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Abstrakt

V této práci jsem se zabýval různými metodami hledání frekvencí
rotace a precese tumblerů v jejich světelných křivkách. Zkoumal jsem
klasický Fourierův periodogram, CLEAN Fourierův periodogram,
Lomb-Scarglův periodogram a fitování pomocí genetického algoritmu.
Zaměřil jsem se také na obtíže při hledání rotačních a precesních frek-
vencí v periodogramech tumblerů, jako jsou aliasing, šum a projevy
násobků nebo lineárních kombinací správných frekvencí. V této práci
jsem zmiňované metody implementoval a otestoval na různých synte-
tických světelných křivkách asteroidů rotujících kolem hlavní osy, ale
především na tumblerech. Používal jsem umělé světelné křivky s růz-
nými charakteristikami, jako jsou délka pozorování nebo vzorkovací
frekvence. Výsledkem je, že hledání prvního odhadu frekvencí po-
mocí periodogramu je vhodné pro zmenšení velikosti parametrického
prostoru pro vyhledávání pomocí genetického algoritmu. Pro jedno-
značnost frekvencí je ale nutné tyto frekvence otestovat a prokázat
fyzikálním modelováním rotace.





Abstract

In this thesis, I examined the various methods for searching for the fre-
quencies (periods) of the rotation andprecession of tumbling asteroids
in their light curves. I examined the classical Fourier periodogram,
the CLEAN Fourier periodogram, the Lomb-Scargle periodogram,
and the genetic algorithm fitting. I also examined the difficulties in
searching for the rotation and precession frequencies in the tumbler’s
periodogram, such as aliasing, noise, manifestation of multiples, or
linear combinations of the proper frequencies. In this thesis, I imple-
mented these methods and tested them on various synthetic light
curves of the principal axis rotator, and then on light curves of several
tumblers. I used an artificial light curve with various characteristics,
such as length and sampling. The result is that searching for the first
guess of the frequencies in the periodogram is good for decreasing the
size of the parametric space for the genetic algorithm search. However,
for the unambiguity of the frequencies, it is necessary to test and prove
this frequency by the physical modeling of the rotation.
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Introduction

Small Solar System bodies, including asteroids, comets, meteoroids,
and smaller bodies, are essential components of the Solar System.
Due to high collision rates and low gravitational fields, these bod-
ies are remnants from the early eras of the Solar System. Studying
the asteroids teaches us a lot about the Solar System’s history.

Most asteroid rotations are single-periodic (it implies their relaxed
rotation for typical short-period asteroids1). These asteroids rotate
around an axis with a maximal moment of inertia, corresponding to
the shortest axis. Some asteroids exhibit an excited rotational state,
such as precession or free precession. These precessing asteroids, like
asteroids that rotate around their principal axes, encode all necessary
information in their light curves. However, a larger parametric space
is required to fully describe their rotation, necessitating eight dynamic
parameters for a complete characterization. Two periods are present in
the light curve of precessing asteroid (tumbler2), the rotational period
Pψ and the mean precession period around the angular momentum
vector L⃗, Pϕ defined by ∆ϕ

Pϕ = 2π
Pψ

∆ϕ
, (1)

and precession angle ϕ changes by the amount ∆ϕ during time interval
Pψ (Kaasalainen, 2001).

The physical motion of an asteroid can be described by its kinetic
energy and angular velocity. The rotational motion is described by

L⃗ = Îω⃗ , (2)

1. The thing is that all asteroids tend to have relaxed rotation. This damping scale
is approximately given by the equation τ ∼ µQ

ρK2
3r2ω3 , where µ is the rigidity of

the material, Q is the ratio of lost energy per cycle to the total rotational energy, ρ
is the bulk density, K3

2 numerically describes irregularity, r is the mean radius and
ω is the angular rotational frequency. The typical damping scale is thousands or
millions of years, but can be billions of years for slowly rotating ones (A. W. Harris,
1994).
2. The term "tumbling asteroids" for the non-principal axis rotation was firstly used
in (A. W. Harris, 1994).
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Introduction

where L⃗ is the asteroid’s angular momentum, ω⃗ is the angular velocity,
and Î is the inertia tensor, which has six independent components in
general. For the convenient choice of the coordinate system, we get
zero non-diagonal elements of the matrix. Then diagonal components,
I1 ≤ I2 ≤ I3, are principalmoments of inertia. In general, the rotational
energy is given as

E =
1
2

ω⃗T Îω⃗ , (3)

and for the principal inertia coordinate system, we get

E =
1
2

(
I1ω2

1 + I2ω2
2 + I3ω2

3

)
, (4)

where only I1, I2, I3 are the non-zero diagonal components of the iner-
tia tensor (Pravec et al., 2005). Depending on the values of the inertia
tensor, we distinguish asteroids in a long-axis mode (LAM) and short-
axis mode (SAM) of rotation. In the case of SAM or LAM tumblers,
an asteroid rotates around its shortest or longest axis (Kaasalainen,
2001).

There are several ways an asteroid can become a tumbler. In gen-
eral, the asteroid must change the direction of its angular momentum
vector. One such process is the YORP effect3, where solar radiation
impacts the asteroid’s rotation. In simple terms, an asteroid absorbs
solar energy and reemits it as thermal radiation, but with a time lag.
Depending on the asteroid’s axis inclination and shape, this effect
can gradually alter its angular momentum vector. Over long periods,
these dynamical changes can modify the asteroid’s rotational state.
It is important to note that the shape of the asteroid also plays a crucial
role, as specific shapes are more susceptible to this effect than oth-
ers (Vokrouhlický et al., 2015). Another way an asteroid can become
a tumbler is through a collision with another body.

3. Yarkovsky–O’Keefe–Radzievskii–Paddack effect

2



1 Lightcurves of tumblers

Photometry is the only way to obtain information about an aster-
oid’s rotational state. A photometric measurement yields a light curve,
which shows the light flux as a function of time.

In the case of normal asteroids, rotating around the principal axis,
light curves are modeled by the single-period Fourier series

F(t) = C0 +
m

∑
n=1

Cn cos
(

2πn
P

t
)
+

m

∑
n=1

Sn sin
(

2πn
P

t
)

, (1.1)

where P is the period, Cn, Sn are the Fourier coefficients and m is the or-
der of the Fourier series. Fourier series can be rewritten in the phase
form

F(t) = C0 +
m

∑
n=1

An cos
(

2πn
P

t − φn

)
, (1.2)

where An =
√

C2
n + S2

n and φn = arctan 2(Sn, Cn) .
In the case of tumblers, there are two physical periods: one related

to rotation and one related to precession. The source of both periods is
one body, which means it is impossible to separate the periods. A two-
dimensional Fourier series model of the light curve of the tumbler
is

F(ψ(t), ϕ(t)) .
= Fm(t) = C0 +

m

∑
j=1

[
Cj0 cos

(
2π j
Pψ

t
)
+ Sj0 sin

(
2π j
Pψ

t
)]

+
m

∑
k=1

m

∑
j=−m

[
Cjk cos

(
2π j
Pψ

+
2πk
Pϕ

)
t

+ Sjk sin
(

2π j
Pψ

+
2πk
Pϕ

)
t
]

,

(1.3)
where Pψ and Pϕ are the periods of the tumbler (rotation and pre-
cession) and m is the order of the Fourier series (Pravec et al., 2005).
Fourier series for tumbling asteroids can also be rewritten to phase

3



1. Lightcurves of tumblers

form similarly as for a PA rotator

F(ψ(t), ϕ(t)) .
= Fm(t) = C0 +

m

∑
j=1

Aj0 cos
(

2π j
Pψ

t − φj0

)

+
m

∑
k=1

m

∑
j=−m

Ajk cos
[(

2π j
Pψ

+
2πk
Pϕ

)
t − φjk

]
,

(1.4)
where Ajk =

√
C2

jk + S2
jk and φjk = arctan 2(Sjk, Cjk).

