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Abstrakt

V současné době je klasifikace kandidátů na galaktické kupy obvykle prováděna
vizuálně, což je pomalý a neefektivní způsob, navíc spojený s menší repro-
dukovatelností výsledků. K řešení tohoto problému může napomoci moderní
přístup založený na metodě konvolučních neuronových sítí s vestavěnými su-
permoderními klasifikátory obrázkových dat, které v této studii aplikujeme
na případ automatické klasifikace kup galaxií. Využili jsme techniky zvané
transfer-learning, nejlepších výsledků jsme ovšem dosáhli pomocí vlastní neu-
ronové sítě. Použité neuronové sítě byly trénovány na kombinaci rentgenových
obrázků z družice XMM-Newton a jejich optických protějšků ve druhé Palo-
marské fotografické přehlídce oblohy (DSS2). Kvalita sítě byla testována na
množině 85 spektroskopicky potvrzených kup galaxií a 85 objektů odborníky
naopak nepovažovaných za galaktické kupy. Při binární klasifikaci, na kupy
galaxií a ostatní objekty, sestavená sít správně rozpoznala 77 kup galaxií a 83
objektů, jež nejsou kupami galaxií, čímž dosáhla přesnosti 94%.

Dále v práci představujeme Zooniverse projekt — The Hunt for Galaxy
Clusters — určený pro širokou veřejnost ve kterém dobrovolníci online ručně
klasifikovali kandidáty na kupy galaxií. Projekt obsahuje 1 600 objektů, každý
s vyžadovaným minimem 30 klasifikací. Do projektu se zapojilo 1 227 dobro-
volníků. Porovnáním jejich odpovědí s odpovědmi od profesionálů na vzorku
404 kandidátů na kupy galaxií se zjistilo, že dobrovolníci tíhli ke klasifikování
objektů jako by nešlo o kupy galaxií, avšak vytvořili extrémně čistý vzorek kup
galaxií, s vynikající přesností klasifikace 99% po porovnání s experty.



Abstract

Galaxy cluster candidates are usually classified by hand, making it a slow and
inefficient process with biases impossible to model. We tackle this problem
with a novel approach, using convolutional neural networks, state-of-the-art
image classification tool, for automatic galaxy cluster classification. We train
the networks on combined XMM-Newton’s X-ray observations with their optical
counterparts from DSS2. The networks were tested on a sample of 85 spectro-
scopically confirmed clusters and 85 objects classified as non-clusters by the
experts. We have created our own custom network and also used the transfer
learning approach. The network we hand-made from scratch achieved the best
performance in binary classification to classes cluster and non-cluster, correctly
classifying 77 clusters and 83 non-clusters acquiring accuracy 94.1%.

We also introduce an online official Zooniverse citizen science project, The
Hunt for Galaxy Clusters, in which the citizen volunteers were asked to classify
candidate clusters by hand. The project contained 1 600 cluster candidates, each
with a threshold of 30 classifications. 1 227 volunteers participated in the project.
After testing their agreement with the experts on a sample of 404 objects, they
turned to be biased towards classifying candidate clusters as non-clusters but
they created a very pure sample with precision 99% after comparing with the
experts. The Zooniverse volunteers found 506 clusters in the whole data set.
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Chapter 1

Galaxy clusters

1.1 Introduction
Galaxy clusters are the largest virialised systems in the observable Universe.
An ordinary galaxy cluster has a diameter about a few Mpc. Clusters typically
contain 10’s – 100’s of galaxies above a magnitude limit. Main source of clusters
radiation in optical wavelengths is an integrated stellar light coming from clusters
galaxies, which are however only about ∼ 2% of clusters mass. Clusters X-ray
emission is dominated by an intra cluster gas, containing ∼ 12% of clusters
mass, with temperatures of 107 – 108 K and a typical particle number density of
10−1 – 10−4 cm−3. This fully ionized plasma is not associated with individual
cluster’s galaxies, but creates the intra-cluster medium (ICM). Temperature of
the ICM is consistent with velocities of galaxies, indicating that the gas and
galaxies are in thermodynamic equilibrium inside of the common gravitational
potential well. Combined masses of galaxies and ICM can not explain large
cluster’s gravitational potential. Nowadays leading theory to explain this problem
is the dark matter, contributing to ∼ 86% of cluster mass. Total mass of a
typical galaxy cluster is about 1013 – 1015 M�.

Being the densest regions in the Universe makes galaxy clusters ideal astro-
physical laboratories for studying interactions of galaxies with themselves and
also with the ICM. Effects like ram pressure stripping, tidal forces on large scales,
enrichment of ICM by elements of star production of galaxies via supernovae
explosions, AGN feedback with ICM or temperature transfer into ICM are being
intensively studied.

Energy of photons of the cosmic microwave background (CMB) has been
shifted to very low energies since they traveled from the epoch of reionization
(Penzias and Wilson (1965), Dicke et al. (1965)). CMB shows remarkable isotropy
of its radiation, with perturbations on the level of 10−5 discovered by the COBE
satellite. As the photons of the CMB pass through ICM, they substract energy
from ICM electrons via inverse Compton scattering, creating small distortions
in the black-body spectrum of the CMB, giving rise to Sunyaev-Zeldovich effect
(SZE, Sunyaev and Zeldovich (1972)), when observed in the direction towards
galaxy cluster. SZE is a powerful tool to detect clusters into large cosmological
distances given that it is basically just a measurement of the intensity of CMB.

1
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Gravitational lensing can be used to directly probe the distribution of all
of the matter of galaxy clusters. This effect is strong in the inner regions of
clusters, nicely visible in the distorted images of foreground galaxies appearing
as curved long thin arcs around the cluster centre. Images of foreground galaxies
at larger radii from the centre of cluster are also affected by gravitational lensing.
Their shapes are slightly distorted, measurable when statistically compared to
the distribution of their shapes expected from an isotropic distribution. This
effect is called weak gravitational lensing, which points out that the dark matter
extends well beyond the regions filled by the X-ray emitting hot intra-cluster
gas. Both, strong and weak gravitational lensing provide great tools to compare
other clusters mass measuring methods and make galaxy clusters perfect dark
matter probes.

Galaxy clusters are one of important cosmology probes. With increasing
redshift we probe larger volume of space, expecting to find more clusters. However,
further away the cluster is, less extended and fainter its emission appears,
resulting in a bias towards larger and more massive clusters. Another uncertainity
comes from the manual confirmation of a cluster’s detection, which is typically
done by few scientists, resulting in biases impossible to model, making cluster
selection function very messy.

Development of an automatic cluster classification software is inevitable
to obtain reliable cluster selection function, with which it will be possible to
make tighter constrains on cosmological parameters. Most of cluster catalogues
have been done using only single wavelength observations, typically optical (e.g.
(Abell, 1958), (Miller et al., 2005), Gal et al. (2003) or (Gilbank et al., 2011))
or X-ray (e.g. Jones and Forman (1992) or Clerc et al. (2012b)). Both of those
have different advantaged and biases. Combinaton of the two wavelengths will
increase the performance of automatic selection method.

1.2 Formation of galaxy clusters
The standard hierarchical structure formation scenario describes formation
of structures in the Universe via gravitational collapse of fluctuations in the
initial primordial density field. Galaxy clusters arise from the largest of those
fluctuations, being formed by a hierarchical sequence of mergers and by accretion
of smaller systems, mostly driven by the gravity of the dark matter, dominating
the gravitational field. Properties of the initial field depend on specific processes
occurring during the early inflationary stage of evolution of the Universe (Bardeen
et al. (1983), Guth and Pi (1982), Starobinsky (1982)) and conditions prior to
recombination (Bardeen et al. (1986), Bond and Efstathiou (1984), Eisenstein
and Hu (1999), Peebles (1982)).

The simplest model of a non-linear collapse of initial density fluctuations as-
sumes them to be spherically-symmetric perturbations of radius R with constant
density. It provides useful approximations of the time scale of a non-linear halo
collapse and is often used for statistical studies of halo populations.
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The complexities of many important details which this model misses are
explored with 3D numerical cosmological simulations (Evrard (1988) made
one of first simulations which followed dynamics of both, baryons and dark
matter. Examples of more recent simulations are Habib et al. (2016) or Pillepich
et al. (2018)). The results of those simulations show that the initial density
fluctuations do not collapse uniformly. On the contrary, different regions of the
density fluctuation collapse with various time scales, because real fluctuations
do not have constant density and well defined boundary. Simulations show that
fluctuations have a radial profile and a curvature (Bardeen et al. (1986), Dalal
et al. (2008)). Different regions of the fluctuation collapse at different times,
so the fluctuation has multiple collapse timescales, making it extended in time
(Diemand et al., 2007).

Moreover, density fluctuations in the primordial field are surrounded by other
ones and different density inhomogeneities. The matter surrounding density
fluctuations has been sculptured into filamentary structure by tidal forces of the
most massive density fluctuations, forming connections between them (Bond
et al., 1996). Galaxy clusters continue accreting matter from those filaments,
which becomes the main matter accretion process in the late epochs of clusters
lives.

Evolution of clusters depends on the matter density parameter Ωm (e.g.
(Oukbir and Blanchard, 1992), Eke et al. (1998)). Observed space density of
distant galaxy clusters can be used as a powerful cosmological probe, because
universes with different density show very different clusters evolutionary patterns.
Cosmological simulations are used to predict galaxy clusters number density of
a given mass across different redshifts for specific initial cosmological param-
eters. Comparing results of simulations with observations helps to constrain
cosmological parameters, giving information of the Universe we live in.

