů exoplanetárních tranzitů. Z exoplanetárního tranzitu lze určit
řada vlastností pozorované soustavy jako například poměr poloměru planety
ku poloměru hvězdy Rp/Rs, inklinaci i, hlavní poloosu dráhy a a čas středu
tranzitu t0. Pro určování těchto parametrů jsme nasimulovali a zpětně analyzovali
světelné křivky fiktivní exoplanety typu tzv. horkého Jupitera obíhající hvězdu
slunečního typu. Simulaci a analýzu jsme prováděli pomocí Python balíku
PyLightcurve. Pro lepší přiblížení reálným pozorováním jsme při generování
křivek brali v úvahu kadenci a rozptyl dat základních vesmírných misí Kepler,
TESS a PLATO a pozemních misí jako SuperWASP. Z výsledků můžeme říct, že
určení exoplanetárních parametrů z dat 30 minutové kadence a šumu 10000 ppm
může být velmi zavádějící a není pro bližší charakterizaci exoplanet vyhovující,
například při určování poloměru exoplanety z těchto dat byla chyba určení 19.5%.
Při nejmenším rozptylu dat (200 ppm) byla chyba určení poloměru exoplanety
pouze 0.5%. Dle očekávání jsme pro tento rozptyl dat dostali nejlepší výsledky
pro všechny parametry a můžeme říct, že při nízkém šumu nezáleží na použité
kadenci.



Abstract
In this bachelor thesis we deal with the impact of data sampling and quality on
the precision of exoplanetary transit parameters. From the exoplanetary transit,
a number of properties of the observed system can be determined, such as the
ratio of the planet’s radius to the star’s radius Rp/Rs, the inclination i, the
semi-major axis a, and the time of the center of the transit t0. To determine these
parameters, we simulated and retrospectively analyzed the light curves of the
fictive exoplanet the so-called hot Jupiter orbiting a solar-type star. Simulations
and analysis was performed using the python package PyLightcurve. For a
better approximation of real observations, we took into account the cadence of
data and data noise of the main space missions Kepler, TESS and PLATO and
ground missions such as SuperWASP when generating the light curves. From
the results we can say that the determination of parameters from the data of
30 minutes cadence and noise 10000 ppm can be very misleading and is not
suitable for further characterization of exoplanets, for example when determining
the radius of the exoplanet from these data the relative standart deviation was
19.5%. For the smallest scatter (200 ppm) was relative standart deviation only
0.5%. As expected, we got the best results for this data scatter for all parameters
and we can say that cadence has almost no impact on the results.
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Chapter 1

Overview of the exoplanetary research

1.1 Introduction
Probably everyone has ever wondered if there is anyone else in the Universe
or we are alone in this vast dark forest. If we consider it appropriate to look
for other forms of life, the best way will be to study exoplanets. Extrasolar
planets, or abbreviated exoplanets, are planets outside of our Solar system.
Exoplanetary research has experienced huge progress in recent years. Until a
few decades ago, it was unthinkable for some people that we could detect other
worlds. Today we know about four thousand confirmed exoplanets and over
five thousand candidates [E01]. These bodies, invisible to the naked eye, could
even provide suitable conditions for the development of life. The huge contrast
between the star and the orbiting planet is making it complicated to detect these
objects. Nevertheless, we have several possibilities for detection and investigation
of exoplanets.

In this work, we focus on the method of transit, where we can observe the
planet passing directly between its star and an observer. Thus, we observe a
decrease in the brightness of the star. It is possible to determine the size of
the orbiting planet and other characteristics from the light curve. Therefore
the measured data must be of the highest quality. In this thesis, we study the
difference between the transit parameters determined from different data sets.

The work is divided into five chapters. In Chapter 1, we summarize the
history, detection methods and current research on exoplanets. In Chapter 2, we
describe properties of light curves. Description of how we proceeded in generating
light curves using PyLightcurve code is in Chapter 3. The analysis of these
curves is described in Chapter 4. In Chapter 5, we summarize the results.

1
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1.2 History
Since ancient times, people have considered whether there are worlds outside the
Solar system, but at that time, it was not possible to confirm these assumptions.
In the 16th century, it was Giordano Bruno who spoke of an infinite universe full
of sun-like stars, each surrounded by planets with intelligent life (Maor, 1987). In
1952, Otto Struve mentioned in his Proposal for a High-Precision Stellar Radial
Velocity Work that there is no reason for the planets not to be closer to their
parent star than in the Solar system (Struve, 1952).

The oldest record of a potential exoplanet was made in 1917 when Adrian
van Maaner observed the subtle motion of Van Maanen 2 relative to other stars.
Now we know that van Maanen’s star is a white dwarf without an orbiting planet
(van Maanen, 1917). The scientists also agreed that a single white dwarf with
heavy elements in the spectrum could have a ring from the dust of the torn-apart
planet (Graham et al., 1990).

The first confirmed detection of the exoplanet was in 1992 when three planets
orbiting the pulsar PSR B1257+12 were discovered. These exoplanets are not
only the first confirmed detections but are also the first detected pulsar planets
(Wolszczan and Frail, 1992).