The most widely used is the notation P1 and P2 rather than Pψ

and Pϕ because, in most cases, we cannot directly say which period is
precession and which is rotation. In this thesis, we will rather use fre-
quencies f = 1

P instead of the periods. In case of tumblers, coefficients
Cjk and Sjk correspond with frequency f jk = j f1 + k f2.

1.1 Frequencies in the light curve

Usually, the highest peaks in the power spectrum of the light curve
are not the real frequencies ( fψ = P−1

ψ and fϕ = P−1
ϕ ), but rather their

linear combinations.
Asteroids rotate in two modes, LAM and SAM. Because of this, we

can use two conventions, L-convention and S-convention, for the de-
scription of the rotating bodies. The convention used mainly is S (usu-
ally denoted by the subscript S (PψS , PϕS))(Samarasinha and Mueller,
2015).

There are some connections between the frequencies of differ-
ent conventions and different modes. For all tumblers, we can write
the connection between the rotation periods in the L and S convention
as

fψL = fψS . (1.5)

For the precession periods, we cannot write this simple equation be-
cause it also depends on rotation by

fϕS = fϕL + fψL . (1.6)

We can directly see the information about precession periods fϕS > fϕL .
(Samarasinha and Mueller, 2015).

4



1. Lightcurves of tumblers

In most cases, the two prominent periods are 2 fϕL and 2 fϕS
4 (Sama-

rasinha and Mueller, 2015;Kaasalainen, 2001). Other dominant fre-
quencies in the light curves can be 1 fϕL , 1 fϕS or 1 fϕL + 2 fψL (1 fϕS +
1 fψS), or the frequencies directly connected to the rotational frequency,
fψ (Samarasinha and Mueller, 2015).

4. For conversion of the precession frequency from one convention to another we
can use equation 1.6 and equation fϕL = fϕS − fψS , which is derived from equations
1.6 and 1.5.

5





2 Fourier transform

Fourier analysis is a useful technique for analyzing periodic functions.
This technique decomposes the periodic function as a time series into
simple sinusoidal waves, transforming the function from the time
domain to the frequency domain.

The equation defines the Fourier transform (FT) from the time to
the frequency domain

F(ν) = F{ f (t)} =
∫ ∞

−∞
f (t)e−2πiνtdt , (2.1)

where f (t) is a function in time domain, t is time and ν is frequency.
The inverse Fourier transform is given by the equation

f (t) = F−1{F(ν)} =
∫ ∞

−∞
F(ν)e2πiνtdν . (2.2)

For the function in the time domain and its representation in the fre-
quency domain, we can write Rayleigh’s theorem∫ ∞

−∞
| f (t)|2 dt =

∫ ∞

−∞
|F(ν)|2 dν , (2.3)

where

P(ν) = |F(ν)|2 =

∣∣∣∣∫ ∞

−∞
f (t)e−2πiνtdt

∣∣∣∣2 , (2.4)

is the power spectrum and for the real function f (t), the function
F(ν) satisfies F(−ν) = F∗(ν) (Roberts et al., 1987), where F∗ means
complex conjugated function. Two functions F(ν) and f (t) are usu-
ally called Fourier pair. The most important Fourier pair is a sinu-
soid with frequency f0 and two delta functions at frequencies ± f0
(F{cos 2π f0t} = 1

2 [δ( f − f0) + δ( f + f0)]).
The Fourier transform has several useful properties. FT is linear,

so that we can write for any constant A, and any two functions f (x)
and g(x)

F{ f (x) + g(x)} = F{ f (x)}+F{g(x)} , (2.5)

F{A f (x)} = AF{ f (x)} . (2.6)

7



2. Fourier transform

The second important property is that the time shift impacts only
the phase, not the amplitude

F{g(t − t0)} = F{g(t)}e−2πi f t0 . (2.7)

2.1 Real (sampled) data

In reality we do not observe continuous function f but the set of dis-
crete points { fr, tr} ≡ { f (tr), tr}. These points are given by a real
periodic function of physical phenomena f (t) and sampling function

s(t) =
1
N

N

∑
r=1

δ(t − tr) . (2.8)

The sampled signal is now given by the product of these two functions

fs(t) ≡ f (t)s(t) =
1
N

N

∑
r=1

frδ(t − tr) . (2.9)

By the Fourier transformation of the sampled signal we get the ”dirty
spectrum”

D(ν) = F{ fs} = F{ f (t) · s(t)} , (2.10)

which can be rewritten by the convolution

D(ν) = F(ν)⊛W(ν) (2.11)

where F(ν) = F{ f (t)} and W(ν) = F{s(t)}. By the definition of
the Fourier transform (equation 2.1), we get the Fourier transform
of the dirty spectrum

D(ν) =
∫ ∞

−∞
fs(t)e−2πiνtdt . (2.12)

For the discrete data, this integral collapses to the discrete Fourier
transform

D(ν) =
1
N

N

∑
r=1

fre−2πiνtr . (2.13)

8



2. Fourier transform

For the discrete data, the periodogram equation 2.4 collapses to a pe-
riodogram for discrete data

P(ν) = |F(ν)|2 =
1
N

∣∣∣∣∣ N

∑
r=1

fre−2πiνtr

∣∣∣∣∣
2

, (2.14)

Analogously, we get the definition of the Fourier transform for the win-
dow

W(ν) =
∫ ∞

−∞
s(t)e−2πiνtdt (2.15)

and rewritten to a discrete form

W(ν) =
1
N

N

∑
r=1

e−2πiνtr . (2.16)

The window function, or spectral window, is the Fourier transform
of the sampling function s(t). Spectral window captures effects of
irregular and finite sampling.

For dirty spectrum and window, we get the same identities as
for the F: D(−ν) = D∗(ν), W(−ν) = W∗(ν). It is seen that the real
periodogram as a solution of equation 2.11 is

F(ν) = F{ f } = F{ fs/s} = F{ fs}⊛F{1/s} . (2.17)

The complication is that this equation has no unique solution because
no finite set of data points can fully specify the function f (t) (Roberts
et al., 1987). The next consequence of discrete sampling is that we
cannot derive any frequency, but Nyquist’s theorem limits us (Press,
2007). When we define fs = 1/∆ as sampling frequency, where ∆ is
sampling interval, we get Nyquist’s critical frequency as

fc =
1
2

fs =
1

2∆
. (2.18)

This frequency is the limit in the frequency calculation and repre-
sents the highest frequency that can be derived (Press, 2007). For
non-uniformly sampled data, we use ∆min as the sampling interval,
which is the smallest distance between any two data points.

9



2. Fourier transform

2.1.1 Dirty and Clean spectrum

Due to the impossibility of uniquely deconvolving dirty spectra, vari-
ous methods have been developed to address this challenge. One of
them is the CLEAN algorithm (Roberts et al., 1987). Initially devel-
oped in the context of radio astronomy, the CLEANalgorithmhas been
adapted for spectral analysis to remove spurious features caused by
the spectral window function through an iterative process. The main
idea is to isolate the main peaks, subtract them and their features from
the dirty spectrum, and create a clean spectrum.

The CLEAN algorithm (Roberts et al., 1987) produces the residual
spectrum and subtracts the main peak from it. We start with notation
R0 = D. Next, we start iterations.