1.3 Optical observations
First galaxy cluster catalogue (Abell, 1958) was created by George Ogden Abell in
1958. He looked for galaxy clusters as clustering of galaxies in optical wavelengths
on photographic plates of National Geographic Society — Palomar Observatory
Sky Survey (Minkowski and Abell, 1963). Abell’s first criterion for cluster
selection uses magnitude of third brightest galaxy in a cluster, m3, clusters of
galaxies were systems which contained at least 50 galaxies between magnitude
range m3 and m3+2, estimating that third brightest galaxy should have similar
absolute magnitude in most clusters. Second Abell’s criterium was, that those
galaxies should be contained in a circle of radius RA = 1.7/z arcmin, where z
is an estimated redshift and Abell’s third criterion was, that clusters estimated
redshift should be in the range 0.02 ≤ z ≤ 0.2.

Inner parts of an older, already virialised and regular galaxy clusters are
dominated by elliptical and lenticular galaxies, however the opposite is true
in case of newly forming irregular clusters and in the field, where dominates
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population of spiral galaxies. The morphology of galaxies is obviously altered
by the environment they are born in. The two main important processes which
influence the evolution of galaxies in clusters are galaxy mergers and interaction
of galaxies with ICM. Tremaine et al. (1975), Gunn and Tinsley (1976) and
Tovmassian and Andernach (2012) suggest cannibalism scenario of formation of
cD galaxies, in which dynamical friction decays orbits of massive cluster galaxies,
making them eventually merge into one central dominant (cD) galaxy, defined
by Matthews et al. (1964) as a very luminous ellipticals surrounded by a large
diffuse optical halo of a low surface brightness. Gallagher and Ostriker (1972),
Richstone (1975) and Richstone (1976) hypothesised that the halo is created by
stripped material of clusters galaxies during their passing through clusters core.
The stripped material would condense into the centre of cluster, settle down
around the cD galaxy. Postman and R. Lauer (1995) argue that cD galaxies can
be used as a standard candles for large cosmological distances because of their
narrow colour and photometric distribution, unique rich cluster environment
and lack of second-parameter effects.

1.3.1 Optical morphological classifications of galaxy clusters

Several different properties of galaxy clusters have been used to create their
morphological classifications based on optical observations. The primary factor
is projected 2D distribution of galaxies. Properties such as shape, richness,
clumpiness, galactic content, etc. are often considered.

The first galaxy cluster catalogue (Abell, 1958) divided clusters into rich vs.
poor and regular vs. irregular, shortly followed by classification of Zwicky et al.
(1961) who separated clusters into compact, medium-compact and open.

Bautz and Morgan (1970) based their classification system on the dominance
of clusters brightest galaxies. Bautz-Morgan type I clusters optical emission is
dominated by a single central dominant (cD) galaxy. Bautz-Morgan Type II
clusters have their brightest galaxies intermediate between cD and normal giant
ellipticals. Bautz-Morgan type III clusters do not have dominant galaxies at all,
while type I-II and type II-III are intermediate types.

Rood and Sastry (1971) created the “tuning fork” to classify rich clusters of
galaxies (Fig. 1.1). They used the distribution and nature of the ten brightest
cluster galaxies to classify clusters into 6 classes. Cluster of Rood-Sastry cD
class is dominated by a central cD galaxy, which are often found in centres of
clusters and groups of galaxies. Class B (binary) clusters are dominated by two
very luminous galaxies. Class L (line) contains clusters which have at least 3 of
the brightest galaxies appearing to be aligned in one line. Class C (core), are
clusters with a core formed by at least four of the ten brightest clusters galaxies
of comparable galaxy separation. Class F (flat) are clusters which galaxies form
a flattened distribution on the sky. Class I (irregular) clusters do not have any
obvious core or centre, galaxies appear to be distributed irregularly.

Based on numerical N-body simulations of collapse of galaxy cluster (White
(1976), Carnevali et al. (1981), Farouki et al. (1983)), and on the content of
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galaxy clusters and trends in the galaxy distribution, Struble and Rood (1984)
revised Rood-Sastry classification, proposing a “split-linear” scheme describing
the evolution of clusters from irregular to regular clusters (Fig.1.1).

Morgan (1961) and Oemler (1974) have used galactic content, fraction of
spiral galaxies (S), lenticular galaxies (S0) and elliptical galaxies (E) of galaxy
clusters for their classification. Morgan (1961) classified clusters into two types,
type i for galaxy clusters containing large number of spiral galaxies and type ii
for clusters with a small number of spiral galaxies. Oemler (1974) augmented
Morgan’s system, creating three classes of clusters. Spiral-rich class of clusters
in which the majority of galaxies are spiral, spiral-poor clusters, in which the
majority of galaxies are lenticular S0 galaxies with spiral galaxies being less
common and cD class of clusters, in which the majority of galaxies are ellipticals,
also having central dominant cD galaxy.

Rostagni et al. (2011) used the SDSS C4 cluster catalogue (Miller et al.,
2005) to classify clusters according to their regularity into 5 categories: relaxed
clusters, bimodal major mergers, minor mergers, multiple mergers and clusters
in virialisation phase.

Those classification schemes are found to be highly correlated and can be
represented as a linear sequence ranging from regular, through intermediate to
irregular clusters as shown in Tab. (1.1). Regular clusters have symmetric shape
with a central core to which galaxies tend to cluster, on the contrary to irregular
clusters, which do not show symmetric shape, but usually come with strong
sub-clustering without obvious central denser region, pointing out that regular
clusters are dynamically more evolved systems than irregular clusters.

Property Regular Intermediate Irregular
Zwicky type compact medium-compact open
Bautz-Morgan type I, I-II, II II, II-III II-III, III
Rood Sastry type cD, B, L, C L, C, F F, I
Galactic Content elliptical rich spiral poor spiral rich

E:SO:S 3:4:2 1:4:2 1:2:3
Morgan type ii i-ii i
Oemler type cD, spiral poor spiral poor spiral rich
Symmetry spherical intermediate irregular
Central concentration high moderate low
Subclustering absent moderate significant
Richness rich rich-moderate rich-poor

Table 1.1: Optical classifications schemes of galaxy clusters mapped into a linear
sequence.
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Figure 1.1: (a) Rood-Sastry “tuning fork” diagram for classification of rich
clusters of galaxies, correlated to show clusters from regular (left) to irregular
(right). (b) Struble-Rood “split-linear” revision of Rood-Sastry “tuning fork”
describing the evolution of clusters from irregular (left) to regular (right).
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1.3.2 Optical automatic machine detection of galaxy clusters

The first cluster catalogue created by software was the The Edinburgh-Durham
Southern Galaxy Catalog (Lumsden et al., 1992) consisting of 737 clusters or
groups of different richnesses. It was based on Abell-like criteria, using optical
observations around the southern galactic pole taken from the COSMOS scans
of the UK Schmidt plates.

The Automatic Plate Measuring machine galaxy catalog (Dalton et al., 1997)
was done in a similar way, using Abell-like criteria and the data from the APM
galaxy survey (Maddox et al., 1990), which covers the southern galactic pole, it
resulted in a sample of ∼ 1 000 clusters.

Palomar Distant Cluster Survey (Postman et al., 1996) was the first which
used V and I bands for cluster search. It probed over 5 square degrees, compiling
a sample of 79 cluster candidates using matched-filter algorithm, which is a
maximum-likelihood algorithm analysing the galaxy distribution, using prior
knowledge of some model profiles to fit the data such as density distribution
profile or luminosity function. Similar algorithm has been used to create a sample
of 35 distant cluster candidates conducted upon ESO Imaging Survey I -band
data, covering about 3 square degrees (Olsen et al., 1999). Another survey using
I -band data was conducted by (Lidman and Peterson, 1996), probing 13 square
degrees, selecting a sample of 104 clusters, but this time using counts-in-cell
method, equally effective to matched-filter algorithm.

Sloan Digital Sky Survey (SDSS) (Abazajian et al., 2004), benefiting from
the CCD detectors, created revolutionary sky survey of the local Universe. Miller
et al. (2005) developed the C4 cluster finder algorithm, which they used to probe
the SDSS second data release (DR2), detecting 748 clusters of galaxies in a
∼ 2600 square degrees of sky with redshifts ranging from 0.02 to 0.17. The C4
algorithm looks for overdensities in 7 dimensional position and colour space,
minimising projection effects in optical wavelengths.

Adaptive smoothing kernel algorithm (Silverman, 1986) uses a two-step
process to produce a density map. Firstly, estimate of galaxy density is done
for each point on the map, followed by applying a smoothing kernel on this
map, which size changes as a function of the local density, with a larger kernel
at lower density and smaller at higher density. Northern Sky Optical Cluster
Survey (NoSOPC) (Gal et al. (2000), Gal et al. (2003)) used the adaptive kernel
algorithm together with colour selection criterion against field galaxies to create
galaxy overdensity maps, which they used as an input to the SExtractor (Bertin
and Arnouts, 1996) object detection algorithm, detecting galaxy overdensities,
which they identified as clusters of galaxies. NoSOPC catalogue contains 8155
candidate clusters selected from ∼ 5 800 square degrees of the northern galactic
cap region.

Voronoi Tesselation method is a complete separation of a studied region
into smaller volumes. Objects in the image are characterised by these volumes,
with radius being the mean object separation. Ramella et al. (2001) and Kim
et al. (2002) applied Voronoi Tesselation to galaxy cluster detection, using galaxy
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positions and magnitudes. They identified clusters as significant fluctuations
from the beckground, together with their main properties such as size, richness
and contrast above the background. The method still requires users input in
a form of setting significance threshold, but it is non-parametric and does not
smooth the data, resulting in an identification of clusters irrespective to their
shape, however being slightly affected by border effects and holes in the galaxy
distribution on the sky.

