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Abstrakt

Tato práce se zabývá studiem zákrytových čtyřhvězd v uspořádní 2+2. Konkrétně zkoumá
systémy ASAS J073054-1840.7, V0674 Pup a TYC 2201-991-1, které byly představeny
jako kandidáti na zákrytové čtyřhvězdy. Pomocí fotometrických dat byly získány fázové
křivky, fyzikální modely, okamžiky minim, O-C diagramy a modely O-C diagramů jed-
notlivých párů. O-C diagramy dále sloužily ke zpřesnění oběžných period a okamžiků
základního minima. Ve spektroskopických měřeních byly zkoumány posuvy spektrál-
ních čar a jejich štepení vlivem Dopplerova efektu. Na základě těchto pozorování byla
potvrzena gravitační vazba u systěmů V0674 Pup a TYC 2201-991-1. Pro potvrzení nebo
vyvrácení gravitační vazby mezi páry v systému ASAS J073054-1840.7 by byla nutná další
pozorování.

Abstract

In this thesis, we study a multiply eclipsing system in the arrangement 2+2. Specifically
we analyse the systems ASAS J073054-1840.7, V0674 Pup and TYC 2201-991-1, which
were introduced as candidates for a quadruple. Using photometric measurements the
phase curves, physical models, moments of initial minima, O-C diagrams, and the models
of O-C diagrams were obtained. The O-C diagrams further served for specification of
orbital periods and moments of initial minima. The shift of spectral lines and splitting
due to the Doppler effect were examined in spectroscopic measurements. Based on there
observations, the gravitational bond was proven in systems V0674 Pup and TYC 2201-
991-1. To prove the gravitational bond between pairs in system ASAS J073054-1840.7,
more observations are essential.
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Chapter 1

Theory of quadruples

1.1 Introduction to quadruples and eclipsing binaries
The increasing number of sky surveys, together with developing and financially available
technologies, led to the discovery of a vast number of variable stars. This thesis will
mainly concentrate on doubly eclipsing stellar objects (quadruples) in the arrangement
of 2+2, which is one of the stable configurations. Arrangement 2+2 (see Figure 1.1)
describes a system where 2 eclipsing binaries orbit around the common centre of mass
and components are gravitationally bound.

The motivation for studying quadruples is the lack of yet proven systems. Most of the
quadruple systems have not been studied in detail, and the gravitational bond between
the components has not been proven. Therefore the formation and evolution of quadruples
has not been explained yet. Analysing the systems in detail and determining the basic
characteristics of quadruples in total (but also for individual components) will lead to the
statistical sample essential for creating evolutionary models.

One of the first attempts at statistical analysis of the doubly eclipsing stellar objects
was made by Kolář et al. (2025). In this article, the inner orbital period ratios of 781
candidates were analysed. Out of the 781 candidates, only 60 were confirmed as 2+2
quadruples. The period ratio R was calculated:

R =
PA

PB
(1.1)

where PA is the orbital period of pair A and PB is the orbital period of pair B. The pairs
were labeled A and B so that PA ≥ PB.

Comparing the available data with the statistical model, there is a rise in the resonance
3:2. This may represent a configuration from which the system evolves with time or a
stable configuration to which systems tend to evolve throughout time.

The lack of systems at higher period ratios can be influenced by the selection bias.
For further detailed analysis, a more significant statistical sample is essential. This work
should help with confirming of a possible candidates for doubly eclipsing systems. To un-
derstand how quadruples work and to analyse them properly, we first need to understand
the topic of eclipsing binaries.
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Figure 1.1: Scheme of doubly eclipsing quadruple star system.

1.2 Phenomena in spectra of eclipsing binaries

1.2.1 Doppler effect

In eclipsing binaries, two components orbit around the common centre of mass, therefore
components periodically draw near and recede from us. The Doppler effect causes the
emitted electromagnetic radiation to increase in frequency when the component gets
near us, resulting in a lower wavelength observed (blueshift). On the other hand, when
the component is moving away from us, the light emitted by the component encounters
a decrease in frequency and, therefore, an increase in observed wavelength (redshift).

When the primary component draws near to us the secondary component becomes
more distant and vice versa. The shift of spectral lines in opposite directions causes the
spectral line to appear to be splitting into two lines, where each line corresponds to the
individual component. In the time of an eclipse, no splitting is observed as the components
are not moving toward us nor away from us.

1.2.2 Radial velocities

The measurements of the size of the shift of spectral lines caused by the Doppler effect
correspond to the radial velocity. As the components periodically orbit around each other,
the radial velocities curve is also periodic.

The shape of the radial velocity curve is dependent on the trajectory of both the
components, eccentricity, and orientation with respect to the observer (Wilson, 1979).
If the mass of the components is almost the same and the orbital trajectory is not far
from being circular the radial velocities curve should be two sine curves that are in
antiphase (shifted by 180°) to each other (see Figure 1.2). If the components have very
different masses or the trajectory is strongly elliptical, the radial velocity curve looks like
a deformed sine curve with different amplitudes.

The previous section mentioned that in the time of an eclipse the splitting of spectral
lines does not occur. We can see in radial velocities curve, that radial velocity is zero in
the phases 0 and 0.5. Therefore, no shift in the position of spectral lines is observed.

The radial velocity curve is essential for determining the mass ratio, which is crucial
for the successful physical model in PHOEBE (described in section 2.6). For determining
the mass ratio in eclipsing binaries we can use the relation from (Mikulášek and Zejda,
2013):

q =
m2

m1

=
a1
a2

=
K1

K2

, (1.2)

2



where q is the mass ratio, a1 and a2 are the distances of the components from the common
centre of mass, K1 and K2 are the amplitudes of the radial velocity curves. From this
relation, we can see that the higher the mass of the component, the lower the amplitude
of the radial velocity curve. This corresponds well with the intuitive idea that the orbit
of a more massive star will be less influenced by the less massive star.
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Figure 1.2: Synthetic radial velocity curve for en eclipsing binary with circular orbit.

1.3 Phenomena in lightcurves of eclipsing binaries

1.3.1 Elliptical orbital trajectory

In many studied eclipsing binaries the orbital trajectory is not a circle, but ellipse. If the
secondary minima in a phase curve occur at a phase different from 0.5, the trajectory
is an ellipse. Moreover, the eccentricity of the orbital trajectory is also imprinted in the
mutual position of primary and secondary minima in the O-C diagram (see Figure 1.3).
If they are horizontally shifted, the eccentricity of the orbital trajectory is non-zero.

The O-C diagram displays the difference between observed O and calculated C time
of some periodically appearing event on y-axis. In eclipsing binaries, it is usually the time
of the minima. On the x-axis there is either time or an epoch. Epoch defines the number
of cycles from the initial moment of minima M0 and can be calculated using equation
(Mikulášek and Zejda, 2013):

E = floor

(
t−M0

P

)
, (1.3)

where E is the epoch, t is the time, M0 is the initial moment of minima a P is the period.
The function floor rounds the calculated value down to the integer. Finally, the ellipticity
influences the shape of the radial velocities curve. It will have the shape of an asymmetric
sine curve.
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Figure 1.3: O-C diagram of eclipsing binary with elliptical orbit (S1 Pup - pairA). Empty
points represent secondary minima, and full points primary.

1.3.2 Reflection effect

This effect occurs in close binary systems where one component has significantly higher
temperature (component A) that the other (component B). The component B recieves a
huge amount of radiation that is absorbed and re-emitted back. The part of component
B that is hit by this radiation is locally heated and its surface temperature rises.

The closer the components are to each other, and the bigger the difference between
the temperatures of the components, the bigger the reflection effect.

1.3.3 Limb darkening

Limb darkening is an effect we observe in eclipsing binaries and in stars generally. The
edges of the star appear darker compared to the centre. This effect is caused by the fact,
that looking at the star´s centre, we are looking into a greater depth and into denser areas
with higher temperature than on the edges. The limb darkening influences the shape of
the minima (mainly the entrance and exit from minima).

The value of limb darkening depends mainly on the spectral class of the star and its
atmosphere. For cooler stars (spectral class K and M) are the values 0.8-0.9 and for stars
with spectral class A0 the value of limb darkening is 0.5-0.6. Finally, for the spectral class
B0 the value is in the range 0.25-0.35 (Harmanec and Zasche, 2023).

4
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Figure 1.4: Lightcurve with reflection effect - HW Virginis, TESS data.

1.3.4 O´Connell effect

The O´Connell effect is called an asymmetry observed in the light curves of some eclipsing
binaries (described in detail in O’Connell (1951)). The O´Connell effect appears mainly in
the type W UMa type. The maxima in the light curve between the primary and secondary
minima do not reach the same level. Similar variability in the light curves of eclipsing
binaries can be caused by the stellar spots or ellipsoidal variability.

This effect causes problems with detrending data. It can be easily distinguished from
a trend when we have data from more TESS sectors. If the variations in the level of
maxima in the light curves are the same in all sectors, then it is caused by the O´Connell
effect. On the contrary, if the variations are different in each sector or changes inside one
sector, then it is caused by the trend or other above-mentioned effects.

1.3.5 Transfer of mass

The transfer of mass can be found in semi-detached and contact binaries. In semi-detached
binaries, one of the stars fills up its Roche lobe, whereas the second star does not. In
contact binaries, both components of the eclipsing binary fill their Roche lobe. When at
least one Roche lobe in the system is filled up, mass transfer is allowed. This process
causes the change in period, which can be observed in the O-C diagram.

The change in the orbital period due to the conservative mass transfer (no mass leaves
the system and momentum is conserved) can be described by relation (Harmanec and
Zasche, 2023):

∆P

P
= 3q

1− q2

M
∆M, (1.4)

5



where P is the orbital period, ∆P is the change in the orbital period, M1 is a donor star,
M2 is the accretor, M is the total mass of the system (M = M1+M2), ∆M is the amount
of transfered mass and q = M1

M2
is the mass ratio.