In 1995, the first detection of a planet orbiting a main sequence star was
confirmed. For a G-type star called 51 Pegasi, there was a giant Jupiter-like
planet detected using the radial velocity measurements (Mayor and Queloz,
1995). In 2017, water was discovered in the atmosphere of this exoplanet (Birkby
et al., 2017). The Nobel Prize was awarded to Michel Mayor and Didier Queloz
for the discovery of this exoplanet in 2019.

HD 209458b was detected in 1999. It is the first exoplanet that was observed
using the transit method. It is also the first exoplanet to be detected by more than
one method. First using radial velocities and via transit photometry (Castellano
et al., 2000).

A planet fully comparable with the Earth was discovered in 2015. This planet
is called Kepler-452b and orbits within the habitable zone of Sun-like star in
constellation Cygnus (Jenkins et al., 2015).

In 2016, an Earth-mass planet was discovered in the habitable zone that
orbits around Proxima Centauri, which is the nearest star to the Solar system
(Anglada-Escudé et al., 2016).

In 2018, it has been observed that there could be also exoplanets in other
galaxies than in the Milky Way Galaxy (Dai and Guerras, 2018; Bhatiani et al.,
2019). The discoveries of the exoplanets are gradually increasing, as can be seen
from the plot in Figure 1.1.
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Figure 1.1: Number of detections per year [E02].

1.3 Methods of exoplanetary research
There are several ways to detect exoplanets. The main three are radial velocity,
transit photometry and microlensing methods. There are other methods such as
astrometry or direct imaging. The most successful is transit photometry with
3187 confirmed exoplanets, and the least successful is astrometry with only one
confirmed exoplanet [E02].

Astrometry

Only one exoplanet was discovered by this method [E01]. Astrometry is using
the same phenomena as radial velocity, which is that the star and the planet are
orbiting around the same centre of gravity. Thus, the star is periodically moving
on the star background. The principle of this method is shown in Figure 1.2.
The main reason why only one exoplanet has been discovered so far is that this
method requires very precise measurements of a star’s position in the sky over a
long time. Astrometry also requires best-quality optics, and because of Earth’s
atmosphere, it is difficult to perform it from the surface (Perryman, 2018).
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Position in the sky over time

Planet

Star

Figure 1.2: The principle of the astrometry method. In the figure on the right,
the position in the sky over time is shown, the straight dashed line shows the
motion of the barycenter of the observed system viewed from the solar system
barycenter, the curved dashed line shows the effect of the orbital motion of the
Earth around the Sun and the star-dotted line shows the motion of the star as a
result of orbiting planet.

Microlensing

By this method, 96 exoplanets were discovered [E02]. Microlensing is based on
the gravitational lens effect. An object in the foreground represents the lens,
and a source is an object in the background. When the lens and the source are
almost exactly aligned, the lens bends the light of a faint background object.
If the lens is a star with an orbiting planet, then the gravitational field of the
planet can make a detectable contribution to the lensing effect. The principle
of this method is shown in Figure 1.3. This method allows the detection of
very distant exoplanets. The mass of the planet and its orbital radius can be
estimated using this method (Perryman, 2018).

Observer

Source star
Lens star

Figure 1.3: The principle of microlensing method.
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Radial velocity

Radial velocity method is also known as Doppler spectroscopy. Via this method,
810 exoplanets were discovered [E02]. This method is based on the change of
the spectrum of light emitted by the star. This change is caused by gravitational
interaction between a star and a planet. They are orbiting around the same
centre of gravity making the star moving closer and further from the observer.
When the star is moving away from the observer wavelength increases and
redshift can be observed. If the star is moving towards the observer blueshift can
be detected. In Figure 1.4, the principle of this method is shown. When these
shifts are observed regularly it is almost clear that they are caused by an unseen
body. The minimum mass of the planet can be determined from the changes in
the star’s radial velocity (Perryman, 2018).

Figure 1.4: The principle of radial velocity method.
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Direct imaging

Using this method, 50 exoplanets were discovered [E02]. This method is using
the reflected light from the parent star for imaging in the visible or thermal
emission of the planet for imaging in the infrared. In the infrared, the planet
is brighter than it is in visible. Coronagraphs in telescopes are used to block
light from the parent star before it reaches the detector. When the light from
the parent star is blocked it is easier to spot the orbiting planet. This method
is suitable for planets that orbit at great distances from their stars and are
particularly large (Perryman, 2018).

Transit photometry

Transit photometry is the most successful method with 3187 confirmed exoplanets
[E02]. This method is based on observations of the star’s flux. When the planet
passes directly between an observer and the parent star, luminosity decreases.
Semi-major axis, planet radius, eccentricity, and inclination can be estimated
from the observations. The main disadvantage of this method is that the transit
is observable only when the orbit of the orbiting planet is perfectly aligned with
the observer. Another disadvantage is that the luminosity decrease can be caused
also by different phenomena. For example, starspot or it could be a multi-star
system (Perryman, 2018). The principle of this method is shown in Figure 1.5.
A more detailed description of this method is in section 2.1.

B
rig
ht
ne
ss

Planet

Star

Time

Figure 1.5: The principle of transit photometry.

