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Abstrakt

Ćılem této práce je implementovat efekty zakřiveńı prostoročasu do particle-in-cell
(PIC) simulačńıho kódu. Př́ıstup pomoćı “3+1” formalismu podle Komissarov (2004)
značně zjednodušuje úsiĺı t́ım, že rozřezává čtyřrozměrný prostoročas na tř́ırozměrné
řezy absolutńıho prostoru, který je parametrizován univerzálńım časem. To přináš́ı
dvě výhody: 1) rovnice maj́ı známý tvar plochého časoprostoru, což umožňuje
snadněǰśı fyzikálńı interpretaci, a 2) univerzálńı časový parametr a časový krok v
celé mř́ıžce umožňuj́ı numerický př́ıstup. Jiné PIC simulace úspěšně implementovaly
efekty zakřiveńı a prokázaly jejich význam pro procesy v magnetosféře, jako je
vytvářeńı pár̊u pro magnetosféry shodné s rotaćı hvězdy. Tato práce popisuje mou
implementaci do PIC kódu ACRONYM, s předpokladem nerotuj́ıćıho časoprostoru.
Popisuji svou modifikaci časového vývoje elektromagnetického pole a testuji ji z
hlediska numerické stability a fyzikálńı přesnosti. Představuji nové př́ıstupy k
výpočtu pohybu částic, interpolaci pole–částice a náboj zachovávaj́ıćımu výpočtu
proudu v zakřiveném prostoročase. Upravený kód PIC byl otestován na změnách v
disprezńıch relaćıch plazmatu v r̊uzných prostoročasech.

Abstract

The aim of this work is to implement the effects of spacetime curvature into a
particle-in-cell (PIC) simulation code. The “3+1” formalism approach developed
by Komissarov (2004) greatly simplifies the effort by slicing the 4-dimensional
spacetime into 3-dimensional slices of an absolute space, which is parametrised by
a universal time. This brings two advantages: 1) the equations take on a familiar
flat-spacetime form, allowing easier physical interpretation, and 2) the universal
time parameter and timestep across the whole grid make it possible to approach
numerically. Other PIC codes have successfully implemented the curvature effects
and demonstrated their importance for the processes in the magnetosphere, such as
pair creation for aligned magnetospheres. This work introduces my implementation
into the PIC code ACRONYM, with the assumption of a non-rotating spacetime.
I describe my modification of the electromagnetic field advancement and test it
for numerical stability and physical accuracy. I also present novel approaches
for computation of the particle pusher, field–particle interpolation, and charge-
conserving current deposition in curved spacetime. The modified PIC code was
tested on the changes in plasma dispersion relations depending on spacetime
properties.
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Introduction

Black holes and neutron stars remain one of the fascinating puzzles of astrophysics.
To study their surroundings, we rely mostly on plasma simulations, which must
take into account the influence of the massive objects on nearby spacetime pre-
dicted by general relativity. My thesis describes the work on the implementation
of the curvature of spacetime in the equations used in particle-in-cell (PIC) kinetic
plasma simulations, particularly the ACRONYM code. The first chapter intro-
duces basic concepts of plasma physics, plasma oscillations, and electromagnetic
waves in plasma. The second chapter describes the formalism and mathematical
structures used in the theory of general relativity and the application on spacetime
around compact objects. The third chapter talks about the formation of compact
objects, models of neutron star magnetospheres, and the role of compact objects
in astrophysical phenomena. The fourth chapter introduces basic concepts and
equations of PIC simulations, which are then improved to include the effects of
curvature in the fifth chapter. The detailed implementation into the ACRONYM
code is described in the sixth chapter, along with the results of testing for numerical
stability and accuracy. In the next chapter, I used the modified code to simulate
a thermal plasma and study the change in plasma dispersion relations depending
on the spacetime metric parameters. I simulate plasma in non-rotating systems,
such as the Schwarzschild spacetime. The last chapter concludes the results and
describes future improvements.

https://plasma.nerd2nerd.org/
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Section 1:

What is plasma?

This chapter was written with the help of the book Introduction to plasma physics
by Chen (1984) and the notes on Plasma Astrophysics by Marian Karlický from
the Astronomical Institute of the Czech Academy of Sciences.

Plasma is defined as a quasi-neutral gas of ionised particles showing collective
behaviour. In a typical gas, the particles are electrically neutral and the motion of
a particle is dictated by collisions with other particles. The influence of external
forces acting upon the gas is mediated through these collisions. However, charged
particles in a plasma can create local regions of non-zero charge, leading to electric
fields, which in turn influence distant charged particles. The behaviour of a
particle is then defined not only by the local properties but also by the overall
state of the plasma. This leads to the concept of collisionless plasma, where
long-range electromagnetic forces dominate over particle collisions to the point
where collisions can be effectively ignored. A speciality of collisionless plasmas
is that different particle species (electrons, protons, ions) can have, for example,
different temperatures Ti, defined through the mean particle velocity of the species
v2i = kBTi/mi, where kB is the Boltzmann constant and mi is the mass of the
particle species.

To describe quasi-neutrality, we first have to introduce Debye shielding. Let
us start with a neutral plasma with electron density ne, electron temperature Te

and proton density np. We assume that the heavy protons are stationary relative
to the electrons and create a homogeneous positive background charge. Then we
put a positive charge q0 into the plasma that keeps a positive potential ϕ0 at its
location. This pulls nearby electrons into a negatively charged cloud around q0
with the same total charge as −q0. If the electrons had no thermal motion, the
cloud would remain intact, and the potential from the charge would be perfectly
shielded from the rest of the plasma. However, electrons on the surface of the cloud
only feel a weak potential and their kinetic energy is sufficient to escape the cloud.
The shielding is then imperfect, and the potential spreads further into the plasma,
leading to a non-zero electric field. The potential in the cloud is described by the
Poisson equation

∇2ϕ = −e(np − ne)

ϵ0
,

where e is the elemental charge and ϵ0 is the vacuum permittivity. Far from the
charge, the electron density and the proton density are the same ne = np. Inside
the electron cloud, the electron gains potential energy eϕ. From the distribution
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function

f(ve) = A exp

{
−

1
2
mev

2
e − eϕ

kBTe

}
,

we obtain the electron density in relation to the potential

ne = npexp

{
eϕ

kBTe

}
.

Due to the shielding, the potential falls off very quickly. That means for a majority
of the cloud, we can approximate the electron density as a Taylor series

∇2ϕ = −enp

ϵ0

[
1−

(
1 +

eϕ

kBTe

)]
=

e2np

ϵ0kBTe

ϕ.

This equation gives a solution

ϕ = ϕ0exp

{
− r

λD

}
,

λD :=

√
ϵ0kBTe

e2n
,

where r is the distance from the centre of the cloud, λD is the characteristic size of
the cloud also known as the Debye length. At distances greater than the Debye
length, the potential is significantly weakened. In a hotter plasma the potential
spreads out further, while a denser plasma is able to shield the potential more
quickly.

Returning to quasi-neutrality, plasma is considered quasi-neutral when the
characteristic length of the system L is much larger than the Debye length λD.
That means that any local concentration of charge or external electric potential is
shielded at a scale that leaves the majority of the plasma unaffected.

1.1 Plasma oscillations

The distribution of electrons in the plasma in the ion background is such that
charge neutrality is achieved. When an electron is displaced from its equilibrium
position, it creates an opposing electric field. Due to the imbalance of masses,
the electron is pulled towards the heavier proton which stays approximately in
place. Because of its momentum, the electron overshoots and oscillates around its
equilibrium position.

Assuming no external magnetic field, no thermal motion, stationary ion back-
ground, infinite plasma, and displacement only in the x-direction, the oscillations
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are purely electrostatic. We start with the equation of motion, continuity equation
and Poisson equation

mne

[
∂v⃗e
∂t

+ (v⃗e∇)v⃗e

]
= −e neE⃗, (1)

∂ne

∂t
+∇(nev⃗e) = 0, (2)

∇E⃗ =
ρ

ϵ0
=

e(ni − ne)

ϵ0
. (3)

Then we introduce perturbations of the physical quantities of the system

ne = n0 + δn, v⃗ = v⃗o + δv⃗, E⃗ = E⃗0 + δE⃗.

In equilibrium, we assume homogenous electron distribution, stationary electrons
and charge neutrality

∇n0 = v⃗0 = E⃗0 = 0,

∂n0

∂t
=

∂v⃗0
∂t

=
∂E⃗0

∂t
= 0.

Assuming that the perturbations are small, we can linearise the equations (1)
and (2). Poisson equation (3) is simplified due to the fact that in equilibrium the
densities are equal ni = n0:

mn0
∂δv⃗

∂t
= −n0eδE⃗, (4)

∂δn

∂t
+ n0∇δv⃗ = 0,

∇δE⃗ = −eδn

ϵ0
.

Assuming a sinusoidal profile of the oscillations in the x-direction (and ∂t =
−iω,∇ = ik)

−imωδv = −eδE,

−iωδn = −ikn0δv,

ikδE = −eδn

ϵ0
.

Combining these three equations we get the frequency of the electron electrostatic
oscillations, also known as the plasma frequency(

ω2 − n0e
2

ϵ0m

)
δv = 0,
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ωp =

√
n0e2

ϵ0m
. (5)

Based on the assumption we made earlier that the plasma is infinite, the electric
fields induced by the oscillations cancel out and the total electric field is zero. In
a case where the system is finite, the electric field at the surface of the system is
non-zero and the plasma oscillations spread into other regions.

1.2 Langmuir electrostatic waves

Thermal motion of electrons can also cause propagation of plasma oscillations. This
effect can be described by adding a pressure term to the equation of motion 1. Be-
cause we assume the plasma oscillations are planar, we can use the one-dimensional
case

∂pe
∂x

= 3kBTe
∂ne

∂x
= 3kBTe

∂δn

∂x
,

Putting into the linearized equation of motion (4), we get

mn0
∂δv⃗

∂t
= −n0eδE⃗ − 3kBTe

∂δn

∂x
.

Again, assuming a sinusoidal profile of the oscillations in the x-direction (∂t =
−iω,∇ = ikx):

−imn0ωδv = −en0δE − 3ikkBTeδn.

Using −iωδn = −ikn0δv and ikδE = − eδn
ϵ0

from earlier, we get dispersion equations

−imn0ωδv = en0
e

ikϵ0

kn0

ω
δv − 3ikkBTe

kn0

ω
δv,

ω2δv =
n0e

2

ϵ0m
δv + 3k2kBTe

m
δv.

We recognise the plasma frequency and thermal velocity of electrons, obtaining the
dispersion relation for the electrostatic Langmuir waves.

ω2 = ω2
p + 3k2v2e . (6)

1.3 Electromagnetic waves

We start with a plasma in an equilibrium state and introduce an electromagnetic
wave, described as a perturbation to the electromagnetic field δE⃗, δB⃗, which induces
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a perturbation of electron velocity δv⃗, corresponding to a current j = −n0eδv⃗.
Taking perturbed Maxwell’s equations

∇× δE⃗ = −∂δB⃗

∂t
, (7)

c2∇× δB⃗ = −n0eδv⃗

ϵ0
+

∂δE⃗

∂t
. (8)

Applying the rotation operator on equation (7) and taking the time derivative of
equation (8) we get

∇× (∇× δE⃗) = ∇(∇δE⃗)−∇2δE⃗ = −∇× ∂δB⃗

∂t
,

c2∇× ∂δB⃗

∂t
= −n0e

ϵ0

∂δv⃗

∂t
+

∂2δE⃗

∂t2
.

Then assuming the perturbation in the form exp{i(k⃗r⃗−ωt)} and using equation (4),
we combine the two equations into

−k⃗(k⃗δE⃗) + k2δE⃗ = − n0e
2

ϵ0mc2
δE⃗ +

ω2

c2
δE⃗.

Electromagnetic waves are transverse k⃗δE⃗ = 0, and we see the formula for plasma
frequency ωp =

√
n0e2/ϵ0m, giving us the dispersion relation for electromagnetic

waves in plasma. (
ω2 − ω2

p − c2k2
)
δE⃗ = 0,

ω2 = ω2
p + c2k2. (9)

The formulas are derived for a plasma without an external magnetic field.
Introducing an external magnetic field affects the motion of plasma particles, as
well as the propagation of electromagnetic waves. This introduces additional modes
and changes the dispersion relations.
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Section 2:

General relativity

This chapter is written with the help of the books Lecture Notes on General
Relativity by S. M. Carroll (1997) and A First Course in General Relativity by
Schutz (2022).

In 1905, Albert Einstein published his theory of special relativity that introduced
many revolutionary ideas such as length contraction and time dilation. Few years
later, Minkowski proposed the idea of treating the time and spatial coordinates as
four coordinates in a four-dimensional space. This led to the development of the
theory of general relativity.