Brightest clusters galaxies have predictable colours and magnitudes. The
maxBCG algorithm (Annis et al. (2002), Koester et al. (2007)) uses this infor-
mation to calculate a likelihood for each of galaxy being a BCG as a function
of redshift based on its colours and the presence of a red sequence from the
surrounding objects in the SDSS (York et al. (2000), Abazajian et al. (2004))
data, without creating density maps. It is primary developed for detection of
massive galaxy clusters characterised by an overdensity of bright, uniformly red
galaxies.

Gladders and Yee (2000) created cluster detection method using two-band
optical/near-IR imaging data. The method is based on the red sequence of early-
type galaxies commonly appearing in all rich clusters, the empirical information
that cluster’s elliptical galaxies are redder than spiral galaxies of same redshift,
which is a strong indicator of a cluster’s presence. This technique was used to
construct the first (Gladders and Yee, 2005) and the second (Gilbank et al.,
2011) red sequence cluster surveys.

1.4 X-ray observations
The X-ray emission of galaxy clusters is mainly created by the thermal free-free
collisions of intra-cluster medium (ICM) electrons with other charged particles,
like atomic nuclei (Felten et al., 1966), also called bremsstrahlung radiation with
typical luminosity of 1043 – 1045 erg/s. Electron of highly ionized ICM plasma
of temperatures 107 – 108 K radiates X-ray photons when deflected by charged
particles. Other sources of clusters X-ray emission are: free-bound collisions,
radiation caused by recombination of ions, capture of electron by an ion during
close encounter followed by ionization and bound-bound collisions, radiation
caused by deexcitation of an electron when changing the quantum level in an
ion. The deexcitation process causes line emission, while the first two contribute
to continuum emission.

Observational discovery of line emission of highly ionized iron line in clusters
X-ray spectra, firstly discovered in the spectrum of Perseus cluster (Mitchell et al.,
1976) and shortly after in the spectra of Perseus and Coma clusters (Serlemitsos
et al., 1977), finally established the mechanism of clusters X-ray emission to be
thermal, meaning that the hot intra-cluster gas had to be a significant source
of clusters X-rays, which must have been ejected or enriched by stars at some
point, pointing out to the interaction of galaxies with ICM. This detected Fe
line was actually a blend of lines from iron ions, mainly Fe24+ and Fe25+ and
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some weaker lines from nickel ions. The main photon energies of those lines were
between 6.5 and 7.0 keV.

Merging events strongly affect dynamical properties of clusters as has been
shown by both, observations and simulations. Hydrodynamical simulations
showed that it takes about 2 Gyr to 4 Gyr for a cluster to re-establish its
equilibrium after a major merger event (Lacey and Cole (1993), Nelson et al.
(2012)). Moreover, cluster mergers lead to relativistic particle accelerations,
creating large radio halos, which are found to be correlated with X-ray emission
(Buote (2001), Hallman and Jeltema (2011)).

1.4.1 X-ray properties of galaxy clusters

Early X-ray observations revealed that the cooling time of the ICM gas in the
central regions of many clusters is much shorter than the Hubble time (e.g. Lea
et al. (1973), Mathews and Bregman (1978)). This discovery led to development
of the cooling flow model, in which the ICM of dense cores clusters hydrostatically
cools. The cool gas is being compressed by the hot gas of the outer regions. Hot
gas flows to the centre, replacing the compressed gas and generating a cooling
flow. However, optical observations (McNamara and O’Connell (1989), Edge
(2001)) did not detect expected rates of star formation, CO and molecular gas
predicted by the cooling flow model. Moreover, spectra (e.g. Peterson et al.
(2001) or Sanders et al. (2008)) from the XMM-Newton satellite (Jansen, 1999)
find out that the cooling rate of the gas in central parts does not match with the
cooling flow model, but the cooling flow model assumes no significant heating
mechanism, so this results gave rise to search for heating models that could
explain current observations.

The cooling flow model was ultimately replaced by classification of clusters
as cool-core (CC) and non-cool-core (NCC) (Molendi and Pizzolato, 2001).
Condensed regions of the cool gas in CC clusters demonstrate sharply peaked
X-ray emission, because of their higher brightness than that of the surrounding
material (Fabian (1994), Donahue and Voit (2004)). CC clusters seem to
be relaxed, achieving relatively steady state of cooling and accretion of the
gas, making them an attractive tool for cosmological studies, because being
dynamically relaxed makes the fitting of a density profile that provides the
gas mass to dark matter ratio more accurate (Allen et al. (2004), Allen et al.
(2008), Vikhlinin et al. (2009)). Active galactic nuclei (AGN) feedback is the
current best leading model to explain the dampening of poor cooling flows (e.g.
Gitti et al. (2012), Li et al. (2015), Pinto et al. (2018)). Cooling gas creates
clumps and filamentary structure, feeding star formation and super-massive
black hole, setting on the AGN outbursts, which increase gas entropy, decreasing
its cooling time, reducing the cool gas inflow to the AGN, so the AGN eventually
briefly shuts off, making place for ICM to cool and redevelop multiphase gas
again, triggering another star formation and AGN activity, making this process
continue in a loop. Another forms of heating could also contribute, such as
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thermal conduction and cosmic rays (see McNamara and Nulsen (2007) and
McNamara and Nulsen (2012)).

X-ray observations of galaxy clusters also provide a powerful tool to explore
clusters regularity. Based on X-ray observations, clusters can be classified into
two main groups, regular (relaxed objects) and disturbed (dynamically active
systems). Jones and Forman (1992) used X-ray observations to create cluster
classification into classes single, double, primary with small secondary, complex,
elliptical (based on the X-ray contours), off-center (displacement of center in
X-ray and optical or an X-ray tail extending only to a single sector off the X-ray
peak) and galaxy (for clusters with X-ray emission dominated by the central
galaxy). Other measurements of the disturbance of clusters X-ray emission
are power-law ratios (Buote and Tsai, 1995), according to clusters projected
morphology or axial ratios (Mohr et al., 1993), based on the X-ray surface
brightness distribution.

Dynamically active, disturbed clusters are either young newly forming clusters
or cluster mergers. While regular clusters are important for cosmology, dynami-
cally active clusters are very interesting for astrophysical studies of processes
like interactions of galaxies, interaction of ICM with galaxies, AGN feedback,
galaxy cluster mergers, ram pressure stripping, gas evaporation from galaxies,
turbulence, sloshing, cold fronts formed from sloshing, particle re-acceleration,
magneto-astrophysics or dark matter studies.

1.4.2 X-ray automatic machine detection of galaxy clusters

Great advantage of X-ray detection of galaxy clusters comes from the strong ICM
X-ray emission, allowing their observations up to large cosmological distances.
X-ray cluster observations are also less sensitive to projection effects, which
optical detections suffer from. Detectability of clusters in X-rays depends mainly
on their distance and size, larger and closer the cluster is, easier it is to detect it.
With higher redshift, larger volumes of space are probed. Detection methods
will be biased towards spotting larger clusters in higher redshifts, which has to
be accounted for in modelling of selecton function.

The XAmin pipeline (Pacaud et al., 2006) is used to automatically detect
galaxy clusters in X-ray images. It operates on a combined MOS1+MOS2+PN
X-ray image of an XMM-Newton observations. A dedicated wavelet smoothing
program called mr_filter (Starck et al. (1998), Starck and Pierre (1998)) firstly
smooths the combined image, so the X-ray structures, characterized by the low
number of photons, would be effectively recovered.

Second step is an analysis of the waveleth smoothed image by a source
extraction software, SExtractor (Bertin and Arnouts, 1996). The software
creates a list of candidate sources for a further analysis. Each source has an
estimation of a position and a flux. SExtractor was developed to be used on
optical images, which contain significantly more photons than X-ray images,
which is why it is necessary to smooth the X-ray image, otherwise the SExtractor
would not be able to work upon raw X-ray images. Smoothing can be done
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in various ways, the wavelet smoothing XAmine is just one of possibilities.
Valtchanov et al. (2001) showed how it gives base results for diffuse sources, like
galaxy clusters, in X-ray images.

The final step is a characterisation of the source found by the SExtractor.
Each of found sources is fitted by a point source model given by the XMM-
Newton’s PSF, which is computed for the source at its position. Extended
β model (Cavaliere and Fusco-Femiano, 1976), better describing galaxy clusters,
is computed together with the PSF. If the PSF model fits better, the source is
declared as a point source (typically an AGN), if the β model fits better, the
source is declared as an extended source (galaxy cluster candidate). Details of
selection criteria for definition of an (almost) pure sample of galaxy clusters
explains Pacaud et al. (2006).

Clerc et al. (2012b) used the Xamine pipeline to process 2774 XMM-Newton
archival observations with high galactic latitude, extracting fortuitous catalogue
of ∼ 850 clusters, based on a pure X-ray criteria, in concordance of methodology
developed for the XMM-LSS survey. They also performed cosmological analysis
on the highest signal-to-noise objects (347 clusters), consisting of modelling
the observed colour-magnitude diagram conducted on instrumental count-rates
measured in the (0.5 – 2.0) keV, (1.0 – 2.0) keV and (0.5 – 1.0) keV bands.



