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Abstrakt

Cílem této práce bylo studovat miridy ve výduti a v halo naší galaxie včetně těch, které
se nacházejí v kulových hvězdokupách. Získali jsme data pro 1608 mirid ve výduti, z toho
308 se nachází v 15 kulových hvězdokupách. Pro hvězdy v halo jsme získali 1954 mirid,
z toho 4 se nachází ve 3 kulových hvězdokupách. Miridy ve výduti vykazují bimodální
distribuci metalicity s vrcholem pro –0,4 dex a +0,5 dex, zatímco miridy v halo mají
největší četnost pouze pro metalicitu +0,5 dex. Při studiu závislosti periody na metalicitě
se neukázal žádný trend, ale perioda mirid ve výduti je v průměru o 30 dnů delší než pro
miridy v halo. Rozdělení typu mirid na O/C (kyslíkové/uhlíkové) bylo určeno z programu
Upsilon, světelných křivek, barevně barevného nebo barevně magnitudového diagramu,
s tím, že ve výduti hojně převládají O miridy oproti C miridám. Závislost logaritmu
periody o základu 10 na magnitudě v infračervené části spektra nám dává lineární závislost
s tím, že při využití filtru v optické části spektra se závislost převrací. Kulové hvězdokupy
Ter 6 a Djor 1 ve výduti vykazují vysokou extinkci ve srovnání s ostatními kulovými
hvězdokupami. Pohyblivý barevný diagram magnitudy vykazuje v případě halo i výdutě
vysoké amplitudy změn jasnosti související se silnými pulzacemi mirid. Kromě toho
miridy v halo se nachází ve dvou oblastech na diagramu, přičemž jedna se nachází v oblasti
velmi nízkých teplot, zatímco druhá v oblasti velmi vysokých teplot. Po korekci ovlivnění
extinkcí zůstávají hodnoty zbavené zčervenání pro halo i výduť v souladu s původními
závislostmi, což potvrzuje stabilitu našich analýz.



Abstract

The aim of this thesis was to study Miras in the bulge and halo of our galaxy, including
those in globular clusters. We obtained data for 1608 Miras in the bulge of which 308
are located in 15 globular clusters. For the stars in the halo, we obtained data for 1954
Miras of which 4 are located in 3 globular clusters. Miras in the bulge show a bimodal
metallicity distribution with a peak for –0.4 dex and +0.5 dex, while Miras in the halo
have the highest abundance only for +0.5 dex metallicity. When studying the dependence
of period on metallicity, no trend is shown, but the period of Miras in bulge is on average
30 days longer than for Miras in halo. The O/C (Oxygen/Carbon) distribution of Miras
type was determined from Upsilon, light curves, color-color or color-magnitude diagrams,
with O Miras being more abundant in bulge than C Miras. The dependence of the
logarithm of the base 10 period on magnitude in the infrared part of the spectrum gives
us a linear dependence, with the dependence inverting when a filter is used in the optical
part of the spectrum. The globular clusters Ter 6 and Djor 1 in the bulge show high
extinction compared to other globular clusters. Moving color–magnitude diagrams show
high amplitudes of luminosity changes associated with strong Miras pulsations in both the
halo and bulge cases. In addition, Miras in the halo are located in two regions on the
diagram, one in the very low effective temperature region, while the other in the very high
effective temperature region. After correcting for extinction effects, the dereddened values
for both halo and bulge remain consistent with the original dependencies, confirming the
stability of our analyses.
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Introduction

Among the first observed and documented globular clusters was Omega Centauri, which
was first classified as a star and in the 19th century by John Herschel as a cluster. Today, we
know of approximately 157 globular clusters in the Galaxy. Globular clusters are very old
gravitationally bound of population II stars. These objects are found in the halo and bulge
of the Galaxy. They are very stable and their members show similar ages and metallicities.
By studying them, we are therefore able to estimate the age of the Universe, its evolution or
the composition of the primordial stars. Thanks to the large number of stars in a relatively
small area, we are also able to study the dynamics of stars and the gravitational interactions
between them. We may then apply this to the study of larger gravitationally bound groups
such as galaxies.

Mira variable stars are old pulsating stars that are found in globular clusters, among
other places. This type of low and intermediate-mass stars are found on the asymptotic
giant branch (AGB). The first Mira type star observed was Omicron Ceti, which was
nicknamed the Wonderful, hence the Latin name Mira. Among the first observers to note
its change in brightness was David Fabricius in the 16th century, but it was not until several
centuries later that it was classified as a proper variable star type. The study of these stars
is very useful because of their well-defined relationship between period and luminosity.
This allows us to use Miras as a standard candle, especially when studying old elliptical
galaxies or the halo of our Galaxy. It is also essential to study Miras because the Sun
will most likely become a Mira in the later stages of its evolution, and studying Miras will
therefore allow us to better understand the processes occurring in our parent star.

The purpose of this thesis was to investigate Mira variable stars in the galactic halo
and bulge and to classify these Miras into globular clusters. Subsequently, it was crucial
to investigate the correlations and properties between these stars, determine type of Miras
and understand their behaviour. This thesis deals with the general properties of these stars
available from surveys and articles and is not intended to find new Miras or to replace
articles focusing on a small sample of Miras with a particular issue. This thesis is intended
to provide insight into the behaviour and properties of these stars in general terms, looking
for their common/different properties depending on location in the Galaxy or cluster.

In the first two chapters Globular clusters and Mira variable stars we discuss the
theoretical description of globular clusters and Miras, based on already-known information,
and put them in context. In the following chapter Methodology we deal with the acquisition,
collection, selection and processing of real data. As the main part, see chapter Analysis,
we first analyze and explore the dependencies from the processed data for Miras in the
bulge and then for Miras in the halo. Finally, in the chapter Conclusion and summary we
summarize our results and put them in context with each other.
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Globular clusters

1.2 Definition and general information
Globular clusters (GCs) can be defined as dense gravitationally bound groups of thousands
to millions of stars (1). Our Galaxy is thought to contain about 160 globular clusters (2),
which are located in the Galactic halo and bulge. Because GCs are strongly bound by
gravity, they are very stable objects and are even as old as the universe itself (1).

Figure 1.2.1: Example of globular cluster — Omega Centauri (11)

The age of a cluster can be determined from the Hertzsprung–Russell (HR) diagram or
from the color–magnitude diagram (CMD) since the stars in the GC have similar ages and
places of formation. It is known that stars with the highest mass (luminosity) evolve the
fastest, and thus leave the main sequence (defined as the region in the HR where stars have
fusion to He in their cores) first. Gradually, the less massive ones follow. The departure
from the main sequence can be observed as a “bend” – a turnoff point, where we observe
a relatively short main sequence in GCs, which in itself suggests that these are old objects
(9), see figure 1.2.2. This turnoff point, which corresponds to a certain luminosity and
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(a) Color-magnitude diagram for M67 (Viani, 2017) (b) Color-magnitude diagram for M3 (Renzini, 1988)

Figure 1.2.2: Color-magnitude diagram for open cluster M67 (3.6 – 4.8 Gyr (Viani, 2017))
and for globular cluster M3 (11.4 Gyr (Forbes, 2010)). We can see that the main sequence
in the older globular cluster is more condensed, whereas in the younger open cluster, it is
more extended. But the turnoff point may be affected by the number of stars in the cluster,
or by not including low magnitudes, or by a filter in which stars may not be visible.

color (or effective temperature), is a direct function of the age of the cluster (Carroll,
2017). A slightly more accurate method is isochrone fitting, where we have a theoretical
isochrone curve for a certain age and metallicity of the stars, which we compare with
specific observed/measured values (Angus, 2019). Thus, by comparing the positions of
stars with different isochrones on the HR diagram, it is also possible to estimate the age
and metallicity of the stellar population in clusters, which approaches up to 12.5 Gyr for
GCs (Forbes, 2018).

Previously, it was assumed that the stars in a globular cluster formed simultaneously
and from the same molecular cloud, and thus would have similar properties (age, chemical
composition, place of origin). However, there is now emerging evidence that some globular
clusters (especially those in the halo) contain multiple stellar populations (Mackey, 2004).
This is also supported by the fact, we observe a bimodal distribution of metallicities,
where the younger population is slightly more metal-rich than the older one (Mackey,
2004). Explanations could be that there was an accretion of a dwarf galaxy by our Galaxy
(Bellazzini, 2003), an encounter with a molecular cloud that triggered further star formation
(Kruijssen, 2015), or close encounters that could have led to a mixing of matter/clouds and
thus the formation of new stars (Kruijssen, 2015). These theories are supported by studies
that have determined that up to 50% of the mass of a galaxy’s stellar halo is due to mergers
with dwarf galaxies that contain a cluster (Mackey, 2004).

Currently, there is no known evidence of active star formation in globular clusters. It is
thought that all the dust was depleted to form the first stars or was blown out of the cluster
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by massive first-generation stars that exploded as supernovae (3), (Charbonnel, 2012).
Thus, we have to rely only on theoretical scenarios and models which help explain the
formation of globular clusters. Two scenarios are the most supported. The first scenario is
the formation of GCs in a period close to the reionization period in haloes of the dark matter
(Peebles, 1968). The second scenario of GC formation is the natural star formation process
in regions of higher pressure in galactic discs, where GC formation may be enhanced when
galaxies or clusters merge with each other (Kruijssen, 2015).

In general, globular clusters contain old stars of population II with low metallicity.
They can be found in all types of galaxies, whereas in ours they are found in the galactic
halo and bulge and some crossing the Galactic plane, for example because the have highly
eccentric orbits. Halo and bulge differ in several ways. While GCs in the bulge follow
circular orbits, GCs in the halo follow very eccentric elliptical orbits (4). The difference is
also evident in the abundance, where GCs in the halo have a lower abundance of heavier
elements compared to those found in the bulge (3). This may be due to the fact that most of
the gas was expelled from the GC halo before it was enriched by the supernova explosion
(3). While this gas existed in most of Galaxy bulge.

The first observations of a globular cluster Omega Centauri, date back to ancient
Greece, where it was thought to be a star. However, it was not until the early 19th century
that John Herschel reclassified it as a cluster, as he was already able to distinguish some
stars from one another (5). Observing individual stars in star clusters is complicated by
the high density and concentration of stars. Another problem is interstellar extinction,
which is particularly evident in bulge observations. Breakthroughs in GC observation have
come with the use of space telescopes such as Hubble (7) and JWST (8), which have been
able to detect individual stars in a cluster accurately (5). These telescopes have given us
a detailed view of the structure and composition of clusters and a better understanding of
the processes that take place within them.

1.3 Dynamics of globular cluster
As mentioned, globular clusters are high-density objects that contain thousands to millions
of stars. The stellar density of a cluster can be affected by various factors, such as the
cluster’s age, mass, location and other physical parameters. For this reason, the American
astronomer Ivan R. King introduced the parameters; core radius and tidal radius, which
describe the real density distribution of stars in a cluster (also called density law) (King,
1962). These parameters are collectively called King models, and they are a good fit to
describe the structure of a GC. Sometimes the half-mass radius, half-light radius, and
Jacobi radius are added to these parameters for an even more detailed description.

The core radius (rc), sometimes called the King radius, is the radius where the surface
brightness drops to half its central value (Carlson, 2001). It measures the degree of
concentration at the centre of the cluster and it is the internal energy of the system (King,
1962). Core radius has several meanings, however, depending on the purpose it is intended
to serve. The definition we have given here is used by theorists. Numerical N-body
simulations define the core radius as a function of the density radius (the density-weighted
average of the distance of the star from the mean value of the density (Mardling, 2001), or
from the point of highest density in the cluster (Aarseth, 2003). It has also been found that
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the core radius increases with the age of the cluster. There is a segregation of stars, with
heavier stars and binaries having lower velocities on average, falling to the centre, while
lighter stars are moved to the outer parts of the cluster. The denser core of the cluster is
consequently more prone to collisions that impart thermal kinetic energy to the cluster,
resulting in an increase in pressure and subsequent expansion of the cluster (16).

A similar quantity is the half-light radius (re), which is defined as the distance from
which we can see half the light of the cluster, see figure 1.3.1a. This quantity is usually
larger than the core radius and is independent of the concentration of stars and therefore
the size of the cluster (Carlson, 2001).