General relativity has two main postulates:
1) Principle of relativity: states that all laws of physics in all inertial frames are
the same. This leads to the inability of an observer to measure whether he is in a
moving or a stationary unaccelerated frame of reference.
2) Absolute speed of light: states that every unaccelerated observer measures the
same value for the speed of light, regardless of the relative velocity of the observer
and the light source.

Let’s introduce an inertial frame described by four coordinates, where the
coordinate t can be thought of as the global time that is universal for all points
in a space that is mapped by the coordinates x, y, z. A “point” in this frame is
called an event and is described by these four coordinates (t, x, y, z). The distance
between two events is then measured by the spacetime interval. For a simple flat
universe also known as the Minkowski spacetime, the interval reads

ds2 = −(cdt)2 + dx2 + dy2 + dz2.

For convenience, we shall adopt the natural unit system, in which the speed of light
c = 1. We express the four coordinates as (t, x, y, z) = (x0, x1, x2, x3) = xµ. The
Greek indices, such as µ, ν, ρ, range from 0 to 3, while Latin indices i, j, k range
from 1 to 3 and refer to spatial components of tensors. Using this, the expression
for the spacetime interval can be generalized

ds2 =
3∑

µ,ν=0

gµνdx
µdxν = gµνdx

µdxν ,

where gµν is the metric, and we use the summation convention, where indices
appearing in both the superscript and subscript are summed over. Comparing with
the previous expression, it is obvious that for the Minkowski spacetime it is almost



8

an identity matrix

ηµν =


-1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

The Minkowski metric is vastly used and thus often denoted as ηµν . In general,
the metric gµν is a symmetric 4x4 tensor, can be used to lower indices of a vector
gµνx

ν = xµ, and has an inverse that raises indices that satisfies

gµρg
ρν = δνµ =

{ 1 µ = ν,
0 µ ̸= ν.

The spacetime interval is invariant under the Lorentz group. This group consists
of rotations Rν

µ, transformations involving two of the spatial coordinates, and
boosts Sν

µ, transformations involving a time coordinate and a spatial coordinate.
For example, rotation in x-y plane with 0 < θ < 2π and boost in t-x plane with
−∞ < ϕ < ∞ can be expressed as

Rν
µ =


1 0 0 0
0 cosθ sinθ 0
0 -sinθ cosθ 0
0 0 0 1

 , Sν
µ =


coshϕ -sinhϕ 0 0
-sinhϕ coshϕ 0 0

0 0 1 0
0 0 0 1

 .

There is also the Levi-Civita symbol defined as

ϵµνρσ =

{ 1 even permutation of indices,
−1 odd permutation of indices,
0 otherwise (two or more indices repeat).

We would like ϵµνρσ to stay the same after raising indices. However, from linear
algebra it follows that

ϵµνρσg
µαgνβgργgσδ = det(gµν)ϵαβγδ = (g)−1ϵαβγδ,

where g = |det(gµν)|. To resolve this, we define the Levi-Civita tensor as follows

eµνρσ =
√

|g|ϵµνρσ,

eµνρσ =
sgn(g)√

|g|
ϵµνρσ.

It is then invariant to the lowering or raising of indices

eµνρσg
µαgνβgργgσδ =

√
|g|ϵµνρσgµαgνβgργgσδ =

√
|g|
g

ϵαβγδ =
sgn(g)√

|g|
ϵαβγδ = eαβγδ.
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2.1 Electromagnetism

This chapter is written under the assumption of a flat Minkowski spacetime. The
components of a covector and its contravector are equal; the position of the indices
(raised, lowered) of the vectors Eµ and Bµ can be omitted.

The vectors describing the electric field Ei and the magnetic field Bi are invariant
to the ordinary spatial rotations but not to the timespace boosts. We can construct
the electromagnetic field strength tensor

F µν =


0 E1 E2 E3

-E1 0 B3 -B2

-E2 -B3 0 B1

-E3 B2 -B1 0

 .

This tensor is invariant to the full Lorentz group. This allows us to conveniently
transform the electromagnetic field into different reference frames. This result
can lead to the notion that the electric field and the magnetic field are physically
connected to each other in reference frame transformations, and each one is only a
projection of this unified electromagnetic field that depends on the observer.

We define a current 4-vector Jµ = (ρ, J i) and write the Maxwell equations in
index notation

eijk∂jBk − ∂0E
i = 4πJ i,

∂iE
i = 4πJ0,

eijk∂jEk + ∂0B
i = 0,

∂iB
i = 0.

Using the components of the electromagnetic tensor F 0i = Ei, F ij = ϵijkBk, the
equations can be combined into two equations

∂µF
νµ = 4πJν ,

∂[µFνρ] = ∂µFνρ + ∂νFρµ + ∂ρFµν = 0.

Both the classical form with four equations and this unified form with two equations
are invariant under the Lorentz group. One advantage of the compact form is that
it will be helpful in curved spacetime.

2.2 Covariant derivative

Let us look at how vector manipulation becomes complicated in curved space.
When working in the Cartesian coordinate frame, we have a coordinate basis
(e⃗x, e⃗y). These basis vectors have constant length and point in the same direction
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across the whole space, ∂ie⃗j = 0. Differentiating a vector in this frame is easy.

Given a vector denoted as V⃗ = Vxe⃗x+Vye⃗y, then only the components of the vector
are affected by the derivative, while the basis vector leave unchanged

∂xV⃗ = ∂x(Vxe⃗x + Vye⃗y) = ∂x(Vx)e⃗x + ∂x(Vy)e⃗y.

This also shows that placing a vector at different points of the coordinate system
does not change its components. For simplicity let’s assume that the vector is
parallel to the x-axis V⃗ = Vxe⃗x and the basis vector e⃗x is a unit vector, then its
length at two points x and x+∆x remains the same

|V⃗ (x)| = Vx|e⃗x(x)| = Vx

|V⃗ (x+∆x)| = Vx|e⃗x(x+∆x)| = Vx,

where |V⃗ | denotes vector length, and |x| denotes the absolute value. Hypothetically,
if the basis vector length was a function of x, for example, the further from the
origin the longer it gets |e⃗x(x)| = |x|, then for the vector length to remain the same
at different points of the grid x and x+∆x

|V⃗ (x)| = |V⃗ (x+∆x)|
Vx(x)|e⃗x(x)| = Vx(x+∆x)|e⃗x(x+∆x)|

Vx(x)|x| = Vx(x+∆x)|x+∆x|

⇒ Vx(x+∆x)

Vx(x)
=

|x|
|x+∆x|

,

the x-component of the vector would have to be the inverse function and get smaller
as the vector is placed further from the origin.

In polar coordinates, the situation gets even more complicated. From the
transformation between Cartesian and polar coordinates

x = rcos(θ),

y = rsin(θ),

we can extract the transformation of the basis

e⃗r =
∂x

∂r
e⃗x +

∂y

∂r
e⃗y = cos(θ)e⃗x + sin(θ)e⃗y,

e⃗θ =
∂x

∂θ
e⃗x +

∂y

∂θ
e⃗y = −rsin(θ)e⃗x + rcos(θ)e⃗y,

|e⃗r|2 = cos2(θ)|e⃗x|2 + sin2(θ)|e⃗y|2 = 1,

|e⃗θ|2 = r2sin2(θ)|e⃗x|2 + r2cos2(θ)|e⃗y|2 = r2.
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From these formulas it is obvious that the basis vectors change their lengths
depending on their position. However, they also change the direction they point in.
We can uncover that by differentiation with respect to the coordinates

∂e⃗r
∂r

=
∂

∂r
(cos(θ)e⃗x + sin(θ)e⃗y) = 0,

∂e⃗r
∂θ

=
∂

∂θ
(cos(θ)e⃗x + sin(θ)e⃗y) = −sin(θ)e⃗x + cos(θ)e⃗y =

1

r
e⃗θ,

∂e⃗θ
∂r

=
∂

∂r
(−rsin(θ)e⃗x + rcos(θ)e⃗y) = −sin(θ)e⃗x + cos(θ)e⃗y =

1

r
e⃗θ,

∂e⃗θ
∂θ

=
∂

∂θ
(−rsin(θ)e⃗x + rcos(θ)e⃗y) = −rcos(θ)e⃗x − rsin(θ)e⃗y = −re⃗r.

While differentiating a vector (Vr, Vθ) in polar coordinates, then the inclusion of
the change of the basis vector must not be forgotten

∂V⃗

∂r
=

∂

∂r
(Vre⃗r + Vθe⃗θ)

=

(
∂

∂r
Vr

)
e⃗r + Vr

∂

∂r
e⃗r +

(
∂

∂r
Vθ

)
e⃗r + Vθ

∂

∂r
e⃗r.

2.3 Christoffel symbols

A vector in a general coordinate system, in which the basis vectors can change
their length and direction in relation to the position, is differentiated accordingly

∂V⃗

∂xµ
=

∂V ν

∂xµ
e⃗ν + V ν ∂e⃗ν

∂xµ
,

where e⃗µ are the basis vectors of a coordinate system with coordinates xµ. The
change of the basis vectors is specific for a given coordinate system and can be
expressed as a linear combination of the basis

∂e⃗ν
∂xµ

= Γρ
νµe⃗ρ,

where Γµ
αβ is called the Christoffel symbol. The index ν denotes the basis vector

being differentiated, µ determines the coordinate with respect to which the differ-
entiation is carried out and ρ tells us the component of the resulting vector. Using
the Christoffel symbol, we can rewrite the derivative

∂V⃗

∂xµ
=

∂V ν

∂xµ
e⃗ν + V νΓρ

νµe⃗ρ.
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The summing indices can be renamed, giving us a nice and simple expression

∂V⃗

∂xµ
=

∂V ν

∂xµ
e⃗ν + V ρΓν

ρµe⃗ν =

(
∂V ν

∂xµ
+ V ρΓν

ρµ

)
e⃗ν ,

where the term in the parentheses is a tensor called the covariant derivative

∇µV
ν ≡ ∂V ν

∂xµ
+ Γν

ρµV
ρ.

We can construct a scalar ϕ by multiplying a covariant vector Vµ and a contravariant
vector V µ and take its covariant derivative

∇νϕ = ∇ν(VµV
µ)

= (∇νVµ)V
µ + Vµ∇νV

µ

=
∂Vµ

∂xν
V µ + Γ̃ρ

µνVρV
µ + Vµ

∂V µ

∂xν
+ VµΓ

µ
ρνV

ν ,

where Γ̃ρ
νµ is some unknown Christoffel symbol for the covariant derivative of

covariant vectors. Since a scalar does not depend on basis vectors, the covariant
derivative must be equal to its ordinary partial derivate

∇νϕ = ∇ν(VµV
µ) = ∂ν(VµV

µ)

=
∂Vµ

∂xν
V µ + Vµ

∂V µ

∂xν
.

Comparing the two results and renaming the summation indices gives us the relation

Γ̃ρ
νµ = −Γρ

νµ,

∇νVµ ≡ ∂νVµ − Γρ
νµVρ.

The first derivative of the scalar depends on the basis vectors. The covariant
derivative in Cartesian coordinates is equal to the partial derivative

∇µ∇νϕ = ∂µ∂νϕ = ∂ν∂µϕ = ∇ν∇µϕ.

Since partial derivatives commute, the tensor of the second derivative is symmetric.
If a tensor is symmetric in one basis Tµν = Tνµ, performing a change of coordinates

Tµν =
∂xρ

∂xµ

∂xσ

∂xν
Tρσ =

∂xρ

∂xµ

∂xσ

∂xν
Tσρ,
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does not change its symmetry and it is symmetric in any basis. Using the definition
of the covariant derivative in a general basis, we get that the Christoffel symbol is
symmetric in any coordinate system

∇µ∇νϕ = ∇ν∇µϕ

∂µ∂νϕ− Γρ
νµ∂ρϕ = ∂ν∂µϕ− Γρ

µν∂ρϕ

Γρ
νµ∂ρϕ = Γρ

µν∂ρϕ

Γρ
νµ = Γρ

µν .

In Cartesian coordinates, the components of a covariant vector and its contravariant
counterpart are equal

Vµ = V µ,

and the covariant derivative is just the partial differentiation of the components.
Then, the covariant derivatives of the two vector are the same

∇νVµ =
∂

∂xν
Vµ =

∂

∂xν
V µ = ∇νV

µ.

In Cartesian coordinates the metric takes the form of Kronecker delta gµν = δµν .
This means that, in Cartesian coordinates, the metric does not change the covariant
derivative of the contravariant vector

∇νV
µ = gµρ∇νV

ρ,

and the metric can be used to lower the indices of the contravariant derivative

∇νVµ = ∇νV
µ = gµρ∇νV

ρ. (10)

This is a tensor equation, which means it is true in all coordinate systems. Now, in
a general coordinate system, the covector and contravector are connected by the
metric

Vµ = gµρV
ρ.