1. Find the main (the highest) peak on frequency νi and calculate
the amplitude of the clean component ci = gα(Ri−1, νi), where
g is the gain. Gain is a parameter of the CLEAN algorithm used
for moderation, mostly set to 0.5, but any value in the range (0, 2)
should converge to the solution. α is given by the equation

α(D, ν) =
D(ν)− D∗(ν)W(2ν)

1 − |W(2ν)|2 . (2.19)

2. Form the new residual spectrum by subtracting the found peak

Ri(ν) = Ri−1(ν)− (ciW(ν − νi) + (ci)∗W(ν + νi)) . (2.20)

3. Control if residual spectrumor accumulated components achieve
some stopping condition. If not, repeat steps 1, 2, and 3; if so,
proceed to step 4.

4. Fit the clean beam B to the window function W and construct
the clean spectrum defined as

S(ν) =
K

∑
i=1

(ciB(ν − νi) + (ci)∗B(ν + νi)) + RK(ν) . (2.21)

The stopping condition mentioned in step 3 is typically related to
the residual spectrum, and the algorithm is stopped when the resid-
ual spectrum is essentially noise. This indicates that the dominant

10



2. Fourier transform

frequency components have been successfully removed from the data,
and further iterations would not yield meaningful improvements. To
ensure that CLEAN works correctly, the window function must be
computed over the frequency range (−2νmax, 2νmax) to have window
in (−νmax, νmax) (Roberts et al., 1987).

2.2 Lomb-Scargle periodogram

Lomb-Scargle (LS) periodogram is a general method to find the pe-
riodogram in various time series. The LS periodogram is primarily
used for unevenly sampled time series. It was first published in papers
Lomb, 1976 and Scargle, 1982. Astronomy time series are typically
unevenly sampled due to weather conditions and Earth’s rotational
and orbital movements.

In Scargle, 1982, this periodogramwas rewritten into trigonometric
form and three arbitrary functions A, B, and τ were added

P(ν) =
A2

2

(
∑
n

fn cos (2πν(tn − τ))

)2

(2.22)

+
B2

2

(
∑
n

fn sin (2πν(tn − τ))

)2

, (2.23)

where A,B and τ are arbitrary functions of frequency ν and time tn.
For unique values of A and B periodogram leads to a general form of
the Lomb-Scargle periodogram

PLS(ν) =
1
2

{(
∑
n

fn cos(2πν[tn − τ])

)2/
∑
n

cos2(2πν(tn − τ))

+

(
∑
n

fn sin(2πν[tn − τ])

)2/
∑
n

sin2(2πν(tn − τ))

}
,

(2.24)

where τ is specified to ensure time-shift invariance

τ =
1

4πν
tan−1

(
∑n sin (4πνtn)

∑n cos (4πνtn)

)
. (2.25)
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2. Fourier transform

The difference between this version of the modified periodogram
and the classical one depends on the difference between denomina-
tors ∑n cos2(2πν(tn)) and ∑n sin2(2πν(tn)) from N/2 (VanderPlas,
2018).
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3 Genetic algorithms

A genetic algorithm is a numerical method suitable for optimizing
problems. The genetic algorithm works through a few simple steps.
Firstly, it randomly generates a zero population. Next, it evaluates
individuals based on the defined fitness function. Then, it selects indi-
vidualswith a higher fitness value, executes a crossover and amutation
to produce a new generation. These steps are repeated until the stop-
ping condition is satisfied. The scheme of the genetic algorithm is
shown in Figure 3.1 (Buranský, 2023).

3.1 Genome structure and evolution operators

In this thesis, I used real-valued encoding, which means that a can-
didate for a solution is a vector of real numbers, and each number is
a free parameter (Blanco et al., 2001). I stacked all parameters into
a vector and used an assistant function to decompose this vector into
individual model parameters.

3.1.1 Operators

There are two operators, crossover and selection, which converge to
the extreme of the fitness function, and one operator, mutation, which
allows escape from the local extremes.

Themain operator for changing the genome is crossover. Crossover
takes two parents (vectors) and produces a new array using the equa-
tion5

on = αn ⊙ p1n + (1 − αn)⊙ p2n , (3.1)

where o is offspring, p1 and p2 are the parents, and α is the vector of
the same length as the parents, containing numbers in the interval
[0, 1]. Crossover is not performed in all cases, butwe use the probability
of crossover to achieve fast convergence; this probability is typically
higher than 90%.

5. Symbol ⊙ stands for the Hadamard product. This product is defined as
(A ⊙ B)ij = Aij · Bij. (Chakrabarty, 2015).
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3. Genetic algorithms

Start

Initialize Population

Stopping Condition? Evaluation

Selection

Crossover

Mutation

End
noyes

1

Figure 3.1: Scheme of the genetic algorithm.
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3. Genetic algorithms

Mutation is the operator for the small changes in the genome and
is needed to escape from the local extremes of the fitness function.
The equation gives a mutation for real-value encoding

o′n = on + βn , (3.2)

where o is offspring, o′ is the mutated offspring, and β is a vector that
contains random numbers in a given range. Usually, almost all ele-
ments in vector β are zero due to the probability of mutation. The prob-
ability of mutation is usually a few percent or sometimes less than one
percent. For better convergence, the adaptive mutation is sometimes
used. Adaptive mutation is a technique used to better escape from
local minima when the population is stuck for more generations.

Example

Crossover:
o = α ⊙ p1 + (1 − α)⊙ p2

α =

0.2
0.5
0.8

 p1 =

1
2
3

 p2 =

4
5
6



o =

0.2 · 1 + 0.8 · 4
0.5 · 2 + 0.5 · 5
0.8 · 3 + 0.2 · 6

 =

3.4
3.5
3.6


Mutation:

β =

 0.00
+0.02

0.00

 o′ = o + β =

3.40
3.52
3.60


Fitness Proportional Selection, also known as Roulette Wheel Selec-

tion, is the most common and famous selection method in genetic
algorithms. In this method, the parents for crossover are selected ran-
domly, but the probabilities of being selected are given by the equation

pi =
fi

∑n
i=1 fi

, (3.3)
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3. Genetic algorithms

where fi is the fitness function and n is the size of the population
(Jebari, Madiafi, et al., 2013). Tournament Selection takes a smaller part
of the population (tournament) and selects the best individual as
the winner. The tournament is done n times to fill the next population
(Jebari, Madiafi, et al., 2013). Rank Based Selection is similar to fitness-
proportional selection. The fitness function values sort the individuals
in the population in ascending order, and each individual is given
a rank. The equation gives the probability of being selected (Jebari,
Madiafi, et al., 2013)

pi =
i

∑n
i=1 i

. (3.4)

Elitism Selection is a method for faster convergence and no loss of best
individuals. It means that the time evolution of the fitness function
of the best individual will be a non-decreasing function. It is done
by taking the first few best individuals and simply copying them to
the next generation without any changes (Du et al., 2018).

3.2 Fitness function

Themost important part of the genetic algorithm is the fitness function.
The fitness function defines a problem and selects better and worse
solutions. In the genetic algorithm process, the fitness function is con-
nected with the probability of an individual being selected, meaning
it must have only positive values.