If the mass is transferred from a less massive star to a more massive star (q < 1)
the orbital period decreases. As the period decreases the points in the O-C diagram will
create a downward-opening parabola. On the contrary, if the donor star is more massive
than the accretor (q > 1) the orbital period increases. In this case, the points in the O-C
diagram will form a parabola open upward.

1.3.6 Apsidal motion

Apsidal motion is significant in eclipsing binaries whose orbital trajectory is an ellipse
instead of a circle. This effect is mainly caused by the tidal forces between components of
the eclipsing binary (the components no longer have a round shape), presence of another
object in the system, and relativistic effects. In the O-C diagram, the apsidal motion
causes the primary and secondary minima to be in antiphase (see Figure 1.5). The primary
and secondary minima time will shift at different rates depending on which part of the
ellipse will be its current position.
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Figure 1.5: Synthetic O-C diagram showing apsidal motion.

1.3.7 Stellar spots

We can distinguish two main types of stellar spots. The first are temperature spots that
characterize colder areas on the stellar surface. The second type of stellar spots, the
colourful spots, are caused by the different chemical compositions.

The brightness variations in light curves come firstly from the rotation of the star
with temperature spots itself. Secondly, if the components do not have a synchronous
rotation, the eclipses will differ in shape depending on whether or not is the stellar spot
blocked during the eclipse or not.
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The modeling of the stellar spots can be very challenging, especially if we have only
photometric data available. We can not determine the number of starspots from the
photometric data alone.

1.3.8 LITE effect

LITE effect (= Light-Time Effect) in eclipsing binaries appears when another object is
gravitationally bound to the system. Unlike in systems with a mass transfer, the or-
bital period itself remains unchanged. The apparent orbital period changes depending
on whether the binary is drawing near to us or if it is moving away from us. This effect
is also suitable for the discoveries of doubly eclipsing systems. Moreover, the first-ever
discovered doubly eclipsing system V994 Her was identified due to the LITE effect (later
studied in detail in Zasche et al. (2019)). The specific shape of O-C diagrams of doubly
eclipsing systems will be discussed in detail in section 2.5).
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Chapter 2

The process of analysis of light curves
of eclipsing binaries

The process of analysis of individual multiply eclipsing systems that were used in this
thesis starts with choosing the right candidates. As it is common for quadruples to have
minima of one pair significantly deeper than for the second one, we first need to discuss
if we can detect minima of both pairs with our observational equipment. Therefore,
before analysing the measured data from terrestrial observatories the data from TESS
were analysed. The reason for this was also practical. If we know the parameters of a
light curve before we start the observation itself we can better adjust the measurement
parameters such as the length of exposition, choose the most suitable comparison, check
star, and others.

It is important to have both satellite and terrestrial measurements. It is essential
to go through the previous publications that may contain the timings of minima to
have as much data in the O-C diagram as possible. It is useful to collect all available
measurements of the studied star to better understand of how the system evolves in
time (for example, in the case of mass transfer). This thesis mainly used data from TESS
satellite due to their easy access, continuity, and relatively low noise as they are measured
outside of the atmosphere. Their biggest disadvantage is that we can not regulate the
time of measurements. Another disadvantage is that they are only in one filter. For the
determination of moments of minima, TESS data are sufficient, but for more precise
physical models multicoloured data are desired as the depth of the eclipse may vary in
every colour.

On the other hand, terrestrial data are not continuous and it may be more challeng-
ing to for example determine the moment of minima. On the contrary, if the weather is
favourable, you can measure any night you want. This is crucial, especially when mea-
suring some effect with longer periodicity or if we want to capture a specific minimum in
the O-C diagram (for example, a turnoff point).

After thoroughly analysing the TESS and measuring our data we obtain the light
curve using software Muniwin (Motl, 2010) for terrestrial data and Python for TESS
data. Then via SILICUPS (=SImple LIght CUrve Processing System) software (Cagaš,
2025) or using the Fourier method we distinguish the contributions of individual pairs
(discussed in detail in sections 2.3 and 2.4). Using SILICUPS software, we identify the
moments of minima.

Comparing these with ephemeris (the moment of a basic minimum and the orbital
period of the system) determined by Zbyněk Henzl (Henzl, 2023) we construct the O-C
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diagram via OC-fit software (Gajdoš and Parimucha, 2019). If we had long-term data we
can (only from the O-C diagram) propound that the observed system is a quadruple.

If the observed system was a quadruple, the distribution of points in the O-C diagram
would oscillate around the mean value, which will also change over time. Moreover, if we
construct O-C diagrams for individual pairs in a quadruple system, the distribution of
points would look like (deformed) sine curves that are in antiphase (shifted by 180°). This
is the result of both pairs being gravitationally bonded and their orbits being synchronized
around the common centre of mass.

An alternative way of proving the gravitational bond in doubly eclipsing systems are
spectroscopic measurements. If the observed system is a quadruple the curves of radial
velocities will resemble (deformed) sine curves that are in antiphase. The biggest disad-
vantage of this method is that the observational equipment in the Czech Republic can
only measure bright systems, which is a very limiting restriction for yet-known candidates
for quadruples.

2.1 Downloading TESS data
The data from the TESS satellite were downloaded and detrended via Python and the
following code. A similar code was also used in my bachelor’s thesis Richterková (2023).
The main difference is in optimizing the automatic detrending of TESS data. For the best
detrending, it is essential to choose the right value of parameter a that defines how much
smoothing should be applied to the light curve to remove the trend. Higher the value of
parameter a, the stronger the smoothing of the light curve and more slower trends are
removed. The full code is presented here with the intention of making a manual for others
and for the completeness of the code.

Firstly we import all packages that we are going to use later on.

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import lightkurve as lk

Secondly, we will search for all data sets containing our star and we will download them.

search_results = lk.search_tesscut("ASAS J073054-1840.7")
search_results
tpfs = search_results.download_all(cutout_size=20,quality_bitmask=’hardest’)

Thirdly, we will define the ephemeris of a studied system.

perioda = 2.068435
M0 = 2459245.65345

We will start with i = 0 and continue this whole procedure for all i in range of tpfs
(variable used in the previous step). The parameter i determines the number of analysed
sector. We will plot the first capture of the data set from this sector and adjust the aper-
ture accordingly so that we can later proceed with an aperture photometry. The aperture
has a rectangular shape and can be changed by arguments in the variable targetmask. The
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first argument is y-coordinate, second argument is x-coordinate of the aperture. Once we
have defined the aperture, we plot it to check that it was done correctly.

i = 0
tpfs[i].plot()
target_mask = tpfs[i].create_threshold_mask(threshold = 150, reference_pixel =

’center’)
target_mask[8:13,9:14] = 1
tpfs[i].plot(aperture_mask = target_mask, mask_color = ’r’)

If the aperture was not done correctly, we have to delete the already existing aperture
and repeat the previous step with altered coordinates. If the aperture was done correctly
the first time around, we can skip this step. Deleting an aperture is done by the following
code.

target_mask = tpfs[i].create_threshold_mask(threshold = 150, reference_pixel =
’center’)

target_mask[8:13,9:14] = 0
tpfs[i].plot(aperture_mask = target_mask, mask_color = ’r’)

In the next step, we will put the aperture to the variable and save it. (It is not necessary
to save the picture of an aperture, but for the later control it can be useful.) Also, add
all the pixels that are in the aperture, so that later we can normalize.

aperture = tpfs[i].plot(aperture_mask = target_mask, mask_color = ’r’)
aperture_name = "aperture_star{}".format(i)+"cadence{}".format(a)+".jpg"
plt.savefig(aperture_name)
n_target_pixels = target_mask.sum()
n_target_pixels
target_lc = tpfs[i].to_lightcurve(aperture_mask = target_mask)
bg_mask = ~tpfs[i].create_threshold_mask(threshold = 0.001, reference_pixel =

None)
tpfs[i].plot(aperture_mask = bg_mask, mask_color = ’w’)
n_bg_pixels = bg_mask.sum()
n_bg_pixels

In the following step, we will create a simple light curve without using any comparison
star or detrending.

bg_lc_per_pixel = tpfs[i].to_lightcurve(aperture_mask = bg_mask)/n_bg_pixels
bg_estimate_lc = bg_lc_per_pixel * n_target_pixels
corr_lc = target_lc - bg_estimate_lc.flux
corr_lc.plot()

Detrending itself is done using the function flatten. To decide which argument of function
flatten to use, we run following code that plots multiple light curves for different argu-
ments of function flatten (if needed we can enlarge the range, but in most cases, it is not
necessary). After analysing the plots, we put the chosen argument into variable a.