Taking the covariant derivative of this equation gives us

∇νVµ = ∇ν(gµρ)V
ρ + gµρ∇νV

ρ.

Comparing this with equation (10) we conclude that the metric is invariant to the
covariant derivative

∇ρgµν = ∂ρgµν − Γσ
ρµgσν − Γσ

ρνgµσ = 0,
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which can be proven in a similar manner for the inverse metric. Expressing all
three permutations of the covariant derivative of the metric gives us

∇ρgµν = ∂ρgµν − Γσ
ρµgσν − Γσ

ρνgµσ = 0,

∇µgνρ = ∂µgνρ − Γσ
µνgσρ − Γσ

µρgνσ = 0,

∇νgρµ = ∂νgρµ − Γσ
νρgσµ − Γσ

νµgρσ = 0.

Subtracting the second and the third from the first and using the symmetry of the
Christoffel symbol, we get

∂ρgµν − ∂µgνρ − ∂νgρµ + 2Γσ
µνgσρ = 0,

which can be rearranged to obtain the formula for the components of the Christoffel
symbols

Γσ
µν =

1

2
gσρ(∂µgνρ + ∂νgρµ − ∂ρgµν).

2.4 Curvature

One may be curious to see, whether the covariant derivative commutes with itself
[∇ν ,∇ρ]V

µ = ∇ν∇ρV
µ −∇ρ∇νV

µ =?. Let’s express the individual components
first:

∇ν∇ρV
µ = ∂ν(∇ρV

µ)− Γσ
νρ∇σV

µ + Γµ
νσ∇ρV

σ

= ∂ν(∂ρV
µ + Γµ

ρξV
ξ)− Γσ

νρ(∂σV
µ + Γµ

σξV
ξ) + Γµ

νσ(∂ρV
σ + Γσ

ρξV
ξ)

= ∂ν∂ρV
µ + ∂νΓ

µ
ρξV

ξ + Γµ
ρξ∂νV

ξ

− Γσ
νρ∂σV

µ − Γσ
νρΓ

µ
σξV

ξ + Γµ
νσ∂ρV

σ + Γµ
νσΓ

σ
ρξV

ξ,

∇ρ∇νV
µ = ∂ρ(∇νV

µ)− Γσ
ρν∇σV

µ + Γµ
ρσ∇νV

σ

= ∂ρ(∂νV
µ + Γµ

νξV
ξ)− Γσ

ρν(∂σV
µ + Γµ

σξV
ξ) + Γµ

ρσ(∂νV
σ + Γσ

νξV
ξ)

= ∂ρ∂νV
µ + ∂ρΓ

µ
νξV

ξ + Γµ
νξ∂ρV

ξ

− Γσ
ρν∂σV

µ − Γσ
ρνΓ

µ
σξV

ξ + Γµ
ρσ∂νV

σ + Γµ
ρσΓ

σ
νξV

ξ.

Combining these two results and using commutativity of partial derivatives, sym-
metry of Christoffel symbols and renaming of summation indices, we get

[∇ν ,∇ρ]V
µ = (∂νΓ

µ
ρξ − ∂ρΓ

µ
νξ + Γµ

νσΓ
σ
ρξ − Γµ

ρσΓ
σ
νξ)V

ξ.
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The term in the parentheses is called the Riemann tensor

Rµ
ξνρ = ∂νΓ

µ
ρξ − ∂ρΓ

µ
νξ + Γµ

νσΓ
σ
ρξ − Γµ

ρσΓ
σ
νξ,

which describes the difference between the change of the vector moved first in the
µ-direction, second in the ν-direction, and the change of the vector moved in the
opposite order. Contracting the Riemann tensor gives us the Ricci tensor

Rξρ := Rµ
ξµρ,

and contracting again by the inverse metric we get the Ricci scalar

R := gµνRµν .

The Ricci scalar is a simple indicator of the curvature of a metric. Let’s explore
that by, for example, looking at the metric of a sphere of radius r

dl2 = r2(dθ2 + sin2θdϕ2),

grr = r2, gθθ = r2sin2θ.

Calculating the Christoffel symbols, Riemann and Ricci Tensors and finally the
Ricci scalar

Γθ
ϕϕ =− sin θ cos θ,

Γϕ
ϕθ =cotg θ,

Rθ
ϕθϕ =sin2θ,

Rθϕθϕ = gθθR
θ
ϕθϕ = r2sin2θ,

Rθθ = gϕϕRθϕθϕ = 1,

Rϕϕ = gθθRθϕθϕ = sin2θ,

R = gθθRθθ + gϕϕRϕϕ = 2r−2.

From this result, we can quickly see that the sphere has some curvature. It is
always positive and decreases with increasing radius. Spaces that have a positive
Ricci scalar are called positively curved, are similar to spherical surfaces and the
surface in two perpendicular directions curves the same way. In the opposite case
where the Ricci scalar is negative, the space is called negatively curved, the surface
in two perpendicular directions is curved in the opposite way, like on a saddle. In
general, the Ricci scalar can depend on a coordinate. In such a case the curvature
changes depending on the location in the particular space. One such example is
the surface of a torus.
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2.5 Spacetime around stars

The energy-momentum tensor is defined as Tµν , where T00 is the energy density,
T0i are components of the momentum density and Tij are components of the force
density. The connection between matter and the curvature of spacetime is described
by the Einstein field equation

Gµν = 8πGTµν ,

where the Einstein tensor Gµν = Rµν − 1
2
gµνR is connected to the metric, and G

is the Newtonian gravitational constant. By choosing a distribution of matter,
constructing the energy-momentum tensor and solving the Einstein field equations,
one can obtain the metric of that particular system.

For the purpose of describing the spacetime around stars, one notable solution
is the Schwarzschild metric, which is a vacuum solution Tµν = 0. It assumes a
static spherically symmetrical system, ideal to describe a non-rotating star. In
spherical coordinates (r, θ, ϕ) the spacetime interval can be denoted as

ds2 = −
(
1− RS

r

)
dt2 +

(
1− RS

r

)−1

dr2 + r2sin2θdϕ2 + r2dθ2,

where RS = 2GM/c2 is called the Schwarzschild radius, M is the mass of the star,
and c is the speed of light. The metric expressed in a matrix form is then

gµν =


1− RS

r
0 0 0

0

(
1− RS

r

)−1

0 0

0 0 r2sin2θ 0
0 0 0 r2

 .

One may notice that the metric has two singularities: one at R = RS, which is a
mathematical singularity and can be removed by a transformation of the coordinate
system, the other at R = 0, which is a physical singularity and is present in any
coordinate system.

A more physically accurate model is a Kerr black hole, which introduces rotation
to the description. It is an axially symmetric model with two parameters, the
mass of the black hole M and the angular momentum with respect to the axis of
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rotation J . The spacetime interval is calculated as

ds2 =− ∆− a2sin2θ

ρ2
dt2 − 2a

2Mr sin2θ

ρ2
dtdϕ

+
ρ2

∆
dr2 +

(a2 + r2)2 − a2∆sin2θ

ρ2
sin2θdϕ2 + ρ2dθ2,

∆ := r2 − 2Mr + a2, ρ := r2 + a2cos2θ, a :=
J

M
.

For a → 0 it approaches the Schwarzschild black hole. The rotation of the black
hole causes a dragging effect that can accelerate nearby particles and causes them
to corotate. The ergosphere is a region where the corotation speed reaches the
speed of light. The corotation also changes the shape of the event horizon, which
is no longer described by the Schwarzschild radius.
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Section 3:

Compact objects

This section is written with information mainly from the books An introduction
to modern astrophysics by B. W. Carroll and Ostlie (2017) and High Energy
Astrophysics by Longair (2011).

3.1 Compact object formation

At the end of their lifecycle, massive stars fuse heavier and heavier elements in their
cores, with each step in the series of the elements requiring a higher temperature
to ignite and being less efficient in liberating energy. At a central temperature
of around 109 K electron–positron pairs start to form, these quickly annihilate
and produce neutrinos that easily escape the interior of the star and carry a large
portion of the energy away. This phenomenon adds to the inefficiency of later
stages in the fusion sequence, meaning that the time-scales get shorter and shorter.
The last stage lasts only a few days and fuses silicon into iron nuclei 56Fe, reactions
that produce heavier nuclei are endothermic and extract energy from the core.

As the iron core heats up, additional processes start that weaken the star’s
ability to resist its collapse. First, energetic electrons begin to interact with protons
and form neutrons through the inverse β-decay, producing neutrinos, leading to
more energy loss. Second, highly energetic γ-photons start to disintegrate heavy
nuclei into lighter ones, removing thermal energy from the core and producing a
large amount of free neutrons and protons that again combine with electrons and
lead to high energy loss. With most of the produced energy being carried out of the
core by neutrinos and the weakening of the electron degeneracy pressure, the core
rapidly collapses. Because information from the core travels at the speed of sound
and the collapse is very rapid, the core decouples into an collapsing inner core and
an outer core, which is delayed in its collapse. The collapse is stopped when the
material is so dense that the Pauli exclusion principle applies to neutrons. The
inner core bounces outward and collides with the outer core that has also started
to collapse in the mean time. This creates a shock wave in the core, increasing
the density and temperature. The high temperature results in photodisintegration
of heavy nuclei producing free protons that interact with free electrons to form
neutrons and neutrinos. The density climbs so high that the highly energetic
neutrinos are captured. This process releases an enormous amount of energy in
a short burst of time, resulting in a supernova explosion that blows away the
surrounding atmosphere, exposing the dense hot iron core.

The extreme conditions present in the core after the collapse crush the heavy
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nuclei and electrons and transform them into an extremely dense material that
resists further contraction by neutron degeneracy pressure, creating a neutron star.
Due to the conservation of angular momentum, the sudden shrink in radius forces
the neutron star to spin up to unbelievable frequency, shortening the period to
about a millionth of the period of the former core, resulting in a rotational period
of a few milliseconds.

3.2 Black holes

There is an upper limit on the mass of neutron stars, called the Tolman-Oppenheimer-
Volkoff limit, ranging from 2.2 M⊙ for a static case to 2.9 M⊙ for rapidly rotating
ones. The collapse of a core exceeding this mass limit cannot be stopped even
by the neutron degeneracy pressure and the material is crushed into a black hole.
The radius of a black hole is described by the event horizon. For a non-rotating
black hole it is the Schwarzschild radius RS = 2GM

c2
, the radius at which the escape

velocity of the gravitational well is equal to the speed of light. Crossing below
the event horizon causes any matter as well as light to fall inward and prevents it
from ever escaping. This means that no light can be emitted from the surface of a
black hole and travel outward for us to detect. A rotating black hole introduces a
dragging effect that forms a region called the ergosphere around the event horizon
where infalling particles are forced to corotate at the speed of light, and the event
horizon changes its shape. If one were to look toward a black hole, they would
only observe a black disk, a shadow obscuring the background of stars. As direct
observation of light from a black hole is impossible, only the gravitational influence
on the surrounding matter can be studied. A black hole is thus characterized by
three parameters that dictate the curvature of the surrounding spacetime, the mass
M , the charge Q and its spin angular momentum J .

3.3 Neutron star magnetosphere

Another consequence of the core collapse is the amplification of the magnetic field.
The magnetic field lines are frozen into the conducting matter, which means the
magnetic flux, Φ0, going through the surface is conserved during the collapse

Φ0 = B04πR
2
0 = ΦNS = BNS4πR

2
NS.

Since the radius rapidly falls, the magnetic field of the neutron star must increase
greatly to conserve the magnetic flux. Typical neutron stars carry magnetic fields
on the order of 108 T, much larger compared to the Sun’s global magnetic field
B⊙ = 2× 10−4 T.

The model of neutron star magnetospheres described in the following paragraphs
is based on the review of Philippov and Kramer (2022). Magnetospheres of typical
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neutron stars are approximated as dipolar, with the axis of the dipole generally
not aligned with the rotational axis. The material inside the neutron star is
assumed to be superconducting σ → ∞. From equations of magnetohydrodynamics
and assuming rigid rotation it arises that the electric field inside the star E⃗ =
−v⃗× B⃗/c = (Ω⃗× r⃗)× B⃗/c, where Ω⃗ is the star rotation vector and r⃗ is the position
vector. A model of the electric field satisfying this condition and the Poisson’s
equation implies strong electric fields at the surface parallel to the magnetic field
E⃗ · B⃗ ≠ 0. The electric fields can pull charged particles from the star, filling the
surroundings and creating a plasma magnetosphere. Polarisation currents of this
plasma screen the electric field and lower the extraction of charged particles. A
steady state of this system is achieved when the electric field in the frame of the
moving plasma vanishes. In the outside frame, this corresponds to the frozen-in
condition E⃗ = v⃗ × B⃗ and E⃗ · B⃗ = 0.