1.4 Current research on transiting exoplanets
Since the detection of the transit highly depends on the system alignment, it is
more efficient to do big sky surveys that scan large areas on the sky than the
photometry of individual stars. In the following section, some of the ground-based
and space missions are mentioned.
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1.4.1 Ground-based missions

WASP

WASP stands for Wide Angle Search for Planets. It is the most successful
ground-based project with more than 150 confirmed exoplanets [E03]. The first
exoplanets were confirmed by this project in 2006 and are called WASP-1b and
WASP-2b (Collier Cameron et al., 2007). WASP is an international collaboration
of several organizations. It can scan the whole sky using two observatories.
One is called SuperWASP-North and is located at Roque de los Muchachos
Observatory at the Canary Islands. The other one is called WASP-South and is
located at the South African Astronomical Observatory in South Africa. Each of
these observatories uses eight wide-angle cameras monitoring stars with apparent
visual magnitude from 7 to 15 mag (Pollacco et al., 2006).

KELT

KELT stands for The Kilodegree Extremely Little Telescope (Pepper et al., 2007).
So far, 26 exoplanets have been discovered using KELT. KELT consists of two
telescopes covering the north and south hemispheres. KELT-North is located at
Winer Observatory in Arizona and started operations in 2006, KELT-South is
located at South African Astronomical Observatory in South Africa and started
operations in 2009 [E04]. Observed stars have apparent visual magnitude from 8
to 10 mag. One of the planets discovered by KELT is KELT-9b which is the
hottest planet ever detected (Collins et al., 2016).

The HAT exoplanet surveys

The Hungarian Automated Telescope Network (HATNet) consists of seven small
telescopes, five of them are located in Arizona, and the other two are in Hawaii
(Bakos et al., 2004). Using this network, 63 exoplanets were discovered since
2003 [E05]. HATSouth survey is an extension for observations of the southern
hemisphere which is operating since 2009 and discovered 71 exoplanets [E06]. It
is a network of six astrograph telescope systems operating from South America,
Africa, and Australia (Bakos et al., 2013). Another future expansion is HATPI
and it will be able to monitor the entire sky visible from its site in Chile [E07].

1.4.2 Space missions

The study of exoplanets is difficult from the Earth’s surface because it highly
dependents on observation conditions. This is why a large number of space
missions for the detection of exoplanets have been and continue to be created.

CoRoT

CoRoT is an abbreviation for Convection, Rotation and planetary Transits. It
was the first space mission designed for exoplanetary research. This space mission
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was in operation from December 2006 to June 2014. Planned mission duration
was 2.5 years, but it was extended and lasted for 7 years (Auvergne et al., 2009).
During these seven years, 32 exoplanets were discovered [E08]. One of these
planets is CoRoT-7b which is the first detected rocky planet (Léger et al., 2009;
Rouan et al., 2010).

Kepler

Kepler was a space mission launched by NASA named after Johannes Kepler. It
was in operation since May 2009 and planned mission duration was 3.5 years. In
July 2012, one of the spacecraft’s four reaction wheels failed and in May 2013,
the second reaction wheel failed which made it impossible to continue in mission
because three wheels were necessary for the observations. In May 2014 it was
announced that Kepler mission will be extended to the K2 mission. After nine
years in October 2018 the spacecraft ran out of fuel and mission come to an
end. After these 9 years, the total number of exoplanets discovered by Kepler is
more than 2300, making it the most successful mission so far [E02]; [E09]; [E10];
(Koch et al., 2010; Van Cleve and Caldwell, 2016).

TESS

The Transiting Exoplanet Survey Satellite is NASA’s currently operating space
telescope. TESS is a Kepler space telescope successor. It was launched in April
2018, and the planned mission duration is two years. The primary goal is to
discover planets smaller than Neptune that transit stars bright enough that
follow-up spectroscopic observations can be done (Ricker et al., 2015; Schliegel,
2017). TESS extended mission started in July 2020. The original full-frame
image cadence (30 minutes) is changed to 10 minutes [E11]. Up to date, 66
exoplanets were confirmed and 2136 of candidates is waiting for confirmation
[E02].

PLATO

PLAnetary Transits and Oscillations of stars is the European Space Agency space
telescope to be launched in 2026. PLATO primary mission is to study terrestrial
exoplanets orbiting Sun-like stars in the habitable zone. The planned duration
of this mission is 4 years with the possibility to be extended for additional 4
years (Plato, 2017), [E12].

ARIEL

The Atmospheric Remote-sensing Infrared Exoplanet Large-survey is the Eu-
ropean Space Agency space telescope to be launched in 2028. The mission of
this space telescope will be to observe known transiting exoplanets and to study
and characterize exoplanet atmospheres via spectroscopy. The duration of this
mission is planned for 4 years (Puig et al., 2016), [E13].



Chapter 2

Transit light curves

Transit can be observed only when the system of star and exoplanet is properly
aligned, so that planet passes directly between an observer and the parent star.
The condition for the realization of transit is as follows (Sackett, 1999):

a cos i ≤ Rp +Rs , (2.1)

where a is the semi-major axis, i the inclination, which represents the angle of
the orbit of the exoplanet with respect to the plane perpendicular to the plane
of observation, Rp is the radius of the planet and Rs is the radius of the parent
star. This condition is shown in Figure 2.1.