The tidal radius (rt), also called the King tidal radius, is the radius at which the gravity
of the Galaxy has a greater effect on the stars in a cluster than the cluster itself. Thus,
we measure the boundary density at the edge of the cluster, as is shown in figure 1.3.1b,
which is able to help us determine the boundary mass of the Galaxy (Carlson, 2001).
It has been observed that there is a decrease in the tidal radius of the cluster during its
lifetime, the main source of which is evaporation (the escape of low-mass stars from the
cluster). The difference between the Jacobi radius and the tidal radius stems from the nature
of their measurements - the tidal radius is determined by direct measurement, while the
Jacobi radius is a theoretical estimate derived from certain assumptions in the theoretical
assumptions. (Binney, 2008).

All these quantities are important for understanding the evolution and predicting the
behaviour of clusters. They can give us information about the size of a cluster, its mass or
even the mass of the Galaxy. They allow us to get information about how densely stars are
grouped in the centre of the cluster and how they interact with their surroundings.

(a) Half-light radius for cluster (38) (b) Core radius and tidal radius for cluster (39)

Figure 1.3.1: Diagram showing the approximate radii from the centre of the cluster,
corresponding to core, tidal and half-light radii.
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1.4 Variable stars in globular clusters

Figure 1.4.1: Classification of variable stars (Eyer, 2007)

Variable stars are stars whose brightness changes over time. These changes can be
periodic, semi-periodic or irregular and take place on a time scale of milliseconds (pulsars)
(10) to thousand of years (Percy, 1978).

There may be several reasons for their variability. The basic classification of variable
stars is according to the cause of the change in their brightness. They are divided into
intrinsic and extrinsic variable stars. An illustrative distribution of variable stars is shown
in Fig. 1.4.1.

Extrinsic variable stars are stars where the total flux of light coming from the star
does not change, but only the amount of light we are able to detect on Earth changes.
This may be due to the star’s rotation (due to rapid rotation, the star’s surface becomes
flattened, and/or we can also observe spots on its surface) or the star may be occulting (e.g.
exoplanets).

On the other hand, intrinsic variable stars are real variable stars, meaning that there
are physical changes to the star itself. There can be several reasons for this, which is why
these stars are divided into three basic groups; pulsating, eruptive and cataclysmic variable
stars. Pulsating variable stars exhibit surface layer changes where all or part of the star
expands and contracts (12). For example, pulsating variable stars can include; RR Lyrae,
W Virginis, Delta Cephei, Mira variables. As the name suggests, eruptive variable stars
include stars that show a change in brightness due to eruptions and/or ejections of material
on the stellar surface. There can also occur interactions with interstellar matter (10).
These include, e.g.; Herbig Ae/Be and Wolf-Rayet stars. Cataclysmic variables are binary
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systems where a mass transfer from a classical star (usually the main sequence type) to a
white dwarf occurs, converting potential energy into X-rays during the process (13). Into
this type of variable stars, we can also include explosive variable stars, where explosions
caused by thermonuclear reactions, such as supernovae explosions, or explosions caused
by the merging of two stars (10).

Among the earliest observers of variable stars were the ancient Egyptians, who have
preserved records of the observations of the occulting variable star Algol (Jetsu, 2015).
Somewhat later, in the 17th century, David Fabricius observed the variable star Omicron
Ceti (Mira), which he fondly believed to be a nova. Some 40 years later, Johannes Holwards
determined its period of brightness changes to be 11 months (10). In June 2022 we have
identified 58035 variable stars (14).

Variable stars can be found in all parts of the Galaxy. It is therefore not exceptional
that they are also found in GC. In the 20th century, 90% of variable stars in GC were of
the RR Lyrae type (Clement, 2017). With the invention of the CCD detector in the late
20th century, it became possible to detect fainter stars, even those with a weaker change
in brightness over time. Thus, there has been an increase in variable stars of the Slow
variables (Mira variables, Semi-regular variables), Eclipsing binaries and SX Phoenicis
(SX Phe) type, although RR Lyrae type stars are still the most numerous group (Clement,
2017). According to the article by (Clement, 2001) variable stars of the W Virginis,
Cepheids and RV Tauri types can also be found in globular clusters but not in the abundant
numbers as the previous ones. The complete evolution of the amount of variable stars in
globular clusters is in table 1.4.2.

Figure 1.4.2: The number of different types of variable stars in globular clusters (Clement,
2017)

There are several reasons why we observe these variable stars in globular clusters.
One reason is that globular clusters contain already evolved stars that are in the giant or
post-AGB branch, which is fulfilled by variable stars such as RR Lyrae, Mira, RV Tauri
and W Virginis. The selection effect also plays a role, where we can better detect brighter
stars with more pronounced brightness changes, such as the variable star type SX Phe.

The study of variable stars is very important to astronomers because we can use them
to determine, for example, the distances in the Universe or its age. They can also help us
understand how the Universe is expanding, how a star has evolved or how it will evolve.
Thus variable stars are an important tool for understanding the behaviour of the Universe,
and the other stars, including our Sun (15).
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Mira variable stars

2.1 General information
Mira variables are pulsating variable cool giants located on the asymptotic giant branch
(AGB) of HR diagram, 2.1.1. Low to intermediate-mass stars, typically with an initial mass
of 1–2 M⊙, enter the Miras phase on the AGB (Meyers, 2001). They have a high luminosity
(103 L⊙) and a low effective temperature of up to 4000 K (Meyers, 2001). Because of
the already advanced stage of evolution, during which the star’s size increases, Miras have
radii reaching up to 2 AU, where the low effective temperatures in the atmospheres can lead
to the formation of silicate or graphite dust at its edge (Reid, 2002). Periods of luminosity
variation range from 80 days to 1000 days, where, due to the high period dispersion,
semiregular variable stars or irregular variable stars are sometimes included in this type
of variable stars (Willson, 2012). It is generally assumed that semiregular variable stars
are predecessors of Miras, so they are slightly lower on the HR diagram in the AGB than
Miras. They also have shorter periods, smaller amplitudes of change in brightness, and
pulsate in multiple modes (ussualy three or more) (Bedding, 1998).

In addition to their long periods, Miras are characterized by high observed amplitudes
of luminosity variations, especially in the optical, where variations reach values of up to
11 mag (Meyers, 2001). In contrast, amplitudes of at most 1 mag are observed in the
infrared due to the fact that the dust surrounding the stars does not absorb infrared light,
and also because the effective temperature changes during pulsations are mainly visible in
the optical part of spectra (17).

It has also been found that most Miras have an asymmetric shape, where the exact
reason is not fully understood. It is thought that the cause may be non-radial pulsations or
an asymmetric dust cloud around the star. Last but not least, the reason may be the strong
stellar wind, which is typical for AGB stars and reaches values of up to 10−5 M⊙ per year
for Miras (Ragland, 2006).

As of 2017, the GCVS catalogue states that approximately 8500 Miras are known,
which corresponds to about 15% of all variable stars in this catalogue (18).
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Figure 2.1.1: Location of variable stars on the HR diagram. Mira variables are located
next to instability strip (17).

2.2 History and observation
The first observed Mira variable star was Omega Ceti, nicknamed Mira (the “wonderful”),
whose first systematic observation dates back to the 16th century by the Dutch astronomer
David Fabricius. However, he mistakenly thought it was a nova. It was only a few years later
that Johannes Wolward identified it as a variable star and defined its period as 11 months.
In the 17th century, its value was specified by Ismael Bouillaud, who set its period to 333
days, where its actual period is 332 days. In the 19th century, Seth Chandler investigated
the causes of changes in period and in light curves. It was not until the 20th century, with
the arrival of modern technology and improved knowledge of physics, that Theodore Stern
and Leon Campbell proposed a fairly accurate statistical method for determining period
changes, which is still being improved using the numerical modelling of stars (17).

Miras can be easily observed with amateur telescopes due to the high luminosities and
apparent visual magnitudes of these stars. As a result, we have long observational records
that are able to give us an insight into the behaviour and evolution of these stars and also
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low to intermediate-mass stars in general. With their advanced stage of evolution, during
stellar winds, we are able to observe Miras on longer timescales. Their metallicities are
able to give us insights into the past of the Universe and its composition. Last but not least,
they are important for the description and evolution of our Sun, which will most likely also
enter the Miras phase.

2.3 Evolution of low-mass stars (Mira-like type)
Miras are stars well over 7 Gyr (Feast, 2008) old that have passed through the main sequence
(MS), red giant branch (RGB), horizontal branch (HB) and now asymptotic giant branch
(AGB) phases. After the core of the main sequence (MS), the star began to run out of H
(which was burned to He by the pp-process), the thermonuclear reactions in the core were
unable to resist the gravity of the surrounding layers and the core began to shrink, denser
and the core temperature increase. A H shell ignites around the core, which covers the star’s
luminosity, and even surpasses its previous luminosity. Some of the energy is radiated, but
some is captured by the stellar envelope and used to expand it. The core becomes denser,
fully He and even degenerate (resisting further shrinking). The star moves from the MS to
the RGB phase.

The effective temperature and mass of the core increase (in degenerate gas the pressure
does not depend on the temperature) and so does the energy production. Once it reaches
approximately 100 million K (19), a He flash occurs – an explosive ignition of the He
reaction using the triple-alpha process. The He burning into carbon and oxygen occurs.
The nucleus expands and degeneration stops. The expansion of the core causes that a layer
of burning H to reach the higher, cooler layers of the star and the rate of reactions drops.
This causes shrinkage and heating of the star, which goes into the HB on the HR diagram.

The He reactions are fast, carbon and oxygen start to build up in the core, after which
we have an inactive core that starts to shrink again. Above it, we have a layer of burning
He and burning H, which were able to reignite their reactions by re-shrinking and heating
the star. A degenerate core of carbon and oxygen is formed, and the star re-inflates and
goes into the asymptotic giant branch (AGB) phase, where the illustration of the inner part
of a star in the AGB branch is in Fig. 2.3.1.

It remains in this phase for barely 105 years (Habing, 1997), during which pulsations,
stellar wind and explosive He reactions (thermal pulses) in the shell around the core occur.
We have two phases of AGB; early AGB (E-AGB) and thermally pulsing AGB (TP-AGB).
E-AGB is the initial phase in which He is burned to carbon and oxygen in the shell around
the nucleus. In the later TP-AGB phase, thermal pulses occur. The upper H shell burns,
the product of which is He, which accumulates in the lower He shell. Over time, the He
shell ignites explosively (He shell flash), causing the star to expand, cool, and grow in
luminosity over hundreds of years. The H shell stops burning. But after a while, the H
shell is re-ignited (due to He burning and convection) and the process repeats. During
the heat pulses, an s-process (slow neutron capture) occurs in the centre, which produces
elements heavier than iron and rare nuclides (such as 99Tc). These reach the surface of the
star by powerful convection (sometimes called dredge-up), where they are carried away
by the stellar wind. In addition to thermal pulses with periods of hundreds to thousands
of years, pulsations lasting hundreds of days on average occur during this phase (see the
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pulsation chapter for more details).
The stellar wind carries material away from the star, which rapidly cools and surrounds

the star. Eventually, the star loses all of its envelope, leaving a stellar core remnant of
electron-degenerate carbon and/or oxygen core – the future white dwarf, and an envelope
– the planetary nebula.

Figure 2.3.1: Thermonuclear reactions in low mass AGB star (e6).

2.4 Classification of Miras
According to the spectral type, there are three types of Miras; C, M and S type. Type
C, as the name suggests, includes carbon stars that contain CN and C absorption bands,
but carbon Miras are not numerous in our Galaxy. Another spectral type is the S type,
where we observe ZrO and LaO absorption bands. Most Miras fall into the M type, which
contains oxygen compounds, mainly TiO, TiO2 and H20 (Reid, 2002).

This classification is determined by the carbon-oxygen (C/O) ratio. If the C/O > 1,
these are carbon Miras, if the C/O ratio is < 1 these are oxygen type Miras (Willson, 2012).
If the oxygen-carbon ratio is balanced these are S type Miras.