When the steady state E⃗ ·B⃗ = 0 is assumed to hold for the whole magnetosphere,
we get the condition for the electric field E⃗ = (Ω⃗× r⃗)× B⃗/c, the magnetosphere
corotates with the neutron star. As we move farther from the surface, the corotation
speed approaches the speed of light, reaching it at the radius Rc, which marks the
“light cylinder.” Magnetic field lines that fit inside the light cylinder are closed and
retain plasma. In contrast, magnetic field lines that touch the light cylinder are
unwound and open up to infinity because the plasma corotation velocity cannot
exceed the speed of light. These are called open magnetic field lines, and the region
near the surface of the neutron star where they originate is labelled as the polar
cap region. The plasma in open magnetic field lines escapes the magnetosphere,
carrying energy away from the neutron star and slowing its rotation.

As the plasma in the polar cap region is not contained, the screening of the
electric field does not occur and electrons are accelerated to high Lorentz factors.
The energetic primary electrons travel along curved magnetic field lines and emit
γ-ray photons as a result of curvature radiation. These photons then interact with
the strong magnetic field and undergo single-photon conversion into an electron-
positron pair, γ+B → e−+e+. The new pair is again accelerated and emits γ-rays
in a similar fashion, creating a cycle that produces a dense secondary plasma. This
“pair cascade” eventually screens the electric field, weakening the acceleration and
disallowing the creation of secondary particles. When the secondary plasma leaves
the vicinity of the polar cap region, the process repeats, creating a series of plasma
clumps. The region between the star surface and the point where the pair cascade
takes place and in which primary electrons are accelerated is called the gap region.

The energetic particles produced in the polar cap region continue their journey
along the magnetic field lines and emit a radio beam due to curvature radiation.
As the neutron star rotates, this beam may get directed towards Earth. When
this happens, astronomers observe periodic radio pulses with very short periods,
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in the order of seconds or milliseconds, and extremely precise timing. They were
first discovered by Jocelyn Bell in 1967, first published by Hewish et al. (1968) and
soon named pulsars.

Figure 1: Model of a neutron star magnetosphere. Closed field lines trap plasma
which corotates with the neutron star. At the light cylinder radius the corotation
velocity exceeds the speed of light and the plasma escapes opening up the magnetic
field lines. Credit: Philippov and Kramer (2022)



22

Figure 2: Model of a black hole magnetosphere. The black circle represents the
Event Horizon that traps any matter or light that enters, the elliptical area around
the event horizon is the ergosphere. The dotted lines describe the inner light surface
(ILS), below which a observer at rest with the reference frame falls inward, and
the outer light surface (OLS), above which the observer at rest moves outward.
The light green lines represent the projection of the magnetic field lines onto the
plane of the figure, which is spins with the black hole at half the corotation speed
ΩH/2. The spinning magnetic field develops instabilities within a thin ejection disk
producing torgue G. Therefore, rotational energy Ė and angular momentum ˙J
is extracted from the black hole and transported to the surrounding material,
creating magnetocentrifugal wind. When the gas flows outward due to centrifugal
force, its inertia decreases its angular rotation, depicted by the gradient ∇Ω, and
the magnetic field lines, which are embedded into the gas, are dragged along and
twisted. The direction of the twist is portrayed by the ⊗,⊙ symbols. The twisted
magnetic field and the dynamical pressure of the disk drive the collimation of jets.
The outer boundary of the jets is surrounded by a current sheath, depicted in light
blue. Credit: Blandford and Globus (2022).



23

3.4 Observational importance

These compact objects play an important role in many astrophysical phenomena.
The extremely short periodic pulsations of pulsars were already tied to the radio
beam of a rapidly rotating neutron star. The high precision of the pulses is used
in pulsar timing arrays to detect small deviations in their timing and can help
to uncover cosmic gravitational waves. Pulsars are also a source of energy that
accelerates surrounding material left from the supernova explosion. This pulsar
wind creates pulsar wind nebulas that are observed across the electromagnetic
spectrum.

Both neutron stars and black holes have been observed to host accretion disks
and jets. Super-massive black holes (SMBHs), characterised by their mass in the
order of 106 − 109M⊙, are located in the centre of most galaxies. When there is
ongoing accretion of matter onto the SMBH, we observe an active galactic nucleus
(AGN) that outshines the whole stellar component of the galaxy and plays a crucial
role in its evolution affecting the mixing of the intergalactic medium and stellar
formation.

In recent years, the fascinating study of gravitational waves has been brought into
public perception after their first direct measurement by the LIGO Collaboration
in 2015. The type of gravitational waves measured in this discovery is created by a
merger of two massive compact objects, in this case two stellar-mass black holes.
From theory, a merger of a black hole and a neutron star or of two neutron stars
also produces gravitational waves, although much fainter and harder to detect.
These mergers are additionally connected to short-hard gamma-ray bursts, and
kilonovae, one of the most luminous phenomena in the universe.

Our understanding of these compact objects and the interaction with the
surrounding matter is thus crucial for further research in other astrophysical
branches. To obtain the full picture of the nature of these compact objects we need
to study the plasma in their vicinity and the associated processes, such as particle
acceleration, emission processes, accretion and jet production.
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Section 4:

Particle-in-cell (PIC) method

This chapter introduces the basics of particle-in-cell simulations: the configuration of
particles and the electromagnetic field, the equations dictating the time evolution of
the system and their corresponding numerical algorithms. The equations presented
in this chapter take the value of speed of light c = 1.

In contrast to the magneto-hydrodynamic (MHD) simulations, which describe
the plasma as a fluid, the idea of the particle-in-cell approach is to simulate the
plasma self-consistently at kinetic scales in an electromagnetic field. This allows
us to capture important physical processes at the microscopic scales that are not
resolved by the MHD method. The need to simulate a large number of particles
caused by the high plasma density required to observe the studied plasma properties
and processes may paint this approach as unfeasible, even impossible.

The first way to significantly reduce the computational load is to replace the
direct Coulomb interaction of the individual particles by the indirect interaction
of the particles through the electromagnetic field. One moving charged particle
represents arbitrary current that induces an electric field that affects another
particle through the Lorentz force. This greatly reduces the scaling of the number
of interactions and calculations from N2 to N .

The second approach is to implement a macroparticle that represents a large
number of real physical particles, having the appropriate charge and mass, while
counting as a single particle in the numerical procedure. The number of particles
represented is called the macrofactor and can vary for each macroparticle.

4.1 Field evolution

The electromagnetic fields are evolved in each time step according to Maxwell’s
equations, particularly the Faraday and the Ampère–Maxwell law.

∂tB⃗ = −∇× E⃗, (11)

∂tE⃗ = ∇× B⃗ − 4πJ⃗. (12)

The numerical scheme used in this thesis is based upon the the finite difference
time domain (FDTD) method by Yee (1966). In this method, the components
of the electromagnetic field are staggered both in space and time, as described
by Figure (3). The staggered spatial configuration is known as the Yee lattice,
the staggered time evolution is called the leapfrog scheme. For example, the time
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evolution of Bz in this scheme is discretized as

Bz|n+1/2
i+1/2,j+1/2,k −Bz|n−1/2

i+1/2,j+1/2,k

∆t
=−

Ey|ni+1,j+1/2,k − Ey|ni,j+1/2,k

∆x

+
Ex|ni+1/2,j+1,k − Ex|ni+1/2,j,k

∆y
,

where subscripts i, j, k describe position in the Yee lattice, superscript n is the
temporal index, ∆t is the time step and ∆x,∆y are lengths of a grid cell. Gauss’s

Time
En En+1

Bn-1/2 Bn+1/2

tn-1

En-1

tn-1/2
tn tn+1tn+1/2

x

y

i i+1/2 i+1
j

j+1/2

j+1

Ez

Ey

Ex
Bx

By

Bz

x

y

z

Ex
Ey

Ez Bx
By

Bzi+1
j+1

k+1
2D 3D

Figure 3: Top: the spatial staggering of the components of the electromagnetic
field in the Yee lattice. Bottom: the temporal staggering of the electric and the
magnetic field.

law ∇ · E⃗ = ρ is occasionally used to correct errors in the electric field that arise
due to numerical inaccuracy inherent to the discretization of the derivatives. This
numerical procedure conserves the divergence-free property of the magnetic field.
If the initial magnetic field satisfies the condition ∇ · B⃗ = 0, it holds for the entire
simulation.
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4.2 Particle motion

The motion of particles is dictated by the Lorentz force, giving us a set of equations:

dx⃗

dt
=

u⃗

Γ
, (13)

du⃗

dt
=

q

m

(
E⃗ +

u⃗× B⃗

Γ

)
, (14)

where u⃗ = Γv⃗, Γ =
√
1− v2 and v⃗ is the velocity of the particle in units of speed

of light.
The common numerical scheme to solve these equations is the Boris push by

Boris and Shanny (1971). Similarly to the Yee method for the field solver, the
position vector x⃗ and velocity vector u⃗ are staggered in time, where the position
is placed at whole time steps x⃗n, x⃗n+1 and the velocity resides at half time steps
u⃗n−1/2, u⃗n+1/2. The new particle position is calculated as

x⃗n+1 = x⃗n +
u⃗n+1/2

Γ
∆t.

To solve the equation (14) discretized as

u⃗n+1/2 − u⃗n−1/2

∆t
=

q

m

(
E⃗n +

u⃗n × B⃗n

Γn

)
,

u⃗n is first replaced by (u⃗n+1/2+u⃗n−1/2)/2. Then two helpful variables are introduced

u⃗− = u⃗n−1/2 +
qE⃗n

2m
∆t,

u⃗+ = u⃗n+1/2 − qE⃗n

2m
∆t,

that allow us to decompose it into three steps

u⃗− = u⃗n−1/2 +
qE⃗n

2m
∆t,

u⃗+ = u⃗− +
q

2m

(u⃗+ + u⃗−)× B⃗n

Γn
∆t,

u⃗n+1/2 = u⃗+ +
qE⃗n

2m
∆t.

The first is a half step acceleration by the electric field, second is the rotation of the
velocity vector by the magnetic component, and last is the second half acceleration
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by the electric field. The second step however includes u⃗+ on the right side in the
cross product. This can be solved by introducing

f⃗1 =
q∆t

2mΓn
B⃗n,

u⃗ ′ = u⃗− + u⃗− × f⃗1,

f⃗2 =
2f⃗1

1 + (f⃗1)2
,

u⃗+ = u⃗− + u⃗ ′ × f⃗2,

where Γn =
√

1 + (u⃗−)2.
One may take notice that this scheme requires the magnetic field at a whole

timestep B⃗n, while the leapfrog scheme assumes the magnetic field is known at
half timesteps n− 1/2, n+ 1/2. In practice, the simulation starts with an initial
electric and magnetic field at time t0. The first step is a half step of the magnetic
field B⃗t0 using E⃗t0 to time t0 + 1/2, getting B⃗t0+1/2. Then we follow with a whole

step of the electric field E⃗t0 to E⃗t0+1 using the half step value B⃗t0+1/2 and complete
the cycle by taking a half step from B⃗t0+1/2 to B⃗t0+1 by using E⃗t0+1. The method
is depicted in the Figure (4). While it increases the number of calculations, the
concept of taking half step jumps with the magnetic field preserves the second
order accuracy of the leapfrog scheme while eliminating the time staggering of
the electric and magnetic field that in turn simplifies the numerical calculations
of the particle motion. Another solution could be to take a time average of the
half-timestep magnetic fields to obtain the required whole-timestep value.

Because the particle is located at an arbitrary position (x, y, z) of the grid cell
while the electric and magnetic fields are located at fixed points (xi, yi, zi), there
has to be an interpolation of the fields to the position of the particle. That is done
by the so-called form factors or form functions S(|xi − x|), that assign a weight to
the values of the fields in nearby cells depending on their distance from the particle
|xi − x|, with the condition that the weights sum to one

E⃗(x, y, z) =
∑
ijk

E⃗iS(|xi − x|)S(|yj − y|)S(|zk − z|). (15)

The number of nearby cells used and the distance dependency is given by the
chosen form factor. For example, the cloud-in-cell (CIC) scheme is a linear first
order interpolation that uses two neighbouring cells

S(|xi − x|) =

{
1− |xi − x|

∆x
|xi − x| < ∆x,

0 |xi − x| > ∆x.
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t
n n+1/2 n+1

B

E

v, J

En

Bn+1/2,Jn+1/2

En,Bn

En+1

En+1,Bn+1

Figure 4: The numerical procedure of the leap frog method. The magnetic field
is evolved from the initial value Bn to Bn+1/2 by a half step using En. Then the
electric field is taken from En to En+1 using Bn+1/2, Jn+1/2. Lastly, the magnetic
field follows from Bn+1/2 to Bn+1 using En+1.