Chapter 2

Method

2.1 Neural networks
Neural networks (Mcculloch and Pitts, 1943), a class of machine learning algo-
rithms, consist of layers, which are made of mathematical neurons. Convolutional
layers are made of kernels, consisting of a stack of learnable filters. Layers input
is scanned across by layer’s filters, applying the convolution to produce the layer’s
output. The filters spacial dimension is usually very small, typically 3×3 pixels
or 5×5 pixels. Filters learn to extract representing features from the training
data, e.g. colour patches or differently oriented edges. Deep learning neural
networks are networks with more than one hidden layer, the layers bounded by
the input and the output layer. Layer’s output is a non-linear transformation
of its input. Layers are usually connected in a sequence, however, there are
architectures like ResNet (He et al., 2015), GoogleNet (Szegedy et al., 2014) or
recurrent neural networks Bengio et al. (1994), where this is not always true.

An example of a neural network with layers stacked in a sequence is a fully
connected feed-forward neural network (Fig. 2.1). Each of the neurons of the
fully connected layer connects to all the neurons of the adjacent layers, but with
none of its own layer. Individual connections have their importance, the weights,
which are being learned (Fig. 2.2). Fully connected architecture results in a very
large number of parameters, making it very big and computationally expensive
to train. The output of a layer j is a vector,

xj = f j(Wjxj−1 + bj), (2.1)

where xj−1 is the input to layer j with matrix of weights Wj , vector of
biases bj and layer’s non-linear activation function fj .

Back-propagation is used to train the network. In case of a supervised
learning, the predicted output y for a given input x is compared to the true
label ŷ applying a loss function L(y, ŷ). Gradient descent (LeCun et al., 1999)
computes the gradient for each weight connection. Those gradients are used to
determine the direction along which neural networks parameters, weights and
biases, should be renewed to decrease the loss. The gradients give the direction
of the fastest descent of the loss function.

12
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Figure 2.1: Example of an architecture of a feed-forward neural network consisting
of one input layer, three hidden layers and one output layer. All layers are fully
connected.

Figure 2.2: Example of a neuron connecting to 4 neurons and producing its
output.
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w(i+1) = w(i) − α
∂L

∂w(i) (2.2)

b(i+1) = b(i) − α
∂L

∂b(i) (2.3)

The update of weights and biases is performed simultaneously for all of their
values. The learning rate, parameter α, is used to manually change the weight
update. It is used to prevent rapid changes of weights, which would make them
diverge.

The original gradient descent is an optimisation method updating all of
the weights at once after iterating through all of the training samples once.
Stochastic gradient descent, its alternative, updates the weights progressively
after every mini-batch, a subset of the training data presented to the neural
network. The size of the mini-batch is a hyperparameter, like the learning rate,
it has to be manually chosen.

2.2 Convolutional neural networks
Convolutional neural networks (CNNs) consist of convolutional layers. Each
convolutional layer is made of a stack of learnable filters. A convolutional
filter is a 3D matrix, which pixel values are being learned during the training.
The connectivity of neurons makes the difference between convolutional and
dense layers. Convolutional layers connect only locally, on the contrary to
the fully connected dense layers, which neurons are connected to all of the
adjacent layers neurons. This results in a huge decrease in computations and
parameters. Convolutional layer convolves its input with its filters, creating an
output (Fig. 2.3) . The input of a convolutional layer is a stack of feature maps,
which can be represented as a set of K matrices Xk

j−1 with k = 1 ... K. The
output of a convolutional layer is also a set of feature maps Xs

j with s = 1 ... S,
which can be represented by following formula (Dieleman et al., 2015)

Xs
j = fj

(
K∑

k=1
Wk,s

j ∗ Xk
j−1 + bs

j

)
. (2.4)

Filters of layer j are expressed by matrices Wk,s
j , the bias of a feature map s

is characterised by bs
j and * represents the 2-dimensional convolution, which is

defined as

X ∗ H =
∑

k

∑
s

Xk,sHn−k,m−s, (2.5)

where n and m are filter width and height, X is the input and H is the filter.
The depth dimension of each of the filters of a convolutional layer has to be the
same as the depth dimension of layers input, each depth slice of a filter thus
operates over one of the depth slices of layers input. Each of the convolutional
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Figure 2.3: One of network’s first convolutional layer’s filters scanning its input.

filters outputs a separate 2 dimensional depth slice of its input, which is a 2D
feature map. Output of a convolutional layer is created by stacking feature maps
of all of its filters along the depth dimension, with spatial size defined by the
layer’s input image size, layer’s filters size, number of pixels to move the filter
across the input image during convolution (stride) and the number of added zero
value pixel shells to the input in order to obtain resulted output size (padding).
Individual filters learn different features.

Pooling layer usually follows a convolutional layer. The pooling layer reduces
its input size, preserving only the most important features. This process reduces
the input information while maintaining the most important features. The
information reduction also reduces computation time, because smaller input
requires fewer connections in the network. CNNs are usually ended by a stack of
dense layers. While convolutional layers mainly lear to extract most important
features from the training data set, dense layer stores information about which
of those features are active and ultimately predicts the classification class.

Dropout technique is usually used for the fully connected dense layers at the
end of the CNN. Neurons of a layer with the dropout are given probability to
be inactive during training, which is recalculated after each training iteration.
The network can not rely on information stored in connections of close neurons,
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forcing it to better generalisation, so it decreases the over-fitting, tendency to
learn features specific to the training data set. Dropout is used only during the
training of the CNN, which is often monitored by a number of mini-batches
yielded to the network or by a number of epochs, iterations through the whole
training data set.

2.3 Transfer learning
Transfer learning (PRATT and JENNINGS (1996), Do and Ng (2005)) is based on
using a deep neural network, trained on a large data set (e.g. VGG19 (Simonyan
and Zisserman, 2014), InceptionV3 (Szegedy et al., 2015) or MobileNet (Howard
et al., 2017)) and partially retraining it on a new data set. If the network is
used for classification of different classes than it was trained on, its top dense
layers are not used at all, because they encapsulate the information about the
individual classes the network is trained to classify. Features of the convolutional
layers are very simple, e.g. small (3×3 pixels) edges, curves or colour patches,
which can be applied to various sorts of image classes, so the rest of the network
is used as a well-trained feature extractor and it is partially fine-trained, with
a newly initialised dense layer on top of it, on the data set of interest. During
the fine-training, the transferred convolutional layers are usually frozen, fixing
weights and biases, which are no longer being free-parameters to be trained.

2.4 Performance measurements
Accuracy is a ratio of all correct predictions to all predictions, defined as,

A = NT P +NT N

NT P +NT N +NF P +NF N
, (2.6)

where NT P declares true positive rate, in our case of the binary classification
it would be the number of clusters correctly classified as clusters, NT N is a true
negative rate (number of non-clusters correctly classified as non-clusters), NF P

refers to the false positive rate (number of non-cluster incorrectly classified as
clusters) and NF N denotes the false negative rate (number of clusters incorrectly
classified as non-clusters).

Precision, ratio of correctly predicted positive observations over all predicted
positive observations, is defined as,

P = NT P

NT P +NF P
. (2.7)

Recall is the ratio of correct predictions for a certain class overall predictions
for the same class, e.g. number of correctly predicted non-clusters to a number
of all non-clusters in the test sample. It is defined as,

R = NT P

NT P +NF N
. (2.8)
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F1 score is mainly useful in case of unbalanced data sets or for classification
with differently weighted data sets, but it might be less intuitive than the accuracy.
It is measured as a weighted average of precision and a recall accounting for
both, NF P and NF N and is defined as,

F1 = 2 RP

R+ P
. (2.9)

ROC, rectified operational curve, is a common way how to visualise classifier’s
performance. Threshold T defines whether the object belongs to first or second
class, in a binary classification. ROC is obtained by plotting NT P rate against
the NF P rate with T as a varying parameter.

The capability of a classifier to distinguish between the two classification
classes describes the area under the ROC, AUC. Plotting ROC and AUC for
the case of a multi-class classification problem would be done for each of the
classification classes separately as one versus all, reducing the problem to the
binary case.
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Data and The Hunt for Galaxy Clusters

3.1 XAmine pipeline
The XAmin pipeline (Pacaud et al., 2006) was used to create images of galaxy
cluster candidates. It operates in the following way.

Firstly a combined MOS1+MOS2+PN image of XMM observations is smoothed
with a dedicated wavelet smoothing program called mr_filter (Starck et al.,
1998). Starck and Pierre (1998) shown it to be effective for recovering structures
in X-ray images, which are characterised by low numbers of photons (Starck
et al., 1998).

Secondly, source extraction software SExtractor (Bertin and Arnouts, 1996)
is used to analyse the wavelet smoothed image. The software returns a lost of
candidate sources to be further analysed, together with the estimate of their
position and flux.

SExtractor was developed for optical images, which contain many more
photons than X-ray images. To make the SExtractor work properly, smoothing
of the X-ray image is a necessity as the SExtractor would not be able to work
with raw X-ray images otherwise. While the smoothing can be performed in
several ways, the wavelet smoothing used by XAmin was shown by Valtchanov
et al. (2001) to give the best results for X-ray images of diffuse sources like
galaxy clusters.

The final step characterises candidate clusters found by the SExtractor by
fitting to each of those both a point source model is given by the XMM-Newton
PSF, which has to be computed at the source position and an extended β model
(Cavaliere and Fusco-Femiano, 1976), which is used to describe galaxy clusters.
The source is declared as a point source (AGN) or an extended source (cluster)
based on which of these two models best fits the candidate source. The details of
the procedure, including relevant formulas and the selection criteria defining an
(almost) pure sample of galaxy clusters, are described in Pacaud et al. (2006).

Considering that the galaxy cluster candidates in the project are candidate
clusters picked by the XAmin pipeline, the point-sources in this data set are those
which the pipeline classified as extended X-ray emission. This necessarily results
in a bias of the point source sample towards those, which the XAmin misclassified
as extended X-ray emission.

