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ABSTRAKT

V současné astronomické éře očekáváme příliv velkého objemu dat, jehož
zpracování se vymyká lidským silám. Z těchto důvodů je vhodné vyvi-
nout metody, které efektivně a spolehlivě analyzují data. Práce reaguje na
současnou situaci a je inspirována projektem GalaxyGAN. Jejím cílem jest
prozkoumání užití neuronových sítí při zpracování astronomických snímků.
Pozorování astronomických objektů je limitováno mnoha faktory a jedním z
nich je šum. Náš výzkum se zaměřil na odstranění šumu obrazových dat po-
mocí „generative adversarial network“ – GAN. Výsledky ukázaly, že použití
těchto sítí na daný problém je možné. Při porovnání s dalšími dostupnými
metodami vykazují srovnatelné, místy i výrazně lepší, výsledky.

ABSTRACT

In the present era of astronomy, we are expecting a large amount of data
that can not be fully processed by humans. Because of this, it is convenient
to develop a method that analyzes the data efficiently and reliable. Our
work reacts to the current situation and it is inspired by the GalaxyGAN
project we have been exploring the use of neural networks in the processing
of astronomical images. Observation of astronomical objects is limited by
many factors and one of them is noise. Our research has focused on the re-
moval of noise through generative adversarial networks (GANs). The results
have shown that neural networks can be used for a given problem, and in
comparison with available methods, the results comparable and sometimes
even better.
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Introduction

A noise limits observation of astrophysical objects such as galaxies. In recent
years, there has been an interesting breakthrough in inverse tasks, often used
to get image data with less noise. In 2017, Kevin Schawinski (Schawinski
et al., 2017) creates a method using a generative adversarial network (GAN)
trained on galaxy images that can recover features from artificially degraded
images with worse seeing and higher noise than the original with a perfor-
mance that far exceeds any simple deconvolution. The main goal of this
work is to reproduce their network, confirm the results.

Nowadays the amount of data is huge and we need to find the efficient
way of automatic processing and analyzing the data. The machine learning
provides a wide spectrum of the method which helps with the data analysis.
Machine learning can helps with different astronomical problems e.g classi-
fication of light curves (Janák, 2012), galaxy classification (Kosiba, 2017),
discovery and detection of X-ray cavities (Fort, 2017) or cosmic web simu-
lations (Rodriguez et al., 2018), etc.. Machine learning becomes important
part of astroinformatics and it is important to explore the different methods
of its use in practice.

Figure 1.1: Cosmic web generated with GAN (Rodriguez et al., 2018).
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Introduction to neural network

2.1 Inspiration for mathematical neuron

The inspiration for neural network comes from nature – the human brain
inspiration. The brain is one of the most complicated structures in the known
universe and our knowledge about the brain are still incomplete. Cells in the
human brain (Figure 2.1), neurons, are main functional units, which receive,
process, and transmit chemical and electrical signals. Signals arrive at the
dendrites, then travels into the cell body. If the integrated signal in cell body
exceeds a certain threshold, it produces an output signal passed on by the
axon, which is connected to other neurons by synapses.

Figure 2.1: Visualization of human neuron (Raschka, 2015)
.

Mathematical neurons, used in neural network, work on the same base.
Every n neuron connection has defined weight wn. Informations flow through
connections to the cell body, where it makes sum of input values and corre-
sponding weights,

z =
∑
n=1

wnxn, (2.1)

then applies an activation function

h = f (z) . (2.2)

If result exceeds threshold, the information is send to a next neuron (Figure
2.2).

In practice, we combine neurons to layers (Figure 2.3). The first layer is
called input layer, followed by several hidden layers and finished by output

2



2 INTRODUCTION TO NEURAL NETWORK

Figure 2.2: Scheme of neuron

layer. A number of hidden layers defines a depth of neural network. Neurons,
in the first hidden layer, are fully connected to neuronss in the input layer
and neurons in the output layer are fully connected to neurons in the last
hidden layers. Every connection between neurons has a weight, which is
trainable parameter.

Let’s look how information flows through neural network and how we can
train it. The first step is to sum signal, which is getting into the neuron. It is
done by summing all signal from previous layers multiplied by corresponding
weights

z =
∑
i

wixi + bi, (2.3)

where xi is an input from previous, wi is weight, bi is bias and z is the
so-called net input. The bias helps to improve performance and a shift
activation function, which may be critical for successful learning. Both
weights and biases are matrixes. Thereafter we apply a non-linear activation
function f(z) and this value is used as input for the next layer. Output layer
is followed by the loss function, which is used to update weights and biases
as feed-back.

3



2 INTRODUCTION TO NEURAL NETWORK

Figure 2.3: Illustration of fully connected neural network consisting the input
layer, two hidden layers and the output layer. Information from the output
layer is used to calculate loss and update weights through back-propagation.

2.2 The activation function

The activation function is the nonlinear transformation that we do over the
signal f(z), transformed output is then sent to the next layer of neurons as
input. Without an activation function, a neural network would do a linear
transformation. Commonly used activation function are:

Sigmoid has a mathematical form

σ(x) = 1
1 + e−x

. (2.4)

The sigmoid function takes real number values as an input and trans-
forms them to values in the range [0,1]. The output of the function
is then interpreted as the probability that our sample belongs to the
particular class.

Hyperbolic tangent (tanh) the difference between sigmoid and tanh is
that tanh tranforms values to the range [-1,1] and it’s output is zero
centered.

Rectified linear unit or shortly ReLU computes f(x) = max(0, x), in the
other words, ReLU set up values x < 0 to zero and for x > 0, f(x) = x.

4



2 INTRODUCTION TO NEURAL NETWORK

Leaky ReLU in contrast with ReLU, values x < 0 are not set to zero but
to ax, f(x) = max(ax, x), where a is a small number, in our work 0.02.

Figure 2.4: Shapes of activation functions

2.3 The loss function

The loss or cost function (L) measures a quality of trainable parameters
and how they should be updated. The goal is to minimize loss function by
changing weights and biases. There are many types of loss function, in our
work we used:

Mean absolute error (MAE) it computes

L = 1
N

N∑
n=1
|yn − y′n|, (2.5)

5



2 INTRODUCTION TO NEURAL NETWORK

where y′ is predicted value and y is a true value. When y and y′ are
images, a difference between every pixel is computed and then mean is
made.