As the name implies, this scheme spreads the macroparticle into a cloud of particles
distributed across the cell. The form factor can then be interpreted as the portion
of particles that are located near each vertex of the grid cell and “feel” the
corresponding field. Higher-order form factors can be used in PIC simulations for
better numerical accuracy.

4.3 Current deposition

The particles hold charge and their motion creates an electrical current in the grid.
Careless deposition of the charge and current creates numerical errors that result in
violation of Gauss’s law and phantom forces. While these errors can be corrected
with so-called divergence cleaning, it is beneficial to use procedures that conserve
the charge and current by design.

My current deposition is derived from a deposition scheme introduced by
Esirkepov (2001). The particle motion and form factors are combined in a way
that preserves charge and produces the correct total current. The advantage of this
method is that it supports all form factors, has good performance, and is suitable
for my modification.
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As implemented in the ACRONYM code, the scheme takes the macroparticle’s
positions and velocities at the old and new timestep, x⃗n, x⃗n+1, v⃗n−1/2, v⃗n+1/2, and
calculates the form factors at the positions

Sold
i = S(|xi − xn|), Snew

i = S(|xi − xn+1|),
Sold
j = S(|yi − yn|), Snew

j = S(|yi − yn+1|),
Sold
k = S(|zi − zn|), Snew

k = S(|zi − zn+1|),

Si = Snew
i − Sold

i , Sj = Snew
j − Sold

j , Sk = Snew
k − Sold

k .

The current introduced by that macroparticle is then given by

∆Jx|i,j,k = − Q

∆x2∆t
{Si[(S

old
j (Sold

k +
1

2
Sk)] + [Sj(

1

2
Sold
k +

1

3
Sk)]},

Jx|n+1/2
i,j,k =

i∑
α=0

∆Jx|α,j,k,

∆Jy|i,j,k = − Q

∆x2∆t
{Sj[(S

old
i (Sold

k +
1

2
Sk)] + [Si(

1

2
Sold
k +

1

3
Sk)]},

Jy|n+1/2
i,j,k =

j∑
α=0

∆Jy|i,α,k,

∆Jz|i,j,k = − Q

∆x2∆t
{Sk[(S

old
i (Sold

j +
1

2
Sj)] + [Si(

1

2
Sold
j +

1

3
Sj)]},

Jz|n+1/2
i,j,k =

k∑
α=0

∆Jz|i,j,α,

where Q is the charge of the macroparticle, ∆x,∆t are the spatial and temporal
resolution of the simulation.

In 2D, the formulas are reduced into

∆Jx|i,j = − Q

∆x2∆t
[Si(S

old
j +

1

2
Sj)], Jx|n+1/2

i,j =
i∑

α=0

∆Jx|α,j,

∆Jy|i,j = − Q

∆x2∆t
[Sj(S

old
i +

1

2
Si)], Jy|n+1/2

i,j =

j∑
α=0

∆Jy|i,α,

Jz|n+1/2
i,j =

Qvz
∆x3

(Sold
i Sold

j +
1

2
SiS

old
j +

1

2
Sold
i Sj +

1

3
SiSj).



30

In 1D, the formulas are simplified further into

∆Jx|i = − Q

∆x2∆t
Si, Jx|n+1/2

i =
i∑

α=0

∆Jx|α,

Jy|n+1/2
i =

Qvy
∆x3

Snew
i , Jz|n+1/2

i =
Qvz
∆x3

Snew
i .

My modification of the current deposition is described in the next section.
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Section 5:

Particle-in-cell equations in curved space-
time

This chapter describes modifications of the equations of the PIC procedure to
include the effects of curvature of spacetime. The approach follows the 3+1
formalism presented by Komissarov (2004). This formalism greatly simplifies
the effort by slicing the 4-dimensional spacetime into 3-dimensional space-like
hypersurfaces, which are parametrized by a universal time. This brings two
advantages: 1) the equations take on a familiar flat-spacetime form, allowing easier
physical interpretation, and 2) the universal time parameter and timestep across
the whole grid makes it possible to approach numerically. In this chapter, the
speed of light is assumed c = 1.

5.1 Declaration of spacetime

Starting with the general form of the spacetime interval in the Arnowitt–Deser–Misner
(ADM) formalism

ds2 = (β2 − α2)dt2 + 2βidx
idt+ γijdx

idxj, (16)

we can convert any spacetime metric into a set of parameters and construct a
4-metric in this form

gµν =

(
β2 − α2 βj

βi γij

)
. (17)

where the parameter α is the lapse function which describes the evolution of time
and gives the proper time dτ = αdt of the fiducial observer (FIDO), an observer at
rest with respect to 3D space, characterized by the 4-velocity nµ = (−α, 0, 0, 0).
The vector βi is the shift vector, describes the velocity of the reference frame and
usually appears in rotating systems such as the Kerr metric. The tensor γij is the
spatial 3-metric. We see that γij = gij.

Product of the metric and its inverse must give identity gµσg
σν = δνµ, leading to:

gµν =

− 1

α2

βj

α2

βi

α2
γij − βiβj

α2

 . (18)

The spatial components of the inverse 4-metric and the inverse 3-metric are generally
not equal, γij ̸= gij.
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5.2 Electromagnetic solver

Using the electromagnetic 4-tensor Fµν , the 3+1 formalism produces the Maxwell’s
equations in a familiar form, modified by the parameters of the metric

∂tD
i =

1
√
γ
ϵijk∂jHk − 4πJ i, (19)

∂tB
i = − 1

√
γ
ϵijk∂jEk, (20)

Ei = αDi +
√
γϵijkβ

jBk, (21)

Hi = αBi −
√
γϵijkβ

jDk, (22)

where γ := det(γij) is the determinant of the 3-metric and J i = αji − ρβi is
the current density measured by the coordinate grid, as obtained during current
deposition. The components ji are the current density and ρ is the charge density
as measured by the FIDO.
We can express the electric and magnetic fields as Dµ = F µνnν and Bµ = −∗F µνnν ,
which can be interpreted as a projection of the electromagnetic tensor to the
reference frame of the FIDO with the 4-velocity nν , which leads to the identification
of Di and Bi as the electromagnetic field measured by the FIDO. The fields Ei

and Hi are auxiliary fields measured by the reference frame.
Careful examination of the set of equations reveals they are incompatible with

the leapfrog scheme. The problem lies in the mixing of electric and magnetic fields
Di, Bi in the auxiliary fields Ei, Hi which are used for their time evolution. As
described in the previous section, the ordinary procedure would use the initial value
Dt0 to take a half step of the magnetic field Bt0 to time t0 + 1/2, getting Bt0+1/2.
Then, it would follow with a whole step of the electric field Dt0 to Dt0+1 using the
half step value Bt0+1/2. However, in our case the electric field Dt0 is to be evolved
by the auxiliary magnetic field H t0+1/2 that must be calculated from Dt0+1/2 and
Bt0+1/2. One can also predict that the same problem arises while completing the
cycle with the second half step of the magnetic field Bt0+1/2 using Dt0+1. Solving
this problem means modifying the leapfrog scheme.

One solution is to use a predictor-corrector scheme. We start the time evolution
procedure with the fields Dn, Bn, En, Hn. After calculating the half step magnetic
field Bn+1/2, one makes a prediction of the electric field Dn+1/2 by taking a half
step using the auxiliary fields En and Hn. The next step is to calculate the
auxiliary fields at the half-step time En+1/2, Hn+1/2 from the half-time step values
of Dn+1/2, Bn+1/2. Using the half-timestep auxiliary fields we make a correction
Dn+1. The same prediction-correction method is then used for the half-step of the
magnetic field Bn+1/2 to obtain Bn+1.
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In my work, this problem is avoided by restricting myself to non-rotating
systems where the shift vector βi = 0. This simplifies the auxiliary fields in
equations (21), (22) into the form

Ei = αγijD
j,

Hi = αγijB
j,

which allows to employ the original leapfrog scheme. There is, however, one
remaining catch. If the 3-metric γij is not diagonal, the components of the fields
mix together. For example, the x-component Ex would be computed from the
components Dx, Dy, Dz. This causes a problem because they are located at different
spots of the grid cell due to the spatial staggering of the Yee lattice and would have
a different value at the position of Ex. This leads to the need for interpolation.
This work interpolates the fields using weighted averaging with the weights being
the determinant of the 3-metric at the position of the field components. Weighting
by the determinant of the metric is computationally cheap while capturing the
effect of curvature. In the 1D case, the i-th grid cell has the Ex at the position
i+1/2, denoted as Ex|i+1/2. Similarly, we have the components Dx|i+1/2, D

y|i, Dz|i
and the determinant of the metric at those positions γi+1/2, γi. The x-component is
already at the right position, but the y- and z-components have to be interpolated
like this

Dy|i+1/2 =
γiD

y|i + γi+1D
y|i+1

γi + γi+1

,

Dz|i+1/2 =
γiD

z|i + γi+1D
z|i+1

γi + γi+1

.

(23)

The interpolation scheme is similar in 2D and 3D. The additional dimensions only
extend the spatial staggering and the interpolation is thus calculated from more
terms from the surrounding cells

Dy|i+1/2,j =(γi,j−1/2D
y|i,j−1/2 + γi,j+1/2D

y|i,j+1/2

+ γi+1,j−1/2D
y|i+1,j−1/2 + γi+1,j+1/2D

y|i,j−1/2)

/(γi,j−1/2 + γi,j+1/2 + γi+1,j−1/2 + γi+1,j+1/2).

(24)

5.3 Particle pusher

The motion of a macroparticle is described by its position xi, its coordinate velocity
vi and its 4-velocity uµ. Borrowing from Crinquand (2021), the equations of motion
in the 3+1 formalism come in this form

dxi

dt
= vi = α

γijuj

Γ
− βi, (25)
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dui

dt
=α

q

m

(
γijD

j +
√
γϵijk

γjlul

Γ
Bk

)
− Γ∂iα + uj∂iβ

j − α

2Γ
∂i(γ

jk)ujuk,

(26)

where Γ =
√

1 + γijuiuj. The derivative of the position, in equation (25), is
similar to the classical version, in equation (13), the velocity term is multiplied
by the parameter α and the position is also shifted by the shift vector βi. The
acceleration equation (26) has two rows: the first is the Lorentz force multiplied
by the parameters of the metric, the second row describes the acceleration caused
by the curvature of the spacetime. The first term −Γ∂iα can be identified with
the gravitational pull of the star, the second uj∂iβ

j is tied to the rotation of the
system and is interpreted as the centrifugal force, and the third − α

2Γ
∂i(γ

jk)ujuk

diverts the motion of a particle due to the 3-metric gradient.
As in the classical case, the fields located at the grid points need to be inter-

polated to the position of the particle. For this, the interpolation scheme using
the form factors S(|xi − x|) can be used. However, the curvature of space needs to
be taken into account. The detailed description of the interpolation is covered in
Section (6.5).

Because of the non-linear term − α
2Γ
∂i(γ

jk)ujuk, the Boris push cannot be used
to calculate the particle motion. Previous works on GRPIC (Cerutti (2021)) have
presented a solution in the form of Strang splitting, where the metric-induced
acceleration and the Lorentz force are computed individually. First, the system
is transformed by a Lorentz boost into a locally flat spacetime, where the metric
terms vanish and the Boris push is suitable and used to calculate the Lorentz
portion of the motion, from vi|n−1/2 to ṽi|n+1/2. After another Lorentz boost back
into the original curved space-time, the metric-induced acceleration is applied using
an iterative algorithm on ṽi|n+1/2 to obtain the final velocity vi|n+1/2.

In this work, a different approach is adopted. I modified the Boris push for use
in curved spacetime, described in Section 6.4, eliminating the need to transform into
a local flat spacetime using the Lorentz boost. However, a method for computing
the metric acceleration has not yet been implemented. The code is thus limited
to metrics where spacetime is not curved, and the curvature terms vanish. My
implementation still allows us to study systems with non-Minkowski metrics.
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Section 6:

Implementation in the ACRONYM PIC
code

This section describes the implementation of curved spacetime modification into
the PIC method. ACRONYM (Another Code for pushing Relativistic Objects,
Now with Yee lattice and Macro particles) is a PIC simulation code written in
C++. It provides simulation in 1D, 2D, or 3D Cartesian cell grid with adjustable
spatial and temporal resolution. It offers several options for the electromagnetic
field solver, with varying order of accuracy. The particle motion is computed
using either the Boris push or the Vay push. It contains many options for the
form factors used in the interpolation of the electromagnetic field, in current
deposition, and in boundary conditions. MPI parallelization makes it well scalable
at high-performance computing systems.