If we have an excess of carbon over oxygen, the carbon is bound in CO and the rest
can be observed as CN or C2 molecular bands. Otherwise, all the carbon is bound in CO,
which is optically invisible, and the excess oxygen is found in the compound TiO2. If the
ratio is balanced, we observe other bands such as ZrO, and LaO (Keenan, 1954) in addition
to those mentioned above.

Various factors such as initial mass, age and metallicity affect whether a Mira star is an
O type or a C type. In galaxies/regions with higher metallicity, we observe more oxygen
Miras, in contrast to the higher abundance of carbon Miras (Magellanic Cloud) in regions
with lower metallicity (Feast , 2006). In stars with lower metallicity, which have fewer
heavier elements, there is less He and carbon, which limits the production of oxygen in the
core of the star. This means that oxygen, in the form of oxygen compounds, will be less
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available in these regions. Another reason we can give is dredge-up, which results in a
lower abundance of oxygen relative to carbon. By alternately igniting the H and He shells
of the star, massive convection occurs, bringing carbon to the surface. In the case of more
massive stars, we get the CNO cycle, which occurs at higher temperatures. This causes
the carbon to burn up (also known as hot-bottom burning) before it reaches the surface
(Groenewegen , 1995,1). Another phenomenon that occurs is the change in the C/O ratio
during pulsations, and thus during the inflation/shrinkage of the star, where the increase
in C/O occurs (Willson, 2012).

In addition to the absorption bands already mentioned, we can observe emission lines
of H and lithium at Miras. The H emission lines arise as a result of shock waves from the
expanding stellar atmosphere (mass elements in the outer layers of the stellar atmosphere
move faster than the surroundings), as a result of changing thermal pulses (Fabas, 2011).
The previously mentioned hot-bottom burning can explain why we observe lithium in the
spectrum. This is because the H-burning shell layer generates lithium by fusion, which is
then carried upward by convection (Uttenthaler, 2011).

(a) Table showing the distribution of Miras
with their basic characteristics related to the
text above.

(b) The length of the star’s stay in M, S and C type Miras.
M is the initial mass of the star, t is the time spent in the
individual phases, Nc is the number of thermal pulses needed
to transform the star into a carbon star and Ntot is the total
number of pulses, (Polster, 2006).

Figure 2.4.1: Tables containing characteristics and properties of M, S and C Miras.
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Figure 2.4.2: Normalized spectra of V778 Cyg - S Mira type, o Cet - M Mira type, and RY
Dra - C Mira type. For o Cet and V778 Cyg, we can observe strong emission CO2 lines,
which are a sign of oxygen-rich molecules in stars. The absorption lines of C2H2 close to
13.7 µm indicate dust emission in the outer atmosphere diluted by the silicate dust. The
deeper the absorption the stronger mass loss rate (Yamamura, 2000).

2.5 Periods and light curves
As mentioned in the previous text, the period of light changes of Miras is 80-1000 days.
However, the shape of the light curve is not always periodic; it varies from cycle to cycle
(Meyers, 2001).

Carbon Miras and Miras with longer periods have the most irregular light curves.
Carbon Miras have slow irregular changes in brightness that are caused by the circumstellar
envelope that prevents the throughpass of radiation (20). These irregular changes are visible
in 2.5.2. Miras with periods longer than 200 days have higher amplitudes and steeper light
curve gradients with “bumps”, as is shown in figure 2.5.1. The bumps can be explained
as a 2:1 period resonance between the fundamental and first harmonic modes (20). A 2:1
period means that the first harmonic mode has twice the frequency of the fundamental
mode. Thus, when there is an oscillation of the Miras luminosity (fundamental mode), the
first harmonic mode represents an oscillation of twice the frequency. Also, a relationship
has been found for calculating the period of the luminosity changes in the fundamental
and first harmonic modes, see 2.1 and 2.2, where P is the period, M is the mass, and R is
the radius of the star (Willson, 2012). In the fundamental mode, the star pulsates radially
– the entire star expands and then contracts, while in the first harmonic mode, part of the
star expands while another part contracts. The first harmonic mode also has a shorter
wavelength and therefore a shorter period. It is also shown that if the distance between two
maxima of the light curve is smaller than the period of the brightness changes, the next
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maximum will be brighter, and the reverse is also true (Mattei, 1997).

The equations were taken from (Willson, 2012).

P = 0.012d R1.86 M−0.73 (2.1)

P = 0.04d R1.5 M−0.5 (2.2)

Figure 2.5.1: Light curve in the I-band of oxygen Mira variable star. We can notice a more
regular phase curve, but there are also noticeable bumps (20).

Figure 2.5.2: Light curve in the I-band of carbon Mira variable star. It is obvious that the
phase curve is more irregular than for oxygen Mira (20).
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2.6 Pulsation of Miras
The specific cause of pulsations causing light changes on the order of hundreds of days is
not precisely known and is debated. However, there are several theories that can explain
the pulsations of Miras, and thus its shrinkage and expansion during the cycle.

Wood (2006) and Darun (2017) claim that the pulsations are caused by convection in
the vast atmospheres of these stars. Due to the low effective temperature of the stars, the
He and H layers are located lower down, so the region of convection, which is very large
in these stars and extends from the deeper layers to the surface, is thus able to affect the
pulsations. They also found that convection can have both a damping and an excitation
mechanism for pulsations. A confirmation of their theories is that Miras often pulsate at
the fundamental frequency or first harmonic, which is associated with convective mass
flow in the star.

Another theory, but one that has fewer supporters, is that of a close planetary companion
in the region of the extended envelope of the star (Berlioz-Arthaud, 2003). One of its
shortcomings is that it cannot reliably explain the variations in the Miras periods, their
large spread and generally long periods.

The most widely supported theory explaining pulsations is κ-mechanism. This mech-
anism is well known for pulsating stars in the instability strip, such as RR Lyrae and
Cepheids. However, for Miras, the H shell is important, unlike for stars in the instability
strip where the H shell plays an important role. In this theory, expansion/shrinkage of the
star is supposed to occur due to ionization and recombination. When the H shell is heated
to a sufficient temperature, ionization occurs. The star is shrunk, and with higher effective
temperatures, the density of the gas increases. This causes a decrease in opacity, the region
becomes more transparent to radiation as light interacts less with the ionised atoms. So
the star inflates due to the increased pressure. As the shell’s radiation is emitted, a shock
wave is created, which in turn causes emission lines in the spectrum. The inflation causes
the pressure on the star to decrease and the effective temperature to decrease, the atoms
recombine and the opacity increases. The amount of radiation, which can no longer resist
gravity, is reduced as the star contracts. This process repeats itself over and over again
(Boyd, 2021) and (Adams, 2013).

A final, widely supported model that explains the pulsations is the χ Cygni model,
described in figure 2.6.1, and supported by the article (Reid, 2002). Named after the
Mira variable of the χ Cygni star. The H shell, whose mechanism we explained in the
paragraph above, plays an important role, as well as TiO molecules, which are abundant
in M and S Miras. TiO molecules have a high efficiency of absorbing radiation in the
optical part of the spectrum, so they are an important source of opacity, and they are also
strongly dependent on temperature change. When the effective temperature drops, i.e.
when the opacity is high, we can observe these emission lines in the atmosphere of the
star, but at the maximum, these lines disappear (Herbig, 1965). At the maximum, the star
is smaller, hotter, and more transmissive in the optical part of the spectrum, and the Ti is
in atomic form. At the same time, these molecules are important for the formation and
maintenance of pulsations, because they are dependent on the temperature and pressure in
the atmosphere of a star. Changes in the amount of TiO molecules in Miras atmosphere
cause an imbalance in energy that then leads to pressure pulses, and it is these pulses that
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cause the star to periodically change its brightness at different intensities.
If we are interested in qualitative values, during the pulsations the surface tempera-

ture of the star changes from about 1900 K to 1400 K (15%), and the radius is able to
increase/decrease by about 1.8 R⊙ (20%) (Reid, 2002).

Figure 2.6.1: χ Cygni model of the pulsating star Miras. The arrows show the observed
surface of the star. The star is shown on the left at its maximum light. The star is visible in
the optical wavelengths, has a smaller radius, and has a higher effective temperature than
at minimum light. Ti is in atomic form and we can see the surface of the star. In minimum
light (right) the star has a high luminosity and the radius of the star is at its maximum. The
effective temperature has dropped and the Ti atom exists in the molecular form TiO (green
color) and the star is opaque in the visible spectrum. f(TiO) means the fraction (amount)
of Ti in TiO and is plotted against the radius in blue. At a radius approx. 1.8 R⊙ has TiO
enough density to become invisible in visible light - we may not see the star (Reid, 2002).
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Methodology

3.1 CMD of variable stars and long variable stars (Miras)
Already at the beginning of the 20th century, independently, Hertzsprung and Russell
created a diagram for stars showing the dependence of absolute magnitude/luminosity
on effective temperature/spectral classification (23). Where stars with higher effective
temperatures and luminosity are located in the upper left part of the diagram. This diagram
shows, among other things, the stages of stellar evolution through which we have been able
to come closer to understanding stellar evolution. This diagram was immediately followed
up by other astronomers such as Eggen, who studied where the Cepheids are located on the
HR diagram - now called the instability strip (Eggen, 1951). In addition, he also studied
where other types of variable stars are located on this diagram, using Cepheids located in
star clusters. However, this diagram requires knowing the distance of the stars from us
or we must have stars that we know are at approximately the same distance, such as in
globular clusters. The accuracy of the absolute magnitude of the magnitude is determined
by several factors such as the number of measurements and its accuracy.

Because of these limitations, a related and equivalent chart was created -
the color–magnitude diagram (CMD), sometimes also called the observation diagram. This
diagram shows either absolute or relative magnitude on the y-axis. The x-axis shows the
difference in magnitude between two spectral filters (colors) (24). For historical reasons,
the most commonly used color difference is B−V or U −B, where U is ultraviolet, B is
blue and V is a visible color filter (Johnson, 1953). However, nowadays most shows have
their own color filters, for example, Gaia, uses the G, BP and RP color magnitudes (25).
In general, the higher the color value, the redder and cooler the star. Thus, a cool star is
brighter in red than in blue (Deliyannis, 2019).

This whole paragraph is inspired by the article (Eyer, 2019).
Eggen, in addition to the classical CMD, created a modified color diagram for Cepheids,

called the moving CMD (Eggen, 1951). This diagram shows Cepheids during changes
in luminosity due to pulsations and showed the Cepheids moving on this diagram. This
work, however, was followed up in a larger paper containing data from Gaia DR2. This
illustrated the moving CMD for stars falling into most variable star types, such as RR
Lyrae, Miras, ZZ Cetes, Cepheids, SX Phoenicis Stars RS Canum Venaticorum and others.
They claimed that the brightest and reddest regions on the diagram are populated by long-
period stars (such as Miras), and these regions have a high probability of variability. At
the same time, long-period variable stars show large variations in amplitudes correlated
with redder (cooler) colors. According to this paper, main sequence stars, located in the
brightest and hottest part of the sequence, also have a high probability of variability. The
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pulsating stars appear bluer in the diagram 3.1.1 when they are brighter in G magnitude
and thus, according to these stars, are mainly affected by brightness changes. If changes in
radius were dominant, we would expect to see more changes in absolute magnitude without
significant color changes. Among other things, the chart shows that variable stars such as
Delta Scuti are bluer when they are brighter while Be/Gamma Cassiopeiae are bluer when
they are fainter.

Figure 3.1.1: Moving color-magnitude diagram for variable stars. The grey color belongs
evolutionary track of stars (Eyer, 2019).

Several things can affect the position of stars in the CMD, such as interstellar reddening
(Deliyannis, 2019), chemical composition (Harris, 1976), and rotation and inclination of
the rotation axis (Bastian, 2009). Interstellar reddening mainly affects objects that are
located in the galactic disc, and therefore stars that are outside the disc or further away
from the disc appear brighter to us. An example is the RR Lyrae stars, which are less
reddened than the classical Cepheids (Eyer, 2019).

The CMD and moving CMD are useful diagrams that can help us refine the classification
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of variable star types, or help us discover some new types of variable stars. They can help us
to understand the instability strip, its location, and its dependence on chemical composition.
Last but not least, they can tell us something about the behaviour and phenomena taking
place in variable stars, the correlations between different types of variable stars, or shed
light on their evolution.