The suitable fitness function for the fitting of the data is χ2, which
is defined as

χ2 =
N−1

∑
i=0

(
yi − y (xi|a0, ..., aM−1)

σi

)2

, (3.5)

where N is the number of data points, [xi, yi] are the data points,
σi are uncertainties of the yi and (a0, ..., aM−1) are the free parameters
(M is the number of the free parameters). For the ”moderately” good
fit χ2 can be approximated as

χ2 ≈ ν = N − M , (3.6)

where ν is the number of degrees of freedom (Press, 2007).
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3. Genetic algorithms

For the genetic algorithm usage, we need to have an increasing
fitness function (because in almost every case of genetic algorithm,
fitness function directly means the probability to be selected), so we
use inverted χ2 as fitness function

′′fitness′′ =
1

χ2 ≈ 1
ν

. (3.7)

3.3 The stopping criterion

The persistent challenge is determining when to stop the genetic algo-
rithm’s run. Typical methods stop after several generations or when
the fitness function reaches a threshold. The problem is that we do not
know the sufficient number of generations to reach a good solution.
Usually, the same problem is with the fitness threshold. In some cases,
we can use the information from equation 3.6, that χ2 is approximately
equal to the number of degrees of freedom.
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4 Methods of analyzing light curves

In this thesis, I implement and test different methods to analyze light
curves of tumbling asteroids. The project and tests are in the GitHub
repository (Appendix A). I tested different synthetic light curves
of various asteroids, which have varying numbers of data points,
uncertainties, and breaks, simulating real observations. These results
are in section 4.3 for PA rotating asteroids and in Chapter 5 for NPA
rotating asteroids (tumblers).

4.1 Clean Fourier periodogram and Lomb-Scargle
periodogram

The first method is the Fourier periodogram, described theoretically
in Section 2.1. First, I calculate the frequency grid with m positive
frequency points. When we calculate just positive frequency (due
to the symmetry of the Fourier periodogram), the frequency grid is
given by the equation

νj =
j

m
νmax , (4.1)

where j = 0, . . . , m and νmax is the maximum frequency that we can
detect from data, and Nyquist’s theorem gives it as

νmax =
1

2∆min
, (4.2)

where∆min is theminimal timedistance between twopoints in the light
curve and m is given as

m = nB

(
νmax

δν

)
, (4.3)

where δν ≈ 1
T , so we can write

m = nB

(
T

2∆min

)
, (4.4)

where T is the time length of the light curve. Finally, the parameter nB
is the number of ”points per beam” and it controls the periodogram’s
accuracy. The typical value is nB = 4 and higher (Roberts et al., 1987).
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4. Methods of analyzing light curves

On this frequency grid, I calculate the value of the Fourier trans-
formed function by the definition (equation 2.13) of the unevenly
sampled data. Finally, I used the CLEAN algorithm described in Sec-
tion 2.1.1.

In this thesis, I also use and analyze the Lomb-Scargle periodogram
of the given light curves. In the Lomb-Scargle periodogram, I search
for indications of aliasing. After this, it is necessary to find out which
frequencies are aliases. I verify whether another peak exists at ap-
proximately twice or three times the frequency of the current peak.
This helps to identify harmonic relationships between peaks. I also
check whether there is a peak that appears at a frequency shifted
from the current peak by a known offset introduced by the window
function. This helps detect artifacts such as spectral leakage or side
lobes.

4.2 Genetic algorithm

Finally, once we get the results from the Lomb-Scargle periodogram
(or CLEAN Fourier periodogram) and want to do a precise fit. We
employ the genetic algorithm (described in Chapter 3). The results
of the Fourier periodogram (or Lomb-Scargle periodogram) provide
good starting parameters for the genetic algorithm. The genetic algo-
rithm is a robust numerical method, but it should work better and
faster with a smaller parameter space.

In most cases, dominant frequencies in the periodogram do not
have to be rotational and precessional (more in Section 1.1). This
means that we cannot be certain we have found the physical frequen-
cies; we can only find frequencies f1 and f2, which should be proven by
another method. In some cases, we can find clues in peaks. The most
dominant frequencies are usually fϕL , fϕS , their doubles and fψ and
its multiples. The frequency and its double in the periodogram can
also serve as well, which is also the case when the sum of two frequen-
cies is present in the periodogram. In the thesis, the first estimation
from the periodogram is used to set a smaller interval for the genetic
algorithm to find frequencies.

According to the principles of genetic algorithms (random opera-
tors selection, crossover, and mutation involve elements of chance),
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4. Methods of analyzing light curves

which inherently rely on stochastic or random processes, the outcomes
of each run can vary slightly. Results can also differ when GA has
the same initial conditions on the same problems. As a result, a single
run of the algorithm may not provide a fully reliable or representa-
tive solution. To improve the precision and reliability of the results,
it is recommended to run the genetic algorithm multiple times under
the same conditions on the same problem. By doing so, it is possible
to collect a distribution of results, which allows for statistical analysis,
such as computing averages6. However, for such statistical evaluation
to be meaningful, it is crucial to ensure consistency across all runs,
including the same search parameter space, number of individuals,
and order of the Fourier series.

4.3 Testing methods on PA rotator

To better understand and test the presentedmethods,we apply them to
the computer-generated data of the principal axis rotators (PA rotator,
an asteroid rotating around the principal axis with a single period in
its light curve).
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Figure 4.1: PA rotator synthetic data (ID1925).

6. The mean value, x̄, and its error, σM, are given as (Moore et al., 2016) x̄ =

1
n ∑n

i=1 xi , and σM =

√
∑n

i=1(xi−x̄)2

n(n−1) , where xi is the i-th value, n is the size of the data.
Results can be written as x̄ ± σM.
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4. Methods of analyzing light curves
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Figure 4.2: Fourier periodogram (ID1925).
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Figure 4.3: Clean Fourier periodogram (ID1925). The most dominant
peak is on frequency 2.4962 d−1.
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Figure 4.4: Lomb-Scargle periodogram (ID1925). The most dominant
peak occurs at a frequency 2.5221 d−1. The most dominant frequency
in the Spectral window is 3.1946 d−1.

The Fourier periodogram andCLEANFourier periodogram clearly
show that the main (and only) peak is around frequency 2.4962 d−1 or
2.5221 d−1 in the Lomb-Scargle periodogram. Now, to achieve results,
we make the fit using the genetic algorithm, with a good first estimate
of the frequency.
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Figure 4.5: Fit by genetic algorithm of light curve ID1925.
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Figure 4.6: O − C graph of genetic algorithm fit of light curve ID1925.
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Figure 4.7: Fitness evolution of genetic algorithm fit of light curve
ID1925.
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4. Methods of analyzing light curves

Table 4.1: Parameters of genetic algorithm fit of light curve ID1925.

Number of individuals 250
Number of generations 10 000
Order of Fourier series 3
Number of data points 335
χ2 576 000

Calculated Real

Frequency f [day−1] 2.50 1.25
Period P[hours] 9.60 19.23

4.4 Discussion

In this part, I applied all the described methods on the light curve of
the PA rotator (ID1925). In the periodograms, I obtain a single domi-
nant peak at frequency f ≈ 2.50 d−1. Next, I used a genetic algorithm
to fit the light curve, and as an estimate, I used the periodogram to de-
termine the frequency. From the fit, I obtain almost the same frequency
and rotational period of the asteroid as P = 9.60 h. The true period is
19.23 h, which is nearly double that of my calculated rotational period.

The reason is that the simulated rotation of a triaxial ellipsoid
generated our data. The light curve generated through this process
has identical minimas and identical maximas because the opposing
sides of the asteroid are also similar. In a real asteroid’s light curve,
the neighbouring minima (or maxima) differ according to their irreg-
ular shape.
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5 Analysing data of tumbling asteroids

5.1 Data

For this thesis, I used computer-generated data that simulated the real
observations. In real-world observations, we have gaps due to daylight
or weather conditions. In real data sets, we sometimes take observa-
tions from several telescopes and create a light curve. Each telescope
observes with its particular sampling, meaning we have some ran-
dom sampling in the final light curve. This section shows several light
curves, each exhibiting distinct temporal and sampling characteristics.
In the next parts, data is analyzed as described in Chapter 4.