6.1 Spacetime curvature

Spacetime in the simulation is characterized by the lapse function array α and the
3-metric array γij. The shift vector βi has not been included because I initially
focused only on non-rotating systems.

Because of the spatial staggering of the fields in the grid, the array α is separated
into two arrays, alpha E for the electric field and alpha B for the magnetic field.
Each array is further divided into three components corresponding to the three
components of the field alpha E[0] with the value of α at the position of Ex,
alpha E[1] for the electric component Ey, alpha E[2] for Ez, and similarly for
alpha B. Each of these components contains a 3D array representing the values
across the simulation grid. The same convention is used to introduce arrays
sqrt det gamma E and sqrt det gamma B for the parameter

√
γ.

Similarly, the 3-metric is separated into two 3×3 arrays gamma E and gamma B
due to the spatial staggering of the Yee lattice. Now, each array has 9 components:
the first column contains arrays with values of the 3-metric at the position of the x-
component of the field, the second at the position of the y-component, and the third
at the position of the z-component. For example, the components gamma E[0,0],
gamma E[1,0], gamma E[2,0] are three 3D arrays of the size of the simulation
containing values of γ00, γ10, γ20, respectively, at the grid position of Ex.

Due to the inconvenience and worse readability of the programming names
for the parameters, the mathematical symbols will be used in equations. The
reader must bear in mind that the parameters have to be spatially aligned with
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the quantities they are being multiplied with.

6.2 1D Field solver

The modification of curvature expanded the electromagnetic field. There are now
four fields Di, Bi, Ei, Hi. The time evolution of the electromagnetic field by done
in three steps:
1) a half step of the magnetic field Bi

By|n+1/2
i+1/2 = By|ni+1/2 +

1
√
γ|i+1/2

Ez|ni+1 − Ez|ni
∆x

∆t

2
,

Bz|n+1/2
i+1/2 = Bz|ni+1/2 −

1
√
γ|i+1/2

Ey|ni+1 − Ey|ni
∆x

∆t

2
,

2) whole step of the electric field Di

Dx|n+1
i+1/2 = Dx|ni+1/2 − Jx|n+1/2

i+1/2 ∆t,

Dy|n+1
i = Dy|ni − Jy|n+1/2

i ∆t+
1

√
γ|i

Hz|n+1/2
i−1/2 −Hz|n+1/2

i+1/2

∆x
∆t,

Dz|n+1
i = Dz|ni − Jz|n+1/2

i ∆t− 1
√
γ|i

Hy|n+1/2
i−1/2 −Hy|n+1/2

i+1/2

∆x
∆t,

3) second half step of the magnetic field Bi.

By|n+1
i+1/2 = By|n+1/2

i+1/2 +
1

√
γ|i+1/2

Ez|n+1
i+1 − Ez|n+1

i

∆x

∆t

2
,

Bz|n+1
i+1/2 = Bz|n+1/2

i+1/2 − 1
√
γ|i+1/2

Ey|n+1
i+1 − Ey|n+1

i

∆x

∆t

2
,

Each of these steps is preceded by the computation of the auxiliary fields Hi, Ei

from the fields Bi, Di, respectively

Ei = αγijD
j,

Hi = αγijB
j.

For a system with a diagonal 3-metric γij this is straightforward, the components
Di, Bi do not mix, are aligned with Ei, Hi and no interpolation is needed. As
described in section 5.2, introducing a non-diagonal 3-metric γij complicates the
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computation, because the field components mix and are misaligned in the Yee
lattice. This requires interpolation according to equations (23).

To test the correct functionality of the field solver, vacuum simulations were
run in which a sine wave in Dy was generated at a single point of the domain. The
boundary conditions were set to absorb the electromagnetic field at the boundaries.
The propagation of the wave was investigated to detect numerical errors, and
the propagation speed was calculated and compared to the expected analytical
value in various configurations of spacetime. The propagation of the wave was
first simulated in the Minkowski spacetime, where the behaviour is expected not
to change with respect to the unmodified code. The result of the simulation is
in Figure (5) on the left. No obvious errors in the propagation were found. The
propagation speed measured from the simulation agreed with the speed of light in
vacuum, which is also obvious from the figure. The units of the axis are such that
a displacement of 1dx/de in time 1dtωp corresponds to the speed of light.

Then, a non-trivial metric was introduced. In Cartesian coordinates the
Schwarzschild spacetime interval reads

ds2 = −(1− ξ)2

(1 + ξ)2
dt2 + (1 + ξ)4dxidxi, ξ < 1,

ξ =
RS

4R
, RS =

2GM

c2
, R =

√
x2 + y2 + z2.

Comparing with the general ADM form of the spacetime interval

ds2 = (β2 − α2)dt2 + 2βidx
idt+ γijdx

idxj, (27)

we get the parameters of the metric

α =
1− ξ

1 + ξ
, γij =

{
(1 + ξ)4 for i = j,

0 for i ̸= j.

First, the metric was set to be constant across the simulation domain with the values
of the Schwarzschild metric at R = 2RS, α(R = 2RS) ≈ 0.78, γii(R = 2RS) ≈ 1.6
to check for stability and propagation speed. This radius was chosen because
for a compact object of mass M = 2M⊙, 2RS ≈ 11km, which corresponds to
a radius just above the surface of a neutron star. With this configuration, I
experienced a problem with boundary conditions, which are designed to react to
the incoming electromagnetic field and damp it down according to the unmodified
Maxwell’s equations, not accounting for the curvature. When the electromagnetic
wave arrives at the boundary, the damping is calculated incorrectly, a jump in
the electromagnetic field is created that diverges into infinity and propagates back
into the simulation, numerically ruining it. To solve this issue, the metric was
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padded near the boundaries to approach the Minkowski metric. This padding was
done through a linear interpolation between the Minkowski metric and the value
of the metric at the border of the padding. The result of the simulation is on the
right side of Figure (5). The propagation speed was measured to agree with the
analytical value, calculated from the Maxwell’s equations in 3+1 formalism, with
the assumption of a diagonal constant metric γij = 0 for i ̸= j, ∂iα = 0, ∂iγij = 0

Ei = αγiiD
i ⇒ ∇× Ei = αγii∇×Di,

Hi = αγiiB
i ⇒ ∇×Hi = αγii∇×Bi,

∂tD
y =

1
√
γ
∇×Hz =

1
√
γ
αγzz∇×Bz,

∂tB
z = − 1

√
γ
∇× Ey = − 1

√
γ
αγyy∇×Dy,

∂2
tD

y =
α2γ2

yy

γ
∇2Dy,

vp ∝
αγyy√

γ
.

0 5 10 15
x [dc]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

t
[

1
p

]

Dy = 1 yy = 1

0 5 10 15
x [dc]

Dy = 0.78 yy = 1.6

1.0

0.5

0.0

0.5

1.0

Figure 5: The electric fieldDy in the 1D simulation of the electromagnetic wave prop-
agating in the x-direction. Left: Minkowski metric, the propagation is unchanged
from the unmodified code. Right: Constant metric with values corresponding to
the Schwarzschild metric at R = 2RS.
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Second, the metric was set to curve according to the Schwarzschild metric in
the distance range of 2-5 Schwarzschild radii. This was done to check stability
of the wave propagation through curved spacetime. The propagation speed was
measured at various positions of the simulation, which agreed with the predicted
speed calculated from the parameter of the metric at that position, shown in
Figure 6.

0.8
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1.2

1.4

1.6
||

Dy max amplitude

2.0 2.5 3.0 3.5 4.0 4.5
R [RS]

0.6

0.7

0.8

v p
[c

]

vp ||det( ) 1/2

Measured propagation speed

Figure 6: Top: Parameters of the metric in relation to the position in the simulation,
that corresponds to a radius in the Schwarzschild metric. The maximum amplitude
of the wave, in black, changes as it travels through the curved spacetime. Bottom:
The measured propagation speed of the wave in black. The blue line describes the
predicted propagation speed calculated from the parameters of the metric
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6.3 2D Field solver

The underlying method is the same as in the 1D case. The additional dimension
introduces more terms into the time evolution:
1) a half step of the magnetic field Bi

Bx|n+1/2
i,j+1/2 = Bx|ni,j+1/2 −

1
√
γ|i,j+1/2

Ez|ni,j+1 − Ez|ni,j
∆x

∆t

2
,

By|n+1/2
i+1/2,j = By|ni+1/2,j +

1
√
γ|i+1/2,j

Ez|ni+1,j − Ez|ni,j
∆x

∆t

2
,

Bz|n+1/2
i+1/2,j+1/2 = Bz|ni+1/2,j+1/2 −

1
√
γ|i+1/2,j+1/2

Ey|ni+1,j+1/2 − Ey|ni,j+1/2 + Ex|ni+1/2,j+1 − Ex|ni+1/2,j

∆x

∆t

2
,

2) whole step of the electric field Di

Dx|n+1
i+1/2,j =Dx|ni+1/2,j − Jx|n+1/2

i+1/2,j∆t

− 1
√
γ|i+1/2,j

Hz|n+1/2
i+1/2,j−1/2 −Hz|n+1/2

i+1/2,j+1/2

∆x
∆t,

Dy|n+1
i,j+1/2 =Dy|ni,j+1/2 − Jy|n+1/2

i,j+1/2∆t

+
1

√
γ|i,j+1/2

Hz|n+1/2
i−1/2,j+1/2 −Hz|n+1/2

i+1/2,j+1/2

∆x
∆t,

Dz|n+1
i,j =Dz|ni,j − Jz|n+1/2

i,j ∆t

− 1
√
γ

Hy|n+1/2
i−1/2,j −Hy|n+1/2

i+1/2,j −Hx|n+1/2
i,j−1/2,k +Hx|n+1/2

i,j+1/2

∆x
∆t,

3) second half step of the magnetic field Bi.

Bx|n+1
i,j+1/2 = Bx|n+1/2

i,j+1/2 −
1

√
γ|i,j+1/2

Ez|n+1
i,j+1 − Ez|n+1

i,j

∆x

∆t

2
,

By|n+1
i+1/2,j = By|n+1/2

i+1/2,j +
1

√
γ|i+1/2,j

Ez|n+1
i+1,j − Ez|n+1

i,j

∆x

∆t

2
,

Bz|n+1
i+1/2,j+1/2 = Bz|n+1/2

i+1/2,j+1/2 −
1

√
γ|i+1/2,j+1/2

Ey|n+1
i+1,j+1/2 − Ey|n+1

i,j+1/2 + Ex|n+1
i+1/2,j+1 − Ex|n+1

i+1/2,j

∆x

∆t

2
.
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The computation of the auxiliary fields Ei, Hi is the same as in the 1D case. In
the case of non-diagonal 3-metrics, the interpolation is more complicated because
of the spatial staggering of the Yee lattice and is calculated through equation (24).

The 2D field solver was tested in a manner similar to the 1D implementation. I
ran 2D simulations with a sine wave in Dz generated in the centre of the simulation
grid. This wave then propagated outward. This was done for the Minkowski
metric, for a constant isotropic metric with values of the Schwarzschild metric at
R = 2RS, and for a constant anisotropic metric α = 1, γxx = 4, γyy = γzz = 1.
Figure (7) shows the comparison of the electromagnetic fields in the Minkowski
metric and the Schwarzschild metric. The wave in electric field Dz is monopolar,
while the magnetic field is dipolar. The wave is stable and propagates isotropically.
It is visible that the propagation speed is reduced by the change in the metric
parameters. Figure (8) contains the comparison of the wave in Minkowski metric
and the constant anisotropic metric. Because the space is stretched in the x-
direction, propagation in the x-direction is slower than in the y-direction, and the
wave looks squished. The propagation speed in the y-direction is identical to that
in Minkowski spacetime. The two components of the magnetic field also differ in
amplitude, the colours in the plots of By are brighter than the fainter Bx.