This almost perfect alignment plays a large role in observing transiting
exoplanets. Another criterion for observation of the transit is the depth of the
transit. For example planet with a radius similar to Jupiter radius orbiting a
star with Solar radius results in 1% star flux drop.

a

Observer

Rs + Rp

i

i

Rs

Star

Planet

Rp

Figure 2.1: The geometry of the condition for transit realization.

9
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The probability of transit for a randomly oriented planet on a circular orbit
is given as (Borucki and Summers, 1984; Sackett, 1999):

p ≈ Rs
a
, (2.2)

where Rs is the radius of the star and a is the semi-major axis of the orbit.

2.1 Geometry of transit
Understanding of geometry of the transit light curve is important for the charac-
terisation of the observed system. It is possible to determine a ratio of planet
radius Rp and stelar radius Rs and orbital inclination i from the light curve.

There are three parameters which characterise transit. The transit depth ∆F ,
the interval between the first and fourth contacts tT, and the interval between
the second and third contacts tF, these parameters are shown in Figure 2.2
(Seager and Mallén-Ornelas, 2003). A period P can also be determined from at
least two observed flux drops.

Three equations which describe the geometry of the light curve are (Seager
and Mallén-Ornelas, 2003; Sackett, 1999):

∆F =
(
Rp
Rs

)2
, (2.3)

tT = P

π
arcsin

Rs
a

{
[1 + (Rp/Rs)]2 − [(a/Rs) cos i]2

1− cos2 i

}1/2
 , (2.4)

sin(tFπ/P )
sin(tTπ/P ) =

{
[1− (Rp/Rs)]2 − [(a/Rs) cos i]2

}1/2

{[1 + (Rp/Rs)]2 − [(a/Rs) cos i]2}1/2 . (2.5)

The ratio of the planet-star radius can be obtained simply from equation 2.3.
Projected distance between the planet and star centres, shown in Figure 2.2 is
called impact parameter b and can be calculated using equations 2.3 and 2.5 as

b = a

Rs
cos i =

=
(

(1−
√

∆F )2 − [sin2(tFπ/P )/ sin2(tTπ/P )](1 +
√

∆F )2

1− [sin2(tFπ/P )/ sin2(tTπ/P )]

)1/2

. (2.6)

From equations 2.3, 2.4 and 2.6 we can get a/Rs ratio

a

Rs
=
(

(1 +
√

∆F )2 − b2[1− sin2(tTπ/P )]
sin2(tTπ/P )

)1/2

. (2.7)
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1

tF

tT
ΔF

Time

Flux

2 3 4

IVI III

bR = acos is

II

Figure 2.2: Illustration of transit. On the plot, two schematic light curves
are shown, solid line belongs to the planet with arabic numerals labels and
dashed line belongs to the planet with roman numerals labels. On the solid line,
parameters characterising transit are marked: the transit depth ∆F , the interval
between the first and fourth contacts tT, and the interval between the second
and third contacts tF. The meaning of the impact parameter b is also shown.
Different impact parameter b (i.e., inclination i) results in different shape of light
curve.

Using equation for a/Rs (2.7) and Kepler’s third law, the stelar density ρs
can be calculated

ρs = Ms
R3

s
=
(

4π2

P 2G

)(
(1 +

√
∆F )2 − b2[1− sin2(tTπ/P )]

sin2(tTπ/P )

)3/2

. (2.8)

The geometry of transit can be described as overlapping circles. The ratio
of obscured to the unobscured flux from a uniform source is described by the
expression:

F (p, z) = 1− λ(p, z) , (2.9)

where p = Rp/Rs and z = d/Rs whereas d is the distance between the centers of
the star and the planet. These parameters are shown in Figure 2.3.
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d = zRs

Rs

Planet
Orbit

Star

Rp = pRs

Figure 2.3: Illustration of parameters p and z. Parameter p is the planet-star
radius ratio and parameter z is the ratio of the distance between the centers of
the star and the planet d and the star radius Rs.

When this expression is used, there are three stages of the transit. First is
when the planet is outside of the star disk which satisfies the condition 1 + p < z.
When the planet is outside of the star disk, so it does not occult any part of the
disk then λ(p, z) = 0. Next part of the transit is when the star disk is occulted
with the whole planet disk z ≤ 1− p and λ(p, z) = p2 according to equation 2.3.
For partially overlapping part of the transit the expression for λ(p, z) is (Mandel
and Agol, 2002):

λ(p, z) = 1
π

p2κ0 + κ1 −

√
4z2 − (1 + z2 − p2)2

4

 , (2.10)

where κ0 = cos−1[(p2 + z2 − 1)/2pz] and κ1 = cos−1[(1− p2 + z2)/2z].

2.2 Limb-darkening
It is important to take into consideration limb darkening when generating or
fitting light curves. The fact that real stars are not a uniform sources of light
(e.g. see Figure 2.2) significantly change the shape of the light curve. The effect
of the limb darkening is changing the light curve in three ways. It changes the
transit depth ∆F , the bottom of the light curve is rounder which is reducing tF,
and the boundary between the flat bottom and ingress/egress is less apparent as
can be seen in Figure 2.4.