Sigmoid cross-entropy predict probability that our sample belongs to
certain class, it gives us number between zero and one. In our case, we
want neural network to predict that the sample is True/1 or False/0.

P = y log[σ(y′)]− (1− y) log[1− σ(y′)], (2.6)

where y is true label of the sample, y′ is predicted value and σ(y′) is
the sigmoid function.

Binary cross-entropy same as sigmoid cross-entropy, binary cross-entropy
predicts probability that our sample belongs in one of two categories

P = y log(y′)− (1− y) log(1− y′), (2.7)

where y is true label and y′ is predicted label of sample.

2.4 Optimization method

The randomly selected optimizing of the loss function is the gradient descent
method. The gradient descent is an algorithm which is used to find the
minimum of the lost function by updating trainable parameters (weights and
biases) via back-propagation. In practice, we first compute gradient of loss
function L and then we take step in opposite direction

w(t+1) = w(t) + ∆w(t) (2.8)

∆w(t) = −α ∂L
∂wi

(2.9)

where w(t+1) is updated weight, ∆w(t) is the rate of weight changing, α is
the learning rate and it determines size of step, it used to be small number.

We want to reach the minimum of loss function by taking small steps in
opposite direction of the gradient (Figure 2.5). The gradient is computed
after every epoch (t). Epoch consists of one full training cycle on the data
set. After every sample in the set is seen, new epoch starts (t+ 1).

In contrast stochastic gradient descent method (SGD) computes parame-
ter updates via back-propagation after every sample from the dataset.
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2 INTRODUCTION TO NEURAL NETWORK

Figure 2.5: Illustration of reaching the minimum of the function by taking
small steps in opposite direction of the gradient (Raschka, 2015).

Momentum is a method that accelerate SGD,

∆w(t) = γ∆w(t−1) − α ∂L
∂wi

, (2.10)

where ∆w(t−1) is weight update from previous epoch, γ is the momentum
term, usually set up to 0.9. Update of parameter increase when the gradient
point in the same direction, otherwise updates is reduced. As a result, we
get faster convergence and reduced oscillation (Ruder, 2016).

Figure 2.6: Left: SGD without momentum. Right: SGD with momentum
(Ruder, 2016)

Adaptive Moment Estimation (adam), a method for efficient stochastic
optimization. It was published by Coates et al. (2011). Adam is combination

7



2 INTRODUCTION TO NEURAL NETWORK

of two optimization methods AdaGrad (Duchi et al., 2011) and RMSProp
(Tieleman and Hinton, 2012). Weight update w(t) is computed as follows:

m(t) = b1m
(t−1) + (1− b1)g(t) (2.11)

v(t) = b2v
(t−1) + (1− b2)(g(t))2 (2.12)

g(t) = ∂L

∂wi
(2.13)

w(t) = w(t−1) − αm(t)
√
v(t) + ε

(2.14)

where m is a first moment vector, v is second moment vector, b1 and b2 are
exponential decay rates for the moment estimates, gt is the gradient of the
lost function, α is the learning rate and ε is a small constant used to avoid
zero division. Indexes (t) and (t − 1) correspond to current and previous
epoch respectively.

2.5 Back-propagation

Back-propagation is the learning process, which propagates error through
the network. It computes derivatives of a loss function and changes weights
of parameters. Sets of weights in every layer are represents by matrices, but
the last layer generates a vector. In forward pass, we derive the matrix first
and then we multiply it with next matrix. That can be computationally
expensive. The algorithm computes gradient in backward order – gradient
of the output layer is calculated first. If we derive first output vector and
multiply with a matrix in next layer it yields another vector. That is the
reason why is the back-propagation computationally efficient approach.

Back-propagation can be summarized into three steps:

1. Output vector is computed.

2. Result is compared with true labels and loss is computed.

3. Weights are updated via back-propagation.

8



2 INTRODUCTION TO NEURAL NETWORK

2.6 Dropout

Dropout is a technique to prevents the neural networks from an overfitting.
The overfitting means that our model fits the training data well, but it fails
when it comes to validation – our network memorizes the training data.
The idea behind dropout is easy, neural networks randomly drops units
during training and they are not included in learning process. In other words,
units are keeping active with some probability p, which is usually set up to
1/2. This approach prevents a unit from co-adapting – it creates the unique
network for every training case (Figure 2.7).

Figure 2.7: Illustration of neural network without dropout (a) and with
dropout (b) (CS2).

2.7 Convolutional layer

Input for a classical fully-connected neural network is vector – so if our input
is an image we have to unroll it into a feature vector, what causes a loss
of spatial information. Convolutional networks (LeCun et al., 1989), also
known as convolutional neural networks (CNNs), are a specialized kind of
neural network for image processing (Figure 2.8). (Goodfellow et al., 2016)

9



2 INTRODUCTION TO NEURAL NETWORK

Figure 2.8: Left: fully connected neural network. Right: convolutional neural
network (CS2)

We can look at convolution in two different contexts:

1. Mathematical

2. Convolutional network

Deeper description:

1. In the mathematical context, convolution is an operation on two func-
tions of a real-valued argument and is defined for any function for
which the below integral (2.16) is defined. Convolution is a specialized
kind of linear operation. It is defined as:

G = F ∗H, (2.15)

G(x′) =
∫ ∞
−∞

F (x)H(x′ − x)dx. (2.16)

2. If we take convolutional network point of view, F is referred to as an
input and H as a kernel and output G is a features map. In machine
learning application, we can rewrite equation 2.16 into:

S(i, j) = I ∗K(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j −m), (2.17)

where S in the output, I is the input, K is a two-dimensional kernel
(filter) where i, j are over filter’s high and width respectively, which
are usually smaller than a width and high of the input (e.g. Figure 2.9).

10



2 INTRODUCTION TO NEURAL NETWORK

Figure 2.9: An example of 2-D convolution, with kernel (filter) size 2 × 2,
stride 1 and without padding.

With the filter, we can detect meaningful features such as edges of objects
at the image. The single filter can extract special kind of feature at many
locations and it becomes active when it detects the feature. In practice we
want CNN to learn to detect many features, which means that we have to
use more filters.