10



for a in range (1,1002,10):
corr_lc.flatten(a).plot()
picture = corr_lc.flatten(a).plot()
picture_name = "star{}".format(i)+"cadence{}".format(a)+".jpg"
plt.savefig(picture_name)

a = 101

In this step we will detrend the data and convert time to HJD.

lightcurve = corr_lc.plot()
lightcurve_name = "lightcurve_star{}".format(i)+"cadence{}".format(a)+".jpg"
plt.savefig(lightcurve_name)

corr_lc.flatten(a).plot()
flatten = corr_lc.flatten(a).plot()
flatten_name = "flatten_star{}".format(i)+"cadence{}".format(a)+".jpg"
plt.savefig(flatten_name)

corr_lc.time = corr_lc.time+tpfs[i].get_keyword(’BJDREFI’)+tpfs[i].get_keyword
(’BJDREFF’)

name = "star{}".format(i)+"cadence{}".format(a)+".csv"
corr_lc.flatten(a).to_csv(name)
corr_lc.flatten(a).fold(perioda, t0 = M0).scatter()

phasecurve = corr_lc.flatten(a).fold(perioda, t0 = M0).scatter()
phasecurve_name = "phasecurve_star{}".format(i)+"cadence{}".format(a)+".jpg"
plt.savefig(phasecurve_name)

Almost the same process as for the variable star will be repeated for the comparison star.

search_results_cmp = lk.search_tesscut("TYC 5983-1709-1")
search_results_cmp
tpfs_cmp =search_results_cmp.download_all(cutout_size=20,quality_bitmask=’

hardest’)

tpfs_cmp[i].plot()
target_mask_cmp = tpfs_cmp[i].create_threshold_mask(threshold = 150,

reference_pixel = ’center’)
target_mask_cmp[8:12,9:13] = 1
tpfs_cmp[i].plot(aperture_mask = target_mask_cmp, mask_color = ’r’)

aperture_cmp = tpfs_cmp[i].plot(aperture_mask = target_mask_cmp, mask_color =
’r’)

aperture_cmp_name = "aperture_star{}".format(i)+"cadence{}".format(a)+".jpg"
plt.savefig(aperture_cmp_name)

n_target_cmp_pixels = target_mask_cmp.sum()
n_target_cmp_pixels

target_cmp_lc = tpfs_cmp[i].to_lightcurve(aperture_mask = target_mask_cmp)
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bg_mask_cmp = ~tpfs_cmp[i].create_threshold_mask(threshold = 0.001,
reference_pixel = None)

n_bg_cmp_pixels = bg_mask_cmp.sum()
bg_cmp_lc_per_pixel = tpfs_cmp[i].to_lightcurve(aperture_mask =bg_mask_cmp)/

n_bg_cmp_pixels
bg_estimate_cmp_lc = bg_cmp_lc_per_pixel * n_target_cmp_pixels
corr_cmp_lc = target_cmp_lc - bg_estimate_cmp_lc.flux
corr_cmp_lc.time = corr_cmp_lc.time+tpfs_cmp[i].get_keyword(’BJDREFI’)+

tpfs_cmp[i].get_keyword(’BJDREFF’)
name_cmp = "star_cmp_{}".format(i)+".csv"
corr_cmp_lc.flatten(a).to_csv(name_cmp)

Now, we will put everything we need for calculating the photometry into one dataset.

name = "star{}".format(i)+"cadence{}".format(a)+".csv"
name_cmp = "star_cmp_{}".format(i)+".csv"
variable = pd.read_csv(name, thousands = r"", sep = ",", decimal = ".")
comparison = pd.read_csv(name_cmp, thousands = r"", sep = ",", decimal = ".")
change_data =pd.concat([variable["time"],comparison["time"],variable["flux"],

comparison["flux"],variable["flux_err"],comparison["flux_err"]],axis =1)
change_data.columns = ["var_time", "comp_time", "var_flux", "comp_flux", "

var_flux_err", "comp_flux_err"]

In the following step, we will calculate the change in brightness and corresponding
error.

change = -2.5*np.log10(change_data["var_flux"]/change_data["comp_flux"])
error = (((2.5*change_data["comp_flux_err"])/change_data["var_flux"])

**2+((2.5*change_data["var_flux_err"])/change_data["comp_flux"])**2)**0.5

Finally, we will save the data to file that is readable for SILICUPS software.

ch = change.tolist()
final_change = []
for j in range(len(ch)):

a = ch[j]
x = "%.17f" % a
final_change.append(x)

change = pd.Series(final_change)
err = error.tolist()
final_error = []
for k in range(len(err)):

b = err[k]
y = "%.17f" % b
final_error.append(y)

error = pd.Series(final_error)
time = variable["time"]
final_data = pd.concat([time, change, error], axis = 1)
final_name = "star{}".format(i)+"_final.txt"
np.savetxt(final_name,final_data,fmt=’%s’,delimiter=’\t’ )
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2.2 Detrending
Sometimes, it is enough to stop at this point. In many cases, the downloaded data needs
secondary detrending. The following code for detrending data was written by Jakub Kolář
(Kolář, 2023) and the theory behind it was done by Zdeněk Mikulášek (Mikulášek and
Zejda, 2013). The procedure of secondary detrending starts by importing all the packages
that we are going to use.

import numpy as np
import math
from math import *
import scipy
import pandas as pd
import matplotlib.pyplot as plt
import scipy.optimize
from scipy.optimize import curve_fit
import pylab as pl

In the next step, the residua are plotted.

t, mag, err = np.loadtxt("rezidua.txt", unpack=True)
plt.figure(figsize=(18,12))
plt.tick_params(bottom=True, top=True, left=True, right=True)
plt.xticks(fontsize=26)
plt.yticks(fontsize=26)
plt.tick_params(axis="x", length=15, direction ="in", pad=15)
plt.tick_params(axis="y", length=15, direction ="in", pad=15)
plt.plot(t, mag, "o", color="blue")
plt.errorbar(t, mag, yerr=err, fmt=’o’, color = "b", ecolor = "b")
plt.gca().invert_yaxis()

Then the residua are fited by Chebychev polynoms.

p = np.polynomial.Chebyshev.fit(t, mag, 30)

After that we plot the trend and save it.

y_tr = p(t)
plt.figure(figsize=(18,12))
plt.tick_params(bottom=True, top=True, left=True, right=True)
plt.xticks(fontsize=26)
plt.yticks(fontsize=26)
plt.tick_params(axis="x", length=15, direction ="in", pad=15)
plt.tick_params(axis="y", length=15, direction ="in", pad=15)
plt.plot(t, mag, "o", color="blue")
plt.plot(t, y_tr, "-", color="orange", linewidth=5)
#plt.ylim(-0.01,0)
plt.gca().invert_yaxis()
np.savetxt("trend_star9.txt",y_tr,delimiter=’’, fmt="%.5f")
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The procedure continues with loading and plotting the original data containing the
trend.

t, mag, err = np.loadtxt("star9_final_new.txt", unpack=True)
plt.figure(figsize=(18,12))
plt.tick_params(bottom=True, top=True, left=True, right=True)
plt.xticks(fontsize=26)
plt.yticks(fontsize=26)
plt.tick_params(axis="x", length=15, direction ="in", pad=15)
plt.tick_params(axis="y", length=15, direction ="in", pad=15)
plt.plot(t, mag, "o", color="blue")
plt.errorbar(t, mag, yerr=err, fmt=’o’, color = "b", ecolor = "b")
#plt.ylim(-0.01,0)
plt.gca().invert_yaxis()
plt.xlabel("$Phase$", fontsize=30, labelpad=20)
plt.ylabel("$\\Delta m$ [mag]", fontsize=30, labelpad=20)

In the following step, we will subtract the trend from the original data and plot the result
(detrended data).

mag_novy = mag - y_tr
plt.figure(figsize=(18,12))
plt.tick_params(bottom=True, top=True, left=True, right=True)
plt.xticks(fontsize=26)
plt.yticks(fontsize=26)
plt.tick_params(axis="x", length=15, direction ="in", pad=15)
plt.tick_params(axis="y", length=15, direction ="in", pad=15)
plt.plot(t, mag_novy, "o", color="blue")
plt.errorbar(t, mag_novy, yerr=err, fmt=’o’, color = "b", ecolor = "b")
#plt.ylim(-0.01,0)
plt.gca().invert_yaxis()
plt.xlabel("$Phase$", fontsize=30, labelpad=20)
plt.ylabel("$\\Delta m$ [mag]", fontsize=30, labelpad=20)

Finally, we will save the detrended data into a format that is readable for SILICUPS.

np.savetxt("star.detrended.txt", np.c_[t,mag_novy,err], delimiter=’ ’, fmt="
%.5f")

2.3 Disentanglement by iterative method

2.3.1 System of two binaries

The first method of distinguishing the contributions of both the pairs in the measured
light curve is based on the premise that if we add the contribution of pair A and the
contribution of pair B, we will get the original light curve. The greatest advantage of this
method is, that it can be used on noncontinuous data sets (so both on TESS data and
ground-based measurements). Another advantage is that this method does not require
high precision in the ephemeris value. The ephemeris are the only entrance conditions for
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this method of disentanglement. The main disadvantage is that once we have a system
where one pair is significantly dominant, the contribution of the less dominant pair will
be hidden in the noise. Therefore, it will be harder and sometimes even impossible to
disentangle.

The process starts with uploading the measured light curve into SILICUPS and phas-
ing it according to the ephemeris of pair A. In the next step, we fit the contribution of
pair A (as mentioned above one, of the pairs is usually dominating in the light curve, but
sometimes it could be challenging) and subtract it from the original light curve. Assuming
that the light curve contains only two pairs, we should obtain the contribution of pair B
and save it.

Afterward, we will upload the contribution of pair B and phase it according to the
ephemeris of pair B. Then we will fit pair B and subtract this fit from the original light
curve. In this step, we should obtain the contribution of pair A in an ideal situation.
In reality, the contribution of each pair also contains a little bit of the second one and
also noise. We would have to repeat this process several times to get the most precise
contributions of individual pairs.

To make sure that there are no other periodical eclipses in the system (suggesting, for
example that it is not a quadruple but a sextuple in the arrangement 2+2+2 or quintuple
2+2+1) we will add the contribution of pair A and pair B and subtract it from the original
light curve. If the result is points distributed around the line with a zero slope, the system
contains only two pairs. However, if the result is points looking like a light curve of an
eclipsing binary, we assume there is some other body in the system apart from pair A
and pair B.

2.3.2 System of three binaries

If we have a system consisting of three binaries, the process of disentanglement by iterative
method is rather more complicated. The beginning will be the same as if we had only two
binaries. We will take a light curve containing all of the binaries (TABC) and phase it
according to the ephemeris of pair A. Then, we will subtract this fit from TABC and get
a light curve containing only pairs B and C (TBC). Accordingly, we will get a light curve
containing only pairs A and C (TAC) by fitting and subtracting pair B from TABC. We
will also get a light curve containing pairs A and B (TAB) by fitting and subtracting pair
C from TABC.