18
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3.2 Data preprocessing
Neural networks were trained using only images without contours and marks.
Each cluster candidate comes with a pair of X-ray and optical images, those
were combined to create one Portable Network Graphics1 image. To create one
RGB PNG image, X-ray and optical images were grayscaled and concatenated
together as individual channels.

Images need to be converted into one RGB PNG image for transfer learning
approach because the transferred network was originally trained on 3 colour
channel images, so it requires the same input channel size. Training on a
concatenated PNG X-ray and PNG optical images was also conducted, but only
with our custom network. Regardless of the image channel size, before fed to
the network, the image values were always normalised to the interval 0 – 1.

Grayscaling was done using OpenCV python library (Bradski, 2000) function
cv2.cvtColor(image, cv2.COLOR_RGB2GRAY), where image is an RGB PNG
image selected for grayscaling (Fig. 3.1).

The neural network used for transfer learning can exhibit various sensitivity
in different colour channels if the initial data set used for its training contained
more information in one of the colour channels. This effect was explored by
training transfer learning models on 3 different channel configurations, shown in
Fig. 3.2. Neural networks were also trained using only RGB PNG X-ray images
(input channel shape 3), only RGB PNG optical images (input channel shape 3)
and of concatenated RGB PNG X-ray and optical images (input channel shape
6).

Figure 3.1: Left is the 510×510 X-ray RGB PNG image, the middle is its
510×510 optical PNG counterpart and right is concatenated RGB PNG image
made of a grayscaled optical image as a blue channel, grayscaled X-ray image as
green channel and the red channel was filled with zeros. The image was then
cropped into 356×356 sizes.

1See e.g. https://en.wikipedia.org/wiki/Portable_Network_Graphics (PNG)

https://en.wikipedia.org/wiki/Portable_Network_Graphics
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Figure 3.2: Different channel configurations of the training data set. Left: X-ray
used as the green, optical as the blue, while the red channel is left empty. Middle:
X-ray green, optical red, empty blue. Right: X-ray red, optical green and empty
is red.

3.3 Data augmentation
Risk of over-fitting, poor generalisation, increases with smaller data sets. This
can be prevented using data augmentations, making sure, that the network will
never see exactly the same image twice. The data augmentation was essential
to avoid the over-fitting and to increase the performance of classification. Each
time an image is generated to the network during training, it is randomly scaled,
rotated and translated. Augmentation parameters are described in Tab. 3.1.

Augmentation value
Scaling uniform distribution [1.3, 1/1.3]
Rotation uniform distribution [0, 360] deg

Translation x, y random pixel shift [-4, 4] pix

Table 3.1: Values of augmentation parameters.

3.4 The Hunt for Galaxy Clusters
The Hunt for Galaxy Clusters is an online citizen science project built via The
Zooniverse2 project builder platform. It contains a data set of 1 600 galaxy
cluster candidates, detected as extended X-ray sources by the XAmin wavelet-
based pipeline (Pacaud et al., 2006). Each of project’s cluster candidates was
classified by 30 volunteers, who were asked questions to classify candidate clusters
into various categories according to the decision tree (Fig. 3.3), see Sec. 3.5.

Each object is represented by 4 images, each covering the exact same area of
the sky, 7×7 arcmins. Two X-ray images, one with contours visualising the areas
of constant X-ray brightness and a central cyan cross, which marks the object

2http://zooniverse.org
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selected as a cluster candidate. The second X-ray image is the same but without
central cross and contours. The other 2 images are optical counterparts, one
with superimposed X-ray contours and the central cyan cross marking object
selected for classification, the other one is without contours the central cross.
Fig. 3.4. shows all 4 images as shown in The Hunt for Galaxy Clusters. The data
in the project come from the XMM CLuster Archive Super Survey (X-CLASS)
(Clerc et al., 2012a), an X-ray galaxy cluster search in the archival data of
the European Space Agency’s X-ray observatory, XMM-Newton (Jansen, 1999),
optical counterparts come from the Digitized Sky Survey POSS-II (DSS2).

3.5 Weighting volunteers classifications
The Hunt for Galaxy Clusters decision tree (Fig. 3.3) encompasses 6 questions,
each having 2 or 3 possible answers. Nevertheless, due to the structure of
the decision tree, it may be possible that only a subset of the questions was
answered. The agreement of volunteers with experts will vary between individuals.
Moreover, it does not need to be the same for each of the questions. Someone
may be good at some questions while struggling with others. It may also happen
that some of the users were purposely creating malicious classifications. Users
classifications were weighted question-wise to mitigate those effects. Weighting
was conducted based on the agreement of individuals with the majority, defining
the accuracy of an individual for each of classification questions as,

Gi = Ci

Qi
, (3.1)

where Gi is the accuracy of an individual for question i, Ci is the number of
individual’s answers in agreement with the majority for question i and Qi is the
number of total individual’s answers for question i. The accuracy describes the
abbility of an individual to classify as the majority of volunteers would. When
an accuracy for each of the 6 questions is computed for each of the volunteers,
weighted classifications are computed. The final Zooniverse classification of an
object is the classification ending answer with the highest weighted score.

3.6 Classification schemes
Neural networks were trained for two different classification schemes, binary
and multiclass. Training of the networks was done using two different data sets,
images classified by the Zooniverse volunteers in The Hunt for Galaxy Clusters
and images classified by the experts in the field. Tab. 3.2 describes binary and
multi-class classification schemes created from the Zooniverse classifications.
Tab. 3.3 explains construction of classification schemes using classifications of
experts. Categories without classification in the scheme were not used. Nearby
or low-z galaxy clusters are those, which galaxies are still visibbe in the DSS2
optical images, so they have a redshift z lower than ∼ 0.35.
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Figure 3.3: Flowchart of the decision tree of The Hunt for Galaxy Clusters. Blue
cells represent questions, red are next question leading answers and green are
classification ending answers.
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Task Answer Binary Multi-class

1

Emission close
to the centre. – –

No mission close
to the centre. non-cluster other

Emission near
the chip edge. non-cluster other

2 Point-like. non-cluster point source
Extended. – –

3

Yes. non-cluster nearby galaxy
No. – –

Optical image
incomplete. non-cluster other

4 Yes. – –
No. – –

5 Yes. cluster low-z cluster
No. non-cluster other

6 Yes. cluster high-z cluster
No. non-cluster other

Table 3.2: Description of binary and multi-class classification schemes using
Zooniverse classifications.

Classification Binary Multi-class
low-z cluster cluster low-z cluster
high-z cluster cluster high-z cluster

point non-cluster point source
star or AGN non-cluster point source

double non-cluster point source
fossile group – –
nearby galaxy non-cluster nearby galaxy

artefact non-cluster other
bkg too high no cluster other

no optical image non-cluster other
edge non-cluster other

dubious – –

Table 3.3: Description of binary and multi-class classification schemes constructed
from classifications of experts.
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Figure 3.4: Top left is an X-ray raw image with contours showing the areas of
constant X-ray brightness and the central cyan cross marking the object selected
for classification. Top right is the optical counterpart image with superimposed
X-ray contours together with the central cross. Bottom are the same images,
but without contours and the central cross.



Chapter 4

Results and Discussion

4.1 The Hunt for Galaxy Clusters results
On the 24th October 2018, the project was launched as an official Zooniverse1

project. It contained 1 600 cluster candidates, each with a threshold classification
by a 30 different volunteers. Classifications were finished on 29th April 2019.
1 227 volunteers participated in the project. Classifications of users who were
not logged in The Zooniverse page were not considered. 7 volunteers classified
all of the 1 600 cluster candidates. Some of those continued classifying, making
multiple classifications for the same objects, those and classifications of users
who were not logged in were not used for further analyses.

Keeping communication with volunteers in the forum was absolutely in-
evitable to maintain the project alive. Discussions started for more than 1 280
project’s cluster candidates. All of the volunteers questions in the forum were
addressed within ∼ 7 days, emerging into a challenging public outreach. Pro-
moting the project in social media, Twitter and Facebook also helped to attract
attention and new volunteers. We have promoted the project heavily at the
beginning, with a pause during November 2018, starting again on Christmas
2018 until the end of January 2019. Classification rate in the project had a
tendency to continuously drop, which might be connected with our activity on
social media. We have also experienced a significant decrease in classification
activity when our project dropped from The Zooniverse project’s front page at
the beginning of April 2019.

404 cluster candidates from the sample of 1 600 cluster candidates in The
Hunt for Galaxy Clusters were previously classified by experts. This sample has
been used to conduct agreement study between citizen volunteers and experts in
the field (Tab. 4.1).

Fig. 4.1 shows the fraction of the Zooniverse answers in agreement with
experts to all Zooniverse answers for classification ending answers, except for not
a nearby cluster and not a distant cluster, which do not have direct counterpart
in classification of experts. Zooniverse volunteers experienced a few biases. In
general, they were biased to classify objects as non − clusters. The highest
disagreement with experts lies in distinguishing point from extended X-ray

1http://zooniverse.org
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Classifications unweighted weighted
NT P (cluster – agreement) 69 102

NF N (cluster – non-agreement) 185 152
NT N (non-cluster – agreement) 150 149

NF P (non-cluster – non-agreement) 0 1
Accuracy 54.2% 61.1%
Precision 100.0% 99.0%
Recall 27.2% 40.1%
F1 score 42.7% 57.1%

Table 4.1: Weighted Zooniverse volunteers results in comparison to classifications
of experts for a binary classification into clusters and non-clusters.

emission. Many more objects were classified by the Zooniverse volunteers as
no emission than there were. This bias probably comes from the inability of
recognising faint X-ray emission. The edge category also received many more
classifications from volunteers than from experts. From the communication with
volunteers in the project’s forum, we find out, that they often misunderstood
edge of the XMM-Newton’s field of view with small chip gaps between individual
XMM-Newton’s detectors. Those small chip gaps were often present in the
area of the X-ray emission, which is most probably a reason behind this bias.
The fourth most difficult category to classify for the Zooniverse volunteers was
the nearby galaxy, related to the third question in the project’s decision tree.
Volunteer’s feedback in the forum enlightened reasons behind this bias, they
have often classified nearby galaxy clusters with prominent BCG galaxy as a
nearby galaxy, which is how a lot of nearby galaxy clusters were missed. On
the other way, the Zooniverse volunteers created an extremely pure sample of
clusters with just 1 non-cluster classified as a cluster after the weighting.