There are more hyperparameters which is necessary to specify – receptive
field, stride, and zero-padding.
The receptive field is equivalent to hight (h) and width (w) of the filter.
Stride defines step with which is filter moving along the image. When stride
is 2, then filter jump 2 pixels at a time as we slide it around. This will
produce smaller output volumes spatially than input.
Zero-padding adds zeros at the border of the spacial dimension of the image.
This allows as to control the spatial size of the output (CS2).

Convoutional layer takes set of feature maps as the input (at Figure 2.11
input contains 2 feature maps). The depth of convolutional filter (CONV
filter) is equal to the depth of the input volume D1. Each neuron in the

11



2 INTRODUCTION TO NEURAL NETWORK

Figure 2.10: We have the input volume of size W1×H1×D1 and we want to
apply 5 different CONV filters with receptive field h× w, CONV filter has
size h× w ×D1 - it consists D1 sets of filters with size h× w. This creates
output volume, convolutional layer, with size W2 × H2 × D2 and D2 = 5
(CS2).

convolutional layer is connected only to a local region in the input volume
spatially, but to the full depth (Figure 2.10). After CONV filters are applied
we get final output – convolutional layer with another set of feature maps.
The number of output’s feature maps depends on how many CONV filters
did we use.

The output shape of the convolutional layer is affected by the shape of
its input as well as the choice of receptive field, strides, and zero-padding.
This property of CNN is in contrast to the fully-connected network whose
output size is independent of the input size (Dumoulin and Visin, 2016).

In practice, if our input is volume W1 = 5 H1 = 5 D1 = 2 and we want
to have two CONV filters (K) with receptive field 3× 3 (F ) , stride of S = 2
and zero-padding P = 1. We can compute output volume as:

W2 = W1 − F + 2P
S

+ 1, (2.18)

H2 = H1 − F + 2P
S

+ 1, (2.19)

12



2 INTRODUCTION TO NEURAL NETWORK

D2 = K, (2.20)
then the result is a volume with size 3× 3× 2 (Figure 2.11).

Figure 2.11: Example of the convolutional network with input 5× 5× 2 plus
1 padding, 2 sets of CONV filters and output 3 × 3 × 2. Both input and
output has two feature maps. At each location, the product between each
element of the filter and the input element it overlaps is computed and the
results are summed up to obtain the output in the current location. The
procedure can be repeated using different CONV filters (in our case 2 filters)
to form as many output feature maps as desired (Dumoulin and Visin, 2016).

2.8 Deconvolutional layer

The deconvolution layer or transposed layer is the inverse of the convolution
layer. The deconvolutional forward pass is calculated just as is the backward
pass of a convolutional layer (Gauthier, 2015). Transposed layer is used
to increase the spatial dimension of input (Figure 2.12). Imagine that we

13



2 INTRODUCTION TO NEURAL NETWORK

have convolution with given input shape. We can compute output shape
by equation (2.18) – (2.20). If the shape of the input layer of transpose
convolution is the same as the output shape of convolution, the output of
transpose convolution will be the same as input of convolution.

Let’s consider that transpose of non-padded convolution is the same as
convolving a zero-padded input, then the transpose of zero-padded convolu-
tion is equivalent to convolving an input padded with less zeros. If stride of
convolution is bigger than one, then zeros are inserted between input units,
which makes the filter move slower (Figure 2.13). For more details about
transpose convolution read Dumoulin and Visin (2016).

Figure 2.12: Illustration of convolution and deconvolution (Noh et al., 2015).

Figure 2.13: The transpose of convolving a 3x3 filter over a 5x5 input using
stride two without padding is equivalent to convolving a 3x3 filter over 2x2
input with zero inserted between inputs, padded with 2x2 border of zeros
using stride one (Dumoulin and Visin, 2016).

14



Generative adversarial network

3.1 Introduction

The main goal of the generative networks is to generate new samples follows
the same probabilistic distribution of a given a training dataset. There are
many kinds of generative models:

• Boltzmann Machines (BMs)

• Deep Belief Networks (DBNs)

• Variational Autoencoders (VAEs)

• Generative Adversarial Networks (GANs) etc.

Readers interested in can learn more about different generative models in
Deep Learning book (Goodfellow et al., 2016).

Figure 3.1: Illustration of how different types of generative networks deal with
photo resolution. From left to right:original HR image, bicubic interpolation,
deep residual network optimized for MSE, deep residual generative adversarial
network optimized for a loss more sensitive to human perception (Ledig et al.,
2016).

There are differences in how these models works but the basic idea is
common. Lets the dataset x1, ..., xn are samples from a true data distribution
p(x) (Figure 3.2). Our model takes data points from some distribution
(in this case Gaussian distribution) and maps them through the neural
network to the generated distribution p̂θ(x). The network is a function
with parameters θ and by the changing, those parameters network tries to

15



3 GENERATIVE ADVERSARIAL NETWORK

produce generated distribution that closely matches the true data distribution
– network learns to represent an estimate true data distribution.Applications
for generative models are image denoising, inpainting, super-resolution,
structured prediction, etc.

Figure 3.2: Illustration of generative model (GAN).

3.2 Generative Adversarial networks

”Generative Adversarial Networks is the most interesting idea in the last ten
years in Machine Learning.”

— Yann LeCun, the director of Facebook AI

Generative adversarial network (GAN), were introduced in 2014 by
J. Goodfellow (Goodfellow et al., 2014). GAN consist of two different
models – generator (G) and discriminator (D). The generator creates samples
that capture data distribution. The discriminator estimates the probability
that sample is real – came from training data or fake – created by genera-
tor. GAN’s training can be compared to the game where G tries the best
to cheat the D by generating more realistic images and D tries the best
to distinguish whether the image is real or fake. At convergence, the G’s
samples are indistinguishable from real data, and the discriminator outputs
1/2 everywhere.

Each of player is represented by a differentiable function with respect to
it’s input. D and G play the following two-player minimax game with value
(loss) function V (G,D):

min
G

max
D

V (D,G) = Ex∼pdata(x) [logD(x)] + Ez∼pz(z) [log(1−D(G(z)))] , (3.1)

16



3 GENERATIVE ADVERSARIAL NETWORK

where D(x) represent probability that x comes from real data and G(z)
are data from generator’s distribution pg. At the beginning of learning, D
reject samples with high confidence and log[1−D(G(z))] saturates. Because
of that, it is better to train G to maximize logD(G(z)).