Now, we will take TBC, fit and subtract pair B, and get a light curve containing
only pair C (TC). We can also fit and subtract pair C from TBC and get a light curve
containing only pair B (TB). We will do this process for TAC and TAB accordingly.

So, in the end, we will have twice TA (from TAC and TAB), twice TB (from TBC and
TAB), and also twice TC (from TBC and TAC). Combining TA and phasing it according
to the ephemeris of pair A, we will get the contribution of pair A. Accordingly, we will
get the contributions of pairs B and C.

In the next iteration, fits of these contributions will be used at the very beginning of the
procedure. In addition, in the case of a system containing two binaries, the contributions
are more precise with every iteration. The whole process is schematically shown in Figure
2.1. If there were more than three binaries in the system, we would have to change the
procedure accordingly.
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Figure 2.1: Scheme for three binaries-iterative method.

2.4 Disentanglement by Fourier method
This method of distinguishing the contributions of pairs from the original light curve is
based on Fourier decomposition. Its most significant disadvantage is that it can be used
only for continuous data sets. That is why this method was used only for analysing TESS
data (containing 27-day continuous data), not ground-based measurements (containing
only a few hours a day). This method also requires high precision in the ephemeris value.
Both iterative and Fourier methods are less precise when trying to fit constant brightness.

As fitting the harmonics is an approximate method, disentangled light curves are
less noisy than the iterative method, which makes them more suitable and precise for
calculating the physical model. Another advantage of this method is that it can be used
for higher multiple stars, whereas the iterative method would only get more complicated
with the increasing the number of binaries in the system.

The entrance conditions for disentanglement by the Fourier method are knowledge of
precise ephemeris and a number of binaries. Therefore, if we are not sure if the system
consists of two or three binaries we have to make a Fourier transform with the assumption
that there are two binaries, but also another one assuming that there are three binaries.
By adding the disentangled individual pairs and subtracting them from the original light
curve, we can proclaim which assumption was true.

The process (described in more detail the in article Powell et al. (2021)) starts with
fitting harmonic series in the form:

F (t) =
3∑

m=1

(
50∑
n=1

(α(m)
n sin(ωnt) + β(m)

n cos(ωnt)) + γ, (2.1)

where
ωn(t) =

2πn

Pm

(2.2)

is the nth orbital frequency of the mth binary, and γ is the constant background level.
After fitting the harmonic series, we have to reconstruct the light curves for each binaries

16



using:

Fm(tj) =
50∑
n=1

(α(m)
n sin(ωntj) + β(m)

n cos(ωntj)) + γ, (2.3)

where j is the jth data point.
Both above-mentioned methods have one common disadvantage. For binaries having

orbital periods in resonance 1:1, the disentanglement is less precise and time consuming.
The whole disentanglement by the Fourier method was programmed in Python. If

we assumed that there are two binaries in the system, we used the following code. If we
assumed that there are three binaries, we would have to change the code accordingly
(changing the range in a loop and adding one more orbital period). Firstly, we import all
the packages that we will use later on.

import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit

Secondly, we load the data set and put it into the variable.

data = np.loadtxt(’data.txt’)
time, brightness, error = data[:, 0], data[:, 1], data[:, 2]

Thirdly, we plot the original light curve.

plt.plot(time, brightness, ’o’, markersize=2)
plt.xlabel(’t / HJD’)
plt.ylabel(’\u0394m / mag’)
plt.title(’Original light curve’)
plt.gca().invert_yaxis()
plt.grid(True)
plt.show()

Then, we define the Fourier series according to equation (2.1), where we loop over the
number of binaries m and loop over the number of harmonics n. In the end, we also add
the constant background level. In this case, we assume that there are two binaries in the
system, which is why the range of m is two, if there were three binaries we would have
to change the range to three.

def fourier_series(t, *coefficients):
F = np.zeros_like(t)
for m in range(2):

for n in range(1, 51):
omega = 2 * np.pi * n / periods[m]
F += coefficients[m * 100 + 2 * (n - 1)] * np.sin(omega * t) +

coefficients[m * 100 + 2 * (n - 1) + 1] * np.cos(omega * t)
return F + coefficients[-1]

In the next step, we define the orbital periods of each binary. In this case, we assume
that there are two binaries so there are only two periods listed. If we assumed that there
are three binaries, we would have to add one more.
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P_A = 2.0684350
P_B = 1.7285119
periods = np.array([P_A, P_B])

In the following step, we first make an initial guess for coefficients and then fit the
coefficients. If we assumed that there are three binaries instead of two we would have to
change the argument of p0 to 301.

p0 = np.ones(201)
coefficients, _ = curve_fit(fourier_series, time, brightness, p0=p0)

Then we reconstruct the light curves of individual binaries according to equation (2.3).

reconstructed_light_curves = []
for i in range(2):

Fm = np.zeros_like(time)
for n in range(1, 51):

omega = 2 * np.pi * n / periods[i]
Fm += coefficients[i * 100 + 2 * (n - 1)] * np.sin(omega * time) +

coefficients[i * 100 + 2 * (n - 1) + 1] * np.cos(omega * time)
reconstructed_light_curves.append(Fm + coefficients[-1])

After that, we plot the reconstructed light curves of individual binaries.

plt.figure(figsize=(10, 6))
for i, light_curve in enumerate(reconstructed_light_curves):

plt.subplot(2, 1, i + 1)
plt.plot(time, light_curve)
plt.xlabel(’t / HJD’)
plt.ylabel(’\u0394m / mag’)
plt.title(f’Reconstructed light curve for binary {chr(65+i)}’)
plt.gca().invert_yaxis()
plt.grid(True)
plt.legend()

plt.tight_layout()
plt.show()

In the following step, we save the light curves of individual binaries into txt file which
will be used for the construction of the O-C diagram or the physical model later on.

for i, light_curve in enumerate(reconstructed_light_curves):
filename = f’pair{chr(65+i)}.txt’
np.savetxt(filename, np.column_stack((time, light_curve)), header=’Time (
HJD) Brightness (Magnitude)’, fmt=’%.6f’, delimiter=’\t’)
print(f’Reconstructed light curve for binary {chr(65+i)} saved as {
filename}’)

In this step, we will first normalize the reconstructed light curves, then add them together,
scale them, and calculate the difference between the combined scaled light curve and the
original light curve.
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normalized_reconstructed_light_curves = [lc - np.mean(lc) for lc in
reconstructed_light_curves]

combined_light_curve_normalized = normalized_reconstructed_light_curves[0] +
normalized_reconstructed_light_curves[1]

scaling_factor = np.std(brightness) / np.std(combined_light_curve_normalized)
combined_light_curve_scaled = combined_light_curve_normalized * scaling_factor

+ np.mean(brightness)
difference = brightness - combined_light_curve_scaled

Finally, we will plot the original and combined light curve into one plot and we will also
plot the calculated difference.

plt.figure(figsize=(15, 10))

plt.subplot(311)
plt.plot(time, brightness, ’o’, markersize=2, label=’Original Light Curve’)
plt.plot(time, combined_light_curve_scaled, color=’red’, label=’Combined

Reconstructed Light Curve (Scaled)’)
plt.xlabel(’t / HJD’)
plt.ylabel(’\u0394m / mag’)
plt.title(’Original light curve and scaled combined reconstructed light curve’

)
plt.gca().invert_yaxis()
plt.grid(True)
plt.legend()

plt.subplot(312)
plt.plot(time, difference, color=’green’)
plt.axhline(y=0, color=’gray’, linestyle=’--’, linewidth=0.8) # Add

horizontal line at y=0 for reference
plt.xlabel(’t / HJD’)
plt.ylabel(’\u0394m / mag’)
plt.title(’Difference between original light curve and reconstructed light

curve’)
plt.gca().invert_yaxis()
plt.grid(True)
plt.legend()

plt.tight_layout()
plt.show()

np.savetxt("rezidua.txt", np.column_stack((time, difference)), header=’Time (
HJD) Brightness (Magnitude)’, fmt=’%.6f’, delimiter=’\t’)

2.5 O-C diagrams
The O-C diagrams will be essential in this work to prove of whether or not the studied
system is a doubly eclipsing quadruple. After we have distinguished the contributions
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of individual pairs, we have determined the moments of minima via SILICUPS software
and plotted O-C diagrams for individual pairs. The O-C value in the diagrams should
be in antiphase (the O-C diagram of pair A will be shifted by 180° when compared to
pair B). The LITE effect is responsible for the characteristic shape of the O-C diagram
of quadruples.

In all fits of O-C diagrams in this thesis the model LiTE3 was used. The model have
following parameters: asin(i3) in astronomical units, e3 (the eccentricity of the orbit of
the third body), w3 in radians (longitude of the pericentre of the orbit of third body),
t03 in HJD (time of pericentre passage of the third body) and P3 in days (period of the
third body).
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Figure 2.2: Synthetic O-C diagram for doubly eclipsing system.

The part a) in Figure 2.3 corresponds to the phase 0 in Figure 2.2. At this phase,
pair A is further from the observer, the light from pair A has to pass a longer distance,
therefore, it is delayed (compared to the expected time), and we observe a maximum in
the O-C diagram of pair A. On the contrary, pair B is as close as possible to the observer,
the light has to pass a smaller distance to reach the observer, and we observe a minimum
in the O-C diagram of pair B earlier.

The parts b) and d) in Figure 2.3 correspond to phases 0.25 and 0.75 in Figure 2.2,
where both the pairs are at the same distance from the observer, we observe the light at
determined instances, which results in zero value in the O-C diagram.