3.2 Archives, time series (IPAC, IRSA, ZTF)

Figure 3.2.1: IRSA archive containing catalogues ZTF, PTF, 2MASS, etc. (Masci, 2018).
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Figure 3.2.2: Example of search ZTF time series for Omicron Ceti (variable star). We can
notice 2 found sources with similar coordinates in the same color filter. (Masci, 2018).

Figure 3.2.3: Time series tool for Omicron Ceti. On the top right is a light curve for
Omicron Ceti. On the top left are input data and the period calculator (finder). At the
bottom is displayed a star for each point in the light curve. (Masci, 2018).

To study variable stars, it is useful to know the light curves – the record of brightness
changes over long time scales, ideally over multiple periods and in multiple filters. For
long-period variable stars, which is where Miras falls, it is desirable to have photometric
data over decades or more.

This is one of the reasons why an IPAC (Infrared Processing and Analysis Center)
science centre was established at Caltech in the late 20th century to process and analyze
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IRAS (Infrared Astronomical Satellite) data (26). Over time, as it grew and added more
functions, an offshoot of IRSA (Infrared Science Archive) was set up to manage, process
and make the data more accessible to scientists (27). Until then, everything was handled
by IPAC, which currently has mainly a research function and technical support. Sometime
later, IRSA became an important data source for some space and ground-based missions
such as Herschel, Spitzer, Planck, ZTF, and PTF, see figure 3.2.1, and provided tools for
data processing and distribution, mostly in the infrared and microwave spectrum (28).

The Zwicky Transient Facility (ZTF) is a project that performs time series surveys
of the sky in the visible spectrum and detects various variable stars, eclipsing binary
stars, supernovae, asteroids and more (Masci, 2018). It uses the 48-inch Schmid Palomar
telescope to scan the entire visible northern sky (a Northern-equatorial sky survey) with the
r, g and i (red, green, infrared) filters. This data is transmitted to IRSA where it is further
processed and made available to users. There is a user interface where we have access as
normal users to up to 50% of all measured data. For the ZTF lightcurve interface we have,
among other things, a tool to analyse and display light curves, in multiple filters, calculate
periods, manually remove and add photometric data and other statistical functions. The
data contains for each star information about the filter, mjd, mag, error values, mean values
and more, see figure 3.2.2 and 3.2.3. All these values can be filtered and downloaded in
bulk for multiple stars and then further processed.

With IRSA and IPAC we have the ability to get time series data from several terrestrial
and space-based surveys in one place in different filters. This therefore allows scientists to
access the data quickly and easily, and to quickly check the data and then process it.

3.3 Data acquisition

3.3.1 Selecting of Mira variable stars
The AAVSO International Variable Star Index VSX catalogue (Watson, 2015) was used to
retrieve Mira variable stars, identifying over 28 000 of them in our Galaxy. In addition to
identifying Miras with their coordinates, the catalogue also provided us with information
on the period of luminosity changes for Miras.

The next step was to classify and select the Miras, according to their location in the
Galaxy – halo and bulge, as globular clusters are located in these parts. To determine
the boundary of the galactic bulge, we took as its centre the coordinates of Sagittarius A*
– a massive black hole, with coordinates 17 h 45 m 40.0409 s, −29◦0′28.118′′ (J2000)
(Reid, 2004), which we transformed into galactic coordinates (galactic longitude – glon
and galactic latitude – glat) for our purposes. The range for glon and glad bulge was
inspired by paper by Minniti (2017) and the figure from source (30). We finally adopted a
range of 344–374 (+14) deg for glon, and from −15 to 15 deg for glat, where this selection
left us with only 1608 Miras, which are located in the galactic bulge.

To determine the limit of stars located only in the Galactic halo, we used sources (31)
and (32). For the glon, we took its full range, i.e. 0–360 deg, because we are interested
in both the inner and outer halo and in the whole Galaxy. For the glat, we took the
range 20 deg to 90 deg for the upper hemisphere, and −90 deg to −20 deg for the lower
hemisphere. This range narrowed down the number of Miras to 1954, which are located
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in the galactic halo.
As can be seen in Fig. 3.3.1, these Miras are evenly distributed throughout the halo,

so there is no region in which these variable stars are more closely spaced than elsewhere.
On the other hand, we can notice in Fig. 3.3.2 that Miras in bulge are mostly located in the
southern hemisphere of Galaxy. A very similar distribution of Miras in galactic bulge was
shown in the article Qin (2018), where they use Miras as standard candles for determining
distances, such as Cepheids.

Figure 3.3.1: Distribution of Miras in the galactic halo. The colors distinguish the distances
at which the Miras are from us. It is clear that most of them are located up to a distance of
5000 pc.
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Figure 3.3.2: Distribution of Miras in the galactic bulge. The colors distinguish the
distances at which the Miras are from us. In the left figure, the values of glon are lower
than in the right panel. Also, these stars are closer to us, as we expect, with a medium
distance from as of 4000 pc. In the right panel, these Miras are mostly 8000 pc away from
us.

3.3.2 Mira variable stars in globular clusters
The next essential step was to determine whether these Miras are located in one of the 160
globular clusters, whose list and coordinates were taken from the catalogue (33) and the
proper motion (µ) for these globular clusters was taken from (34). The proper motion for
the stars was obtained from the Gaia DR2 catalogue in Vizier (Eyer, 2019), along with the
standard error for each star. Similar values of the proper motion of a cluster and a star can
be an indication that the star is a member of a globular cluster. This occurs because its
members are gravitationally bound to each other, moving collectively in the same direction
and at the same speed within space.

Data obtained from (Eyer, 2019) include proper motion in the right ascension (Ra)
involving the cosine of the declination angle and proper motion in declination (Dec).
Cos δ stands out here because proper motion in the direction of Ra is measured in units of
time However, because of the geometry of the celestial sphere, we must take into account
the fact that the Ra circles are tapered towards the poles. The factor cos δ is used to correctly
express the proper motion in the rectangular direction with respect to the different Dec.
This factor corrects the velocity of motion depending on the position in the sky. The total
proper motion can then be calculated in the standard Pythagorean theorem as 3.3, where
µα⋆ is proper motion in Ra and µδ is proper motion in Dec.
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⋆+µ2

δ
(3.3)

The total proper motion for Miras was calculated in the same way as for the cluster,
and the deviation for each star was taken as 5 sigma (5 times the standard error of the star
measurement). This deviation indicates the range in which a given star is likely to be due
to measurement inaccuracies. The 5 sigma value is a frequently used statistical criterion
for determining the confidence level or probability of a measurement. By subtracting and
adding this value to the proper motion value of the star, we have determined the range
of proper motion within which the proper motion value of the cluster must lie. Another
condition for assigning a star to a cluster was that the stellar coordinates in Ra and Dec
should be within 1 deg of the cluster coordinate. By satisfying these conditions, we
obtained 304 Miras out of the original 1608 stars located in the bulge of the Galaxy. These
Miras are distributed in 15 different globular clusters, with the largest number of Miras in
Terzan 6, NGC 5453, and Djor 1. In contrast, in the Galactic halo in which we found 1954
Miras, only 4 of them are located in globular clusters, namely NGC 6093 (2 Miras), Arp
2, and Terzan 8, see their basic properties in figures 3.3.4 and 3.3.5.

We can also check whether a star belongs to a globular cluster using a density profile,
where the number of stars should decrease with the square of the distance from the cluster
centre. Unfortunately, we could not perform this test for the halo because of the low number
of Miras in the cluster and the same for most Miras in the bulge. This test was therefore
only indicative even though we got satisfactory results for a few clusters. In the case of
more stars, it would have a higher significance, so we mention it only marginally.

Before we started looking at individual Miras in globular clusters, it was necessary to
analyse the number of Miras as a function of core and half-light radius. The reason was
to see if our Miras data are biased by the fact that a given cluster is well resolved or is
closer to us, or has a really high star density. Another thing that Miras and other long
period variable stars may be affected by is time bias, which we have no way of checking
since our data is obtained from many papers. However, based on the 3.3.3, we conclude
that our Miras are not biased by the apparent density of stars, since their number is evenly
distributed over all radii.

Figure 3.3.3: Occurance rate of Miras in relation to rc and rh. The Miras are located in
various dense clusters and at all angular distances.
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Figure 3.3.4: Basic information about globular clusters located in the galactic bulge that
contain Miras. Data were taken from the Harris catalogue, where count is the number of
Miras belonging to a given cluster, r c is a core radius in arcmin, r h is half-light radius in
arcmin, R Sun is distance from Sun (kiloparsecs) and R GC is distance from the Galactic
center (kpc).

Figure 3.3.5: Basic information about globular clusters located in the galactic halo that
contain Miras. Data were taken from the Harris catalogue.

3.3.3 Stellar Characteristics of Miras
From the final Miras coordinates already obtained, we could start searching for stellar
characteristics such as metallicity, effective temperature and parallax. These data were
crucial for a better understanding of Miras and their use in the next part of the thesis. The
parallax for each star was obtained from the Gaia EDR3 catalogue (Gaia, 2021), while
the metallicity and effective temperature were taken from the Gaia DR2 catalogue (Eyer,
2019). At the same time, thanks to the knowledge of the period, we were able to calculate
the bolometric absolute magnitude (Mbol) using the formula 3.4. This relation was taken
from an article (Andriantsaralaza, 2022), which claims that this relation can be generally
applied to Miras in our Galaxy. This calculation yields a very useful parameter since it
takes into account all the light emitted by the star (at all wavelengths) and is not limited
to light in the visible spectrum. Moreover, Mbol is not affected by atmospheric absorption
and scattering, giving us a more accurate estimate of the luminosity than a magnitude
measured only in the visible part of the spectrum. From this relationship, we can therefore
derive the commonly known relationship for luminosity (L) in units of LSun, see equation
3.5. The value 3.846 ·1026 is the luminosity of the Sun and the value 3.0128 ·1028 is the
zero point luminosity in units of watt. Zero point luminosity is the luminosity that a star
with Mbol equal to zero would have and was determined by the IAU in 2015, as was LSun
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(Mamajek, 2015).

Mbol =−3.31(logP−2.5)−4.317 (3.4)

L/LSun =
3.0128 ·1028 ·10−0.4Mbol

3.846 ·1026 (3.5)

3.3.4 Looking for filters and color indexes
We decided to compare the obtained Miras effective temperature with the effective tem-
perature calculated from the color index. This comparison will reveal any discrepancies
between the two effective temperature retrieval methods and will also complement the
effective temperatures since the Gaia DR2 catalogue provided us with effective tempera-
tures for about a third of our stars (Eyer, 2019). For this purpose, we needed to obtain
Miras magnitudes in different color bands/filters. The search for colors was also crucial for
the follow-up part of the thesis, where we investigated the correlations between different
astrophysical quantities.

Since Miras are rather cooler stars emitting mostly at longer wavelengths, we focused
on filters corresponding to this. We used catalogues such as the 2MASS Point Source
Catalogue for J and K band (Skrutskie, 2000), The AllWISE data release (W1 – 3.35µm,
W2 – 4.6µm, W3 – 11.6µm, W4 – 22.1µm) from Cutri (2014), Gaia DR3 (BP – band
mean magnitude, RP – band mean magnitude and G – band mean magnitude), (Gaia,
2022). Among other things, we used the Gaia DR3 VariSumarry catalogue (Eyer, 2023),
which provides the minimum and maximum magnitudes for the G, BP and RP bands. This
allows us to observe how the color, and therefore the effective temperature, of a variable
star changes during the period at which the brightness changes.