Limb darkening is an optical phenomenon which makes the centre of the
star disk look brighter than the edge. It is caused by two reasons, the first is
the direction of the radiation from the photosphere. This radiation has mainly
radial direction of propagation which means that in areas farther from the center
of the disk, much of the visible light already goes in a different direction than
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Figure 2.4: A plot showing the shape of a transit considering uniform stellar
surface and using various limb-darkening laws with zoomed-in area around the
light curve bottom. This plot was made using the batman code (Kreidberg,
2015). For the simulation, a Sun-like star and corresponding limb-darkening
coefficients calculated for the TESS filter (Claret, 2017) were used.

to the observer. The second reason is the thickness of the photosphere. When
the photosphere is observed from the front, we observe all its parts at once,
while when observed from the side, we see separately the colder, less dense parts,
which emit radiation of a different wavelength.

The first description of limb darkening considered linear darkening law (Milne,
1921). Lately, it was shown that this law is not suitable, and other models were
proposed.

Linear (Milne, 1921):

I(µ)
I(1) = 1− u(1− µ) , (2.11)

Quadratic (Wade and Rucinski, 1985):

I(µ)
I(1) = 1− a(1− µ)− b(1− µ)2 , (2.12)

Square root (Diaz-Cordoves and Gimenez, 1992):

I(µ)
I(1) = 1− c(1− µ)− d(1−√µ) , (2.13)
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Logarithmic (Klinglesmith and Sobieski, 1970):

I(µ)
I(1) = 1− e(1− µ)− fµ ln(µ) , (2.14)

Non-linear (Claret, 2000):

I(µ)
I(1) = 1−

4∑
n=1

cn(1− µn/2) , (2.15)

where I(1) is the specific intensity at the centre of the stellar disk, u, a, b, c, d, e, f, cn

are the corresponding limb darkening coefficients, µ = cos θ = (1− r2)1/2, where
0 ≤ r ≤ 1 and θ is the angle between the normal to the star surface and the line
of sight to the observer, µ is shown in Figure 2.5.

The expression for flux with taking into consideration limb darkening is
(Mandel and Agol, 2002):

F (p, z) =
[∫ 1

0
I(r)2rdr

]−1 ∫ 1

0
drI(r)

d
[
F ∗ (p

r ,
z
r

)
r2]

dr
, (2.16)

where I(r) is limb darkening law, F ∗(p, z) is the flux from uniform source.

μRs

Rs

θ

observer

Figure 2.5: Geometry of the limb darkening.



Chapter 3

Generating the light curves

3.1 PyLightcurve
We used PyLightcurve for generating and fitting light curves of hypothetical
exoplanet (Tsiaras et al., 2016). This Python package can be used for various
applications for transit modelling. It can be used for the search of parameters of
known exoplanets in the Open Exoplanet Catalogue database, calculation of limb
darkening coefficients for different laws and filters, calculation of exoplanetary
orbits, calculation of the transit model, fitting transit model and fitting real
observed data.

For generating light curves we used function plc.transit which returns
light curve according to the orbital parameters. Orbital parameters are limb
darkening law, limb darkening coefficients, planet radius in units of star radii,
orbital period in days, orbital semi-major axis in units of star radii, orbital
eccentricity, orbital inclination in degrees, orbital argument of periastron in
degrees, transit mid-time in days, lenght of the time sequence in days and the
level of numerical precision.

Orbital parameters of our simulated exoplanet are in Table 3.1. This exoplanet
is called hot Jupiter. It is a very common type of observed exoplanet because
of its short orbital period (Wang et al., 2015). We used the orbital period of
2.5 days to simulate this exoplanet as easily observable from Earth i.e. with
transit duration less than 12 hours and taking into acount day/night cycle.
Inclination 88.7◦ was used to avoid solving the ideal case of exoplanetary transit
with inclination 90◦. Excentricity 0 and planet radius 1 RJ is typical for hot
Jupiters (Fabrycky and Tremaine, 2007). For a better approximation of a real
observation we used random value of transit mid-time. This random value was
chosen from 12 hours long time sequence of simulated observation. Semi-major
axis was calculated using Kepler’s third law. These parameters are very similar
to some of the confirmed exoplanets e.g. WASP-65 b and K2-260 b (Gómez
Maqueo Chew et al., 2013; Johnson et al., 2018).

We set our simulated star as Sun-like star. Surface gravity log g = 4.5,
effective temperature Teff = 5800 K and metallicity Z = 0 (Smalley, 2005). We
used square root limb darkening law with coefficients calculated for TESS (Claret,
2017). It was proposed that logarithmic and square-root limb darkening laws are

15
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Table 3.1: Parameters of the simulated exoplanet.

orbital period P : 2.5 days

planet radius Rp: 1 RJ = 0.10040 Rs

semi-major axis a: 0.036 au = 7.74 Rs

inclination i: 88.7◦

excentricity e: 0

periastron ω: 90◦

limb darkening coefficients
(square-root) c, d: 0.1012, 0.6106

cadence:

30 min
2 min
1 min
25 sec

noise σ:
10000 ppm
2000 ppm
200 ppm

* Planet radius Rp and semi-major axis a are in units of
solar radii Rs (Rs = 696 340 km).

better than widely used quadratic limb darkening and linear laws for deriving
parameters from transit lightcurves (Espinoza and Jordán, 2016). However these
coefficients were fixed at theoretical values in our calculations and as is shown in
Figure 2.4 different laws are giving very similar light curve.