6.4 Modified Boris push

By introducing the quantities D̃i = αγijD
j, B̃i = α

√
γBi and omitting the metric-

induced terms the equation of acceleration (26) takes the familiar form

dui

dt
=

q

m

(
D̃i + ϵijk

γjlul

Γ
B̃k

)
. (28)

With great care for the position of the indices, the Boris push can be rewritten to
calculate the contribution of the Lorenz force in curved spacetime

u−
i = u

n−1/2
i +

qD̃i

2m
∆t,

f i
1 =

q∆t

2mΓ
B̃i, f i

2 =
2f i

1

1 + (f i
1)

2
,

u′
i = u−

i + ϵijkγ
jlu−

l f
k
1 , u+

i = u−
i + ϵijkγ

jlu′
lf

k
2 ,

u
n+1/2
i = u+

i +
qD̃i

2m
∆t,

where Γ =
√

1 + γijuiuj. The calculated velocity is used to update the position of
the particle

xi|n+1 = xi|n + α
γijuj

Γ
∆t.
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Figure 7: Propagation of a sine wave generated in Dz at the centre of a 2D
simulation. Horizontal axis shows x-direction, vertical axis is y-direction, the colour
in the plot represents the strength of the field, red means positive values, blue
negative. By rows: 1) electric field Dz in Minkowski metric 2) magnetic field
Bx in Minkowski metric 3) electric field Dz in a constant metric with values of
Schwarzschild metric at R = 2RS, 4) magnetic field Bx in a constant metric, 5)
magnetic field By in a constant metric.
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Figure 8: The same as in Figure (7), but the constant Schwarzschild metric is
replaced by an artificial constant metric α = 1, γxx = 4, γyy = γzz = 1
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6.5 Field-particle interpolation

This part addresses the interpolation of the electromagnetic fields Di, Bi and the
parameters of the metric α, γij, γ

ij to the position of a macroparticle used in the
computation of the particle motion. My method uses the form factors S(|xi − x|).
To include the curvature of space, the weight of a grid point is multiplied by the
value of the determinant of the 3-metric γ = det(γij) at that point. However, since
the determinant depends on the position, the form factors in different directions
cannot be isolated and then simply multiplied during field interpolation, as in
equation (15). A matrix has to be constructed that combines the form factors in
each direction from the beginning. The size of the form matrix depends on the
chosen form factor, as different schemes use a different number of nearby cells to
interpolate. To normalise the form matrix to one, the individual components of
the form matrix have to be divided by the overall sum

Si,j(x, y) =
γi,jS(|xi − x|)S(|yj − y|)∑

i,j

γi,jS(|xi − x|)S(|yj − y|)
.

To save space and increase readability, the coordinates and normalisation will not
be included from now on.

In the case of 1D interpolation, the spatial staggering of the Yee lattice produces
only two such 1D form “matrices”, one for fields at the grid point (Dy, Dz, Bx) and
one for fields in between grid points Dx, By, Bz.

Si(x) = γiS(|xi − x|),
Si+1/2(x) = γi+1/2S(|xi+1/2 − x|).

Introducing another dimension to 2D adds additional staggering, resulting in the
need for two more form matrices.

Si,j(x, y) = γi,jS(|xi − x|)S(|yj − y|),
Si+1/2,j(x, y) = γi+1/2,jS(|xi+1/2 − x|)S(|yj − y|),
Si,j+1/2(x, y) = γi,j+1/2S(|xi − x|)S(|yj+1/2 − y|),

Si+1/2,j+1/2(x, y) = γi+1/2,j+1/2S(|xi+1/2 − x|)S(|yj+1/2 − y|).

The electromagnetic field and the parameters of the metric are then interpolated
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in this manner

Dk = Si+1/2,j γkx|i+1/2,jD
x|i+1/2,j

+ Si,j+1/2 γky|i,j+1/2D
y|i,j+1/2

+ Si,j γkz|i,jDz|i,j,
γkx = Si+1/2,j γkx|i+1/2,j,

γky = Si,j+1/2 γky|i,j+1/2,

γkz = Si,j γkz|i,j,
α = Si+1/2,j α|i+1/2,j,

Bx = Si,j+1/2
√
γ|i,j+1/2B

x|i,j+1/2,

By = Si+1/2,j
√
γ|i+1/2,jB

y|i+1/2,j,

Bz = Si+1/2,j+1/2
√
γ|i+1/2,j+1/2B

z|i+1/2,j+1/2,

that is similar for both 1D and 2D, differing only in the form matrices and number
of indices. The inverse 3-metric shares identical interpolation with the 3-metric
and thus was omitted. Multiplication by the 3-metric γij in interpolation of Di

and by the square root of the 3-metric determinant
√
γ in interpolation of Bi is

done for a very good reason. Multiplying by the interpolated parameter α we get
the quantities

D̃k = αDk,

B̃k = αBk,

that are ready to be used in the modified Boris push. This way, the number of
calculations is reduced and the need to interpolate

√
γ is completely eliminated,

compared to the case where Dk, Bk, γkl and
√
γ are interpolated separately and

later combined for the computation of B̃k

6.6 Novel approach to current deposition

My current deposition scheme keeps the idea of the Esirkepov deposition scheme.
Similarly to the interpolation of the fields to the location of the particle, the form
factors are multiplied by the determinant of the 3-metric to include the effect of
curvature. The determinant is dependent on the position in the grid, which prevents
us from constructing the form factors in the coordinate directions independently
and combining them in the computation of the current. A matrix is constructed
in which the form factors in different directions are combined and multiplied by
the corresponding 3-metric determinant. To preserve charge conservation, the
resulting form matrices have to copy the ratios of the form factors as presented in
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the Esirkepov deposition. The components of the form matrix are also divided by
its sum to keep it normalised to one. The normalisation is left out of the equations
to improve readability.

The modification of the 1D current deposition is simple, actually.

Sold
i = γiS(|xi − xn|), Snew

i = γiS(|xi − xn+1|),

Si = Snew
i − Sold

i ,

∆Jx|i = − Q

∆x2∆t
Si, Jx|n+1/2

i+1/2 =
i∑

α=0

∆Jx|α,

Jy|n+1/2
i =

Qvy

∆x3
Snew
i , Jz|n+1/2

i =
Qvz

∆x3
Snew
i ,

where the positions and velocities are calculated using the modified Boris push.
In the 2D case, ratios of the form factors give us

Xold
i,j = γi+1/2,jS(|xi − xn|)S(|yj − yn|) + S(|yj − yn+1|)

2
,

Xnew
i,j = γi+1/2,jS(|xi − xn+1|)S(|yj − yn|) + S(|yj − yn+1|)

2
,

Y old
i,j = γi,j+1/2S(|yj − yn|)S(|xi − xn|) + S(|xi − xn+1|)

2
,

Y new
i,j = γi,j+1/2S(|yj − yn+1|)S(|xi − xn|) + S(|xi − xn+1|)

2
,

Xi,j = Xnew
i,j −Xold

i,j ,

Yi,j = Y new
i,j − Y old

i,j ,

Zi,j = γi,j

[
S(|xi − xn|)S(|yj − yn|) + S(|xi − xn+1|)S(|yj − yn+1|)

3

+
S(|xi − xn|)S(|yj − yn+1|) + S(|xi − xn+1|)S(|yj − yn|)

6

]
.

The matrices have important properties: summing over the index i and j in the
form matrices Xi,j and Yi,j, respectively, results in a sum of zero, and summing
over the whole form matrix Zi,j gives a sum of one. This ensures that the current
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deposited conserves the total charge. The current is then calculated as

∆Jx|i,j = − Q

∆x2∆t
Xi,j, Jx|n+1/2

i+1/2,j =
i∑

α=0

∆Jx|α,j,

∆Jy|i,j = − Q

∆x2∆t
Yi,j, Jy|n+1/2

i,j+1/2 =

j∑
α=0

∆Jy|i,α,

Jz|n+1/2
i,j =

Qvz

∆x3
Zi,j.

This method allows us to compute charge-conserving current deposition in
any non-rotating curved spacetime using any form factor.
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Section 7:

Plasma simulations

In this chapter, the modified code is used for simulations of thermal plasma. The
electric and magnetic fields are investigated and compared to a reference simulation.
The energy of different components of the simulation is studied to check for energy
conservation. A Fourier analysis is performed to obtain dispersion relations of
plasma oscillations and electromagnetic waves present in the simulated plasma.
The speed of light c = 1 in the whole chapter.

7.1 1D Thermal plasma

I ran a set of 1D simulations with a plasma consisting of electrons and positrons
with a Maxwellian velocity distribution with thermal velocity vth = 0.1c and a
density of 40 particles per cell (ppc). No external magnetic field was present. The
simulations were run for 20000 timesteps with a temporal resolution normalised to
the plasma frequency ∆t ωp = 0.014, which gives approximately 20000∆t ωp = 280
plasma oscillations. The grid consisted of 2000 cells in the x-direction with a
spatial resolution ∆x/dc = 0.047, where dc = c/ωp represents the skin depth, the
distance light travels in one plasma oscillation. This means that (∆x/dc)

−1 ≈ 21
is the number of cells light travels through during one plasma oscillation. Then
280/(20000/21) = 2.94 tells us that light has enough time to travel through the
entire simulation three times, which means that distant locations in the simulation
received information about each other and the plasma is in equilibrium state.
Dividing the temporal and spatial resolution ∆t c/∆x = 0.3 gives us the Courant
number well below the Courant–Friedrichs–Lewy (CFL) condition limit, which
ensures numerical stability of the field solver. The boundary condition was set to
periodic, meaning that the simulation wraps around the boundaries.

In this section, three simulations are presented: 1) a reference simulation made
with unmodified code (no GR), 2) a simulation run with the Minkowski metric
α = 1, γii = 1 (Minkowski), which, in principle, should be identical to the reference
one, and 3) a simulation with a metric that is constant across the simulation and
whose values correspond to the values of the Schwarzschild metric at R = 2RS,
α = 0.78, γii = 1.6.

Figure (9) shows the electric fields in the three simulations. The electrons and
positrons oscillate in all directions, performing plasma oscillations and generating
electromagnetic waves. Plasma oscillations are longitudinal and can propagate
as Langmuir electrostatic waves only in the x-direction, which are visible in the
x-component of the electric field Dx. Electromagnetic waves are transversal waves
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and propagate in the perpendicular direction. Thus, they only appear in the y- and
z-component of the electromagnetic field Dy, Dz, By, Bz. The field strength range
of the color scale is similar in all three simulations. The reference simulation and
the Minkowski simulation are almost the same, as expected, with subtle differences
that arise from the modified equations that can be attributed to numerical noise.

The propagation speed of the electromagnetic waves can be quickly approxi-
mated from the slope of the lines in the figure. The units of the axes have the
property that a displacement of 1 dc in time 1 ωp gives a propagation speed equal
to the speed of light. Then, if the horizontal and vertical axes have equal aspect
and a wave is a diagonal line, it is propagating at the speed of light, which can be
seen in the electric field Dy, Dz in the reference and Minkowski simulations. If the
slope of the lines is steeper than diagonal, then the wave has a lower propagation
speed than the speed of light, as seen in the Schwarzschild simulation.

The magnetic field components are shown in Figure (10). The Bx component
is zero, because the plasma oscillations are purely electrostatic, and the electro-
magnetic waves appear only in the components By and Bz. Again, the range of
the field strength is similar for all three cases. Subtle differences in field strength
are visible between the reference and Minkowski simulations, with the propagation
speed at the speed of light. The lower propagation speed in the Schwarzschild
metric is present also in the magnetic field.

The simulation also outputs the total energy of the simulation and energy of
various components of the electric and magnetic field as well as the energy of
particles. The energy of the components of the electric and the magnetic field is
calculated using equations

Ei
D =

∆x3

8π

∑
j,k,l

(Di|j,k,l)2,

Ei
B =

∆x3

8π

∑
j,k,l

(Bi|j,k,l)2.

The total energy of the fields is the sum of its components

ED =
3∑

i=0

Ei
D,

EB =
3∑

i=0

Ei
B.
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The energy of each particle is calculated through the relativistic equation

Ki =(Γi − 1)mic
2,

where Γi is the Lorentz factor, mi is the mass of the macroparticle and c is the
speed of light. The total energy is the sum of the field energies and the particle
kinetic energy

Etot = ED + EB +K.

Figure (11) shows the total energy E, the energy of the electric ED and magnetic
field EB, the energy of particlesK and the divergence of Bi for the three simulations.
All energies were normalised to the initial kinetic energy of particles. At the start of
the simulation, the particles need a bit of time to generate the electromagnetic field
and establish the plasma environment, which causes a jump in total energy. The
first 500 timesteps have been cut off in the figures to remove the initial jump and
improve readability. The total energy has a very slow linear growth of about 0.02 %
over the time of the simulation in all reference, Minkowski, and Schwarzschild
cases. The energies in the reference and Minkowski simulations are very similar.
An increase in the magnetic field energy and a decrease in the energy of particles
is seen in the Schwarzschild simulation. The divergence remains zero throughout
the simulation. Figure (12) shows the energy of the components of the electric
and magnetic field. The energy in Dx does not change with the metric parameters,
while the components connected to the electromagnetic waves have an increased
energy in the Schwarzschild simulation. This implies that during the generation of
the fields at the start of the simulation, the electromagnetic waves gain more energy
at the expense of the particles in the Schwarzschild case than in the reference or
Minkowski case.
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Figure 9: Electric fields in the three 1D plasma simulations. The vertical axis is
the simulation time, the horizontal axis is the position, the colour represents the
field strength.
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Figure 10: The same like in Figure (9), but for magnetic field components.
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Figure 11: Energy components normalised to the initial kinetic energy of particles.
The first 500 timesteps are cut off because of a jump in energy caused by the
production of fields at the start of a simulation.
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Figure 12: The same like in Figure (11), but for individual components of the
electromagnetic field.
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7.2 1D Plasma dispersion relations

To explore the properties of the simulated plasma further, a Fourier analysis was
performed to investigate the plasma dispersion relations. The electric fields from
the simulations described in the previous section were Fourier transformed with
the help of the Python package SciPy. The Fourier transform decomposes the
field into a series of periodic functions, where periodicity in the time dimension
is described by the frequencies ω and periodicity in the spatial dimensions by the
wavenumber k. This allows us to identify the frequencies and wavenumbers that
are most represented in the plasma waves. The dimensions of the original field
and the dimensions of the Fourier transformed field are reciprocally bound. The
bigger the simulation, either longer in time or space, the better the resolution in
the frequencies or wavenumbers, respectively. The more temporally or spatially
resolved the simulation is, the larger the range of frequencies or wavenumbers that
can be identified.