Finally, the part c) Figure 2.3 corresponds to the phase, 0.5 in Figure 2.2. At this
phase pair A is closer to the observer, so we observe a minimum at the O-C diagram for
pair A. On the other hand, pair B is at the largest possible distance from the observer,
which results in a maximum in the O-C diagram of pair B.
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Figure 2.3: Position of pair A and pair B in specific phases in O-C diagram (in Figure
2.2): (a) Phase 0, (b) Phase 0.25, (c) Phase 0.5, and (d) Phase 0.75 .
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2.6 Estimation of the physical parameters for the phys-
ical fit

The physical models were done in PHOEBE (=PHysics Of Eclipsing BinariEs) software
(Prša et al., 2011). PHOEBE is eclipsing binary modeling software, using which we can
determine the relative radii and temperatures of the primary and secondary components,
mass ratio, inclination, and eccentricity of the orbital trajectory.

2.6.1 Mass ratio

The mass ratio significantly influences the physical fit. The best possible way to estimate
the mass ratio is from the amplitude of the radial velocity curve. If we do not have the
spectra at all or we have few points in the radial velocity graph, we can estimate the
mass ratio only from the photometric measurements.

If the system is a detached binary where there is no transfer of mass, we can use
relation (Graczyk, 2003):

log(q) =
(log(L1)− log(L2)

3.664
, (2.4)

where q is the mass ratio (primary/secondary), L1 is the absolute luminosity of a primary
component, and L2 is the absolute luminosity of a secondary component.

On the contrary, if we want to estimate the mass ratio in overcontact binaries (where
mass transfer occurs) we can use a process described in detail in the article Kouzuma
(2023). This method is based on calculating the third derivative of a light curve (see
Figure 2.4).

The factual reason why the third derivative was used is not clearly explained in the
article, yet it gives an error of ± 0.1 for 97% of analysed systems. To be able to estimate
the mass ratio correctly, the following conditions have to be fulfilled:

• the second derivative has two local maxima (symmetric with respect to eclipse)

• the third derivative has a local maximum and local minimum

• w31 < w21 < w32 < w22 < 0.2P (where P is the orbital period and wij is the time
interval between tij an the eclipse time)

The mass ratio can be estimated using the following equations:

q = 0.056W − 0.261, (2.5)

where q is the mass ratio and W is

W =
P

t32 − t′32
=

P

w32 + w′
32

. (2.6)
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V154, pair A.
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2.6.2 Temperature

The common way of estimating the temperature is by using spectroscopic measurements.
If we do not have spectroscopic data, the estimation of temperature can be challenging.
The temperature value can be obtained from Gaia, but there is always only one value
of temperature (for four components). Moreover, we do not know in which phase the
temperature was measured.

To estimate the temperature by at least some statistical method, the VO SED ana-
lyzer (Bayo et al., 2008) was used. VO SED collects all available measurements of the
temperature of the studied system (from different areas and filters) and makes a fit (see
Figure 2.5). There are many options for the fit models, in this thesis the black body model
is used.

Figure 2.5: Example of estimation of temperature using SED of the star S2 Pup.
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Chapter 3

S2 Pup

3.1 Basic information
In Table 3.1 there are the basic characteristics of the S2 Pup star and used comparison
star. The choice of comparison star was very challenging because, in the closest neighbor-
hood of this star, most of the stars are variable as well. The comparison star was selected
as the star with the closest B − V value to the variable star even though variable and
comparison star temperatures differ a lot.

For this star TESS data from years 2019, 2021, 2023, and 2025 were analysed, and data
from other observers: Miloslav Zejda, Jan Janík, Jakub Kolář were collected. The list of
these observations together with the photometric filter can be seen in Table 3.2. Besides
the photometric data, the spectroscopic data were measured and processed (calibrated
and normalized) by Jan Janík. Spectra were measured with SpUpNIC (Spectrograph
Upgrade-Newly Improved Cassegrain) at SAAO (South African Astronomical Observa-
tory).

Table 3.1: Basic information about S2 Pup star.

Variable star Comparison star

Name ASAS J073054-1840.7 TYC 5983-1709-1

RA 07h 30m 54.25s 07h 30m 57.2s

DEC -18◦ 40′ 42.38′′ -18◦ 44′ 06.2′′

T [K] 21800 5762

B − V [mag] 0.744 0.970

M0A in HJD [days] 2459245.65345

PA[days] 2.068435

M0B in HJD [days] 2458508.99491

PB [days] 1.728512
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Table 3.2: List of photometric observations of star S2 Pup.

date observer filter device location
18. 11. 2022 JJ V Cassegrain 1540 La Silla
18. 11. 2022 JJ I Cassegrain 1540 La Silla
24. 12. 2022 JJ V Cassegrain 1540 La Silla
24. 12. 2022 JJ I Cassegrain 1540 La Silla
10. 03. 2023 JK V Cassegrain 1540 La Silla
10. 03. 2023 JK I Cassegrain 1540 La Silla
05. 03. 2023 JK V Cassegrain 1540 La Silla
05. 03. 2023 JK I Cassegrain 1540 La Silla
09. 03. 2023 JK V Cassegrain 1540 La Silla
09. 03. 2023 JK I Cassegrain 1540 La Silla
25. 03. 2023 JK V Cassegrain 1540 La Silla
25. 03. 2023 JK I Cassegrain 1540 La Silla
06. 05. 2023 JK V Cassegrain 1540 La Silla
06. 05. 2023 JK I Cassegrain 1540 La Silla
07. 05. 2023 JK V Cassegrain 1540 La Silla
07. 05. 2023 JK I Cassegrain 1540 La Silla
05. 04. 2023 JK V Cassegrain 1540 La Silla
24. 12. 2023 MZ V Cassegrain 1540 La Silla
24. 12. 2023 MZ I Cassegrain 1540 La Silla
25. 12. 2023 MZ V Cassegrain 1540 La Silla
25. 12. 2023 MZ I Cassegrain 1540 La Silla
20. 01. 2024 MZ V Cassegrain 1540 La Silla
20. 01. 2024 JK I Cassegrain 1540 La Silla
19. 03. 2024 JK V Cassegrain 1540 La Silla
19. 03. 2024 JK I Cassegrain 1540 La Silla
21. 03. 2024 JK V Cassegrain 1540 La Silla
22. 03. 2024 JK I Cassegrain 1540 La Silla
26. 03. 2024 JK V Cassegrain 1540 La Silla
26. 03. 2024 JK I Cassegrain 1540 La Silla
23. 04. 2024 JK V Cassegrain 1540 La Silla
23. 04. 2024 JK I Cassegrain 1540 La Silla
24. 04. 2024 JK V Cassegrain 1540 La Silla
24. 04. 2024 JK I Cassegrain 1540 La Silla
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3.2 Disentangled lightcurves
As the main goal of this thesis is the analysis of candidates for doubly eclipsing sys-
tems, the disentanglement method starts with the assumption that there are two pairs
in the studied system. For both the methods mentioned in the chapters 2.3 and 2.4 were
distinguished the contribution of pair A (see Figure 3.1) and pair B (see Figure 3.2).
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Figure 3.1: Pair A - iteration method.
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Figure 3.2: Pair B - iteration method.

Theoretically, if we sum up the contribution of pair A and pair B and subtract it from
the original light curve (make the residuals) we should only get noise. If we apply this to
the S2 Pup light curve, we can see some periodic signal throughout the whole sector. The
shape of these periodic changes resembles eclipses (see Figure 3.3). The periodic signal
may have many possible origins.
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Figure 3.3: Residuals for 2 pairs in the system.

Firstly, it is necessary to check whether the additional changes are not due to a blend.
In the TESS chart another star falls into the same pixel as S2 Pup, but in our measure-
ments (see Figure 3.5), we can see that there is no star in the closest neighbourhood.
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Figure 3.4: Residuals in ground-based data.

As we observe the periodic changes in residuals in ground-based data (see Figure 3.4),
the periodic signal in the residuals is not caused by the blend.

The possibility that these eclipses were caused by pair A shadowing pair B and vice
versa is very low. The eclipses occur multiple times in one TESS sector (27 days), whereas
the typical outer period (for the yet-known doubly eclipsing systems) of these eclipses is
in the order of years. Moreover, both pairs A and B are detached systems, so their mutual
distance should be relatively high, resulting in a larger period of mutual motion.

Figure 3.5: Chart of S2 Pup - La Silla.
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Figure 3.6: Lomb-Scargle periodogram, TESS 2.

Another possibility could be that the eclipses occur right at times when there are
minima simultaneously in both pairs A and B. In this scenario, the value of the third
light changes and the additional decrease in brightness is observed (Zasche, 2024). To be
sure if they are just the sum of the minima, we have to know that the position of these
eclipses does not change in time. Therefore, we have to analyse all available data and
examine the position of points in the O-C diagram.

Finally, these eclipse-like structures appearing in the residuals could be caused by an
exoplanet or another component in the system. However, the depth of these eclipses is
too large to be caused by the transit of an exoplanet, and furthermore, the depth of these
minima is comparable yet not the same every time it appears. This suggests that it may
be caused by another eclipsing system (pair C), so there would be, in fact, three eclipsing
pairs. According to the yet-known eclipsing sextuples, the stable arrangement would be
a quadruple with a more distant eclipsing pair.

To prove whether the origin of these changes is another eclipsing pair in the system
we have to use the disentanglement method with the initial assumption that there are
three pairs in the system. We analyse the similarities and differences in the contributions
of pairs obtained by iteration and the Fourier method. Afterwards, we look for a possible
change in the O-C diagram of a pair C.