For better simulation of real observed data we used cadences and noise
simulating the main ground and space missions. We used 30 minutes cadence
representing Kepler’s and TESS’s long-cadence setting, 2 minutes cadence repre-
sents TESS’s short-candence setting and the most ground missions, 1 minute
cadence corresponds to Keples’s short-cadence setting and 25 seconds samoling
will be used for PLATO (Ricker et al., 2015; Van Cleve and Caldwell, 2016;
Schliegel, 2017; Plato, 2017). For the simulation of real data, noise with nor-
mal (Gaussian) distribution was added to the data. All observed data contain
noise. Main sources of noise are photon-counting noise from the star and the
background, dark current, read-out noise and additional systematics errors like
random pointing variations of spacecraft. Space missions are simulated with noise
with standard deviation σ = 200 ppm1 and σ = 2000 ppm and ground-based
missions with standard deviation σ = 10000 ppm. Value 200 ppm corresponds
to a star with apparent magnitude 10 mag and 2000 ppm corresponds to star
with apparent magnitude 14 mag for TESS telescope 30 minutes exposure time

1ppm - one part per million, denotes one part from 1 000 000.
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(Ricker et al., 2015; Schliegel, 2017). Ground-based missions are simulated with
value 10000 ppm corresponding to star with apparent magnitude 11.5 mag for
SuperWASP project (Smith et al., 2006).

Our choice of parameters was based on the fact that if we used shallow transit
light curve with small data scattering or deep transit light curve with large data
scattering it would be equivalent. Nevertheless, deep transit has the advantage
that when we add large noise, the light curve can be still be identified. This
fact can be seen from Figure 3.1 where examples of plotted data using function
plc.transit are shown.

For fitting simulated data we used function plc.TransitAndPolyFitting.
This function is using Markov chain Monte Carlo method for fitting, specifically
emcee: The MCMC Hammer python package (Foreman-Mackey et al., 2013). This
function fit data and get any of the orbital parameters. We used it for fitting
planet radius, orbital semi-major axis, orbital inclination and time of the center of
the transit. Other orbital parameters were fixed at the default values. Examples
of output are shown in Figure 3.2 and Figure 3.3.
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Figure 3.1: Examples of data generated with PyLightcurve with transit mid-
time set to 0. In Figure (a), 30 minutes cadence with noise 200 ppm is shown.
In Figure (b), 1 minute cadence with noise 10000 ppm is shown. In Figure (c),
2 minutes cadence with noise 2000 ppm is shown. In Figure (d), 25 seconds
cadence with noise 10000 ppm is shown.
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Figure 3.2: Examples of output from PyLightcurve. Rp and a are in units of
solar radii Rs =696 340 km, t0 in days and i in degrees. Transit mid-time was
set to 0. Figure (a) shows simulated data with 30 minutes cadence and noise σ =
10000 ppm. Figure (b) shows simulated data with 2 minutes cadence and noise
σ = 10000 ppm. Figure (c) shows simulated data with 30 minutes cadence and
noise σ = 2000 ppm. Figure (d) shows simulated data with 2 minutes cadence
and noise σ = 2000 ppm. Figure (e) shows simulated data with 30 minutes
cadence and noise σ = 200 ppm. Figure (f) shows simulated data with 2 minutes
cadence and noise σ = 200 ppm.
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Figure 3.3: Examples of output from PyLightcurve. Units are in Figure 3.2.
Transit mid-time was set to 0. Figure (a) shows simulated data with 1 minutes
cadence and noise σ = 10000 ppm. Figure (b) shows simulated data with 25
seconds cadence and noise σ = 10000 ppm. Figure (c) shows simulated data with
1 minutes cadence and noise σ = 2000 ppm. Figure (d) shows simulated data
with 25 seconds cadence and noise σ = 2000 ppm. Figure (e) shows simulated
data with 1 minutes cadence and noise σ = 200 ppm. Figure (f) shows simulated
data with 25 seconds cadence and noise σ = 200 ppm.



Chapter 4

Analysis of light curves

4.1 Light curves and fitting
Using PyLightcurve we made loops for 400 fitted lightcurves for 30 minutes
cadence and each noise level, 200 fitted lightcurves for 2 minutes cadence and
each noise, 120 fitted lightcurves for 1 minute cadence and each noise and 60
fitted lightcurves for 25 seconds cadence and each noise. A number of fitted
lightcurves depends on the computing time which we set to about 10 hours.
Figure 3.2 and Figure 3.3 show examples of output from PyLightcurve after
fitting. In Figures exaples of phase-folded light curves for our used cadences and
data noises fitted using PyLightcurve are shown.