The last source from which we obtained information about the colors was the ZTF
catalogue, which we mentioned in section 3.2. The data, which included among others
mjd, mag and filtercode, were downloaded separately for halo and bulge, with a tolerance
of 10 arcsec from our specified coordinates. For Miras, which is located in the galactic
bulge, we extracted data for 207 stars from the 1608 stars we entered in the ZTF catalogue,
25 of which are located in clusters. For 1954 Miras, which are located in a halo, we
obtained data for 855 stars, of which 2 are located in clusters. The ZTF catalogue has an
interactive interface that allows us to visualize the data we are looking for and to see where
they are located in the Galaxy. This interface therefore serves as a quick check to confirm
whether we have indeed selected data from the Galactic bulge/halo. Data for the halo was
more represented in the ZTF than for our bulge stars, but we also retrieved data for the halo
in the g, r, and i filters, while for the bulge most of the data was only in the g and r filters.
A large amount of the stars had data available in both the g and r filters. This allowed us
to calculate the effective temperature (Teff) of a given star from their difference using the
relation 3.6 (Fukugita, 2011).

Teff =
1.09

(g− r)+1.47
·104[K] (3.6)
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The obtained values of modified Julian date (mjd), mag, mag error for each star were
used to verify that our stars are indeed variable stars of the Miras type. For this, we used
UPSILoN (AUtomated Classification of Periodic Variable Stars using MachIne LearNing)
(Kim, 2016). This is a Python-based program that can classify periodic variable stars,
which includes Miras, based on Machine learning. It needs mjd, mag and mag error as
input data regardless of the filter chosen. As output, for each star that contains more than 80
data points, it gives us the variable type of the star, the probability with which it is sure that
it is the variable type, and whether the classification was successful or the classification is
suspicious – period is in period alias and/or period is very low. For our stars in the galactic
halo, he determined that most of our stars are indeed Miras, and only 19 of them fall into
a different category, namely the semi-regular variables (SRV) category, where this type is
often confused with Miras. For stars in the galactic bulge, the program did not have enough
points for most stars, so it determined the type of variability with very low probability, but
those it was sure of it determined as Miras. In addition to designating stars as Miras, it
was able to determine whether they were oxygen or carbon Miras, the distribution of which
was unclear to us until this point because we did not have the necessary data to determine
their distribution.

From the obtained g− r and r we could then calculate the values for the unredening
color ((g− r)0), and also the absolute stellar size in the r filter (Mr) for each of our stars.
The following relations were used for the calculation: 3.7 and 3.8, where d is the distance
in parsecs, Ar is the extinction (mag), and E(g− r) is the reddening, also called color
extinction.

Mr = r−5log(d)+5−Ar (3.7)

(g− r)0 = (g− r)−E(g− r) (3.8)

Due to the presence of interstellar material (dust and gas) between us and the galactic
bulge, it is important to take these factors into account for a correct calculation. To calculate
(g− r)0 and Mr, however, we lacked knowledge of the magnitude of Ar and E(g− r) for
Miras. Since the ZTF is calibrated to Pan-STARRS1 (Ngeow, 2021), (Chambers, 2017),
we were able to use the conversion relations associated with it since the ZTF does not
have its own transformation relations between filters. The Johnson-Cousins filter system
(Johnson, 1953), specifically extinction in the V filter (Av) and reddening in the B and
V filters (E(B−V )), seemed to be the most convenient for obtaining Ar and E(g− r)
because of the ease of transformation to Pan-STARRS1. We also obtained values for Av
and E(B−V ) using the IRSA DUST archive (35). These values were then converted to
the g and r filters using the following relations; 3.9, 3.10 and 3.11. The values of 0.843
and 1.155 were taken from the transformation relations given in Wang (2019). The value
of 2.617 corresponds to the quantity Rr, which is the extinction coefficient for the r filter,
whose value is constant for a given color (Ngeow, 2021).
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Ar = 0.843Av (3.9)
Ag = 1.155Av (3.10)

E(g− r) =
Ar

2.617
(3.11)

3.3.5 Obtaining quantities from isochrones
The calculated Mr and (g− r)0 values for each star were then used as input values to the
Stellar Isochrone Fitting Tool - StiFT (Supikova, 2021) in txt format, see Fig.3.3.6. It
was also necessary to upload the input isochrone grid, which is freely available at Bressan
(2012) and has many photometric systems to choose from, where the Pan-STARRS1
photometric system was chosen for our purpose. We then sorted this downloaded data for a
large number of stars by age and entered the number of isochrones that corresponds to the
age in the next column; i.e.; there is one isochrone for each age. We then create a txt file
that contains Mr and (g− r)0 (like our stars), and any 3 characteristics we are interested in
- age, effective temperature, luminosity, mass, etc.) and the isochrone number. According
to this interpolation isochrone grid, StiFT will calculate the values of the quantities we are
looking for, such as luminosity, age, stellar mass and effective temperature.

As our input data, we put 88 Miras in bulge (only for this number we have values in
the g and r filter) and 5 for clusters in bulge. We got results for 81 and 2 Miras in bulge,
respectively. For the 348 Miras found in the halo, we had data in both g and r filters,
including 1 in the cluster. We successfully counted data for 334 stars in the halo and
unfortunately for none in the cluster.
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Figure 3.3.6: StiFT interface. In the upper left part, we upload the grid and our input data,
or we can check only one star in the right part of the StiFT (Supikova, 2021).

Figure 3.3.7: sample web interface for downloading isochrones (Bressan, 2012).
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3.3.6 Extinction and reddening values
As mentioned in the text above, stars located in the bulge region are affected by interstellar
reddening, see figure 3.3.8 of dust map. It was therefore desirable to obtain the filters
we have already obtained, also their extinction and reddening values. The halo is not
so affected by reddening (sometimes it is even assumed that there is no extinction), so
it was problematic to obtain these values at all for some filters. We then compared the
obtained values with those without extinction and looked at the correlations between them
and between other parameters.

Figure 3.3.8: Dust map of Galaxy. We can see the amount of dust along the galactic plane
and bulge, but not much dust in the halo (36).

The values of extinction and reddening in theV and I filters (E(V −I), AI) were obtained
from OGLE-III (Soszyński, 2009), which has available values for both bulge and disk. It
does not have these values for the halo, from the previously mentioned assumption of zero
extinction in the Galactic halo. The optical gravitational lensing experiment (OGLE) also
provided values for the extinction ratio between the V , I and J, K filters (RVIJK), which
allowed us to recalculate the extinction and reddening from the V and I filters to the J and
K filters. To do this, we used the classical conversion 3.12 and 3.13, where the constants
0.36 and 1.36 were taken from (Layden, 2019).

E(J−K) = E(V − I)RVIJK (3.12)

AK =
0.36E(V − I)

1.36
(3.13)

We also used the Gaia DR3 VariSumarry catalogue, which provided us with their
extinction and reddening values in addition to the G, BP, and RP colors, both for the mean
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values and for the values at the minimum and maximum of the stellar brightness during
the cycle.

Another way to deal with extinction, which affects stars mainly in the galactic bulge,
is to use the Wesenheit function, also called Wesenheit magnitude or Wesenheit index,
(Madore, 1976). Wesenheit magnitude is a function that is unaffected by extinction,
thanks to the use of the ratio between two filters (bands). Since the attenuation of a star’s
light due to extinction is wavelength dependent, regardless of the filter, the attenuation will
be similar in both filters (bands) since both bands measure light from the same star. Their
ratio can therefore partially eliminate or minimize the extinction effect.

We calculate the Wesenheit magnitude as the magnitude difference in one filter and R
times the difference in the two filters, where R is the ratio of total to selective absorption
(Ngeow, 2005). Expressed numerically for the example of the V and I filters see equations
3.14 and 3.15, where in this case R is fixed as 1.55 (Ngeow, 2022). Similarly, we used the
relation to determine the dereddening magnitude in the K filter, as figure 3.16. Finally, the
values in the g, r, and i filters obtained from the ZTF archive were also recalculated by the
previously mentioned adaptation to Pan-STARRS1. From 3.17, 3.18 and 3.19 relations, we
were also able to calculate the absolute Wesenheit magnitude, as equation 3.20 in (Ngeow,
2021).

WI = I −R(V − I) (3.14)
R = AI/E(V − I) (3.15)

WK = K −0.618(J−K) (3.16)
Wgi = g−2.274(g− i) (3.17)
Wgr = r−2.905(g− r) (3.18)
Wri = r−4.051(r− i) (3.19)

MWgr =Wgr −5log(d)+5 (3.20)
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Analysis

All the data were saved in Excel files and then processed in Python. For this, either existing
code such as Upsilon was used, (Kim, 2016), or for the most part the data was processed
with custom code. These results will be commented on in the following sections, first for
the galactic bulge and then for the galactic halo.

4.1 Analysis of galactic bulge

4.1.1 Metallicity and period distribution of Miras (fundamental char-
acteristics of Miras)

The bimodal distribution of metallicities for globular clusters has been known for some
time and has been also verified. This bimodality of globular clusters is related to the period
and place of their formation, see (Smith , 2000).

Our data for Miras in the Galactic bulge show a similar trend of bimodal metallicity
distribution. In Fig. 4.1.1 we note the increased abundance of Miras for a metallicity
of –0.4 dex and around +0.5 dex. This bimodality could be related to the evolution of
the bulge itself and also tells us that Miras formed in two phases. According to article
Rojas-Arriagada (2019), the more metal-rich stars (with a peak around metallicity of +0.5
dex) come from a period known as the secular evolution (a period of slow and steady
evolution), when the thin disk evolved and the formation of a bar occurred. In contrast,
the formation of metal-poorer stars (–0.5 dex) is not fully understood. It is thought to have
originated during impulsive early star formation or during the evolution of the early thick
disc.

On the other hand, the period distribution in Fig. 4.1.2 shows a classical Gaussian
distribution with the highest frequency at a period of approximately 330 days. The average
Miras period is generally reported to be around 300 days. Our value also agrees with the
paper by Matsunaga (2017) where they obtained the same distribution for Miras in bulge
with the same most frequent period, but where their data were obtained from the OGLE
III catalogue. It is therefore a good comparison, where even across other catalogues we
come to the same conclusion.

If we want to correlate the metallicity with the period and see if there is any dependence,
as is the case for RR Lyrae stars or other pulsating variable stars, only a very slight
dependence is seen in this case for Miras in the bulge, see Fig. 4.1.3. We can notice a
slight dependence, where with increasing metallicity (decreasing age) we also identify a
decreasing period (periods of brightness changes are more frequent). At the same time,
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Figure 4.1.1: Abundace rate of metallicity. There is a noticeable bimodal distribution for
Miras in the galactic bulge with peaks of –0.4 dex and +0.5 dex.

there is a slight trend for Miras in clusters, where these Miras have a period of brightness
changes mostly above 250 days, while Miras located outside the cluster abundantly have
periods even below 250 days.

Several papers are based on the view that there is no dependence between period and
metallicity, e.g. paper by Feast (1996), but there is also a study Zijlstra (2003) where
there is a decrease in period with time for the star R Hya. They explain it by the fact that
there existed a gradual decrease in the mass loss of the star that caused this decrease in the
period. The reason they give for the decrease in the mass-loss rate is that the star is at the
very top of the AGB. However, they are inclined to the view that this decrease in period is
isolated and most Miras do not show changes in period with time.
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Figure 4.1.2: Abundance rate of the period showing Gaussian distribution with the peak
around 300 days.

(a) Period–metallicity relation for Miras with weak linear
dependence.

(b) Period–metallicity relation with location of stars belonging to
clusters.

Figure 4.1.3: Period–metallicity relation.
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We obtained the effective temperature of Miras in three ways, namely from the cat-
alogue, by calculation and by isochrones. More detailed information on obtaining these
values is given in the 3.3 section. It is clear from the Fig. 4.1.4. that the highest frequency
for the effective temperature approximately matches both the calculated effective tem-
perature and the effective temperature obtained from the catalogue, while the isochrones
method gave us values completely outside our expectations. The Miras effective temper-
ature according to Shore (2003) is supposed to be below 4000 K, which is in agreement
with the effective temperatures obtained from the catalogue and the calculation. The ef-
fective temperatures obtained by the isochrones method may not fit due to the fact that we
approximated the ZTF filters as Pan-STARRS1, and thus there may have been an error in
determining the given values, and we will take them as indicative only.

Figure 4.1.4: Frequency rate of effective temperature determined from catalogue, calcula-
tion and isochrones.

– 35 –



4.1.2 Color–magnitude and color–color relations
Since our stars are in the same region of the Galaxy – the bulge, and relatively close to
each other, we settled for apparent magnitude and did not convert it to absolute magnitude.