We can divide training of GAN into two phases (Figure 3.3):

• Phase I. – training of discriminator:
Input noise (or image with noise) flows through G and output gets
label False or 0. After that we drawn the image from real data and
it gets label True or 1. Then D gets this images as input and it tries
to distinguish whether the images are real or fake. Afterwards loss
function (LD) is computed and parameters of discriminator θD are
updated. Parameters of G are not updated in this phase.

• Phase II. – training of generator:
In this case, the output from G gets label True, pass through D and loss
function LG is computed and parameters of generator θG are updated.
Note, that LG is same as LD, but it can by extended by another loss
function. Parameters of D are not updated in this phase.

G X', False

X, True

D True/False

LD

G X', True D True/False

LG

I.

II.

Z

Z

Input for the
generator

Input for the
discriminator

Figure 3.3: Scheme of GAN’s training.
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3 GENERATIVE ADVERSARIAL NETWORK

3.3 Discriminator network

Discriminator is a convolutional neural network (CNN), which contains
several convolutional layers and the output is a single scalar, the probability
of the image being real or fake. After every convolutional layer follows
activation function, leaky ReLU. Batch normalization (BN) is a layer that
has a mean output activation of zero and standard deviation of one. The
first layer of the discriminator is not batch normalized so that the model
can learn the correct mean and scale of the data distribution. We will call
sequence of convolutional layer, activation function and batch normalization
block.
Dense or fully connected layer have full connections to all neurons in the
previous layer, as in regular neural network (Figure 2.3). An input of dense
layer is a vector and output of convolutional layer is not – it means that
we have to insert a special layer between them which flattened output of
convolutional layer into the vector.When training is done, we don’t need
discriminator anymore and we can discard it.

Figure 3.4: Exampe of architecture of discriminator network with correspond-
ing number of feature maps (n), stride (s) and seven blocks.

3.4 Generator network

Architecture of generator’s network is more complicated than discriminator’s.
We can split up generator into two parts, first is made of convolutional
layers and second deconvolutional or transpose layers. In both parts batch
normalization is used. Input is an image with noise which have same size as
output.
First part of generator look like CNN, with batch normalization and leaky
ReLU activation. At second part after activation function is applied, decon-
volution is made. Before we use another activation function, we concatenate
output of deconvolution layer with output of penultimate block from first
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3 GENERATIVE ADVERSARIAL NETWORK

part. See Figure 3.5 for better understanding. Batch normalization is not
used in last layer of generator.
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Figure 3.5: Exampe of architecture of generator network with three blocks.

3.5 Conditional GAN

Mehdi Mirza and Simon Osindero in 2014 (Mirza and Osindero, 2014) in-
troduce a new type of GAN – conditional GAN (CGAN). The difference
is that CGANs are extended to a conditional model by adding some extra
information, condition y, to both the generator and discriminator. The loss
function (3.1) of a two-player minimax game would change as:

min
G

max
D

V (D,G) = Ex∼pdata(x) logD(x,y) + Ez∼pz(z) log[1−D(G(z,y))]. (3.2)

In our case, we use additional condition when loss function of a generator is
calculated. Input for the generator is a blurred image with noise. We use
the original image without noise as a condition and we can calculate the
MAE and add it to the loss function LG. Loss of generator LG is no longer
affected just by discriminatory ability to differ fake and real image.
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Application of network

4.1 Tests of generator

At first, we were interested in how neural network works in use. There is
no better way to answer this question than play with an architecture of the
neural network and change the dataset. We tried different architecture of our
generator and summarized results in the section below answer our questions.
Our first set of the test was made with the STL-10 dataset (Coates et al.,
2011). This dataset consists of different type of pictures with ten different
classes with 12500 images. Size of images is 96× 96× 3.

Figure 4.1: The STL-10 dataset examples

Our dataset contains both, the real image also blurred image (Figure
4.2). Because of that, we don’t need to use discriminator – our lost function
is MAE (Section 2.3). We will compare the results with graphs of change of
loss function depending on the number of the epoch. Whoever was reading
it here, I invited him to beer.

Figure 4.2: Examples of random images from the STL-10 dataset with and
without noise.
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4 APPLICATION OF NETWORK

• Test I
In our first test, we want to determine how the change of size of the
dataset affect training. Size of dataset was 5000 images (N1) and 8500
images (N2). The architecture of generator is as follows: 3 convolu-
tional layers with batch normalization and leaky ReLU activation, and
three deconvolutional layers without batch normalization and ReLU
activation. The number of the epoch is different, we trained N1 for 50
epoch and 35 epoch for N2. At Figure 4.3 we can see that with the
bigger dataset is loss smaller, which is no surprise. We conclude that
with bigger dataset we will obtain better results.

• Test II.
In this test, we examine the influence of batch normalization in the
network. We will use network N2 from the test above and network
with batch normalization after first and deconvolution layer (N3) and
network with batch normalization after every deconvolution layer (N4).
Size of the dataset is 8500 images. As we can see networks which
contain batch normalization have a smaller loss than the network
without it. From a comparison of N3 and N4 we see that match of
validation and train loss of N4 is not as good as of N3, so we conclude
that it is preferable if the network doesn’t contain batch normalization
after last deconvolution layer.

• Test III.
Dropout helps to prevent neural network from overfitting. We use same
architecture as N3 plus add dropout after first and second deconvolu-
tional layer (N5) and compare it with N3. Note that a slight decrease
in loss is observed, which leads to the conclusion that the use of the
dropout causes better results.

• Test IV.
In the last test, we added extra convolution and deconvolution layer
into N5 and we kept the number of batch normalizations and dropouts
(N6). We trained N6 at the dataset with 12500 images and compare it
with N5 trained at 8500 images. We can see that decrease of lost of
N6 is significantly bigger in comparison with N5.

Conclusion: Our experiments proof that bigger dataset and bigger network
leads to better results. Adding batch normalization and dropout into the
network undeniably improves work of the generator.
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4 APPLICATION OF NETWORK

Figure 4.3: Left: Test I. Loss of networks N1 and N2. Right: Test II. Loss of
networks N2, N3 and N4. Big difference between validation and train loss of
N4 network suggest that network suffers from overfitting.

Figure 4.4: Left: Test III. Loss of networks N3 and N5. Right: Test IV. Loss
of networks N5 and N6. Network N6 has additional layer to help improve
the performance.