The crucial parameter for the disentanglement methods is the orbital period of all
pairs and the moment of primary minima. The periods are usually determined from the
Lomb-Scargle periodogram. However, if we try to plot one for S2 Pup (see Figure 3.6),
we encounter the problem of pair A being so dominant that it overshadows even pair B
(not to mention potential pair C). All the visible peaks in the periodogram are multiples
of the orbital period PA. To have at least some realistic value of the orbital period of a
pair C we have to estimate it from the residuals (PC=10.4 d). That may result in the
period not being maximally precise, but it can be more specified later on from the O-C
diagram.
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The contribution of individual pairs determined by the iterative method can be seen
in 3.7, 3.9, and 3.11. The contribution determined from the Fourier method is depicted
in Figures 3.8, 3.10, and 3.12. From a visual point of view, we can say that light curves
determined by the Fourier method are less noisy but contain some wavelike structures.
These are caused mainly by the fact that pair A is in resonance with the pair C (PC

PA

·
= 5)

and pair B is also in resonance with the pair C (PC

PA

·
= 6).

There is a slight problem with using the Fourier method on the systems that are in
resonance. The resonance is responsible for overlapping of higher harmonics, resulting in
the wave-like structures in the light curve. Another reason for the imperfections in the
light curves determined by the Fourier method could be the low precision in used orbital
period PC , because the Fourier method is very sensitive to the value of orbital period.

Nevertheless, the number, depth, shape, and duration of eclipses are the same regard-
less of the method of disentanglement used. That suggests that both the methods were
processed correctly.

Even from the shape of the light curves of individual pairs, we can tell a lot about each
pair. For example, if we compare the depth of the minima in each pair, we can determine
which pair is the most dominant. The depth of the minima in pair A is in the order of
0.1 mag, in pair B, it is close to 0.1 mag, and in pair C, the primary minima are smaller
than 0.05 mag. So the most dominant is pair A, and the least dominant is pair C. This
gives us the initial estimation of the third light parameter. For pair A, the initial value
of the third light will be 0.2, for pair B 0.7, and for pair C 0.9.

3.2.1 Pair A

In the phase curve of pair A (see Figure 3.7), we can say that it is a detached eclipsing
binary. From the parts of the phase curve between minima, we can see that there are
no changes yet the brightness is not perfectly constant (it has a bump-like shape). This
suggests that the components of the pair are quite close to each other, and this bump-like
structure may be a consequence of a reflection effect. The closer the components are, the
more significant this reflection effect will be.

In both the primary and secondary minima, there is a phase of a constant brightness
(total eclipses), which suggests that one component is significantly larger than the other
one. As we can observe the total eclipses (phase of constant brightness in both the min-
ima), the inclination should be high (around 80°-90°). The secondary minima appear at
phase 0.5, so the value of eccentricity will be close to zero. The depth of the primary
minima is larger than the depth of the secondary one, so the primary component will
have a higher temperature. The big difference in temperature and radii of individual
components suggests that the mass ratio will be quite small (e.g., 0.4).

With these initially estimated parameters, the phase curve was fitted in PHOEBE
software and the parameters of the fit are listed in the Table 3.5).

3.2.2 Pair B

When analysing pair A, we could have considered both the iteration and the Fourier
method phase curves. If we look closer at the phase curves of pair B in the Fourier
method (see Figure 3.10), we will notice significant wavelike structures that do not have
a realistic base, so for guessing the initial values of parameters of pair B, we will take
into account only phase curve determined by the iteration method.
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Figure 3.7: Pair A - TESS data, iteration method.
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Figure 3.8: Pair A - TESS data, Fourier method.

As well as in the case of pair A, pair B is a detached eclipsing binary. In this case,
there is no constant phase in the minima, so the size of the individual components will
be comparable. The components will have approximately the same temperature and will
be relatively close to each other as the duration of both the minima is quite large.

The inclination of this system will definitely be smaller than in pair A; therefore, our
initial estimate is 60°-70°. In this case, the mass ratio will be much larger than for pair
A, so we will take the initial estimate as 0.8.

The secondary minima do not appear at phase 0.5, but rather at phase 0.476. This
suggests that the orbit will have non-zero eccentricity. Since the secondary minima phase
is lower than 0.5, we can estimate the argument of periastron being close to 180°.

With these initially estimated parameters, we fitted the phase curve in PHOEBE
software and got values of parameters (see Table 3.6).
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Figure 3.9: Pair B - TESS data, iteration method.
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Figure 3.10: Pair B - TESS data, Fourier method.

3.2.3 Pair C

Simmilar to the case of pair B, here we can also analyse only the phase curve determined
by the iteration method. If pair C is indeed another eclipsing binary in the system, then
it is also a detached eclipsing binary of type Algol II. Both the primary and secondary
minima have quite short duration, and there is no constant phase in the minima. The
size of the individual components will be comparable and relatively far from each other.

The primary minima are deeper than the secondary ones, so the temperature of the
individual components will be different. From the position of secondary minima (appear-
ing at phase 0.5) the value of eccentricity will be close to zero. The initial estimate of the
mass ratio will be definitely larger than in the case of pair B, so we will start with the
value 0.8.
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Figure 3.11: Pair C - TESS data, iteration method.
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Figure 3.12: Pair C - TESS data, Fourier method.

3.3 O-C diagrams
In the O-C diagrams, the full points represent primary minima, and the empty points
represent secondary minima.

3.3.1 Pair A

If we look at the light curve of pair A, we can see that the secondary minimum is at
phase 0.5, which suggests that pair A will have a rather circular orbit. As mentioned in
the previous paragraphs, pair A is the most dominant of this system, which means that
its orbital period could be well determined from the Lomb-Scargle periodogram or even

33



from the disentangled light curve itself. Thus, one would expect that the period used for
disentangling should be determined quite precisely. And we can see that directly from
the O-C diagram of pair A in Figure 3.13.

As pair A is the most dominant pair in the system, the amplitude of a potential
sine curve in the O-C diagram should be small. Because the more massive the pair is,
the smaller the motion about the barycentre it makes, and therefore, the smaller shift
in the O-C diagram is observed. The points in the O-C diagram are positioned around
the zero value on the y-axis (see Figure 3.13), so there is no need to correct the values
of ephemerides. We will proceed with the fit of the O-C diagram, which can be seen in
Figure 3.14, and the values of the parameters in the Table 3.3. The model LiTE3 was
used in all fits of O-C diagrams in this thesis.

3.3.2 Pair B

From the light curve of a pair B (Figure 3.9) and the O-C diagram of pair B (Figure 3.15),
we can see that there will be a significant value of eccentricity. The secondary minimum
does not appear at phase 0.5 but rather at 0.476. In the O-C diagram, the secondary
and primary minima are vertically shifted. The distribution of points in the O-C diagram
indicates that the moment of initial minima should be determined more precisely.

Moreover, we can see that primary and secondary minima go in sine curves in an-
tiphase. This indicates the apsidal motion. Before we proceed with the model of apsidal
motion, it is necessary to change the value of M0 so that the positions of primary and
secondary minima are symmetrical around the line y=0. The fit of apsidal motion can be
seen in Figure 3.16 and the parameters of the model are in the Table 3.3.

Now that we have a model of the apsidal motion, we subtract it from the data and plot
the residuals. We will look for a potential LiTE effect in the residuals. After lining up the
primary and secondary minima in residuals and performing a linear fit to obtain more pre-
cise ephemerides:M0 = (2458508.97300 ± 0.00001)HJD and P = (1.728520±0.000001)d,
we obtain the O-C diagram in Figure 3.17.

This graph shows no significant changes, which can be interpreted in several ways.
There is no LiTE effect, indicating that the S2 Pup star is not a doubly eclipsing system.
Another possible interpretation may be that as we do not have the whole phase of apsidal
motion, it does not fit precisely, and therefore, we do not see the LiTE effect in the
residuals even though it is present in pair B. Finally, it can be caused by the fact that
not whole phase of the LiTE effect is captured in the O-C diagram, the period is long,
and with more long-term observations, we would see the LiTE effect.

Table 3.3: Orbital parameters of pair A and pair B

LiTE3 Pair A Error Apsidal Pair B Error
asin(i3) [au] 0.30 0.01 t0[HJD] 2458508.973 0.001

e3 0.00 0.01 P[d] 1.72852 0.0001
ω [rad] 5.33 0.01 ω0 [rad] 2.84 0.01

t03 [HJD] 2457010 10 dω0 [rad] 0.0009 0.00001
P3 [d] 8720 10 e 0.043 0.01
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Figure 3.13: O-C diagram of pair A.
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Figure 3.14: O-C diagram of pair A - corrected ephemerides, model.

35



58000 58500 59000 59500 60000 60500 61000
Time (JD - 2400000)

80

70

60

50

40

30

20

10

0

10
O 

- C
 (m

in
)

Figure 3.15: O-C diagram of pair B.
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Figure 3.16: O-C diagram of pair B - apsidal motion, model.
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Figure 3.17: O-C diagram of pair B - residuals from apsidal motion.

3.3.3 Pair C

As expected from section 3.2, the position of points in the O-C diagram of a pair C (Figure
3.18) is around a line with a large negative slope. This means that the period used for
plotting the O-C diagram is larger than the real period of the pair. That was caused
by the fact that the original period was determined from the residuals and not from the
periodogram. Thus, it is not precise. In the residuals, there were identified the moments
of minima and afterward using the software SILICUPS from the times of minima, the
period of pair C was obtained.

Using the linear fit, we specify the ephemerides PC = (10.371118± 0.000003) d and
M0C = (2459969.59331±0.00004) HJD and plot a corrected O-C diagram (see Figure
3.19). In the O-C diagram with new ephemerides, no trend is evident. From the shape
of the phase curves of pair C (Figures 3.11 and 3.12), pair C is the less dominant in the
system and, therefore, should move a lot around the barycentre. This movement should
cause significant changes in the O-C diagram.