4.2 Results of analysis
After fitting described in section 4.1 we made averages of each fitted parameter
(Rp, i, a) for each cadence with each noise. Because trasit mid-time t0 was
different for each light curve we made average from the differences between the
fitted value and the real randomly chosen value. These differences were also
made for Rp, i, a for better ilustration of the results. Standard deviations of
parameters were determined. We also deleted outliers from the data by using
iterative 3sigma clipping. The resulting values are listed in Table 4.1. Results
for planet radius Rp are shown in Figure 4.1, 4.2, 4.3, 4.4, results for semi-major
axis a are shown in Figure 4.5, 4.6, 4.7, 4.8, results for inclination i are shown in
Figure 4.9, 4.10, 4.11, 4.12 and in Figure 4.13, 4.14 are shown results for transit
mid-time t0.

20
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Table 4.1: Resulting parameter values.

cadence noise [ppm] Rp [Rs] a [Rs] i [◦]

10000 0.118(23) 7(3) 88.97(45)
30 min 2000 0.1021(48) 7.58(56) 88.80(27) −→

200 0.10027(52) 7.81(11) 88.82(15)

10000 0.1015(65) 7.62(66) 88.87(15)
2 min 2000 0.1008(16) 7.813(96) 88.74(11) −→

200 0.10036(28) 7.768(93) 88.691(36)

10000 0.1025(52) 7.73(31) 88.85(16)
1 min 2000 0.1007(11) 7.822(70) 88.74(12) −→

200 0.10035(23) 7.772(78) 88.692(40)

10000 0.1022(30) 7.73(22) 88.83(16)
25 sec 2000 0.10049(92) 7.825(56) 88.708(61) −→

200 0.10038(15) 7.752(50) 88.673(67)

input values 0.100398 7.745 88.70

∆t0 [days] ∆Rp [Rs] ∆a [Rs] ∆i [◦]

0.018(13) 0.023(18) 3(2) 0.46(27)
−→ 0.0027(21) 0.0040(31) 0.43(38) 0.26(16)

0.00043(38) 0.00042(33) 0.106(78) 0.213(99)

0.0027(23) 0.0053(39) 0.51(44) 0.226(95)
−→ 0.00052(37) 0.0013(11) 0.095(70) 0.167(94)

0.000047(35) 0.00023(17) 0.077(56) 0.041(31)

0.0018(13) 0.0044(35) 0.25(19) 0.216(96)
−→ 0.00035(25) 0.00087(75) 0.087(58) 0.176(97)

0.000034(23) 0.00019(14) 0.065(51) 0.040(26)

0.00115(91) 0.0028(22) 0.17(13) 0.227(96)
−→ 0.00022(15) 0.00071(59) 0.086(48) 0.097(12)

0.000022(18) 0.000122(91) 0.039(33) 0.0.56(54)
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4.2.1 Planet radius Rp

Results for planet radius Rp are shown in Figure 4.1, 4.2, 4.3, 4.4. We calculated
relative standart deviation for better interpretation of results (see Table 4.2). In
this case our expectation that with shorter candence and decreasing noise we get
better results was met. In Figure 4.2, it is shown that with 30 minutes cadence
and data noise 10000 ppm the difference between fitted value and input value is
0.02 Rs which means difference around 14000 km. This difference could make
trouble when determinig the type of exoplanet. From this analysis we can say
that the data noise has a major influence on the determination of the radius.

Table 4.2: Relative standart deviations for planet radius Rp

noise cadence
[ppm] 30 minutes 2 minutes 1 minute 25 seconds

10000 19.5 % 6.4 % 5.1 % 2.9 %
2000 4.7 % 1.6 % 1.1 % 0.9 %
200 0.5 % 0.3 % 0.2 % 0.1 %
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Figure 4.1: Results for the planet radius Rp depending on data noise for each
cadence of data. Grey dashed line marks real value.
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Figure 4.2: Results for the difference between real and fitted value of planet
radius ∆Rp depending on data noise for each cadence of data. Grey dashed line
marks difference 0.
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Figure 4.3: Results for the planet radius Rp depending on cadence of data for
each data noise. Grey dashed line marks real value.
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Figure 4.4: Results for the difference between real and fitted value of planet
radius ∆Rp depending on cadence of data for each data noise. Grey dashed line
marks difference 0.

4.2.2 Semi-major axis a

Results are shown in Figure 4.5, 4.6, 4.7, 4.8. Relative standart deviations are in
Table 4.3. In this case our expectation that with shorter candence and decreasing
noise we get better results was also met. The worst result was again with
30minutes cadence and data noise 10000 ppm (Figure 4.6), when the difference
between input value and fitted value is aproximately 3 Rs. This inaccuracy could
cause troubles when determining habitable zone.

Table 4.3: Relative standart deviations for inclination a

noise cadence
[ppm] 30 minutes 2 minutes 1 minute 25 seconds

10000 44.9 % 8.7 % 4 % 2.8 %
2000 7.4 % 1.2 % 0.9 % 0.7 %
200 1.4 % 1.2 % 1 % 0.6 %
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Figure 4.5: Results for the semi-major axis a depending on data noise for each
cadence of data. Grey dashed line marks real value.
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Figure 4.6: Results for the difference between real and fitted semi-major axis
∆a depending on data noise for each cadence of data. Grey dashed line marks
difference 0.
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Figure 4.7: Results for the semi-major axis a depending on cadence of data for
each data noise. Grey dashed line marks real value.
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Figure 4.8: Results for the difference between real and fitted semi-major axis
∆a depending on cadence of data for each data noise. Grey dashed line marks
difference 0.
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4.2.3 Inclination i

Results are shown in Figure 4.9, 4.10, 4.11, 4.12. Relative standart deviations are
in Table 4.4. Determinig of the inclination was succesful. The biggest difference
is 0.5◦.