From the Gaia catalogue, for the G, BP, and RP magnitudes, we obtained Fig. 4.1.5a.
As expected, the stars are mostly placed together in the upper left part of the diagram.
Higher BP−RP color values indicate redder candidates (i.e. cooler stars), as we would
expect for Miras. The scatter in G magnitudes is minimal, and if distance is included when
converting to absolute magnitude, the scatter should decrease. In contrast, the scatter in
color has several causes. One of them is the non-inclusion of extinction, which is evident
in bulge stars and was therefore included in the 3.3.6 section. Another reason is that for
BP−RP values BP−RP < 6.5 mag we have crossed the threshold below which the Gaia
values are not taken into account because they are unreliable. This limit can also be found
for the G filter, where the limit is 16 mag and values above this magnitude are unreliable
too, (Mowlavi , 2018). In our plot, we can also spot these data, and they are located in the
lower left part of the plot and form a prominent part in an otherwise homogeneous cluster.

If we look at the graph 4.1.5b, where we can see the distribution of the stars in the
clusters, is clear that Ter 6 and Djor 1 are located in areas with a higher color index, so they
appear redder than the stars in NGC 6453 and NGC 6441, which are located below them.
This is due to the previously mentioned reddening effect, where according to article Bica
(2016), Ter 6 cluster has a higher reddening than NGC 6441. The reddening values for

Djor 1 and NGC 6453 were taken from Harris (1976) and show the same reddening trend
with respect to each other.

(a) Gaia color magnitudes used for Miras stars and Miras
located in clusters

(b) Gaia color magnitudes used for color–magnitude diagram
with location of Miras belonging to specific clusters.

Figure 4.1.5: Color–magnitude diagram for Gaia photometry.
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For Gaia, in addition to the mean values for G, BP, and RP, we also obtained their
minimum and maximum values, which are shown in Fig. 4.1.6. There is a noticeable
dependence where we find brighter/hotter stars at the minimum of their radius and at the
maximum of their luminosity, as we would expect for pulsating variable stars. While cool
and low luminosity stars are found at the maximum of their radius.

Figure 4.1.6: Shift of Miras in color–magnitude diagram during their pulsation cycle.

Since we have no information on their type for Miras in bulge – oxygen (O) vs carbon
(C), we have to try to determine their type from the dependence of J −K color on K
magnitude. It has been found that carbon Miras have strong absorption bands in the CN
and C2 molecules that affect the values in the J filter and shift them to higher values, while
oxygen Miras are affected by the TiO and H2O molecules, which affect both the J and
K bands (Matsunaga , 2017). They determined the cut-off region for the K filter to be
K < 9.5 mag and for the J −K color to be J −K > 3.2 mag by empirical observation and
comparison with Miras in the Large Magellanic Cloud (LMC). This would correspond to
about 40 Miras out of the total in our 4.1.7. However, this number may be lower since we
have not included interstellar reddening in this graph.
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Figure 4.1.7: Location of Miras and Miras in clusters in color–magnitude diagram for
2MASS filters.

In addition to O and C Miras, SR variables are often mistakenly classified as Miras,
but they have slightly lower amplitudes of brightness changes and also periods. However,
based on the paper by Chen (2020), we are able to distinguish them, using the W1 and
W2 filters from the WISE catalogue, which have, among other things, good signal-to-noise
ratios. For W1 −W2 color greater than about 0.4, these should be SR variables according
to the article. Like the previous filters in 2MASS, these values were determined based on
Miras in LMC. In our Fig. 4.1.8, this would be about 1/3 of the stars, but at the same time,
the article shows that this limit is quite overlapping and only very tentative. They take the
dependence of W1 on amplitude as the key, but these data are not available to us. However,
our plot again shows that our stars are in the redder region, but since the wavelengths of W1
and W2 are very close to each other, the separation between Miras and SR becomes very
blurred.
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Figure 4.1.8: Location of Miras and Miras in clusters in color–magnitude diagram for
filters W1 and W2 in WISE catalogue. These filtres belong to near infrared part of spectra

However, we could determine all these types of both O and C Miras and SR variables
from the color diagram for the WISE catalogue, as in Fig. 4.1.9. This is based on
papers by Chen (2020) and Iwanek (2021), both of which agree that for values of
−0.2 < W1 −W2 < 0.25 and W2 −W3 > 0, these are oxygen Miras. However, the papers
disagree on the type of variable star for 0.25 < W1 −W2 < 1.5 and W2 −W3 > 0, with
the first paper claiming that stars in this range are SR variables, while the second paper
identified them as carbon Miras. It should be noted that the second paper discusses Miras
on the LMC, which may introduce this confusion about the type determination.

However, the most common method to partition Miras based on chemical composition
is a combination of photometric data from the Gaia catalogue and 2MASS. Where the
J, K and BP, RP filters/magnitudes are converted to Wesenheit magnitudes according to
the relations given in the methodology section, which reduces our influence to reddening.
Simply distinguishing C/O Miras based on the 2MASS catalogue is not sufficient for stars
in the bulge due to the large number of background stars and reddening compared to stars in
the LMC and SMC, where it is sufficient to use the 2MASS catalogue values to distinguish
them.

From the paper by Sun (2023) they determined the x-axis limit as approx 2.6 mag
(parabole-shaped limit – decreasing color up to MK = –7.5 mag, then the color increase
again), based on the different absorption in the C and O Miras spectra. Stars with a value
less than that belong to O Miras and C Miras, respectively. In Fig. 4.1.10, this is again
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Figure 4.1.9: Location of Miras and Miras in clusters in color–color diagram for filters
from WISE catalogue.To note, there is an extended linear dependence, whereas the color
W1 −W2 grows, so does the color W2 −W3.

about 1/3 of the Miras falling into the C Miras category.
An interesting dependence can be seen in Fig. 4.1.11, where we used the V and I filters

from the OGLE III survey. From the shape of the curve, we can conclude that these are
RGB/AGB stars, as expected, but there is also a dependence on the period. We observe
a trend where the period of Miras changes increases linearly with increasing color and
decreasing magnitude. Thus, the redder and brighter the star, the longer the period. This
phenomenon is typical of pulsating variable stars and is mostly known for Cepheids.
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Figure 4.1.10: Comparing color with absolute magnitude from two different catalogues -
2MASS and Gaia.

Figure 4.1.11: Comparing Miras in color–magnitude diagram for OGLE III filters. It is
clear that there is color dependence on period, which changes with higher values of color.
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4.1.3 Period magnitude and period color relations
Given the known relation showing the linear dependence of period on magnitude for
pulsating stars, we expected a similar result in our case, as confirmed by 4.1.12, 4.1.13 and
4.1.14.

The dependence of the logarithm of base 10 on magnitude in the filter shows a linear
dependence in Fig. 4.1.12. However, for logP values of 2.4 to 2.8, we can notice an
extension of the plot where we have multiple magnitudes for a given period. This may
be because these are carbon Miras, which are typically characterized by larger spread
of magnitude values and slightly longer periods. The same conclusion was reached in
Soszynski (2005) and Yuan (2017), although for Miras located in thebLMC and SMC.

Figure 4.1.12: Period dependence on 2MASS filter log(P) on W1.

The same dependence can be seen in the Fig. 4.1.13 that shows the dependence of logP
on W1, but with the difference that the values are more compact and clustered together,
compared to the previous graph. Our graph is quite comparable to the graph obtained in
the paper by Schultheis (2008). There may be several reasons why we observe values
closer together. Since Miras are cool red stars they will be detected more accurately and
in more detail in the W filter, which includes redder wavelengths, and also this filter has a
narrower wavelength coverage than the K filter.
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Figure 4.1.13: Linear dependence of log(P) on W1 for Miras and Miras in bulge globular
clusters.

Last, we took the dependence of the period on the J−H color, from which, according
to the paper by Yuan (2017), one can distinguish C/O Miras in the LMC. Our form of the
Fig. 4.1.14 is in perfect agreement with that in the paper. Thus, we can adapt that in the
range 0.5 to one for the J −H color we find oxygen Miras and the rest are carbon Miras.
Unfortunately, no paper has done the same with a sample of O/C Miras in the Galaxy, so
we cannot take this conclusion as conclusive.
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(a) Distribution of Miras in period–color relation. (b) Distribution of Miras according to cluster membership.

Figure 4.1.14: Period–color relation for J−H color.

4.1.4 Lightcurves and moving color–magnitude diagram
From the ZTF catalogue, we have obtained for most stars their mjd and magnitude and the
filter in which the star was measured. From this, we were able to construct light curves
using code we wrote in Python. A sample of some of the light curves can be seen in
the figures, where we can cross-reference the light curves of O and C Miras, which were
determined using Upsilon. The period values were determined with Peranso using Lomb-
Scargle methods, where we searched for periods in the range 100-1000 days. For O Miras,
we determined the period with a deviation from the values obtained from the catalogue of
1 day in the case of the star whose light curve can be seen in Fig. 4.1.15. In contrast, for
the star whose light curve is seen in Fig. 4.1.16, its period determination is off by 90 days.
In the case of C Miras, its period differs by 17 days from that in the catalogue, see Fig.
4.1.17 . Unfortunately, the Upsilon program had a problem determining the type of stars
in the bulge, so we do not have many stars to adequately compare. The Peranso program
has always determined periods in the case of Miras in the bulge to be slightly longer than
we found from the catalogue. It is also clear that the O Miras have larger amplitudes of
brightness changes than the C Miras, as we would expect.

We also constructed a moving CMD, see Fig. 4.1.18, from the data obtained from
the ZTF catalogue, as discussed in the 2.6 section. For these data, we did not consider
extinction to calculate the absolute magnitude in the r band, as we did not have these data.
The linear dependence of color on absolute magnitude remains the same as shown in Fig.
3.1.1, except that the trend is reversed. This is due to the previously discussed reversal
of dependence when using a filter in the optical and infrared parts of the spectrum. In
addition to this trend, we observe high amplitudes of luminosity changes associated with
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(a) Light curve of O Mira derived by Peranso using
ZTF archive.

(b) Derived period by Lomb-Scargle method.

Figure 4.1.15: Light curves in g and r filters and derived period for O Mira with coordinates
Ra = 260.8 deg, Dec = –26.30 deg.

(a) Light curve of O Mira derived by Peranso using
ZTF archive.

(b) Derived period by Lomb-Scargle method.

Figure 4.1.16: Light curves in g and r filters and derived period for O Mira with coordinates
Ra = 260.97 deg, Dec = –25.96 deg.

(a) Light curve of C Mira derived by Peranso using
ZTF archive.

(b) Derived period by Lomb-Scargle method.

Figure 4.1.17: Light curve in g filter and derived period for C Mira with coordinates Ra =
270.5 deg, Dec = –26.96 deg.
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strong pulsations of the star as a consequence of the effective temperature change of the
star.

Figure 4.1.18: Moving CMD for bulge Miras. Different colors indicate different Mira
stars.

4.1.5 Extinction and reddening dependence on location of stars in
clusters

In the Fig. 4.1.19, 4.1.20 and 4.1.21 that show us the dependence of extinction on reddening
for different filters, we can notice a linear dependence, where extinction increases with
increasing reddening, as we would expect.

For the B, V and V , I filters we observe minimal point spread (these points are very
close together) whereas for the J, K filters these points occupy a wider band of extinction
for a single reddening value. The spread is related to the width of the J, K filters itself,
which is larger than the B, V and V , I filters - its wavelength spread is wider.

All of these plots illustrate a consistent distribution of stars within a given extinction for
a particular cluster. According to the graphs, stars belonging to the clusters NGC 6453 and
NGC 6441 have low extinction and reddening values, while stars in the clusters Ter 6 and
Djor 1 have high extinction and reddening values. This is consistent with the extinction
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Figure 4.1.19: Extinction and reddening values in B and V filters.

Figure 4.1.20: Extinction and reddening values in J and K filters.

values of the clusters in the Harris (1976) catalogue. The low extinction and reddening
values refer to stars in clusters that have either b > +5 deg or b < –5 deg. However, for
the case of the cluster NGC 6453, the paper by Bica (2016) claims that it is an outer
bulge intruder that originally fell into the halo. The reason for their claim is the high space
velocity of this cluster, which is typical of objects in a halo.