The fact that no significant changes can be seen in the O-C diagram of pair C suggests
that pair C is not another binary in the system. Moreover, in the phase curve of pair C
disentangled by the Fourier method (TESS 3 dataset), the eclipse-like shape is no longer
observed. The possible explanation could be that as a period of pair A and pair B changes
over time, the minima no longer happen simultaneously but are slowly getting out of the
resonance. Therefore, the periodic changes in the residuals of light curves of pair A and
B are most probably caused by simultaneous eclipses in pair A and pair B.
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To be sure whether pair C is a real feature or not, we need long-term observations.
But at this moment, everything suggests that there is no real pair C, therefore no physical
fit for pair C will be done.
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Figure 3.18: O-C diagram of pair C.
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Figure 3.19: O-C diagram of pair C - corrected ephemerides, model.
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3.4 Spectra
Besides the photometric measurements of the star S2 Pup, the spectra were also analysed.
Ideally, we would see one spectral line splitting to four in the spectra caused by the
Doppler effect. Due to the relatively small brightness and spectral resolution, we can
not observe four systems of lines directly. Nevertheless, we can still see some features in
the spectra which suggest (but not prove) that this system could be, indeed, a doubly
eclipsing quadruple.

We have spectra measured in different phases for pair A and for pair B. Firstly, we
take spectra, where pair B is in the brightness minima and pair A is not (see Figure
3.20). If we look at these spectra we can see directly that the position of spectral lines
changes. This shift is caused by the motion of pair A, as pair A is the most dominant
pair in this system, and the shift is well visible. Moreover, if we look at the spectral line
at approximately 4380 Å at spectra 3 and 4 there is almost no splitting. On the contrary,
there is a splitting in spectra 5 and 6. This gives us a basic idea of the shape of a curve of
radial velocities. If the orbit is an ideal circle the radial velocity curve would have maxima
at phases 0.25 and 0.75. The bigger the radial velocity the more visible the splitting of
spectral lines should be. The ellipticity of the orbital trajectory causes the radial velocity
curve to look like a deformed sine curve. Since we do not see any evidence of ellipticity
in the O-C diagram, the presence of maximal splitting at phases 0.25 and 0.75, should
be caused by different processes (such as tidal interactions, third body, or relativistic
effects).

Now, if we subtract the spectra, the contributions of pair B should be subtracted as
pair B is always in minima. What should remain is the contribution of pair A. As the
analysed spectra differ a lot in phase for pair A, the motion of pair A can be directly seen
from the comparison of spectra.

Therefore, we observe small waves at the positions of spectral lines in the subtracted
spectra. To prove that the motion of pair A truly causes these, we will compare spectra
3, 4, 5, and 6 with spectra 14, where pair B is again in the minima, and pair A is in
almost the same phase as in spectra 3 and 4. We can see the spectra in Figure 3.21. Now
we subtract spectra 3, 4, 5, and 6 from spectrum 14 and compare the results. As spectra
3, 4, and 14 have nearly the same phase for pair A we observe almost no waves. On the
other hand, spectra 5 and 6 differ a lot in the phase of pair A compared to pair 14, so
the waves at the position of spectral lines are well visible.

Then we examine the spectra 18, 20, and 21, where pair A is always in the minima
and pair B is not (see Figure 3.22). If we look at the hydrogen lines, we can see some
small changes in their position. That is caused by the motion of pair B. If we subtract the
spectra (see Figure 3.24) we should observe the motion of pair B, but because it is not
as big as in the case of pair A it gets lost in the noise. We would need a higher spectral
resolution to properly observe the motion of pair B.

Another step in the spectral analysis is searching for lines in spectra that appear when
one pair is in the minima, and the other pair is not and disappear when both pairs are
out of the minima. This should give us a basic idea about which spectral line belongs to
which pair. However, if we look at the spectra, we do not see any new lines (see Figure
3.25).
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Table 3.4: Values of phase for individual spectra.

Spectrum M0 [HJD] Pair A Pair B

2 2460033.31061 0.798 0.862
out of minimum out of minimum

3 2460034.27623 0.264 0.421
out of minimum secondary minimum

4 2460034.37212 0.311 0.477
out of minimum secondary minimum

5 2460035.27761 0.749 0.000
out of minimum primary minimum

6 2460035.34762 0.782 0.041
out of minimum primary minimum

7 2460036.25820 0.223 0.568
out of minimum out of minimum

8 2460038.23042 0.176 0.709
out of minimum out of minimum

9 2460038.32457 0.222 0.763
out of minimum out of minimum

10 2460038.38268 0.250 0.797
out of minimum out of minimum

11 2460039.23074 0.660 0.287
out of minimum out of minimum

12 2460039.30587 0.696 0.331
out of minimum out of minimum

13 2460040.30078 0.177 0.906
out of minimum out of minimum

14 2460042.21976 0.105 0.017
out of minimum primary minimum

15 2460042.31164 0.149 0.070
out of minimum out of minimum

16 2460043.24251 0.599 0.608
out of minimum out of minimum

17 2460043.28849 0.622 0.635
out of minimum out of minimum

18 2460044.22587 0.075 0.177
primary minimum out of minimum

19 2460044.31610 0.1183 0.229
out of minimum out of minimum

20 2460045.22131 0.556 0.753
secondary minimum out of minimum

21 2460046.23816 0.048 0.341
secondary minimum out of minimum
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Figure 3.20: Spectra 3, 4, 5 and 6.
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Figure 3.21: Spectra 3, 4, 5, 6 and 14.
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Figure 3.22: Spectra 18, 20 and 21.
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Figure 3.23: Subtraction of spectra 3, 4, 5, and 6.
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Figure 3.24: Subtraction of spectra 18, 20 and 21.
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Figure 3.25: Spectra with pairs in minima.
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3.5 Physical models
The parameters of the physical fit are listed in Tables 3.5 and 3.6 together with the error
value which describes the value of a step with which were parameters fitted. The sets of
fitting steps are the same for all stars studied in this thesis.

3.5.1 Pair A

If we look closely at the values in Table 3.5 we see that for both the TESS and observed
data, the primary component is significantly greater than the secondary component. The
values of temperature of both the components are approximately the same in both the
TESS data and our measurements. The value of inclination (close to 90°) corresponds well
with our initial assumption (based on the observation of phase of constant brightness in
both primary and secondary minima).

The reason for the mass ratio having different values in the TESS 2 and 3 dataset
may be the cadence of analysed data. The TESS 0 dataset consists of frames with an
exposure of 1426 s, the TESS 1 dataset with 475 s, and the TESS 2 and 3 datasets with
158 s frames. Therefore, the TESS 2 and 3 light curves show more detail than the TESS
0 and TESS 1 datasets. The mass ratio considerably influences the shape of the eclipses
in the phase curve; therefore, its value may differ a bit with different cadence of data. On
the other hand, the value of the mass ratio is far from 1 in all analysed datasets, as we
estimated.

Table 3.5: Pair A – parameters of physical model.

Parameter TESS 0 TESS 1 TESS 2 TESS 3 filter V filter I error

R1

a
3.18 3.14 3.22 3.22 3.17 3.19 0.01

R2

a
2.07 2.07 2.14 2.17 2.13 2.11 0.01

Mbol1 [mag] -3.544 -3.516 -3.563 -3.568 -3.533 -3.541 0.001

Mbol2 [mag] -1.777 -1.793 -1.848 -1.877 -2.052 -2.243 0.001

Tef1 [K] 21 800 21 800 21 800 21 800 21 800 21 800 10

Tef2 [K] 18 000 18 070 18 010 18 000 18 900 18 870 10

i [°] 88.89 89.57 88.54 88.48 89.90 89.43 0.01

q 0.60 0.64 0.49 0.49 0.64 0.71 0.01

e 0.00 0.00 0.00 0.00 0.00 0.00 0.01
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Figure 3.26: Pair A - physical model, TESS data.
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Figure 3.27: Pair A - physical model, ground-based data.
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3.5.2 Pair B

Comparing the values in the Table 3.6, the sizes of both the components are comparable
and are quite high, which corresponds with the duration of the eclipses. The temperature
of secondary components is greater for TESS datasets than for our measurements.

As the temperature is the same for both the V and I filter, the discrepancy in the
values of temperature between ground-based and TESS data will most likely be caused
by the high noise in our data. As well as in the case of physical models of pair A (chapter
3.5.1), the mass ratio of TESS 2 datasets differs from other datasets. As it was suggested
before, from the position of the secondary minima in the phase curve and the vertical shift
of positions of the primary and secondary minima in the O-C diagram, the calculated
value of orbital eccentricity is non-zero and has approximately the same value in all
analysed datasets.

Table 3.6: Pair B – parameters of physical model.

Parameter TESS 0 TESS 1 TESS 2 TESS 3 filter V filter I error

R1

a
2.36 2.23 2.19 2.17 2.34 2.23 0.01

R2

a
1.90 1.96 2.09 2.14 1.91 2.18 0.01

Mbol1 [mag] -0.574 -0.451 -0.392 -0.417 -0.566 -0.456 0.001

Mbol2 [mag] 0.176 0.110 -0.032 -0.084 0.543 0.255 0.001

Tef1 [K] 12 800 12 800 12 800 12 800 12 800 12 800 10

Tef2 [K] 12 000 12 000 12 000 12 000 11 000 11 000 10

i [°] 79.32 79.25 78.96 79.02 80.00 78.00 0.01

q 0.70 0.69 0.78 0.79 0.63 0.67 0.01

e 0.04 0.04 0.04 0.03 0.04 0.03 0.01
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Figure 3.28: Pair B - physical model, TESS data.
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Figure 3.29: Pair B - physical model, ground-based data.

46



3.6 Summary
Both TESS and ground-based observations were analysed. Periodic changes in the bright-
ness of system S2 Pup have the same course in both TESS and ground-based data. More-
over, the contribution of individual pairs is independent of the method of disentanglement
used. Based on the photometric and spectroscopic analysis of S2 Pup, the periodic changes
in residuals are most probably caused by the simultaneous eclipse in both pairs.