Next, there are three light curves ID1916, ID1917, and ID1916_long
(Appendix B). All of them are light curves of the same body. Light
curves and their analysis of the different bodies are shown in Ap-
pendix C.

The data used has a different parameter σ, which is defined as σ =
s · ∆flux, where ∆flux is the difference between maximal and minimal
flux in the light curve.
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Figure 5.1: Synthetic tumbler light curve ID1916 with standard devia-
tion s = 0.01. The other two light curves of the same tumbler are in
Appendix B.
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5. Analysing data of tumbling asteroids

5.2 Results

5.2.1 Fourier periodogram
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Figure 5.2: Fourier periodogram of light curve ID1916 with s = 0.01.

0.000

0.002

0.004

0.006

0.008
CLEAN Periodogram

0 2 4 6 8 10
Frequency (day 1)

0.0

0.5

1.0

1.5
1e 6

Residual spectrum

Sp
ec

tra
l p

ow
er

Figure 5.3: Clean Fourier periodogram of light curve ID1916 with
s = 0.01. The most dominant peaks are on frequencies 0.6546 d−1 and
1.2034 d−1. CLEAN periodograms of the two other light curves of
the same tumbler are in Appendix B.
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5. Analysing data of tumbling asteroids

5.2.2 Lomb-Scargle periodogram
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Figure 5.4: Lomb-Scargle periodogram of light curve ID1916 with
s = 0.01. The most dominant peaks are on frequencies 0.6670 d−1

and 1.1925 d−1. The dominant peak in the Spectral window is at a fre-
quency 0.4509 d−1. Lomb-Scargle periodograms of the two other light
curves of the same tumbler are in Appendix B.

In all three light curves, the most dominant peaks are around 0.65 d−1,
1.10 d−1, 0.75 d−1, 1.20 d−1. The peak 0.75 d−1 is the only one that has
higher frequencies (1.5 d−1, 2.25 d−1 . . . ) in all periodograms. We can
assume that this is the frequency f1 (probable rotational). One higher
peak should be precession in S-convention and one smaller peak in
L-convention. These frequencies fulfill the equation 1.6. The frequency
around 0.65 d−1 can be double that of the precession in L-convention.
It is supported by half of this frequency around 0.33 d−1. The sum of
precession in L-convention and rotation frequencies is precession in
S-convention. A peak around 1.10 d−1 is visible in periodograms.

It is probable that searching frequencies of this body are f1 ≈
0.35 d−1 and f2 ≈ 0.75 d−1. This is merely the best final suggestion.
I also had various incorrectly guessed frequencies, either higher or
lower, and the final suggestion converges to a relatively good fit by
the genetic algorithm. It was visible at the end of the light curve that
the frequencies are inaccurate (higher or lower).
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5. Analysing data of tumbling asteroids

5.2.3 Genetic algorithm

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time [day]

0.6

0.8

1.0

1.2

1.4

No
rm

al
ize

d 
lig

ht
 fl

ux

Last Generation Best

Figure 5.5: Fit by genetic algorithm of light curve ID1916 with s = 0.01
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Figure 5.6: O − C graph of genetic algorithm fit of light curve ID1916
with s = 0.01
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Figure 5.7: Fitness evolution of genetic algorithm fit of light curve
ID1916 with s = 0.01

Table 5.1: Parameters of genetic algorithm fit of light curve ID1916 with
s = 0.01.

Number of individuals 300
Number of generations 20 000
Order of Fourier series 3
Number of data points 350
χ2 52 800

Calculated Real

Frequency f1[day−1] 0.7691 0.7689
Frequency f2[day−1] 0.3302 0.3286
Period P1[hours] 31.2053 31.2134
Period P2[hours] 72.6832 73.0478
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6 Disccusion

In Chapter 5, synthetic light curves were used to determine which
frequencies (periods) manifest most in different cases of asteroid
rotation and how to find them.

6.1 ID1916, ID1917, ID1916_long

First, I tested the three light curves of the same tumbler (ID1916,
ID1917, and ID1916_long). From periodograms of these three light
curves of the same body, we obtain an approximation of this body’s
rotational and precessional frequencies. The genetic algorithm fit
tested the guess. The periods from the rotation are P1 = 31.2053 h
and P2 = 72.6832 h. The real periods used in the creation of the syn-
thetic data were Pψ = 31.2134 h and Pϕ = 73.0478 h. The differences
are 0.03% for the rotation and 0.5% for the precession.

In these three light curves, we can see that each periodogram has
different frequency peaks despite the three light curves being from
the same body. First, with the longer light curve, we detect more
frequencies.

6.2 ID1913, ID1915

The second tested light curve was ID1913 (and ID1915, which is
the same but with gaps representing nighttime observations). These
light curves differ from others because of the extended observation
period. Due to this, we can see that more peaks and more frequencies
are present in both periodograms. There is also the third for the first
two peaks, which is their sum. This indicates that these three peaks are
precession in L-convention, rotation, and precession in S-convention.

In the periodogram of the light curve ID1915, aliasing is visi-
ble as indicated by the strictly daytime observation. In the spectral
window, the strongest peak is around f = 1.00 d−1. In the light
curve periodogram, we can find the pairs of the frequency - one at
the proper frequency and another shifted by approximately 1.00 d−1
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6. Disccusion

e.g. (0.3243 d−1;1.3499 d−1), (0.6633 d−1; 1.6631 d−1) or (0.9756 d−1;
1.9701 d−1).

The periods found by the genetic algorithm in the light curve
ID1913 are P1 = 35.2786 h and P2 = 74.7431 h and the real ones are
Pψ = 34.4135 h and Pϕ = 80.5639 h. The differences are 7% and 3%.
This light curve is longer (with more data points), but there is evident
higher noise in the data, which can cause a larger discrepancy between
the calculated frequencies and the actual ones.

6.3 ID1918

I found no clues about multiple frequencies or the sum of the frequen-
cies in the periodogram of the light curve ID1918. Frequencies found
by periodograms and genetic algorithm fit are f1 = 0.3313 d−1 and
f2 = 0.6153 d−1. The real ones are fψ = 0.5302 d−1 (Pψ = 1.8898 d)
and fϕ = 0.1905 d−1 (Pϕ = 5.2493 d). The light curve is shorter than
the longer period, and as we can see, it causes difficulty in detect-
ing low-frequency (long-period) signals. The fit of this light curve is
relatively precise, despite the wrong guess of the frequencies.

6.4 ID1919

In the periodogram of the light curve, there are three dominant peaks
around 1.33 d−1, 1.99 d−1, and 2.75 d−1. The third frequency peak,
with a small error, can be twice the first frequency peak. It means
that the first two frequencies should be one of the main frequencies.
The final guess, given by the good fit, is that the first peak is the rotation
and the second is the precession in the S-convention. The precession
frequency in the L-convention is the difference between them.

I perform a genetic algorithm runmultiple times for this light curve
and make statistics over the results. The arithmetic mean frequencies
are f1 = (1.365 ± 0.004)d−1 and f2 = (0.623 ± 0.006)d−1. The real
frequencies are fψ = 1.3585 d−1 and fϕ = 0.6284 d−1. The differences
are 0.5% and 0.9%. After averaging statistics from several runs, we
observe that the results are more precise than the individual results
in Table C.4.
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6.5 The real data

Finally, for the resulting test, I apply all developed and tested methods
on the real data of the asteroid 2012 TC4. From the periodogram of
the tumbler light curve, I found the set of three dominant frequencies,
and by the fit, I searched for the right combination of the precession
and rotation frequency. The modeling results are in the Appendix D.