Dispersion relations for Langmuir waves in strong gravitational fields have been
analytically described by Elsässer and Popel (1997). Within the “3+1” formalism
presented in this thesis, the dispersion relation for electrostatic Langmuir waves
under the assumption that |kλD| ≪ 1 reads

ω2 = [α2(1 + 3k2λ2
D)− v2thγ||]ω

2
pΓ, (29)

λD =
vth

αωp

√
Γ
, (30)

where α is the lapse function, vth is the thermal velocity of the plasma, γ|| is the
3-metric component parallel to the wave propagation, ωp is plasma frequency and

Γ =
√

1 + v2th is the Lorentz factor.
In 1D, the electric field component Dx contains only the Langmuir electro-

static waves, which are shown in Figure (13) for the Minkowski metric and the
Schwarzschild metric. The frequency axis is normalised to the plasma frequency ωp

calculated from equation (5). The horizontal axis is normalised by the Debye length
λD calculated from equation (30). The Langmuir waves in the Minkowski metric
remain unchanged and can be described by the classical dispersion relation (6). In
the Schwarzschild metric the Langmuir waves are modified; the cut-off frequency is
decreased, and the slope of the branches is shallower. The dispersion relation is
well described by the general relativistic equation (29).

Electromagnetic waves appear in electric fields Dy, Dz. Figure (14) shows their
Fourier transformation, revealing the dispersion relation of the electromagnetic
waves in the plasma. The vertical axis describes the frequency normalised to the
plasma frequency. The horizontal axis is just the wave number; no normalisation is
required. The dispersion relation of the electromagnetic waves in the Minkowski
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Figure 13: Fourier transformation of the electric field Dx in two simulations, left:
Minkowski metric, right: constant metric with values of the Schwarzschild metric
at R = 2RS. The vertical axis is the frequency normalised to the plasma frequency
ωp, the horizontal axis is the wavenumber normalised by the Debye length λD.

simulation agrees with the classical description in equation (9). In the Schwarzschild
simulation, the dispersion relation is modified, and the classical description no
longer holds. The dispersion relations are best described by the function

ω2 = α2ω2
p +

(
k

γ||

)2

. (31)

We can see that the dispersion relations for both the electrostatic Langmuir
waves and electromagnetic waves in a plasma depend on the parameters of the
spacetime in which it is located. The change in dispersion relations also influences
the phase and group velocity of the waves, influencing their propagation.
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ulations, top: Minkowski metric, bottom: constant metric with values of the
Schwarzschild metric at R = 2RS. The vertical axis is the frequency normalised to
the plasma frequency ωp, the horizontal axis is the wavenumber.
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7.3 2D Thermal plasma

A pair of 2D simulations was run with a setup similar to that of the 1D simulations,
one with the Minkowski metric, the second with the constant metric with values
of the Schwarzschild metric at R = 2RS. It was filled with plasma consisting
of electrons and positrons with a Maxwellian velocity distribution with thermal
velocity vth = 0.1c and a density of 40 ppc. No external magnetic field was present.
The simulations were run for 20000 timesteps with a temporal resolution normalised
to the plasma frequency ∆tωp = 0.015, which gives approximately 20000∆tωp = 300
plasma oscillations. A 500×500 grid was used in the x- and y- direction with a
spatial resolution ∆x/dc = 0.050, where dc = c/ωp represents the skin depth,
the distance light travels in one plasma oscillation. Then (∆x/dc)

−1 = 20 is the
number of cells light travels through during one plasma oscillation. The light travels
300/(500/20) = 12 times through the grid during the simulation time. The Courant
number C = c∆t/∆x = 0.3 satisfies the CFL condition, ensuring the numerical
stability of the field solver. The boundary conditions were set to be periodic.

In 2D, the electrostatic Langmuir waves propagate in both the x- and y-
direction and appear in the corresponding electric fields Dx, Dy. Furthermore,
electromagnetic waves are generated and propagate in all components of the electric
and magnetic field. The results of the simulations are shown in Figures (15)
and (16). The electric fields Dx, Dy are dominated by the electric fields produced
by plasma oscillations, and their granularity looks similar, while Dz consists purely
of electromagnetic waves, and thus looks different with lower range of field strength.
On the other hand, the magnetic fields in Figure (16) are purely electromagnetic
waves. A preferred direction in the shape of the local perturbations is clearly
visible in the x- and y-components of both the electric and magnetic fields. The
Dx is prolonged in the y-direction, while Bx is prolonged in the x-direction. This
anisotropy is probably tied to the difference in direction of propagation between
the Langmuir waves and the electromagnetic waves.

The energy of the components of the simulation was investigated similarly to
the 1D simulations. Figure (17) shows the total energy, the energy of the electric
and magnetic field, the energy of particles and the divergence of Bi. All energies
are normalised to the initial kinetic energy of particles. Due to the jump in energy
at the start, the first 500 timesteps have been cut off in the figures. The total
energy has a negligible linear growth over the time of the simulation in both cases.
An increase in the magnetic field energy and a decrease in the energy of particles
is seen in the Schwarzschild metric. The divergence is conserved throughout the
simulation. Figure (18) shows the energy of the components of the electric and
magnetic field. The energy of the components Dx and Dy do not change with the
metric parameters, while the components connected to the electromagnetic waves
have an increased energy in the Schwarzschild simulation. The modified metric
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parameters in the Schwarzschild simulation amplify the jump in energy at the
beginning of the simulation. This is also visible in the range of field strength in
Figures (15) and (16), where the fields dominated by electromagnetic waves have a
higher amplitude.
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Figure 15: The electric field Di at the end of the 2D simulation.
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Figure 17: Energy components normalised to the initial kinetic energy of particles.
The first 500 timesteps are cut off because of a jump in energy caused by the
production of fields at the start of a simulation.
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Figure 18: The same as in Figure (17), but for individual components of the
electromagnetic field.



63

7.4 2D Plasma dispersion relations

A Fourier analysis of the electric fields of the 2D simulations was performed.
Because there are one temporal and two spatial dimensions, the resulting Fourier
image also has three dimensions, one represented as the frequency of the waves
and two describing the wavevectors. The dispersion relations from equations (6)
and (9) create a cylindrically symmetric surface. To plot the dispersion relations
on a 2D plot, it has to be sliced along one spatial dimension. Depending on the
dimension and position of the slice, the resulting image changes and describes waves
propagating in different directions. For example, creating a slice in the kx-direction
at ky = 0 reveals waves propagating in the x-direction. Likewise, slicing in the
ky-direction at kx = 0 reveals waves propagating in the y-direction.

In our case, the Fourier transformation of the electric field Dx sliced at ky = 0
uncovers the dispersion relation of the electrostatic Langmuir waves seen in Fig-
ure 19, but a slice in the other direction at kx = 0 results in the dispersion relation
of the electromagnetic waves, as seen in Figures (20) and (21). This is because, in
2D space, the Langmuir waves in Dx propagate only in the x-direction, whereas
the electromagnetic waves in Dx propagate only in the y-direction.

Figure (19) shows the dispersion relations of electrostatic Langmuir waves
appearing in the electric field Dx, Dy and in the two aforementioned metrics. The
top row depicts the Minkowski simulation, which behaves as expected. The cut-off
frequency is located at the plasma frequency, and the branches are well described
by the classical analytical equation (6). The bottom row shows the simulation with
the constant Schwarzschild metric. The cut-off frequency is lowered mainly by the
parameter α, the term v2thγ|| is only a tiny correction. The branches follow the
dispersion relation from equation (29).

The electromagnetic waves are displayed in Figures (20) and (21). In electric
fields Dx and Dy they propagate only in the perpendicular directions y and
x, respectively. In Dz the waves propagate in both directions. The Minkowski
simulation agrees with the classical description given by equation (9). The change in
metric parameters in the constant Schwarzschild simulation changes the dispersion
relations in accordance with equation (31). The cut-off frequency is decreased by
the parameter α, and the branches are shallower.
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Figure 19: Dispersion relations of the electrostatic Langmuir waves in the electric
field of the 2D simulations. Top: Minkowski metric, Bottom: constant metric with
values of Schwarzschild metric at R = 2RS. The axes of the figure are normalised
by the plasma frequency ωp from equation (5) and the Debye length λD from
equation (30).
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Minkowski metric showing the dispersion relations of electromagnetic waves. The
frequency axis is normalised to the plasma frequency ωp from equation (5).
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constant metric with values of the Schwarzschild metric at R = 2RS showing the
dispersion relations of electromagnetic waves. The frequency axis is normalised to
the plasma frequency ωp from equation (5).
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Conclusions

This thesis has introduced the basics of plasma physics and their modelling using
particle-in-cell simulations. Following previous articles, the inclusion of spacetime
parameters in the fundamental equations of the PIC method was presented with
the aim of studying plasma in curved spacetime in compact object magnetospheres.

In Section 6, my 1D and 2D implementation of the modifications in the PIC code
ACRONYM was presented. I modified the field solver to allow use in non-rotating
curved spacetime, where the shift vector βi = 0. I developed and implemented
an interpolation scheme for the computation of the auxiliary fields Ei, Hi in non-
diagonal 3-metrics that weights the fields based on the metric. I performed
vacuum simulations of the propagation of an electromagnetic wave, which confirmed
numerical stability of the modification. I investigated the propagation speed of the
wave, which showed a direct relation with the metric parameters. Wave propagation
was simulated in a curved Schwarzschild spacetime which confirmed numerical
stability and physical accuracy of the field solver in a curved spacetime. Propagation
was also tested in 2D space which confirmed the results of the 1D simulations and
also showed anisotropic propagation in anisotropic spacetime.

I presented a modification to the Boris push along with an interpolation scheme
of the field quantities to the particle positions, both designed for use in curved
spacetime. I developed and implemented a novel approach to charge-conserving
current deposition based on the Esirkepov scheme for use in non-rotating curved
spacetime.

I ran a set of 1D and 2D simulations with thermal plasma and no external
magnetic field for the Minkowski metric and a constant metric with the values
of the Schwarzschild metric at R = 2RS. The results confirmed the numerical
stability of the modification and revealed changes in the electromagnetic field of the
plasma depending on the chosen metric, specifically, an increase of field strength in
components of the electromagnetic field dominated by electromagnetic waves in
the constant Schwarzschild metric. The energy of the simulations also displayed
changes depending on the curved spacetime. A slight increase in the growth of the
total energy was found for the Schwarzschild metric in comparison to the Minkowski
metric. The amplification of the fields dominated by electromagnetic waves in the
Schwarzschild metric was also visible in the energy of those field components.

I performed a Fourier analysis on the 1D and 2D thermal plasma simulations.
The dispersion relations of both electrostatic Langmuir waves and electromagnetic
waves in the Minkowski metric were found to agree with the classical description
in equations (6) and (9). In the Schwarzschild metric, the electrostatic Langmuir



68

waves behaved according to the general relativistic dispersion relations calculated
by Elsässer and Popel (1997) in equation (29). The dispersion relations of the
electromagnetic waves in the Schwarzschild metric changed based on the metric
parameters and are described by equation (31).

At this stage, the implementation allows for the simulation of plasma in a non-
rotating uncurved spacetime with a non-diagonal 3-metric. The periodic boundary
conditions remain a problem that needs to be solved in order to eliminate the need
to pad the metric parameter arrays at the boundaries to equal the Minkowski metric.
A modification of the particle pusher for the calculation of the metric-induced
terms in the acceleration equation is required to obtain the ability to simulate
plasma in curved spacetime. Significant work is needed to include the shift vector
βi in the calculations to allow simulation of rotating systems. In particular, it is
the implementation of the predictor-corrector scheme in the time evolution of the
fields, the interpolation of the field components to the correct position in the Yee
lattice for the calculation of the auxiliary fields in equations (21) and (22), and the
modification of the particle pusher. A nice addition would be the expansion of the
modification to 3D.
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