22



4 APPLICATION OF NETWORK

4.2 Image processing

Our dataset holds 4550 galaxies from the Sloan Digital Sky Survey (SDSS
York et al. (2000)). Before we use it to train the network we have to process
the fits and set them in range (0,1). According to Lupton et al. (1999) we
use the inverse hyperbolic sine (arcsinh) to create RGB images. One of the
advantage of arcsinh is that for fluxes near to zero is transformation linear
and we will not loose the information as it was with logarithmic function
which were commonly use for image processing. This dataset serves as a
label to compute loss function for the generator and as training samples for
the discriminator. The code is available online1. Subsequently, we add noise
to images and create a new dataset, training samples for the generator.

4.2.1 Degraded image

Blurring
When neglecting other disturbing phenomena, an astronomical point source
viewed by primary telescope mirror would be an Airy diffraction disk. Size
of the disk would be established by mirror diameter and wavelength. We can
describe this effect with point spread function (PSF), with spread parameter
the full width at half maximum intensity (FWHM ). The image is, therefore,
a convolution of true light distribution with PSF.

Observation of night sky from the ground is affected by the turbulent
atmosphere which causes seeing. Seeing is one of the reasons, why point
source (like a star) is spread over multiple pixels in an image. Combination of
diffraction and seeing resulting into fuzzy disk. It is possible to approximate
PSF with Gaussian curve (Figure 4.6). A disadvantage of the approximation
is that Gaussian curve does not contains "wings" of PSF profile. To generate
blurred image we convolve the images with Gaussian filter, which represent
seeing.

Noise
Noise produces undesirable effects and its origin is different, in astronomy
we encounter sky noise, noise caused by dark current, read-out noise,photon
noise, etc.. Arriving of photons, which are detected by CCD, is random
process and distribution of their arrival is theoretically described as Poisson
distribution (PD). Probability of detection x photons per unit interval is:

Px = mxe−m
x! , (4.1)

1https://is.muni.cz/auth/th/tcbgi/Model_Bakalarka.py?studium=727887
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4 APPLICATION OF NETWORK

Figure 4.5: Left: point spread function (solid line) of Airy diffraction pattern.
Right: Gaussian curve (McLean, 2009)

where m is the mean value of photon detection per time interval. If value of
m� 0 , we can approximate Poisson distribution with normal (Gaussian)
distribution with variance σ2 = m (Brandt, 1976). The noise associated
with photons detection will also have Poisson distribution. We trained our
network on two different type of noise, Gaussian and Poisson. Another
difference was how to create noise. Gaussian noise was added after arcsinh
was applied. The parameter of distribution, m, is a mean intensity of pixels
at the original image. Poisson noise was added before images were processes.
This creates noise, which corresponds to real astronomical noise distribution.
We tried both types of noise because we were interested in how the network
will respond. Results of images with Gaussian noise are in Section 5.2 and
images with Poisson noise in Section 5.3 (McLean (2009), Boyat and Joshi
(2015)).

4.3 Image evaluation

To evaluate results of the network we used mathematical approach and
subjective evaluation method (human opinion). For objective evaluation, we
have chosen peak signal-to-noise ratio and an observational error.

Peak signal-to-noise ratio
Peak signal-to-noise ratio (Ψ) is a method to quantify differences between
original image and reconstructed (denoise) image. Mathematically, the Ψ is
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4 APPLICATION OF NETWORK

Figure 4.6: Approximation of Poisson distribution (black) with normal
distribution (blue) with m = 100 and σ2 = m.

defined via variance:

var(I − I ′) = 1
N

H,W,D∑
h,w,d

(Ih,w,d − I ′h,w,d)2, (4.2)

where I and I ′ are original and reconstructed images and H,W,D are hight,
width and depth and N is dimensionality of the image. Then, Ψ expressed
in logarithmic decibel scale is:

Ψ = 10 log
(

I2
0

var(I − I ′)

)
. (4.3)

Here, I2
0 means the highest possible value of the signal. If original and

reconstructed image are almost identical, the variance is approaching zero
and Ψ goes to infinity. Therefore, the good result for the network is high Ψ.

Relative error
Second metrics for evaluation of result is a relative error. Relative error is a
ratio of variation and a real value (real image). Mathematically,

δ = var(I − I ′)
I2 . (4.4)

Error δ = 0 indicates, that images are identical. (Mastriani (2016), Sadykova
and Pappachen James (2018), Fardo et al. (2016))
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Structural Similarity index

Structural Similarity index (κ) is distance metric for two images that takes
into account spatial correlations between different pixels (?). The κ of two
images that are the same is 1 and it decreases as one of the two images is
degraded. Structural similarity index formula is based on three comparison
measurements between two images x and y: luminance (l), contrast (c) and
structure (s). It is defined as:

κ(x, y) = (l(x, y)αc(x, y)βs(x, y)γ) (4.5)

l(x, y) = 2µxµy + c1
µ2
x + µ2

y + c1
(4.6)

c(x, y) = 2σxσy + c2
σ2
x + σ2

y + c2
(4.7)

s(x, y) = σxy + c3
σxσy + c3

, (4.8)

where µx, µy are the average of x and y, σ2
x and σ2

y is the variance of x, y, σxy
is the covariance of x and y, c1, c2, c3 are constants, c1 = 0.01R, c2 = 0.03R,
c3 = c2/2 and R is the data range. We set α, β and γ to one.

Level of noise 0. I. II. III. IV. V.
Ψ [dB] ∞ 18.6 16.4 14.6 13.1 12.4
δ 0 0.15 0.28 0.37 0.45 0.53
κ 1 0.30 0.17 0.10 0.07 0.06

Table 4.1: Use of peak signal-to-noise ratio (Ψ), relative error (δ) and
Structural Similarity index (κ) to compare quality between different noisy
and original images. If we use Ψ at identical images, the result is infinity as
expected. Relative error increase with higher noise level. For similar images
is κ = 1 and it decrease as we add more noise into image. Figures 4.8 and
4.9 contains more data for images with different noise level. Level of noise is
changing by linearly changing parameters of Gaussian distribution – mean
and sigma.
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4 APPLICATION OF NETWORK

Figure 4.7: Image with Poisson noise. Ψ = 23.3dB for center image region.