I chose the short-period tumbler 2012 TC4 from the database
DAMIT for this test. I take one light curve of the asteroid to cal-
culate the periodogram and fit the data. The final fit of this light
curve has frequencies (periods) f1 = 2.1469 h−1 (P1 = 0.4658 h) and
f2 = 7.0578 h−1 (P2 = 0.1417 h). The real frequencies (periods) are
fψ = 2.1810 h−1 (Pψ = 0.4585 h) and fϕ = 7.0621 h−1 (Pϕ = 0.1416 h).
The differences in periods are 1.6% and 0.07%. The error in the second
period (precession) is negligible, but the error in the rotation period is
slightly higher. The fit shows that the algorithm did not find the global
minimum of the χ2 function, but it is close. From the periodogram, it
was hard to say and find the frequencies. One of the problems can be
noise, and also a non-calibrated dataset. The problem with genetic al-
gorithm fitting was the absence of errors in the individual data points.
I use the same error for all points. It is also the way to improve the fit
and search periods, because of the weighting of the points.

In comparison to the periodogram of the synthetic light curve, this
periodogram is more complex withmore peaks, harmonic frequencies,
and linear combinations. The synthetic light curves were generated
by the triaxial ellipsoid, but the real asteroid has a more complex
shape. It caused more harmonic frequencies and noise to be present
in the periodogram.

6.6 General discussion

Across all tested cases, the genetic algorithm consistently approxi-
mated rotational and precessional periods with varying degrees of
success. The algorithm converges closely to real values for longer and
cleaner light curves. In the shorter and noisier light curves, accuracy
is worse, especially for finding long periods (low frequency). This
implies that the length of the light curve strongly affects the ability to
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detect the frequencies correctly. Frequencies usually detected by peri-
odogram must be in the interval from fmin = 1/T to Nyquist’s limit
frequency. It means that the length of the light curve limits the lower
frequency, and the sampling frequency gives the upper limit.
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Figure 6.1: Spectral window of the light curve ID1915. The most domi-
nant peak is around f = 1.00 d−1.

In all light curves, aliasing is present, but it is most evident in
ID1915, which directly demonstrates the nighttime observation. In
the Figure 6.1, the Spectral window of the light curve ID 1915, cal-
culated by the Lomb-Scargle periodogram, is shown. The strongest
peak in the spectral window is around fw ≈ 1.00 d−1, which directly
corresponds with the Earth’s rotation period. In the periodogram of
the light curve ID1915, we detect strong aliasing. For all three domi-
nant peaks, there also exist significant peaks shifted by approximately
fw, 2 fw, 3 fw. In the other spectral window, the most dominant peaks
do not have such high amplitude.

In all light curves, the different peaks are prominent. Knowing
the true periods in every light curve, I examine the frequency peaks
and detect which linear combinations of accurate frequencies they are.
The table of these performing frequencies is in Table 6.1. Frequencies
were also checked for minor errors and differences.
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We see a similar set of frequency peaks in all the light curves.
Typical peaks aremainly the fψ, fϕL and fϕS or their double frequencies.
By looking at the periodogram, we find that the different peaks have
different relative heights among the light curves.

Table 6.1: Linear combinations of true frequencies in the LS peri-
odograms of all light curves.

Light curve Peaks
ID1913 fϕL , fψ, 2 fψ, fϕS
ID1915 fϕL , fψ, 2 fψ, fϕS
ID1916 2 fϕL , fϕS , 2 fϕS
ID1917 fϕL , fψ, 2 fψ, fϕL , 2 fϕL

ID1916_long fψ, fψS , 2 fψ, 2 fϕS
ID1918 fψ, 2 fϕS − fϕL

ID1919 fψ, 2 fψ, fϕS , 2 fϕS
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7 Conclusion

In this thesis, I investigate the various methods for searching frequen-
cies (periods) in the light curves of tumbling asteroids. I examine
the classical periodogram, the CLEAN algorithm, the general Lomb-
Scargle periodogram, and modeling by genetic algorithm. I apply
these methods to various synthetic light curves of different asteroids
with different sampling frequencies, noise, or lengths.

Tumbling asteroids perform a complex rotation that includes rota-
tion and precession—these physical movements of the asteroid cause
the non-periodic light curve.

First, I use the CLEAN Fourier periodogram and the general Lomb-
Scargle periodogram to detect the most prominent frequencies in
the light curve. The CLEAN algorithm iteratively subtracts the peaks
from the dirty spectrum and creates the spectrum from clean peaks.
It improves the resolution of the frequency peaks and removes the ar-
tifacts caused by the sampling. The Lomb-Scargle periodogram is
a general periodogram suitable for unevenly sampled data.

Using the periodograms has various limitations. The first limitation
is the range of frequencies we can detect in the light curve. Frequencies
are limited by the length of the light curve and by the sampling rate.
Another difficulty in searching for frequencies is aliasing.

One of the primary goals of the thesis was to examine the peaks in
the tumbler’s periodogram. We can typically see the complex set of
peaks in the periodogram of a tumbler because of its complex rotation.
Typical frequencies in the periodogram are rotation frequency, pre-
cession frequency, or their various multiples and linear combinations.
Thanks to the mathematical description of the movements in S and L
conventions, we know the relations between the frequencies and can
identify them in the periodogram. Sometimes identifying them is not
straightforward and unambiguous, especially in short light curves,
periodograms with strong aliasing, etc.

I use a genetic algorithm to fit the light curve to verify the found
frequencies. Because of having the first approximation of the frequen-
cies from the periodogram, we can reduce the size of the parametric
space, which leads to faster convergence of the genetic algorithm. For
the proper run of the genetic algorithm, it is also important to set ac-

39



7. Conclusion

curate values for other parameters, such as the number of individuals
in a generation, the probability of mutation and crossover, and, impor-
tantly, choose the accurate selection method. As I discovered for this
problem, the rank-based selection method is better than the widely
used roulette selection because of the high number of local extremes
in parametric space.

The quality of the periodogram—and consequently the genetic
algorithm fit—depends on factors such as noise, data gaps, and sam-
pling frequency. Additionally, the accuracy of the genetic algorithm fit
is influenced by how well the initial frequency estimates are guessed
from the periodogram. I figure that a good agreement with data is
found, calculating the periodogram of several light curves of the same
body (in this thesis, light curves ID1916, ID1917, ID1916_long). Typ-
ically, slightly different peaks are calculated from each light curve,
which helps find the frequencies, detect aliasing, and noise. In case
of longer light curves (ID1913, ID1915), more peaks are shown in
the periodogram, and it can also help to detect the lower frequencies,
unlike the shorter light curve (ID1918), where the lower frequencies
cannot be searched.

I also used all the described methods for the real data of the tum-
bler 2012 TC4. I chose one light curve with length 2.73 h (349 data
points). The light curve spans multiple rotational periods, making it
suitable for frequency analysis. By the genetic algorithm fit, I found
two periods. Compared to the periods in the paper (Lee et al., 2021), it
differs slightly, and it implies that the algorithm did not find the global
minimum of the χ2 function, and it should have been run longer. For a
better fit, it is also possible to use the Fourier series with a higher order,
but not so high, to prevent overfitting or fitting the noise. This light
curve is significant because it is long enough to detect both periods
and their linear combinations, and the sampling frequency is high
enough to detect higher frequencies.