Just as we examined the color–magnitude diagram for the J and K filters in 4.1.2,
because of the interstellar dust and gas, it was necessary to obtain values for extinction
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Figure 4.1.21: Extinction and reddening values in V and I filters.

Figure 4.1.22: Dereddened 2MASS magnitudes for bulge Miras.

and reddening in these filters as well. From this, we were then able to convert these values
to dereddening values of (J −K)0 and K0, the resulting dependence of which is shown in
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4.1.22. Not surprisingly, we see the same point locations as in 4.1.7. just with different
values on the axes. When we include the reddening, the stars have moved approximately
0.5 mag to the left bluer part of the graph. Thus, the interstellar material did indeed make
the stars slightly redder than their true color. In contrast, there was no significant shift in
the magnitude of K0 on the y-axis.

4.1.6 Period dependence on extinction modified values
The linear dependence of the logarithm of the base 10 period on magnitude has already
been demonstrated in 4.1.3 section. We have shown the same dependence in Fig. 4.1.23,
this time using dereddened values of K0. However, the range of dereddened magnitudes
in the K filter is narrower here. This may be because stars in different parts of the bulge
are affected differently by interstellar reddening and the dust/gas is not homogeneously
distributed there.

Figure 4.1.23: Period dependence on dereddened K0 filter.

The same linear dependence can be seen if we convert the K filter to Wesenheit
magnitude instead of accounting for extinction. This linear dependence differs for WJK and
K0 in the slope and intercept values and hence the slope of the function is also different.
In this case, the Fig. 4.1.24 rises faster for WJK than it does for K0. The reason for
the differences may stem directly from the definition of the Wesenheit magnitude and
its limitations, such as its dependence of the function on the choice of filter, which was
discussed in 3.3 section.
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Figure 4.1.24: Dereddened 2MASS filters for bulge Miras with linear dependence Wesen-
heit magnitude on period.

4.2 Analysis of galactic halo

4.2.1 Metallicity and period distribution of Miras (Fundamental char-
acteristics of Miras)

The distribution of metallicities by frequency does not have a bimodal distribution for the
halo, as can be seen in Fig. 4.2.1. This may suggest that the stars in the halo were formed
during one phase. We observe the highest metallicity abundance for Miras around +0.5
dex, suggesting that these Miras formed in a second phase when the Universe was already
enriched with the material after the extinction of the primordial stars. A second peak for
the bulge is also around this value, whereas the primordial one is around a metallicity of
–0.5 dex, as discussed in section 4.1.1. This finding suggests that the halo might be slightly
younger than the bulge, which is consistent with the paper by Morrison (1993) which
reports its average age difference of about 1 Gyr.

In the case of the frequency-based period distribution, we found a Gaussian distribution
with a peak for a period of approximately 300 days, see Fig. 4.2.2. This period is consistent
with the period in the LMC for the paper by Matsunaga (2017) and for the Galactic halo
from (37). This paper claims that this low period is due to a higher age than the bulge stars
or lower metallicity. However, this is in contradiction with our metallicity results, where
we found a double metallicity for Miras in the bulge, both metal-poor and metal-rich,
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Figure 4.2.1: Metallicity distribution grows for metal rich Miras with peak at +0.5 dex.

while only one for the metal-rich halo. At the same time, the same result for the period
distribution as for the LMC may indicate their similar ages, which is for halo, as we have
already mentioned, approximately 1 Gyr younger than the bulge. Thus, the lower periods
can be associated either with young stars on the AGB, their mass loss is just beginning, or
with an excess of O Miras, which have on average lower periods than C Miras.

The dependence of the period on metallicity in the Fig.4.2.3 showed us a very slight
dependence, where the period increases with increasing metallicity. The trend is indeed
minimal and opposite to that for bulge. Thus, the significance is mainly due to the frequency
of Miras for a given metallicity rather than any trend.
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Figure 4.2.2: Gaussian distribution for Miras in galactic halo, with most frequent period
around 300 days.

The values for the Miras effective temperatures were obtained, as mentioned in the
bulge section, from the catalogue, by calculation and using isochrones. In Fig. 4.2.4. we
can see the approximate correspondence in the effective temperature distribution regardless
of its type of determination and the correspondence in the most common effective temper-
ature, namely 3500 K. In this case, the approximation of the ZTF data to Pan-STARRS1
gave us an adequate and expected result. For this reason, we further investigated the de-
pendence of the luminosity on effective temperature, as seen in Fig. 4.2.5. For effective
temperatures between 2500 K and 3400 K, we obtained a linear increase in luminosity with
effective temperature, while for effective temperatures above 3400 K, there is a decrease
in luminosity, for the luminosity obtained with isochrones. This dependence is based on
the definition of luminosity, where luminosity depends on the fourth power of effective
temperature and the second power of radius. On the other hand, the luminosity obtained
by calculation shows no trend.
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Figure 4.2.3: Dependence of metallicity on the period for halo Miras, do not show any
strong correlation as is known for RR Lyrae variables.

Figure 4.2.4: Histogram for effective temperatures whose derivation methods are shown
in different colors.
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Figure 4.2.5: L (LSun) dependence on effective temperature. Different derivation methods
for luminosity are tagged by different colors.

4.2.2 Color–magnitude and color–color relations
For the sake of a mutually consistent comparison of Miras in the halo with the bulge, we
have not converted the magnitudes in the filters to absolute magnitudes either, although
this would be convenient here because of the large range of distances for the galactic halo.

In the case of the Gaia magnitudes BP, RP, and G, which can be seen in 4.2.6a. a wide
range of magnitudes in both the G and BP−RP magnitudes can be seen. The same can
be seen in the 4.2.6b, where we can observe the shift of the star at its pulsation minimum
and maximum. The stars have a wide spread in G caused by large variations in parallaxes,
yet there is a minimal shift in color. This is due to interstellar reddening, which is almost
negligible for halo stars.

The claim of a wide range of values for magnitude in a particular filter can be verified
in Fig. 4.2.7 showing filters from the 2MASS catalogue. It is clear that as we get a lower
K value (brighter star), the distance the star is from us decreases, while the color of the
stars does not change with distance. This tells us that extinction is minimal and the wide
range in magnitude is caused by a distance. For K of approximately 11 mag, we see a
larger scatter of values in the J−K colors. This scatter should belong to the C Miras, also
observed in the paper by Soszynski (2005), but for Miras in the LMC. In general, we can
also say, based on the similarities mentioned earlier, that Miras in the halo and LMC show
similar behaviour.

The type of Miras determined thanks to the Upsilon program could be verified with
the paper by Sun (2023), where using the difference of the Wesenheit magnitude from
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(a) Gaia color–magnitude diagram for halo Miras. (b) Gaia color–magnitude diagram for Miras in their min-
imum and maximum magnitude/color.

Figure 4.2.6: Comparing mean values for Gaia magnitudes with their min and max values
during pulsation.

the Gaia catalogue and 2MASS versus the absolute magnitude in the K filter, we were
able to distinguish C/O Miras, see Fig. 4.2.8. We have already commented on this limit
in the 4.1.2 section. It should be noted that the C/O Miras determined by us are only
indicative based on the light curves, and a more precise determination would require our
own spectral analysis and mass spectrography. The light curves obtained by us, based on
ZTF data often have few points or are incomplete. We can note that most of the O Miras
do indeed stay mostly within the region defined by the paper, but some C Miras are also
within it. There is another trend to observe here, namely that C Miras generally show
lower absolute magnitudes in the K filter for a given color than O Miras. Thus, they have
slightly higher luminosities for a given color in the infrared region of the spectrum because
of the circumstellar envelope that is typical of C Miras. In addition, O Miras begin to
appear at lower color values, indicating that they are generally hotter than C Miras, which
is consistent with the paper by Feast (2006).
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Figure 4.2.7: 2MASS color–magnitude diagram. It is obvious that as the magnitude
increases, so does Miras distance from us.

Figure 4.2.8: Color–magnitude diagram shows the distribution of different types Miras
such as O/C Miras.
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4.2.3 Period magnitude and period color relations
The dependence of the logarithm of the base 10 period on the K filter can be seen in
the 4.2.9, wherein the left one it is again clear that the distribution in the two parts in
magnitudes is due to distance and not to different types of stars. In addition, there is
a linear dependence, where the brighter the object, the longer the period of brightness
changes. The right one shows us, the same plot, but with the difference that we can see
where the O/C Miras and SR variables are located. The graph shows that the C Miras have
on average longer periods than the O Miras. This is related to their low age and higher
mass loss and stellar winds that are driven by dust which is located around C Miras Feast
(2006), Groenewegen (1996) and Groenewegen (1995). However, in the group of very

young Miras, this distribution is very vague and cannot be relied upon, since stars can only
become C Miras after the third dredge-up to the AGB.

(a) Period–magnitude diagram for halo Miras with colorbar
representing distance distribution. Large value of magnitude K
the larger distance of Mira from us.

(b) Distribution of O/C Miras and SRV in period–magnitude
diagram.

Figure 4.2.9: Period–magnitude diagrams for 2MASS filter K.

In the case of the dependence of the period on the J −H color in Fig. 4.2.10, we
observe the same distribution of Miras types based on the period. In addition, it is also
noticeable that C Miras have a larger spread in color compared to SRV and O Miras. This
spread into the red may be due to the thick circumstellar envelopes around these stars, as
we would expect.

The period luminosity (PL) relation for Miras in the halo is shown in Fig. 4.2.11. that
Miras with longer periods are fainter than those with shorter periods. This finding is in
agreement with the paper by Ngeow (2023). At the same time, this dependence is exactly
opposite to that found for the K, J, and H filters discussed above. This is because the r
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Figure 4.2.10: Period–magnitude diagram shows the distribution of different types Miras
such as C Miras and SRV.

filter is more in the visible part of the spectrum, while K, J and H fall in the infrared part
of the spectrum. Stars with longer periods in the visible spectrum show minimal emission
in the plot, and as discussed, the longer period stars are mostly C Miras. These stars have
circumstellar envelopes around them that emit in the infrared spectrum, and therefore we
observe a decrease in the visible part for longer periods.

The linear dependence of the period on the filter confirms to us that indeed Miras can
be used as standard candles to determine distances, especially in older galaxies such as
ellipticals, or in spiral galaxy haloes where Cepheids are scarce.
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Figure 4.2.11: Period–luminosity diagram for ZTF r filter shows linear dependence which
is described by the equation in this figure.

4.2.4 Lightcurves and moving color–magnitude diagram
We discussed the method of obtaining light curves and moving CMDs in Sect. 4.1.4.
We followed the same procedure for the galactic halo. In this case, we knew the O/C
distribution of Miras determined by Upsilon for multiple stars. The period determination
was more in agreement with the period obtained from the catalogue, where the average
deviation was 10 days. The exception was C Mira, see Fig. 4.2.14. where the period
determined by Peranso was 100 days longer than that determined by the catalogue. In
contrast, C Mira, see Fig. 4.2.15, has a deviation between periods of 10 days, as does
O Miras. In the case of O Miras, the period determined by Peranso was in approximate
agreement with the period obtained from the catalogue, whose light curves can be seen in
Fig. 4.2.12 and Fig. 4.2.13 . Here we can also observe higher amplitudes of luminosity
changes for O Miras, as we would expect, but the periods are similar for our chosen Miras.
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(a) Light curve of O Mira derived by Peranso using ZTF
archive.

(b) Derived period by Lomb-Scargle method.

Figure 4.2.12: Light curve in g filter and derived period for O Mira with coordinates Ra =
0.531 deg, Dec = –14.68 deg.

(a) Light curve of O Mira derived by Peranso using ZTF
archive.

(b) Derived period by Lomb-Scargle method.

Figure 4.2.13: Light curves in g and r filters and derived period for O Mira with coordinates
Ra = 9.703 deg, Dec = –23.93 deg.

(a) Light curve of C Mira derived by Peranso using ZTF
archive.

(b) Derived period by Lomb-Scargle method.