Figure 4.8: Dependence of the peak signal-to-noise ratio (PSNR) on the level
of noise. It is obvious that Ψ decreases with the higher noise level. Level of
noise is changing by variating parameters of Gaussian distribution – mean
and sigma.
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Figure 4.9: Dependence of the relative error on the level of noise. Level of
noise is changing by variating parameters of Gaussian distribution – mean
and sigma.

Figure 4.10: Left: the original image. Right: noisy image I. See Table 4.1
for information about value of Ψ and relative error.
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4 APPLICATION OF NETWORK

Figure 4.11: Images with different contribution level of Gaussian noise. Top:
left – noisy image II.; right – noisy image III.. Bottom: left – noisy image
IV.; right – noisy image V. See Table 4.1 for information about value of Ψ
and relative error. We recommend to exterminate images in pdf form of our
work.

4.4 Network architecture

For more information about the network see Section 3.
Generator
The architecture of the generator network is separable into two parts. First,
convolution part, consist of convolution blocks (C-block). Second, deconvo-
lution part is made of deconvolution blocks (D-block). The inner structure
of blocks is in the Figure 4.12. After every D-block is its output information
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4 APPLICATION OF NETWORK

concatenates with output information of C-block with same the spatial size
(Figure 3.5). Our generator is made of five C and D blocks. Detailed archi-
tecture is displayed in Figure 4.12.
Discriminator
Discriminator is also made of C-blocks without batch normalization and few
other layers are used (details in section 3.3). We can see whole architecture
in Figure 4.13.
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Figure 4.12: The architecture of the generator. A number next to C and D
block is a count of filters, and D in D-blocks signify the use of dropout.

Figure 4.13: The architecture of the discriminator.
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Review of results and discussion

This section contains review of our results, their examination and comparison
with technique which is nowadays available.

5.1 Total-variation chambolle

One of the available technique for direct image restoration is a total-variation
chambolle denoise (TV-chambolle). Rudin et al. (1992) first introduced the
total variation in Computer Vision as a regularizing criterion for solving
inverse problem and implementation of used code was proposed by Chambolle
(Chambolle, 2004). Total variation denoising algorithm tend to minimize
the total variation of the image. Benefits of TV-chambolle algorithm is
that you do not need any dataset, single image is required, and it is not as
computationally costly as to trains neural networks. We will compare results
of this method with our network to see, which is more efficient.

5.2 Stage I – the first network application

Because of computing efficiency we trained our network with smaller images
from our SDSS dataset. Size of training images was 96× 96× 3 pixels. We
trained on NVIDIA GeForce GTX 970 graphics. In Stage I. we add Gaussian
noise into images.

During the first 180 epochs, we gradually changed the weight of the losses
of the generator, we were increasing the weight of the MAE. For about 200
epochs, we trained the network of 0.9 for MAE and 0.1 for binary-cross
entropy. We finished the training, we saw that the discriminator is no longer
able to distinguish between the original and the generated image. Training of
the network took about forty hours. We save the weights and perform phase
I. tests. Afterwards, we trained another 200 epochs without discriminator
network. This test lasted twenty hours and we perform phase II. tests after
training.

Reconstruction of 400 images with TV-chambolle denoise took approxi-
mately four seconds, with generator after phase I. and after phase II. around
twelve seconds. As we see the computational efficiency of TV-chambolle is
better than generator’s efficiency. The Figure 5.1 below shows reconstructed
images. Peak signal-to-noise ratio information are available in the Table 5.1.
We can see, that TV-chambolle denoise is not able to fully reconstruct de-
graded images. In the contrast, generated images shows ability to reconstruct
point objects as stars and galaxy center, even finer structures are visible.
But the generator is not able to reconstruct all the images so well. As we
can see in the Figure 5.2, the network fails to reconstruct the image after
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both phase I. and phase II. After phase I. we can see structure around center
of galaxy and it became more visible pass phase II. This can be attributed
to the fact that the training dataset is small and unable to capture all the
details. In the Figure 5.3 we see that the network missed structure at the
edges of the galaxy but it managed to reconstruct central part of the galaxy
better.

Images at Figures 5.4 and 5.6 are from SDSS and have unusual shape.
Hoag’s object is a non-typical galaxy, its shape can be consider as the result
of the collision of multiple galaxies. As we can see, the network was not able
to reconstruct fine ring. Mayall’s object is also result of collision of galaxies.
Even when the network miss structure, as we see at residuals, it denoise
image better than TV-chambolle denoise did.

To study noise distribution of residual images from Figure 5.2, 5.3 and 5.6,
we uses Kolmogorov–Smirnov test (K-S test), which determine if residuals
have Gaussian distribution or not. Probability of chosen distribution base
on p-value (λ), if λ > 5% than we can assume that residuals has Gaussian
distribution. K-S test was computed for every row and channel of image
separately and we plotted histograms (Figure 5.8) to see how value of λ
differs (Table 5.3 and 5.5). Results of test for Gaussian noise with different
parameters shows that λ̄ ∼ 50% and percentage of values λ > 5% is around
five percent (Figure 5.7). The conclusion is that residuals D do not have a
Gaussian distribution, but the E residuals are closer to it.

Conclusion
Results of this test shows us, that the network is able to learn to reconstruct
images, but it has certain problems with structures details as we can see
on the residuals images. This problem could be caused by inappropriate
dataset or small architecture of the generator. With small dataset, outliers
become more-likely to not to be reconstructed good. To measure how our
network denoise the images we use different technique – peak signal-to-noise
ratio, structural similarity index and Kolmogorov–Smirnov test. Every of
them is focused on different aspects, it is good to combine them. It is also
important to examine the images and the residuals by humans. We decided
to run another test with small changes as we are planning to pre-train the
generator on generated data and we will add rotated images into dataset.
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Ψ[dB] Noisy image TV-chambolle Phase I. Phase II.
A 13.6 14.6 24.3 25.1
B 13.1 14.1 24.2 25.7
C 19.2 20.26 33.2 33.1
D 18.2 19.3 32.8 26.9
E 12.9 13.7 24.2 24.1
F 16.8 17.4 32.4 31.8
G 13.9 14.9 26.6 27.3

Table 5.1: Peak signal-to-noise ratio Ψ for different images, as we can see Ψ
is increasing if we compare noisy image and image after phase I. and II. and
is always higher than Ψ of image after TV-chambolle which suggests that
our network denoise image better than TV-chambolle. Images A – C are in
Figure 5.1, image D in Figure 5.2, image E in Figure 5.3. Images F (Hoag’s
object) and G (Mayall’s object) are in Figure 5.4.