Table 4.4: Relative standart deviations for inclination i

noise cadence
[ppm] 30 minutes 2 minutes 1 minute 25 seconds

10000 0.5 % 0.2 % 0.2 % 0.2 %
2000 0.3 % 0.1 % 0.1 % 0.07 %
200 0.2 % 0.04 % 0.04 % 0.08 %

10000

2000
200

no
ise

 [p
pm

]

30 min cadence 2 min cadence

88.6 88.8 89.0 89.2 89.4
i [°]

10000

2000
200

no
ise

 [p
pm

]

1 min cadence

88.6 88.8 89.0 89.2 89.4
i [°]

25 sec cadence

Figure 4.9: Results for the inclination i depending on data noise for each cadence
of data. Grey dashed line marks real value.
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Figure 4.10: Results for the difference between real and fitted value of inclination
∆i depending on data noise for each cadence of data. Grey dashed line marks
difference 0.
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Figure 4.11: Results for the inclination i depending on cadence of data for each
data noise. Grey dashed line marks real value.
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Figure 4.12: Results for the difference between real and fitted value of inclination
∆i depending on cadence of data for each data noise. Grey dashed line marks
difference 0.

4.2.4 Transit mid-time t0

Results are shown in Figure 4.13 and Figure 4.14. For this parameter the
accuracy was really good except 30-minutes cadence with 10000 ppm. For data
noise 200 ppm we can see in Figure 4.14 that the accuracy is high with any
cadence. For data noise 10000 ppm and 30 minute cadence, the difference the
input and the fitted value is aproximatelly 0.02 days which is proximately 30
minutes. Planning observations with transit mid-time determined from this
could be a problem.
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Figure 4.13: Results for the difference between real and fitted time of transit
center ∆t0 depending on data noise for each cadence of data. Grey dashed line
marks difference 0.
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Figure 4.14: Results for the difference between real and fitted time of transit
center ∆t0 depending on cadence of data for each data noise. Grey dashed line
marks difference 0.



Chapter 5

Discussion and conclusions

In this thesis, we have studied the transits of extrasolar planets, their properties
and theoretical models of light curves. We used Python package PyLightcurve
for generating 400 light curves for 30 minutes cadence (TESS, Kepler), 200 light
curves for 2 minutes cadence (TESS, SuperWASP), 120 light curves for 1 minute
cadence (Kepler) and 60 light curves for 25 seconds cadence (PLATO). Number
of the light curves depends mainly on computing time of fitting procedure. We
also added data noise so that both space and ground missions were represented.
Examples of generated curves are in the Figure 3.1. To generate this data, we
chose an exoplanet called hot Jupiter orbiting Sun-like star, whose parameters
are in Table 3.1.

We used PyLightcurve for fitting generated data. It uses Markov chain
Monte Carlo method for fitting, in this case python package emcee: The MCMC
Hammer. We fitted planet radius Rp, semi-major axis a, inclination i and transit
mid-time t0. Examples of PyLightcurve output are shown in Figure 3.2 and
Figure 3.3.

Results of the analysis are in Table 4.1. We also ploted these results for a
better representation. Plots for planet radius Rp are in Figure 4.1, 4.2, 4.3, 4.4.
Results for semi-major axis a are shown in Figure 4.5, 4.6, 4.7, 4.8. In Figure 4.9,
4.10, 4.11, 4.12 are shown results for inclination i. Transit mid-time t0 results
are in Figure 4.13, 4.14. Relative standart deviations were calculated and for
planet radius Rp are listed in Table 4.2, for semi-major axis a in Table 4.3 and
for inclination i in Table 4.4.

Our expectation was that with decreasing noise and shorter cadence the
accuracy would be better. This assumption was met in most cases. Biggest
difference between input and fitted value was for 30 minutes cadence and data
noise 10000 ppm as expected. For planet radius Rp was this difference 0.02Rs
(19.5%), which is approximately 14000 km and this difference could affect
the characterisation of exoplanet a lot. For semi-major axis the difference is
approximately 3 Rp which could misslead the determination of habitable zone.
For inclination i this difference is only 0.5◦ which is quite good result. When
determinig transit mid-time, the difference is 0.02 days which is approximately
30 minutes. Difference in this parametr could affect planning of observations.
This could be a problem for example if there was data from Kepler with this

31
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kind of noise for 30 minutes cadence and the characterisation of exoplanet was
done.

Furthermore, we can conclude that at a data noise 200 ppm, which corre-
sponds to the observation of a star with the apparent magnitude of 10 mag
and 30 minutes exposure time observed by the TESS, the determination of the
parameters is comparatively accurate for all parameters. For this data noise, all
parameters were determined with relative uncertainty less than 1 %.

All these results could be affected by the choice of fitting procedure. For a
more accurate analysis and better understanding of this problem, it would be
appropriate to generate more light curves and also try to use different routines
for fitting for comparison.
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