4.2 Training and performance
Neural networks were always trained on the same data set classified by experts,
except for the neural networks trained on the Zooniverse classifications, data
set from The Hunt for Galaxy Clusters. Training image data format was the
concatenated image of the grayscaled X-ray, grayscaled optical and an empty
channel used as the green, blue and red channels respectively, if not stated
otherwise. Zooniverse data set does not contain the same objects as the data
set classified by experts. Despite the training data set, all networks were tested
on the same data set of 85 spectroscopically confirmed clusters and 85 XAmin
selected cluster candidates classified as non-clusters by experts (Tab. 4.2).

In the beginning, the trainig dataset is shuffled, a balanced batch is selected
and used for training (one iteration), the trainig data set is than re-shuffled, next,
a balanced batch is selected and used to train the network. Batches presented to
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Figure 4.1: Histogram comparing classificationsi in agreement with experts to
all classifications of the Zooniverse volunteers. Coding of answers is following:
a) no emission, b) edge, c) point, d) nearby galaxy, e) no optical image, f) nearby
galaxy cluster, g) distant galaxy cluster.

Class Number of objects
low-z cluster 62
high-z cluster 23

point (point source) 20
double (point source) 9

star or AGN (point source) 6
nearby galaxy 28

artefact 21
edge 1

Table 4.2: Numbers of objects in test dataset.
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the network were always balanced, having the same number of classes, 5 clusters
and 5 non-clusters in case of the binary cassification or 2 classes of each for the
multi-class classification. This was done to make sure that the network will not
be biased, because our training and validation data sets contained unbalanced
numbers of classes. Tab. 4.3 and Tab. 4.4 show numbers of objects of different
classes in training and validation data sets, classified by experts and Zooniverse
volunteers, respectively.

Class Number of objects
Training data set Validation data set

low-z cluster 465 100
high-z cluster 384 100

point (point source) 74 25
star or AGN (point source) 6 2

double (point source) 15 10
nearby galaxy 180 35

artefact 111 30
no optical image 9 0

edge 2 2
Clusters 845 200

Non-clusters 397 104
Total 1246 304

Table 4.3: Numbers of objects in the training and validation data sets classified
by the experts.

Tab. 4.5 describes hyperparameters of our custom network and our transfer
learning approach with MobileNet pre-trained neural network. Our custom
network, trained from scratch, exhibit most sensitivity to the choice of the initial
learning rate, number of convolutional layers, and of their filters and filter sizes,
number of dense layers and their neurons.

Fig. 4.2 and Tab. 4.7 display the performance of our custom network (CN),
when trained on a different data formats, together with the transfer learning (TL)
approach. Grayscaled in the legend refers to the combination of X-ray and optical
used as green and blue channels respectively, with red channel left to zeroes. The
best performance is achieved with our custom network. Training on concatenated
PNG X-ray and optical images slightly decreased performance. Training on solo
PNG X-ray or solo PNG optical images resulted in significantly lower performance,
which is expected because the network was not given information from the other
wavelength, which is crucial for galaxy cluster classification. Nearby galaxies
appear nearly indistinguishable from clusters in X-ray, while optical observations
suffer mainly from projection effects, e.g. looking at a galaxy filament aligned
in a line of sight would create apparent overdensity of galaxies, undifferentiable
from a galaxy cluster without information of a presence of the hot-intracluster
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Class Number of objects
Training data set Validation data set

nearby galaxy cluster 235 100
distant galaxy cluster 85 30

point-like X-ray emission 392 30
nearby galaxy 187 30

no optical image 2 0
emission near the chip edge 49 10

no emission close to the centre 249 30
not a nearby galaxy cluster 0 0
not a distant galaxy cluster 1 0

Clusters 320 130
Non-clusters 880 100

Total 1200 230

Table 4.4: Numbers of objects in the training and validation data sets classified
by the Zooniverse volunteers.

Hyperparameters Custom net MobileNet
Batch size 10 10
Iterations 158 000 7 900
Optimizer SGD Adadelta

Nest. Momentum 0.9 -
Rho - 0.95

Initial lr. 0.0001 1.0
lr. decay 10−6 0.95

Minimal lr. 10−4 0.01
lr. red. patience 14 4
lr. red. factor 0.75 0.85
Conv. layers Fig. 4.15 MobileNet
Activations ReLU MobileNet
Dense layer 1×256 1×256

Dense dropout 0.65 0.65
Output layer 2 2
Activation softmax softmax

Loss function cat. crossentropy cat. crossentropy
Input image size 356×356 224×224

Table 4.5: Hyperparameters of used networks.
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gas visible in the X-ray wavelengths. Projection overdensities of field galaxies
also contaminate optical images. Combination of the two wavelengths is very
beneficial, resulting in an automatic galaxy cluster classifier, which achieves
94.1% accuracy in binary classification of galaxy cluster candidates to clusters
and no-clusters, tested on a sample of 85 spectroscopically confirmed clusters
and 85 cluster candidates selected by the XAmin pipeline, which were classified
as no-clusters by experts.

Three different pre-trained neural networks, VGG19 (Simonyan and Zisser-
man, 2014), InceptionV3 (Szegedy et al., 2015) and MobileNet (Howard et al.,
2017), were tested for transfer learning. Each of them was originally trained on
the ImageNet (Deng et al., 2009) data set composed of approximately 1.2 million
images of 1 000 classes. MobileNet always outperformed the other two, so we
further discuss only it. MobileNet was found to achieve the best performance
in transfer learning approach also by Lieu et al. (2018) in case of solar system
objects detection.

The most sensitive hyperparameter for transfer learning was the number of
transferred layers to froze (Fig. 4.3, Tab. 4.9). MobileNet did not achieve good
performance with all of its convolutional layers frozen. The performance was not
increased when deeper convolutional layers were unfrozen. However, unfreezing
the first 50 layers immediately increased the performance. Unfreezing more of
the first layers continuously increased the performance.

To further examine this we trained the MobileNet network, without transfer-
ring weights, using the MobileNet architecture randomly initialised from scratch.
It achieved similar results as with its weights transferred and unfrozen (Fig. 4.4
and Tab. 4.11). Training only the newly initialised top dense layer on top of
the frozen MobileNet’s transferred convolutional layers achieved AUC = 72.9%.
Initialising MobileNet’s layers from scratch and freezing them produces, as ex-
pected, diagonal ROC curve of AUC = 50.0%. This experiment shows, that
the MobileNet weights are better than random initialisation in our study case,
but freezing them does not lead to satisfying performance, so they need to be
unfrozen and fine-tuned.

Fig. 4.5 and Tab. 4.12 depict ROC curves and performance of our custom
network trained for multi-class classification. The network performed best in
classifying nearby galaxies. This was expected, because single galaxy, large on
the optical image, is hard to be misclassified by something else from classification
classes.

Transfer learning MobileNet network performed a bit better than our custom
network in case of multi-class classification (Fig. 4.6, Tab. 4.13).

Fig. 4.7 and Tab. 4.15 show the performance of our custom network and the
MobileNet transfer learning with and without training augmentation. Those
networks were trained on the grayscaled X-ray green, optical blue, red empty
channel images on classification done by experts. The augmentation during the
training was crucial to obtain good performance, to reduce over-fitting.

All of the randomly initialised layers used the glorot-uniform initialisation
(Glorot and Bengio, 2010). Impact of initialisation’s randomness on network’s
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performance was explored for transfer learning MobileNet architecture, where
only the top dense layer was randomly initialised (Fig. 4.8, Tab. 4.17). It is
visible that the performance changes when the network is re-trained multiple
times. The network always had the exact same hyperparameters, training data
were grayscaled images with the green channel: X-ray, blue channel: optical and
red channel: zeroes, labelled by experts.

Fig. 4.9, Tab 4.18 and Tab. 4.19 show that the transfer learning with the
MobileNet network was not influenced by the channel configuration of the
grayscaled images used to create one RGB PNG image for the training (Fig. 3.1).
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Figure 4.2: ROC curves of best performing networks when trained on different
data formats.

Network Clusters Non-clusters
NT P NF N NT N NF P

CN grayscaled 77 8 83 2
CN 6 channels 79 6 76 9
CN solo optical 69 16 50 35
CN solo X-ray 78 7 60 25
TL grayscaled 75 10 81 4
CN zooniverse 58 27 83 2
TL zooniverse 50 35 84 1

Table 4.6: Classification results of the best performing networks when trained
on different data formats and labels.
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Network Accuracy Precision Recall F1 score AUC
CN grayscaled 94.1% 97.5% 90.6% 93.9% 96.9%
CN 6 channels 91.8% 91.8% 91.8% 91.8% 94.5%
CN solo optical 68.2,% 65.0% 78.8% 71.3% 87.3%
CN solo X-ray 81.2% 75.7% 91.8% 83.0% 86.2%
TL grayscaled 91.8% 94.9% 88.2% 91.5% 94.0%
CN zooniverse 83.0% 96.7% 68.2% 80.0% 92.7%
TL zooniverse 78.8% 98.0% 58.8% 73.5% 88.7%

Table 4.7: Performance of the best performing networks when trained on a dif-
ferent data formats and labels.