7.1 Future work

As the presented periodograms and the genetic algorithm show, it isn’t
easy to unambiguously search for and verify the rotation and preces-
sion frequency. This method can search for resulting frequencies, after
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7. Conclusion

which, it is necessary to prove it by physical modeling of the asteroid
rotation by a triaxial ellipsoid or a more complex shape model. As
a future improvement, automating the search for frequencies in the pe-
riodogram is possible. The genetic algorithm can be better optimized
for faster search for the solution.
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A Code

The Tumbler lightcurve analysis project is a Python-based toolkit
designed to study non-principal-axis (NPA) rotating bodies, com-
monly referred to as tumblers. The central part of the project involves
analyzing tools as described in Chapter 4. In the implementation of
the project, several Python packages were used, such as NumPy(C. R.
Harris et al., 2020), Pandas (McKinney, 2010), AstroPy mainly for
the Lomb-Scargle periodogram (Astropy Collaboration, 2022), and
Matplotlib for visualizations (Hunter, 2007).

A.1 Project and Structure

The main parts of the project are:
Tumbler_lightcurves_analysis

main.py
service.py

genetic_algorithm
core

crossover
fitness_evaluation
initial_population
mutation
selection

generation
run

periodogram
clean_periodogram
lomb_scargle

utils
find_maxima
fourier_series_value
load_dataset
single_fourier_series_value

The implementation of the project Tumbler lightcurve analysis
itself is available on GitHub https://github.com/SBuransky/Tumbler_
lightcurves_analysis/releases/tag/v1.0.0 or in the Information system
of Masaryk University https://is.muni.cz/auth/th/xlrmb/Tumbler_
lightcurves_analysis-1.0.0.zip.
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A. Code

A.2 Usage

The project is developed in Python 3.10 and requires several ad-
ditional libraries. To install all necessary dependencies, it is recom-
mended to use the provided requirements.txt file. Installation can
be performed using pip:

pip install -r requirements .txt

To run the analysis, use the script main.py and customize it. Firstly,
load your data using this part. Set the name of your file, an appendix
of your file, and the names of the columns (but preferably do not
change them).

name = "ID1913"

data = load_data (
name ,
column_names =(" julian_day ", " noisy_flux ", "

deviation_used "),
appendix =". txt",

)

If you want to run periodogram analysis, in this part of the script,
change parameters n_iter, n_B for a number of points in the peri-
odogram and final_noise for managing the CLEAN algorithm:

tumbler_periodogram (
data [" julian_day "]. values ,
data [" noisy_flux "]. values ,
name=name ,
n_iter =500 ,
n_b =10,
gain =0.5 ,
final_noise =0.000008 ,
dev=data [" deviation_used "],
x_border =( -0.1 , 10) ,

)

and in a terminal run
python main.py --periodogram
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If you want to run genetic algorithm analysis, change this part of
the script:

m_ = 2

def fitness ( solution ):
x, y, delta = (

data [" julian_day "],
data [" noisy_flux "],
data [" deviation_used "],

)
y_model = double_fourier_sequence (solution ,

m_ , x)
chi2 = np.sum ((y - y_model ) ** 2 / delta **2)
return 1 / chi2

tumbler_genetic_algorithm_fit (
data ,
fitness ,
m_=m_ ,
population_size =200 ,
num_genes =2 * m_ + 2 * m_ * (2 * m_ + 1) +

4,
gene_range =(

[( -0.04 , 0.04)] * (m_ * (2 * m_ + 1))
+ [( -0.04 , 0.04)] * (m_ * (2 * m_ + 1))
+ [( -0.04 , 0.04)] * m_
+ [( -0.04 , 0.04)] * m_
+ [

(0.98 , 1.02) ,
( -0.00001 , 0.00001) ,
(0.95 , 1.05) , #phi
(0.65 , 0.75) ,] #psi
),

name=name ,
num_generations =10000 ,
elitism =2,
mutation_rate =0.01 ,
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mutation_range =np. concatenate (
(

np.full(m_ * (2 * m_ + 1), 0.05) ,
np.full(m_ * (2 * m_ + 1), 0.05) ,
np.full(m_ , 0.05) ,
np.full(m_ , 0.05) ,
np.array ([0.02 , 0.000001 , 0.04 ,

0.04]) ,
)

),
limit_fitness =0.001 ,

)

Formanaging the genetic algorithm run, adjust the population_size,
order of the Fourier series m_, gene_range, depending on the esti-
mations of the frequencies, num_generations, elitism, mutation_rate,
crossover_rate and mutation_range.
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B Results

B.1 ID1917, s = 0.01
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Figure B.1: Synthetic tumbler light curve ID1917 with standard devia-
tion s = 0.01
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Figure B.2: Clean Fourier periodogram of light curve ID1917 with
s = 0.01. The most dominant peaks are on frequencies 0.7168 d−1 and
1.1476 d−1.
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Figure B.3: Lomb-Scargle periodogram of light curve ID1916 with
s = 0.01. The most dominant peaks are on frequencies 0.7297 d−1 and
1.1036 d−1. The dominant peak in the Spectral window is on frequency
0.3661 d−1.

B.2 ID1916_long, s = 0.01

0 1 2 3 4 5 6
Julian Date (JD)

0.6

0.8

1.0

1.2

1.4

No
rm

al
ize

d 
Fl

ux

Data

Figure B.4: Synthetic tumbler light curve ID1917 with standard devia-
tion s = 0.01
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Figure B.5: Clean Fourier periodogram of light curve ID1916_long with
s = 0.01. The most dominant peaks are on frequencies 0.7756 d−1 and
1.0940 d−1.
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Figure B.6: Lomb-Scargle periodogram of light curve ID1916 with
s = 0.01. The most dominant peaks are on frequencies 0.7511 d−1 and
1.0858 d−1. The dominant peak in the Spectral window is on frequency
0.2408 d−1.
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C More results

C.1 ID1913
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Figure C.1: Synthetic tumbler light curve ID1913.
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Figure C.2: Clean Fourier periodogram of light curve ID1913. The most
dominant peaks are on frequencies 0.3703 d−1, 0.6731 d−1, 0.9793 d−1

and 1.3530 d−1.
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Figure C.3: Lomb-Scargle periodogram of light curve ID1913. The most
dominant peaks are on frequencies 0.3585 d−1, 0.6765 d−1, 0.9784 d−1

and 1.3554 d−1. The dominant peak in the Spectral window is on
frequency 0.1231 d−1.

The first noticeable thing is that the sum of the first two peaks gives
us the third peak. This implies that the first peak can correspond
to the precession frequency in L-convention, the second rotational
frequency, and the third precession in S-convention. So, as the first
guess of the frequencies, I use f1 ≈ 0.65 d−1 and f2 ≈ 0.30 d−1.
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Figure C.4: Fit by genetic algorithm of light curve ID1913
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Figure C.5: O − C graph of genetic algorithm fit of light curve ID1913
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Figure C.6: Fitness evolution of genetic algorithm fit of light curve
ID1913
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Table C.1: Parameters of genetic algorithm fit of light curve ID1913.

Number of individuals 300
Number of generations 20 000
Order of Fourier series 3
Number of data points 2 000
χ2 14 400

Calculated Real

Frequency f1[day−1] 0.6803 0.6974
Frequency f2[day−1] 0.3211 0.2979
Period P1[hours] 35.2786 34.4135
Period P2[hours] 74.7431 80.5639
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Figure C.7: Synthetic tumbler light curve ID1915.
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Figure C.8: Clean Fourier periodogram of light curve ID1915. The most
dominant peaks are on frequencies 0.6642 d−1 and 0.9661 d−1.
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Figure C.9: Lomb-Scargle periodogram of light curve ID1915. The most
dominant peaks are on frequencies 0.3243 d−1, 0.6633 d−1, 0.9756 d−1,
1.3499 d−1, 1.6631 d−1 and 1.9701 d−1. The dominant peak in the Spec-
tral window is on frequency 0.9980 d−1.
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C.3 ID1918, s = 0.07
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Figure C.10: Synthetic tumbler light curve ID1918 with standard devia-
tion s = 0.07
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Figure C.11: Clean Fourier periodogram of light curve ID1918 with
s = 0.07. The most dominant peaks are on frequencies 0.6433 d−1 and
1.2265 d−1.
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Figure C.12: Lomb-Scargle periodogram of light curve ID1918 with
s = 0.07. The most dominant peaks are on frequencies 0.5910 d−1 and
1.2497 d−1. The dominant peak in the Spectral window is on frequency
0.5503 d−1.