κ Noisy image TV-chambolle Phase I. Phase II.
A 0.44 0.71 0.81 0.81
B 0.54 0.78 0.87 0.87
C 0.50 0.81 0.91 0.91
D 0.53 0.87 0.91 0.85
E 0.43 0.69 0.80 0.80
F 0.34 0.74 0.68 0.72
G 0.42 0.72 0.77 0.65

Table 5.2: Structural similarity index κ for different images, as we can see κ
is almost one for images after phase I. and II.– this means that they are close
to original images (for similar images κ = 1). Images A – C are in Figure
5.1, image D in Figure 5.2, image E in Figure 5.3. Images F (Hoag’s object)
and G (Mayall’s object) are in Figure 5.4.
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A B C

Figure 5.1: From above: Original images, noisy images, TV-chambolle
denoise, generated after phase I., generated after phase II.
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Original Image Noisy image

Original divided
TV-chambolle by reconstructed

Phase I.

Phase II.

Figure 5.2: (D) From above: Original images, noisy images, TV-chambolle
denoise, generated after phase I., generated after phase II.
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Original Image Noisy image

Original divided
TV-chambolle by reconstructed

Phase I.

Phase II.

Figure 5.3: (E) From above: Original images, noisy images, TV-chambolle
denoise, generated after phase I., generated after phase II.
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Hoag’s Object (F) Mayall’s Object (G)

Figure 5.4: From above: Original images, noisy images, TV-chambolle
denoise, generated after phase I., generated after phase II.
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Figure 5.5: Downscaled images of Hoag’s and Mayall’s object from Hubble
space telescope. Nevertheless we see much more detail in the images. This
gives us goal to try to improve our network to make better job.

Hoag’s Object Mayall’s Object

Figure 5.6: From above: residuals of images after TV-chambolle denoise,
phase I., phase II.
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G TV-chambolle Phase I. Phase II.
λ̄ [%] 32.0 34.2 34.3

λ < 0.05 [%] 20.8 29.0 22.0
F TV-chambolle Phase I. Phase II.

λ̄ [%] 25.4 30.3 31.1
λ < 0.05 [%] 27.5 25.8 24.2

Table 5.3: The analysis of residuals centre of G and F image. K-S test
shows that there are more values λ > 0.05, so we can expect that noise has
the Gaussian distribution, but it is necessary to improve our results. It is
good sign is, that central parts of Mayas’s object residuals from the network
has less values λ < 0.05 than TV-chambolle denoise. That means that our
network makes better work.

Figure 5.7: Histogram of λ values for Gaussian noise, λ̄ = 50.1% and 5% of
values are λ < 0.05
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D E

Figure 5.8: Histograms of p-values for residual images D and E. First row
corresponds to TV-chambolle denoise, second to phase I. and third to phase
II. P-value was calculated for three image channels separately, colors in
histogram belongs to corresponding image channel.
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D TV-chambolle Phase I. Phase II.
λ̄ [%] 27.3 8.1 22.8

λ < 0.05 [%] 25.8 75.0 39.6

Table 5.4: The analysis of residuals of D image. Mean λ value is higher than
0.05, which is good, but percentage rate of λ < 0.05 is undesirable.

E TV-chambolle Phase I. Phase II.
λ̄ [%] 35.3 32.0 32.5

λ < 0.05 [%] 26.7 25.3 23.3

Table 5.5: The analysis of residuals of E image. The results for residuals
after phase II. suggest that distribution is near to be Gaussian.

Figure 5.9: We tried how will the generator behave if we show image of noise,
white and black image after phase I (first row) and phase II (second row).
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Figure 5.10: Test of the generator on non-astro images. From left: original
image, after phase I, after phase II. Analysis of residuals of women’s image
shows, that λ̄ = 1% and 92% of all values are λ < 0.05. This analysis prove
that residuals have not Gaussian distribution as expected (Chung and Yim,
2014).

5.2.1 The network vizualization

To see what is happening in the network we visualized how the image from
Figure 5.3 pass through it. The visualization is influenced by the selection
effect – each layer contains many activation maps and filters. Numbers I –
VI in Figure 5.12 and 5.13 mean layer number. Activation layers appertain
to previous convolution/deconvolution layer. When comparing a colour-bars
in the pairs convolution/deconvolution layer and the activation layer we see
that the activation function works as expected. At Figure 5.10 we see same
sets of filters after phase I and II. Filters are searching for patterns in the
image, and they are changing markedly at the beginning of training. In the
final stages of training, changes are no longer significant as we can see.
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Convolution layer Activation Leaky ReLU

I.

III.

V.

VII.

II.

IV.

VI.

VIII.

Figure 5.11: Visualization of convolution part of the network.
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Deconvolution layer Activation ReLU

IX.

XI.

XIII.

XV.

X.

XII.

XIV.

XVI.

Activation hyp. tangent

Figure 5.12: Visualization of deconvolution part of the network.
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Figure 5.13: Vizualization of same set of filters from first convolutional layer
after phase I and phase II.
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5.3 Stage II. – the second network application

First step of Stage II. was pretrain our network to get better initialization
for our training. For this purpose we generate data, 20000 images and we
trained for two epochs. Another change was that we add one convolutional
and deconvolutional layer to our generator. We have been train for two
hundred epochs with weighted loss 0.9 for MAE and 0.1 for binary cross
entropy. Before every training we randomly rotated and shifted training
samples – this was made because our dataset is small and this method should
help to avoid overfitting. One of the most important changes was the type
of noise added into image – noise with Poisson distribution.