Figure 4.3: ROC curves of transfer learning with MobileNet for differently frozen
transferred convolutional layers.
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Network Clusters Non-clusters
NT P NF N NT N NF P

TL, all frozen 80 5 12 72
TL, last 250 unfrozen 82 3 5 80
TL, last 500 unfrozen 74 11 27 58
TL, last 700 unfrozen 73 12 48 37
TL, first 50 unfrozen 82 3 53 32
TL, first 250 unfrozen 81 4 72 13
TL, first 500 unfrozen 75 10 74 11

TL, all unfrozen 75 10 81 4

Table 4.8: Classification results of transfer learning with the MobileNet network
having the same hyperparameters, but differently frozen transferred convolutional
layers.

Network Accuracy Precision Recall F1 score AUC
TL, all frozen 54.1% 52.3% 94.1% 67.2% 77.4%

TL, last 250 unfrozen 51.1% 50.6% 96.5% 66.4% 74.1%
TL, last 500 unfrozen 59.4% 56.1% 87.1% 68.2% 74.9%
TL, last 700 unfrozen 71.2% 66.4% 85.9% 74.9% 77.6%
TL, first 50 unfrozen 79.4% 71.9% 96.5% 82.4% 89.1%
TL, first 250 unfrozen 90.0% 86.2% 95.3% 90.5% 94.8%
TL, first 500 unfrozen 87.6% 87.2% 88.2% 87.7% 93.9%

TL, all unfrozen 91.8% 94.9% 88.2% 91.5% 95.5%

Table 4.9: Performance of the transferred MobileNet network with the same
hyperparameters, but differently frozen transferred convolutional layers.
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Figure 4.4: ROC curves of the MobileNet network with transferred weights of its
convolutional layers, compared to training with its weights randomly initialised.

Network Clusters Non-clusters
NT P NF N NT N NF P

TL, all unfrozen 75 10 81 4
TL, all frozen 80 5 12 72

TL, all unfrozen, weights random. init. 73 12 76 9
TL, all frozen, weights random. init 85 0 0 85

Table 4.10: Classification results of the MobileNet network with transferred
weights of its convolutional layers, compared to training with its weights randomly
initialised.

TL MobileNet Accuracy Precision Recall F1 score AUC
All unfrozen, MobileNet 91.8% 94.9% 88.2% 91.4% 95.5%
All frozen, MobileNet 54.1% 52.3% 94.1% 67.2% 77.4%

All unfrozen, random. init. 87.6% 89.0% 85.9% 87.4% 93.6%
All frozen, random. init. 50.0% 50.0% 100.0% 66.6% 50.0%

Table 4.11: Performance of the MobileNet network with transferred weights of its
convolutional layers, compared to training with its weights randomly initialised.
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Figure 4.5: ROC curves of multi-class classification of our custom network.

Class Accuracy Precision Recall F1 score AUC
Low-z cluster 78.8% 67.6% 80.6% 73.5% 89.0%
High-z cluster 84.1% 44.1% 65.2% 52.6% 88.5%
Point source 84.1% 75.0% 27.3% 40.0% 87.8%
Nearby galaxy 88.8% 73.9% 56.7% 64.2% 84.5%

Other 87.6% 51.8% 63.6% 57.1% 88.4%

Table 4.12: Performance of our custom network for multi-class classificaton.
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Figure 4.6: ROC curves of multi-class classification performed by transfer learning
with MobileNet’s convolutional layers.

Class Accuracy Precision Recall F1 score AUC
Low-z cluster 77.1% 62.3% 93.5% 74.8% 92.6%
High-z cluster 87.1% 55.6% 21.7% 31.2% 91.1%
Point source 86.5% 85.7% 36.3% 51.0% 89.0%
Nearby galaxy 90.0% 70.1% 73.3% 72.1% 92.4%

Other 91.2% 65.2% 68.2% 66.7% 91.6%

Table 4.13: Performance of the transfer learning with the MobileNet for multi-
class classificaton.
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Figure 4.7: ROC curves of our custom network and the transferred MobileNet
network with and without training augmentation.

Network Clusters Non-clusters
NT P NF N NT N NF P

CN 77 8 83 2
CN, no augm. 77 6 46 39

TL 75 10 81 4
TL, no augm. 77 8 55 30

Table 4.14: Classification results for our custom network and the transfer learning
with the MobileNet when training augmentation is and is not applied.

Network Accuracy Precision Recall F1 score AUC
CN 94.1% 97.5% 90.6% 93.9% 96.9%

CN, no augm. 73.5% 66.9% 92.9% 77.8% 87.31%
TL 91.8% 94.9% 88.2% 91.5% 95.5%

TL, no augm. 77.6% 72.0% 90.6% 80.2% 90.1%

Table 4.15: Performance of our custom network and the transfer learning with
the MobileNet with and without augmentation.
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Figure 4.8: ROC curves of the same transfer learning MobileNet network, trained
multiple times with exactly same hyperparameters, to explore effects of final
layers random initialisation on the network’s performance.

Network Clusters Non-clusters
NT P NF N NT N NF P

TL MobileNet, run no. 1 75 10 76 9
TL MobileNet, run no. 2 79 6 71 14
TL MobileNet, run no. 3 75 10 81 4
TL MobileNet, run no. 4 81 4 70 15
TL MobileNet, run no. 5 77 8 74 11

Table 4.16: Classification results of the transfer learning MobileNet with exactly
same hyperparameters, to examine the effects of the top dense layer’s random
initialisation on networks results.
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Network Accuracy Precision Recall F1 score AUC
TL MobileNet, run no. 1 88.8% 89.2% 88.2% 88.8% 94.7%
TL MobileNet, run no. 2 88.2% 84.9% 92.9% 88.7% 94.5%
TL MobileNet, run no. 3 91.8% 94.9% 88.2% 91.4% 95.5%
TL MobileNet, run no. 4 88.8% 84.4% 95.3% 89.5% 95.4%
TL MobileNet, run no. 5 88.8% 84.4% 95.3% 89.5% 93.4%

Table 4.17: Performance of the transferred MobileNet network with the same
hyperparameters trained multiple times to probe the randomness effect of the
top dense layer’s initialisation on networks performance.

Figure 4.9: ROC curves of the transfer learning with the MobileNet trained on
the data sets with different channel order. X refers to X-ray, O to optical and E
to empty channel.
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Network Clusters Non-clusters
NT P NF N NT N NF P

TL, X:Green, O:Blue, E:Red 75 10 76 9
TL, X:Green, O:Red, E:Blue 79 6 70 15
TL, X:Red, O:Green, E:Blue 78 7 72 13

Table 4.18: Classification results of the transferred MobileNet network with the
same hyperparameters, trained on data with different channel order. X refers to
X-ray, O to optical and E to empty channel.

Network Accuracy Precision Recall F1 score AUC
TL, X:Green, O:Blue, E:Red 91.8% 94.9% 88.2% 91.4% 95.5%
TL, X:Green, O:Red, E:Blue 87.6% 84.0% 92.9% 88.2% 94.1%
TL, X:Red, O:Green, E:Blue 88.2% 85.7% 91.7% 88.6% 94.3%

Table 4.19: Performance of the transferred MobileNet network with the same
hyperparameters, trained on data with different channel order. X refers to X-ray,
O to optical and E to empty channel.
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4.3 Images of classified objects
Fig. 4.10 shows some of the spectroscopically confirmed galaxy clusters which
have been classified with a probability higher than 99% being galaxy clusters
by our custom network. The network identified with this very high probability
nearby and also distant galaxy clusters. The first 4 objects in the figure are
examples of the nearby galaxy clusters, the last 2 are examples of distant galaxy
clusters. All of them have very prominent extended X-ray emission.

Fig. 4.11, Fig. 4.12 and Fig. 4.13 show images of objects which have been
incorrectly classified by our custom network. The non-galaxy clusters were
probably classified as clusters due to a faint X-ray emission present et the centre
of those objects. Most of the clusters which have been missed by our network
are very similar to nearby galaxies, having at the centre one elliptical galaxy of
a similar size in optical as the size of clusters X-ray emission.