Figure 4.2.14: Light curves in g, r and i filters and derived period for O Mira with
coordinates Ra = 0.754 deg, Dec = 30.64 deg.
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(a) Light curve of C Mira derived by Peranso using ZTF
archive.

(b) Derived period by Lomb-Scargle method.

Figure 4.2.15: Light curve in g filter and derived period for O Mira with coordinates Ra =
261.1 deg, Dec = 5.189 deg.

Figure 4.2.16: Moving CMD for Miras in the galactic halo. We can notice two separate
groups for different color ranges.

– 61 –



The processed moving CMD can be seen in Fig. 4.2.16, where we observe the same
trend as for the Miras in the bulge. However, the difference is noticeable in the color index.
For several stars located in the upper left part of the diagram, this color index is extremely
low, which would indicate their high effective temperature. However, a search of the
effective temperatures obtained from the catalogue found no dependence that would tell
us that these Miras are hotter. The type of Miras, the dependence on parallax, metallicity
and location in the galaxy was also investigated. All of these characteristics appear to be
independent of location in the diagram and computational error has been ruled out. It
would therefore be worth further investigation as to why these stars are located in regions
typical of extremely hot stars.

4.2.5 Period dependence on extinction modified values
For Miras in the halo, we did not have enough data to obtain extinction values for the
different filters, as most of the catalogue focuses on extinction values for bulge and disc.
For this reason, we only recalculated the values of g, r, and i from the ZTF catalogue and J,
K from the 2MASS catalogue to Wesenheit dereddened magnitudes. For the ZTF filters, the
dependence of the logarithm of the base 10 period on the Wesenheit magnitudes is evident,
as seen in Fig. 4.2.17, where for each filter combination we obtained a linear dependence.
We have the steepest dependence for the g− r color and the flattest dependence for the g,
i filters. Since the g, r band is in the optical band, where we expect a linear dependence
opposite to the infrared band, as discussed above, the g, i bands lie on the boundary between
the optical and infrared bands, causing a flatter dependence that reverses when using more
infrared bands.

Thus, for the K filter we expect and find an inverse linear dependence in Fig. 4.2.18
than for the g, r and i filters. This finding is also in agreement with the paper by Soszynski
(2005) in which this dependence, albeit steeper, was found for Miras in the LMC.
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Figure 4.2.17: Relation of absolute magnitude in ZTF filters g, r, and i on logP. For each
filter, we obtain a similar slope value and linear function.

Figure 4.2.18: Dependence of Wesenheit dereddened magnitude in K filter on logP. We
also obtain linear dependence with equation described in the graph.
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Conclusion and summary

This work aimed to study Mira variable stars, including those in globular clusters. Because
of the investigation of Miras in globular clusters, we focused only on those Miras that
are located in the Galactic halo and bulge. As a condition to determine whether a Mira
belongs to a cluster, it had to satisfy that its coordinates Ra, Dec do not differ by more than
1 deg from clusters, and the deviation from the proper motion of the star and the cluster
is no more than 5 sigma. For the galactic bulge, we obtained 1608 Miras of which 308
are located in 15 clusters. For the galactic halo, we obtained data for 1954 Miras, but only
4 were located in 3 globular clusters. Thus, we conclude that Miras are not abundant in
globular clusters and occur predominantly outside of these clusters. The reason for the
disproportion of Miras in the bulge and halo clusters may be that the bulge is a very dense
and relatively small area, so their inclusion in the clusters may not be correct. To be more
certain about the classification, we would need to know the metallicity of the star and cluster
or investigate the density and mass profile more deeply. All the data concerning Miras
and clusters were obtained from the AAVSO, VSX, Gaia, 2MASS, Wise, OGLE-III, ZTF,
Pan-STARRS1, isochrones, Harris, Holger Baumgardt catalogues or were complemented
with the data obtained by calculation. Data were then saved in excel files and processed in
Python using custom codes or the adopted Upsilon code for Mira type identification. Since
Miras in clusters shows the same dependencies as those outside clusters, we will discuss
Miras in general in the following lines for better clarity.

For Miras in the Galactic bulge, we found a bimodal metallicity distribution with the
highest abundances for metallicities of −0.4 dex and +0.5 dex. In contrast, for Miras
in the Galactic halo we obtained a gradually increasing abundance of Miras for higher
metallicities, with a peak around +0.5 dex. This may be due to the different formation
times of Miras in the halo and bulge, with the halo possibly being up to 1 Gyr younger, as
suggested in the Morrison (1993).

The period distribution for Miras in the bulge and halo shows a classical Gaussian curve,
where the highest frequency was found for periods of 330 days and 300 days, respectively.
Lower periods of brightness changes may be associated with younger Miras, which would
be consistent with the previous finding of metallicity/age Miras. In addition, in bulge,
there may be an excess of O Miras, which have on average lower periods at the same age
than C Miras.

The dependence of metallicity on the period of brightness changes in time did not
show us a satisfactory dependence in either case, and we assume that there is no significant
change in the period with metallicity. Thus, in the case of Miras in bulge clusters, most
of them tend to lie at periods above 250 days, while those outside the clusters are also
abundant at lower periods.
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The highest abundance of Miras for effective temperatures obtained from the catalogue,
by calculation, and from isochrones was found to be 3500 K in the case of the halo. In
the case of bulge stars, the effective temperatures obtained from isochrones diverged from
those obtained by calculation and from the catalogue, which also had the highest abundance
around 3500 K. The reason is that we used ZTF data to calculate the isochrones but used
data from Pan-STARRS1 as sample isochrones since sample isochrones were not available
for ZTF.

By comparing the Miras bulge and halo in the color–color and color–magnitude dia-
grams, we found that the Miras in the halo have a larger spread in magnitudes for different
filters but a similar spread in colors. The large range in magnitude values is explained by
the fact that the Miras in the halo have large distances between them, which contrasts with
their location in the bulge, where they are close together. The range in color for Miras
in the bulge is due to the non-inclusion of interstellar extinction and reddening, which is
typical for this region of the galaxy. In contrast, there is minimal interstellar extinction in
the halo, so this spread in color may be due to the greater abundance of different types of
Miras (O/C/SRV), while in the bulge are mostly O Miras, (Feast , 2007).

When studying the dependence of the G filter on the color BP−RP (magnitudes from
Gaia catalogue), we notice the same pattern for both halo and bulge, namely that at the
minimum radius the object is bluer and brighter compared to the maximum. The bulge
clusters Ter 6 and Djor 1 showed the highest color values, while NGC 6453 and NGC
6441 showed the lowest ones. Comparing with the catalogues and our obtained data,
extinction affected their color values, whereas for higher color these stars/clusters had
higher extinction.

Since we did not have information on the type of Miras for the bulge from the Upsilon
program, we had to rely on the articles, whereby comparing the 2MASS filter K and the
J −K color they can distinguish O/C Miras, or by using the W1, W2 and W3 filters they
can distinguish O/C Miras and SRV. This separation is only approximate but at least as
a basic separation it was sufficient for us. From these inferred distributions, we found
that less than 1/3 of the Miras in the bulge should be of type C, which is consistent with
the expectation of a more abundant O Miras in the bulge. However, the filters from the
2MASS catalogue are insufficient to identify C/O Miras in the Galaxy, mainly because of
the high reddening and the large number of background stars. Therefore, we examined
photometric data from both the Gaia and 2MASS catalogues converted to the Wesenheit
dereddened magnitude relative to the absolute magnitude in the K filter. We again took
the O/C limits of Miras for the bulge based on the articles mentioned in the analysis part.
For Miras in the halo, however, we had the type determined and could compare it with the
prediction in the paper. This prediction fits our data very well and can therefore be taken as
adequate for Miras in bulge as well. In addition, we found that C Miras in the halo have a
lower magnitude and are thus brighter in the K filter for a given J−K color than O Miras.
This is due to the strong circumstellar envelope around C Miras, which emits in the longer
infrared part of the spectrum.

When examining theV and I filters from the OGLE-III catalogue, which gave us enough
data only for Miras in the bulge, we found a magnitude dependence on color with a third
parameter that distinguished the color change periods. When Miras is redder and brighter,
its period of brightness changes increases, as is known for pulsating Cepheid-type stars.
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Miras can therefore also be good distance identifiers, for example in old elliptical galaxies,
or in the halo of spiral galaxies.

By examining the dependence of the filter on the logarithm of the period, we obtained
a linear dependence, where the star appears brighter in the infrared part of the spectrum
with an increasing period. This dependence is narrower the more the filter falls in the
infrared part of the spectrum, while the dependence is reversed if we use a filter from
the optical part of the spectrum. The reason for this is that Miras are cool stars, which
causes the predominant type of radiation to be longer wavelengths. In the case of C Miras,
which generally have longer periods than O Miras and are surrounded by a circumstellar
envelope, the radiation is further shifted to even longer wavelengths, which significantly
limits the optical part of the spectrum. We have also verified this claim for the dependence
of the magnitude in the K filter on the logarithm of the base 10 period for Miras in the halo.
SRVs were distributed at the shortest periods, while C Miras were at the longest ones with
generally higher luminosity.

From the ZTF catalogue we obtained time series data for a large fraction of our stars,
from which we were able to construct a light curve and determine the periods. The program
Peranso was used to determine the periods, with the Lomb-Scargle method, which in most
cases gave us periods similar to those obtained from the catalogue. From the light curves,
we also checked for the selected Miras that the Upsilon program correctly determined
the type of Miras, since C Miras have lower amplitudes than O Miras. Periods are not
crucial as we would have to compare Miras of the same age. In addition, we were able
to construct a moving CMD for Miras in the bulge and halo using the color g− r and
the absolute magnitude in the filter r. Since these filters fall more in the optical part of
the spectrum, we found the opposite dependence to that for the filter in the infrared part
of the spectrum, as we commented above. At the same time, it is worth noting the high
amplitudes of the luminosity changes associated with the strong Miras pulsations, and
this prevails as a consequence of the change in the effective temperature of the star. In
addition, we found a double distribution in the halo of Miras, with one part of the stars
occupying a very hot region of the diagram. Unfortunately, no correlation was found with
the effective temperature obtained from the catalogue or with other quantities such as
metallicity, period, parallax, and position in the galaxy.

From the dependence of extinction on reddening, we verified that stars belonging to
the same clusters have similar extinction and are in the same region of the graph. The low
extinction in the bulge is shown by Miras with b > +5 deg and b < −5 deg, from which
we can conclude that the extinction is strong only in the range −5 < b <+5 deg. For the
Galactic bulge, we also had extinction data, so we recalculated the data from the J and
K filters to dereddened values, which, compared to the plot without including extinction,
shifted the color by 0.5 mag to the hotter part, while there was no shift in the K filter. Thus,
extinction affected the stars in the bulge, especially in the J filter, as there was no shift in
the K filter.

We compared the values for the bulge for the dereddened values with the values
converted to Wesenheit magnitudes. As expected we obtained a linear dependence but
with the difference that the dependence in this case increases faster for WJK than it does for
K0. The reason for the differences may stem directly from the definition of the Wesenheit
magnitude and its limitation, or from the data obtained for the extinction and reddening
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values. For the halo, we did not have data for extinction and reddening, so we had to
be satisfied with only the conversion to Wesenheit magnitudes for the ZTF filters and the
K filter. For halo we observe a steeper dependence of the Wesenheit K magnitude on
the logarithm of the base 10 period than for the same plot but for Miras in bulge. This
difference may be due to, among other things, a more accurate determination of the linear
fit for the halo, due to knowing more data for Miras in the halo. For the ZTF catalogue
filters, we obtained the steepest dependence for the g− r color and the flattest dependence
for the g− i color. The g, r bands lying in the optical spectrum show a linear dependence,
as expected. On the contrary, the g, i bands are located at the boundary of the optical
and infrared spectra, which causes a flatter dependence. When using infrared bands with
longer wavelengths, this dependence changes.

For future research, it would be useful to determine more Miras their type and possibly
compare this with the actual determination from the spectra. It would also be worth
investigating the mass-loss rate and its dependence on Miras type or other parameters, as
these stars have high values for mass loss. It would be convenient to obtain extinction
values for the ZTF filters and sample isochrones for the ZTF filters, rather than having to
approximate these filters to Pan-STARRS1.
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