For a better understanding of the network, we saved different randomly
selected filters, layers and denoise images during training to see how was
system evolving. At Figure 5.14 is evolution of the denoising galaxy. The real
image of the galaxy is at Figure 5.3 (notice that image is rotated and shifted
differently). At Figure 5.15 we can see how were weights changing during
training, the biggest changes are at the beginning of training and smallest
at the end of training between 160 and 2000 epoch. At Figure 5.17 we see
same convolution and deconvolution layer during training. It is interesting,
that at the beginning of training convolutional layer was able to capture
the shape of galaxy better than at the end. Take a look at the colorbars of
deconvolution layer – notice that some values are over two hundred, we have
to remind that it is the same layer and that images were at the beginning
normalized. This can suggest that there could something goes wrong during
the training. Phase IV. shows improvement not just in Ψ and κ but even in
visualized convolution layer at Figure 5.16 – the layer capture structure of
the galaxy. A more detailed analysis is beyond the scope of this work.
At Figures 5.18 – 5.20 and Tables 5.6 – 5.6 are results of our test of generator
for images with Poisson noise. For comparison with our previous results, we
use phase I. Clearly, from figures and from Tables we can see that Stage II. –
phase III. has worse results as Stage I., this can be caused by:

• We used bigger architecture and it could be required to train it for
more epoch

• The larger the network, the more images are needed for prevent to
memorize images by the network

• The discriminator was overfited and leads training in wrong way

Examination of this problems should help to create a better network which
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can give us better results than obtained one. Because of that, we continue to
train the generator (phase IV) without discriminator from the point where we
think the discriminator became overfit, after one hundred epochs. Because of
time-consuming, we train just for another 25 epochs (125 epochs total), but
results are much better than for the phase III. As we can see values of peak
signal-to-noise ratio and structural similarity index (Tables 5.6, 5.7) are in
almost every case better for Stage I., but phase III. and IV. do better than
total-variation Chambolle denoising, which gives us promising beginning for
future examination of using the neural networks for this type of problems.
Images reconstructed after phase IV. do, according to our opinion, looks
better than after any other phase.

Conclusion
This test show us that we have to carefully control loss of the discriminator –
if it is overefit it will lead the training in wrong way as we see if we compare
phase III. and phase IV. Study of neural networks is also about understanding
inner processes, which could help to develop better network.

Ψ[dB] Noisy image TV-chambolle Phase I. Phase III. Phase IV.
A 21.0 20.2 24.3 20.7 22.8
B 18.6 18.1 24.2 23.7 25.5
C 25.7 25.4 33.2 29.1 28.5
D 19.6 19.5 32.8 24.5 21.4
E 19.5 19.0 24.2 20.0 24.0

Table 5.6: Peak signal-to-noise ratio (Ψ) for different images, as we can see
Ψ is decreasing if we compare images after phase I. and images after phase
III. and IV. phase III. and IV. do better than total-variation Chambolle
denoising, which gives us promising beginning for future examination of
using the neural networks for this type of problems. Images A – C are in
Figure 5.18, image D in Figure 5.19, image E in Figure 5.20.
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κ Noisy image TV-chambolle Phase I. Phase III. Phase IV.
A 0.80 0.73 0.81 0.71 0.80
B 0.83 0.79 0.87 0.81 0.86
C 0.85 0.84 0.91 0.84 0.87
D 0.86 0.84 0.91 0.87 0.82
E 0.76 0.69 0.80 0.71 0.81

Table 5.7: Structural similarity index κ for different images, as we can see
κ is almost one for images after phase I. but for images after phase III. are
worser – this means that images after phase I. are close to original images
(for similar images κ = 1), better reconstructed. Images A – C are in Figure
5.18, image D in Figure 5.19, image E in Figure 5.20.

Figure 5.14: Vizualization of same galaxy during training for phase III. From
upper left: at the beginning, 20 epochs, 40 epochs, 80 epochs, 160 epochs,
200 epochs.
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Figure 5.15: Vizualization of same set of filters for phase III. from randomly
selected convolution layer. We can see how was weights changing during the
training. From upper left: at the beginning, 20 epochs, 40 epochs, 80 epochs,
160 epochs, 200 epochs.

Figure 5.16: From left: Vizualization of filters, convolution layer, deconvolu-
tion layer for final state of phase IV, trained 125 epochs. We see that the
generator can capture shape of galaxy better than after phase III., Figure
5.17.
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Convolution layer

Deconvolution layer

Figure 5.17: Vizualization of same sets of convolution and deconvolution
layers for ohase III. From upper left: at the beginning, 20 epochs, 40 epochs,
80 epochs, 160 epochs, 200 epochs.
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A B C

Figure 5.18: From above: Original images, noisy images, TV-chambolle
denoise, generated after phase III., generated after phase IV.
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Original Image Noisy image

Stage II. Stage I.
TV-chambolle TV-chambolle

Phase III. Phase I.

Phase IV. Phase II.

Figure 5.19: (D) Structure which appears after phase II. is not visible after
phase IV. which means that there is no sight of overfitting in this image.
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Original Image Noisy image

Stage II. Stage I.
TV-chambolle TV-chambolle

Phase III. Phase I.

Phase IV. Phase II.

Figure 5.20: (E) As we can see point sources as stars were reconstructed
better after phase I. and II, but structure in center of galaxy is the best after
phase IV.
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Summary and conclusion

Application of neural networks (not just GANs) is widely spread in data-
science and has many advantages in processing big datasets and as we are
expecting to get a large amount of data in new sky surveys, we need to
develop an efficient method for their analysis and processing.

We present generative adversarial network as alternative to image de-
noising to process big image dataset. Results of our work are as good as
nowadays available methods, in some cases even better. This work is of
great importance for the future – finding the best method of data processing
reflects on the results we get and will help us better understand the universe
and the objects in it.

Our experience can by expressed in the rules:

• It is required to have a large dataset for training and use of different
types of procedure to prevent the network from overfitting (random
rotation and shifting of image, dropout)

• The network architecture have to be adjusted to our problem – unnec-
essarily large network cause an overfitting

• The number of epoch is also important – again it can cause overfitting
or underfitting

By right application of the points above, it is possible to create an efficient
network for the desired purpose – in our case for the image denoising. We
have proof strength of generative adversarial network for this kind of task
and we are expecting to continue in finding another use of neural network in
astronomy. We tend to create a bigger dataset with better images and this
could help to improve our network. Also, we would like to try Karras et al.
(2017) method to see if it would improve the network. Despite our results are
not as good as theirs, we support study in Schawinski et al. (2017), which
claims that generative adversarial network is able to fully reconstruct noisy
images.

We can imagine use of our network as part of processing big amount of
data, for example: data would be first denoised and then sent to process
with another neural network (e.g galaxy classification). Image denoising
would help to better classification of galaxies. User can then choose what
type of data he want (e.g spiral galaxies) and he receive data process by our
network and raw data of wanted spiral galaxies. Future plans could be to
implement different types of neural networks into virtual observatories and
study improvement.
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