The two prominent peaks in the periodogram are around 0.60 d−1 and
1.25 d−1. I trymore combinations of guessed frequencies; one of the fits
follows the half frequencies of the dominant peaks in the periodogram.
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Figure C.13: Fit by genetic algorithm of light curve ID1918with s = 0.07
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Figure C.14: O − C graph of genetic algorithm fit of light curve ID1918
with s = 0.07

0 1000 2000 3000 4000
Generation

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

Be
st

 Fi
tn

es
s

Figure C.15: Fitness evolution of genetic algorithm fit of light curve
ID1918 with s = 0.07
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C. More results

Table C.2: Parameters of genetic algorithm fit of light curve ID1918
with s = 0.07.

Number of individuals 250
Number of generations 4 712
Order of Fourier series 3
Number of data points 260
χ2 796

Calculated Real

Frequency f1[day−1] 0.3313 0.5302
Frequency f2[day−1] 0.6153 0.1905
Period P1[hours] 72.4419 45.2659
Period P2[hours] 39.0054 125.9843

C.4 ID1919, s = 0.03
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Figure C.16: Synthetic tumbler light curve ID1919 with standard devia-
tion s = 0.03
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Figure C.17: Clean Fourier periodogram of light curve ID1919 with
s = 0.03. The most dominant peaks are on frequencies 1.3418 d−1,
2.0028 d−1, 2.7240 d−1.
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Figure C.18: Lomb-Scargle periodogram of light curve ID1919 with
s = 0.03. The most dominant peaks are on frequencies 1.3128 d−1,
1.9862 d−1, 2.7737 d−1. The dominant peak in the Spectral window is
on frequency 0.8962 d−1.
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Figure C.19: Fit by genetic algorithm of light curve ID1919with s = 0.03

In this periodogram, I have various estimations of the frequency com-
bination. I obtain the best fit by estimating that the first main peak cor-
responds to rotation and the second to precession in the S-convention.
It means that precession in the L-convention is their difference. I get
the guess of the frequencies f1 ≈ 1.33 d−1 and f2 ≈ 0.65 d−1.
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Figure C.20: O − C graph of genetic algorithm fit of light curve ID1919
with s = 0.03
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Figure C.21: Fitness evolution of genetic algorithm fit of light curve
ID1919 with s = 0.03

Table C.3: Parameters of genetic algorithm fit of light curve ID1919
with s = 0.03.

Number of individuals 200
Number of generations 15 000
Order of Fourier series 3
Number of data points 350
χ2 1 720

Calculated Real

Frequency f1[day−1] 1.3485 1.3585
Frequency f2[day−1] 0.6525 0.6284
Period P1[hours] 17.7976 17.6665
Period P2[hours] 36.7816 38.1922

As described in Section 4.2, I perform a genetic algorithm with
the same conditions multiple times, using the same initial conditions,
on this problem to obtain statistics over the results and achieve more
precise frequencies. These results are in the Table C.4. The arithmetic
mean frequencies are f1 = (1.36458 ± 0.004)d−1 and f2 = (0.623 ±
0.006)d−1.
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C. More results

Table C.4: Frequencies obtained from multiple runs of the genetic
algorithm fit of light curve ID1919 with s = 0.03.

f1[d−1] f2[d−1]

1.3491 0.6117
1.3668 0.6420
1.3653 0.5906
1.3485 0.6525
1.3749 0.6259
1.3557 0.6310
1.3757 0.6269
1.3792 0.6083
1.3749 0.6191
1.3557 0.6253
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C. More results

C.5 Bad estimation of frequencies

In this section, I will show how the fits look when the estimated fre-
quencies from the periodogram are some multiples of the real fre-
quencies. In Figure C.22 is the fit of the light curve ID1916 (s = 0.01)
with final frequencies f1 = 0.5853 d−1 and f2 = 0.3250 d−1. In reality
f2 is the same but f1 is higher. These frequencies are approximately
half of the peaks in the periodogram. The fit is almost perfect, but
the end of the model is increasing, while it should be decreasing and
follow the data. It can imply that frequencies are lower than the real
ones. The fit is completely inaccurate if the estimation of frequencies
is incorrect (not the multiples or sums of real frequencies).
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Figure C.22: Fit by genetic algorithm of light curve ID1916with s = 0.01
with bad estimation of the frequencies.
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D Testing methods on real data

For the final tests of the presented methods, I use the real data of
the asteroid 20112 TC4 from the database DAMIT (Durech et al., 2010).
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Figure D.1: Light curve of tumbler 2012 TC4.
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Figure D.2: Clean Fourier periodogram of light curve of tumbler
2012 TC4. The most dominant peaks are on frequencies 4.3663 h−1,
9.8168 h−1, 14.124 54 h−1.
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Figure D.3: Lomb-Scargle periodogram of light curve of tumbler
2012 TC4. The most dominant peaks are on frequencies 4.8791 h−1,
6.9377 h−1, 9.8095 h−1 and 14.0806 h−1. The dominant peak in
the Spectral window is on frequency 0.8938 h−1.

In the tumbler 2012 TC4 periodogram, the most prominent peak
corresponds to a frequency of 9.8 h−1. Another significant peak ap-
pears around 14.1 h−1. Additionally, the periodogram shows a peak at
approximately half of this value, 6.9 h−1, likely indicating a harmonic.
The difference between the two lower significant frequencies, 9.8 h−1

and 6.9 h−1, is about 2.9 h−1, and both this frequency and its first har-
monic (5.9 h−1) are also visible in the periodogram. As a result, three
key frequencies stand out: 2.9 h−1, 6.9 h−1, and 9.8 h−1.

It can implies that this three frequencies are the fϕL , fψ, fϕS . There
are two possibilities, and I try to fit and test them both. First is that
the lower frequency is the rotation, and the second possibility is that
the lower frequency is the precession in the L-convention. The result-
ing fit is in Figure D.4 and the results are in Table D.1.

68



D. Testing methods on real data

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Ti
m

e 
[h

ou
r]

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

Normalized light flux

La
st

 G
en

er
at

io
n 

Be
st

Fi
gu

re
D

.4
:F

it
by

ge
ne

tic
al
go

rit
hm

of
lig

ht
cu

rv
e
of

tu
m
bl
er

20
12

TC
4.

69



D. Testing methods on real data
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Figure D.5: O−C graph of genetic algorithmfit of light curve of tumbler
2012 TC4.
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Figure D.6: Fitness evolution of genetic algorithm fit of light curve of
tumbler 2012 TC4.

70



D. Testing methods on real data

Table D.1: Parameters of genetic algorithm fit of light curve of tumbler
2012 TC4. The real values were taken from (Lee et al., 2021). For
the genetic algorithm fitting, I set the same error for all values, 0.01,
because of the absence of error in the data.

Number of individuals 250
Number of generations 15 000
Order of Fourier series 3
Number of data points 349
χ2 3 570

Calculated Real

Frequency f1[hour−1] 2.1469 2.1810
Frequency f2[hour−1] 7.0578 7.0621
Period P1[hours] 0.4658 0.4585
Period P2[hours] 0.1417 0.1416
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