4.4 Visualisation of filter’s activations
Visualising outputs of individual filters in a convolutional layer, when presented
an input image selected for classification, helps to conclude if the network learned
to extract relevant features. Fig. 4.14 shows activations of three selected filters
from each convolutional layer of our custom network when the network classifies
a spectroscopically confirmed galaxy cluster. Filters learned to look for features
such as colour patches of X-ray and optical emission, edges of X-ray and optical
light and their combinations. Filters learned to look for a combination of the
X-ray and optical emission more commonly than only one of the two. Different
filters learned to search for the emission of various intensity, helping the network
to tell apart different objects. Size of filter’s output decreases with deeper
convolutional layers, because of the max-pooling operation applied after each
convolutional layer, making filter outputs of layers progressively smaller. Output
sizes of individual filters for a specific layer are described in Fig. 4.15.
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Figure 4.10: Examples of spectroscopically confirmed galaxy clusters which our
custom network correctly classified with a probability higher than 99%. Each
row shows one object. On the left is an optical image, the middle is the X-ray
image and right is a concatenation of the two with the red channel left with
zeroes.
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Figure 4.11: Non-galaxy clusters incorrectly classified as galaxy clusters NF P by
our custom network (2 objects of 85 non-clusters in the test sample). Each row
shows one object, left: optical image, middle: X-ray image, right: a concatenated
image of optical (blue channel), X-ray (green channel) and red channel left with
zeroes.
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Figure 4.12: The first 4 of the 8 galaxy clusters incorrectly classified as non-
galaxy clusters NF N by our custom network. Each row shows one object, left:
optical image, middle: X-ray image, right: a concatenated image of optical (blue
channel), X-ray (green channel) and red channel left with zeroes.
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Figure 4.13: The other 4 galaxy clusters incorrectly classified as non-galaxy
clusters (NF N ) by our custom network (8 objects in a total of 85 spectroscopically
confirmed clusters in the test sample). Each row shows one object, left: optical
image, middle: X-ray image, right: a concatenated image of optical (blue
channel), X-ray (green channel) and red channel left with zeroes.
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Figure 4.14: Activation maps of a few selected kernels from each convolutional
layer of our custom network. Top: the concatenation of grayscaled optical and
X-ray images used as single channels, blue and green respectively. The red
channel is left with zeroes. Each row from second to seventh shows activation
maps of three chosen filters from the first to the sixth layer of our custom network,
respectively.
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Figure 4.15: The architecture of our custom network which achieved the best
performance.



Chapter 5

Conclusion and future plans

5.1 The Hunt for Galaxy Clusters
Our crowd-sourcing Zooniverse citizen science project, The Hunt for Galaxy
Clusters incorporated 1 600 cluster candidates picked by the XAmin pipeline.
Each cluster candidate had a threshold 30 classifications to be retired. It took
about 6 months to all of the 1 227 Zooniverse volunteers who participated to
finish the classifications.

The volunteers achieved 62% agreement with experts calculated on a sample
of 404 cluster candidates classified by both, volunteers and experts. The experts
classified 254 of those as clusters and 150 as non-clusters. The Zooniverse
volunteers agreed with the experts on 102 clusters and 149 non-clusters achieving
61.1% accuracy (Tab. 4.1). However, this sample contained 254 objects classified
as clusters by experts, making it biased towards clusters. Given that the
Zooniverse volunteers struggled to classify clusters, performance measurement
on such a sample necessarily decreases volunteer’s preciseness. When this test
sample was reduced to be balanced, having 150 clusters and 150 non-clusters
(classifications by experts), the Zooniverse volunteers achieved 72.2% agreement
with the experts. On the other hand, the Zooniverse volunteers created an
extremely clear sample of clusters, classifying only 1 object as a cluster which
has been claimed as non-cluster by experts. Such a data set might be very useful
for cosmological studies, which require cluster catalogue with high purity.

Comparing the Zooniverse volunteers classifications of objects classified as
clusters by the experts reveals, that the volunteers experienced several biases
(Fig. 4.1). The Zooniverse volunteers were mostly biased to identify extended
X-ray emission as point-like, no emission, emission close to the edge and as a
nearby galaxy. The bias of the point-like category points out that the Zooniverse
volunteers battled to identify the size of the X-ray emission. Many of their
classifications ended in the edge category, which was intended for the X-ray
emission close to the chip edge of the XMM-Newton’s field of view. This bias has
been linked with the misconception of the small chip gaps between individual
XMM-Newton’s detectors with the edge. The bias to classify as no emission
might have been caused by struggling to identify fainter X-ray emission.

Distant galaxy clusters might have been missed by the Zooniverse volunteers

49
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due to their biases of classifying extended X-ray emission as a point-like and no
emission. The Zooniverse volunteers were also prone to classify nearby galaxy
clusters with prominent brightest central cluster’s galaxy as a nearby galaxy.
This is a way how many nearby clusters were missed.

Adding example images focused on clarifying the biases of the Zooniverse
volunteers could bolster the agreement between the volunteers and the experts.
Re-writing some of the questions in the project’s decision tree (Fig. 3.3) might
also help. For example, the third question, asking if the X-ray emission is
dominated by a single galaxy or not. The second question asking about the
extension of the X-ray emission, which was subjected to the highest bias, would
need more example subjects in its help note, to better describe how to distinguish
the point-like and extended X-ray emission.

Keeping communication with the volunteers in the project’s talk section was
undeniably critical for maintaining the project alive. We have answered all of the
volunteer’s questions, explaining them the physics behind clusters together with
instrumental effects behind various artefacts in the images. We believe that the
volunteers might be able to find even more clusters if a more detailed explanation
of the biases they experienced had been given in the help notes. Adding more
example images to directly put a light on those biases would also increase their
performance, but we conclude the Zooniverse project being successful because
as discussed, the volunteers showed an ability to create a very pure sample of
clusters.

5.2 Neural networks
We have proved convolutional neural networks to be highly accurate automatic
galaxy cluster classifiers. Our hand-made custom network achieved the best
performance for the automatic classification of galaxy cluster candidates in two
classes: cluster and non-cluster (Fig. 4.2). It was trained using multiwavelength,
X-ray and optical, observations and tested on a sample of 85 spectroscopically con-
firmed clusters and 85 objects classified as non-clusters by the experts. The best
network correctly classified 77 clusters and 83 non-clusters (Tab. 4.6), achieving
94.1% accuracy (Tab. 4.7). It classified only 2 non-clusters as clusters, resulting
in a very pure sample of clusters, which is especially useful for cosmological
studies.

The transfer learning approach with the MobileNet network achieved nearly
the same performance, correctly classifying 75 clusters and 81 non-clusters,
obtaining accuracy 91.8%.

Our custom network, trained on the Zooniverse classifications, achieved
80.0% accuracy, correctly classifying 60 clusters and 76 non-clusters. It cought
the same bias as the Zooniverse volunteers had, making more classifications for
non-cluster class.

Neural networks trained for multi-class classification of classes low-z cluster,
high-z cluster, point source, nearby galaxy and other, resulted in an overall
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accuracy 84.7% (Tab. 4.12) for our custom network (Fig. 4.5) and 86.4% accuracy
(Tab. 4.13) for the transfer learning with the MobileNet network (Fig. 4.6).

Training of our custom network only on the X-ray images, without their
optical counterparts (Fig. 4.2), achieved accuracy 81.2% (Tab. 4.7). The network
correctly classified 78 clusters and 60 non-clusters (Tab. 4.6), being biased to
classify objects as non-clusters. The custom network trained on solo optical
observations properly classified only 67 clusters and 49 non-clusters, achieving
accuracy 68.2%. It points out that the X-ray data are more suited to search for
galaxy clusters, they do not suffer from that many projection effects as optical
data do.

The transfer learning with the MobileNet architecture did not work very
well with all of its transferred convolutional layers frozen (Fig. 4.3, Tab. 4.8 and
Tab. 4.9). Unfreezing its transferred layers was undoubtedly necessary to achieve
competitive results with the best performing, our custom hand-made network.

Training augmentation (Tab. 3.1) was absolutely inevitable in order to achieve
good performance (Fig. 4.7, Tab. 4.14 and Tab. 4.15). The accuracy of our custom
network would drop from 94.4% to 73.5% without the training augmentation.
Both networks, our custom network and the transfer learning with the MobileNet
experienced strong bias towards classyfing objects as clusters whithout training
augmentation (Tab. 4.14).

The XAmin pipeline is used mainly to filter X-ray point sources. Considering
that this pipeline created the training data set for the networks and all of the
objects in it are classified as extended sources by the pipeline, the sample of
point sources in our data set is biased. We can not consider the neural network
trained for multiclass classification on this data set as a reliable point source
classifier, due to this bias. Further examination of its performance on a sample
of point sources with general appearance would have to be done in order to
explore the network’s point source classification efficiency.

5.3 Future plans
The upcoming large sky surveys, such as Athena or eROSITA, observing in
X-ray, LSST in optical, or JWST and EUCLID in infrared bands, will encompass
tens of thousands new galaxy clusters in their vast data sets. Those surveys will
create hundreds of gigabytes of data per night, so the development of highly
accurate, automatic software for classification of astrophysical objects is the next
logical and inevitable step forward.

We have created a neural network capable of a very accurate automatic galaxy
cluster classification. The ultimate vision of our project is to use the network
to create a catalogue of galaxy clusters, which will be finally used to conduct
cosmological studies and will open doors to the astrophysical investigation of a
very large galaxy cluster sample.

We are currently utilising a data set of (2.0 – 10.0) keV band X-ray obser-
vations, which is going to be added to the training of the networks. Hardness
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ratio maps of the (0.5 – 2.0) keV and (2.0 – 10.0) keV bands might be also used for
training of the networks. This additional information should enable the networks
to achieve better performance.

Galaxy clusters halos exhibit various properties in radio observations. Train-
ing our custom network on radio observations only or adding those as an addi-
tional channel to the data we currently use is another step we are planning to
carry out. This project has a great potential to probe the interesting physics
behind the cluster’s radio halos.

another direction we are considering to go lies in the Sunyaev–Zeldovich
effect (SZ), shadows of the cosmic microwave background created when its
photons pass through the intra-cluster medium. SZ is a great tool for search
of galaxy clusters, mainly because of its redshift independence. Applying our
methods for SZ observations might result in the finding of many new galaxy
clusters. Galaxy clusters with high redshift are exceptionally interesting for
constraining cosmological parameters, and SZ automatic galaxy cluster search
with our methods could result in finding many new of those, seriously impacting
nowadays cosmological knowledge.

We believe that the methods we have developed are going to be extremely
useful for the future of astrophysics and science in general, which are being
overwhelmed by ever-increasing data volumes.
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