The physical fits for both the pairs were calculated independently for all datasets using
PHOEBE software and have close, if not the same, values of parameters in all analysed
datasets. The moments of minima were determined via SILICUPS software, and from
them, O-C diagrams of individual pairs were obtained. In the O-C diagram of pair A,
the LiTE effect was modeled. In the case of pair B, the apsidal motion was modeled, and
no significant changes indicating the LiTE effect were identified. For both the pairs, the
values of ephemerides were corrected (see Table 3.7).

In the spectroscopic measurements, splitting into four lines was not observed due to
a poor spectral resolution. On the other hand, a shift in the position of spectral lines
(hydrogen lines) is clearly seen when we analyse the spectra where one pair is in the
minimum.

In conclusion, the spectroscopic measurements indicate that the system S2 Pup is
indeed a doubly eclipsing stellar system, and photometric measurements do not exclude
this arrangement but are not proving it. To prove the gravitational bond between both
pairs, we need more long-term photometric observations. At least long enough to embrace
the whole phase of the apsidal motion presented in pair B, to be sure that the apsidal
motion was fitted correctly.

Table 3.7: Specification of ephemerides of pairs A and B.

Parameter Pair A - original Pair A - new
M0 [HJD] 2459245.65345 2459245.65345 ± 0.00001

P [d] 2.068435 2.068435 ± 0.000001
Parameter Pair B - original Pair B - new
M0 [HJD] 2458508.99491 2458508.97300 ± 0.00002

P [d] 1.728512 1.728520 ± 0.000001
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Chapter 4

S1 Pup

4.1 Basic information
The basic characteristics of star S1 Pup and used comparison star are listed in the Table
4.1. The most suitable comparison star was chosen so that the B − V value was the
closest. In the TESS chart, some other stars fall into the pixels containing the S1 Pup
system. On the other hand, in ground-based observations, we can easily distinguish the
S1Pup in the chart (see Figure 4.1) from other stars in the closest vicinity. The periodic
changes in brightness were detected in both TESS and ground-based data so that we can
rule out the blend.

The ground-based observations were measured by Martin Mašek (MM), Reinhold Fr.
Auer (RFA), and Miloslav Zejda. (MZ). The list of observations is in Table 4.2. The
TESS data were captured in the years 2019, 2023, and 2025. Besides the photometric
data, the spectroscopic data were measured and processed (calibrated and normalized)
by Jan Janík. Jan Janík also modeled the spectra, distinguished the contribution of indi-
vidual components, and calculated the radial velocities. The spectra were measured with
SpUpNIC (Spectrograph Upgrade-Newly Improved Cassegrain) at SAAO (South African
Astronomical Observatory). The additional spectra with better spectral resolution were
measured with PLATOSpec at La Silla.

Table 4.1: Basic information about S1 Pup star.

Variable star Comparison star

Name V0674 Pup TYC 7106-1554-1

RA 07h 45m 36.93s 07h 46m 04.78s

DEC -31◦ 09′ 32.0′′ -31◦ 14′ 41.06′′

T [K] 6820 6070

B − V [mag] 0.58 0.51

M0A in HJD [days] 2458497.5700

PA [days] 0.6029032

M0B in HJD [days] 2458510.9000

PB [days] 6.5245459
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Table 4.2: List of photometric observations of star S1 Pup.

date observer filter device location

14. 01. 2023 MM R ODK 300/2040 + MII G4-16000 Los Leones

16. 01. 2023 MM R ODK 300/2040 + MII G4-16000 Los Leones

17. 01. 2023 MM R ODK 300/2040 + MII G4-16000 Los Leones

22. 01. 2023 MM R ODK 300/2040 + MII G4-16000 Los Leones

23. 01. 2023 MM R ODK 300/2040 + MII G4-16000 Los Leones

24. 01. 2023 MM R ODK 300/2040 + MII G4-16000 Los Leones

28. 01. 2023 MM R ODK 300/2040 + MII G4-16000 Los Leones

29. 01. 2023 MM R ODK 300/2040 + MII G4-16000 Los Leones

30. 01. 2023 MM R ODK 300/2040 + MII G4-16000 Los Leones

19. 02. 2023 MM R ODK 300/2040 + MII G4-16000 Los Leones

21. 02. 2023 MM R ODK 300/2040 + MII G4-16000 Los Leones

25. 02. 2023 MM R ODK 300/2040 + MII G4-16000 Los Leones

26. 02. 2023 MM R ODK 300/2040 + MII G4-16000 Los Leones

27. 02. 2023 MM R ODK 300/2040 + MII G4-16000 Los Leones

25. 10. 2024 RFA C SC 350/2236 + MI C3-26000 Boyden

05. 11. 2024 RFA C SC 350/2236 + MI C3-26000 Boyden

06. 11. 2024 RFA C SC 350/2236 + MI C3-26000 Boyden

23. 11. 2024 MZ C RL 350/2250 + C3-26000Pro Boyden

30. 11. 2024 MZ C RL 350/2250 + C3-26000Pro Boyden

12. 12. 2024 MZ C RL 350/2250 + C3-26000Pro Boyden

02. 12. 2024 MZ C RL 350/2250 + C3-26000Pro Boyden

05. 12. 2024 MZ C RL 350/2250 + C3-26000Pro Boyden

27. 12. 2024 MZ C RL 350/2250 + C3-26000Pro Boyden

28. 12. 2024 MZ C RL 350/2250 + C3-26000Pro Boyden

06. 02. 2025 MM R ODK 300/2040 + MII G4-16000 Los Leones

07. 02. 2025 MM R ODK 300/2040 + MII G4-16000 Los Leones

08. 02. 2025 MM R ODK 300/2040 + MII G4-16000 Los Leones

18. 02. 2025 MM R ODK 300/2040 + MII G4-16000 Los Leones
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Figure 4.1: Chart of S1 Pup - Los Leones.

4.2 Disentangled lightcurves

4.2.1 Pair A

If we look at the phase curves of pair A obtained by the iteration method (see Figure
3.7) and pair A obtained by the Fourier method (see Figure 3.8), we can see some minor
differences. The exposition times of frames in TESS datasets 0, 1, 3, and 4 are 1426 s,
1426 s, 158 s, and 158 s correspondingly. This means that the first two datasets were
taken with a much smaller cadence, which results in less precise phase curves. In the case
of the Fourier method, disentanglement more bump-like structures that are not based on
real features.

Moreover, the light curves obtained by the iteration method contain the O’Connell
effect, whereas the Fourier method assumes the symmetry in eclipses, so no O’Connell
effect is observed. The O’Connell effect appears in the light curve of eclipsing binaries
where the neighboring maxima do not have the same level, and this periodically repeats.
For physical modeling, the datasets obtained by the iteration method were used.

The primary minima are deeper than the secondary, which suggests that the primary
component has a higher temperature than the secondary one. If we look closer at the
course of a phase curve in secondary minima, there is the phase of constant brightness,
which suggests that one component is significantly larger than the other. In the primary
minima, there is some asymmetry that may be caused by the presence of stellar spots
on the primary component. This asymmetry only supports the presence of the O’Connell
effect because the stellar spots are one of the possible reasons for the O’Connell effect.

The constant phase of brightness in secondary minima also indicates the relatively
high value of inclination (80°-90°). The initial value of the mass ratio for physical fitting
was 0.48. Unfortunately, we have no information from spectra about the number and
position of stellar spots present on the primary or secondary component. That is why
the physical model in PHOEBE can not be made precisely. To obtain at least some
estimate of the parameters of physical fit, the phase curves of pair B will be fitted with

50



the assumption that there are no stellar spots. This means that the physical fit will not
correspond to the phase curve well in all of the regions of the phase curve. However, it
will be fitted in a way that corresponds well to the phase with the maximum brightness.

From the course of a phase curve of pair A, we can say that it is an eclipsing binary of
type W UMa. These systems often (but not always) have a common envelope, so primary
and secondary components share the same temperature. In the early stages of contact,
the temperatures can differ a bit.
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Figure 4.2: Pair A - TESS data, iteration method.
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Figure 4.3: Pair A - TESS data, Fourier method.
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Figure 4.4: Pair A - ground-based data.

4.2.2 Pair B

From the phase curves of pair B (see Figures 4.5 and 4.7), we can say that pair B is an
eclipsing binary of type Algol I type (primary and secondary minima have almost the
same depth, which indicates the same temperature). As there is no phase of constant
brightness in any minima and the duration of both primary and secondary minima are
very similar, the inclination of this system will be smaller than 90°.

The secondary minima occur at a phase that is significantly smaller than 0.5, which
suggests that the orbital trajectory will be an ellipse. As well as in the case of pair A
(4.2.1) for physical fitting and any other further analysis, the datasets disentangled by
iteration method were used.
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Figure 4.5: Pair B - TESS data, iteration method.
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Figure 4.6: Pair B - TESS data, Fourier method.
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Figure 4.7: Pair B - ground-based data.

4.3 O-C diagrams
In the O-C diagrams, the full points represent primary minima, and the empty points
represent secondary minima.

4.3.1 Pair A

The O-C diagram of pair A can be seen in the Figure 4.8. The points in the O-C diagram
are positioned around a parabola open upwards, suggesting that the period of pair A
is prolonging. First, the quadratic fit and then the linear fit was done to specify the
ephemerides. O-C diagram with new ephemerides: PA = (0.602915±0.000002) d and M0A

= (2458497.57501±0.00004) HJD, can be seen in Figure 4.9 together with the LiTE3 fit.
The value of the parameters of the LiTE model is listed in Table 4.3.

53



58000 58500 59000 59500 60000 60500 61000
Time (JD - 2400000)

10

0

10

20

30

40

50

60
O 

- C
 (m

in
)

Figure 4.8: O-C diagram of pair A.
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Figure 4.9: O-C diagram of pair A - corrected ephemerides, model.
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Table 4.3: Orbital parameters of pair A and B of star S1 Pup.

Parameter Pair A Pair B Error
asin(i3) [au] 4.44 2.17 0.01

e3 0.00 0.00 0.01
ω [rad] 1.89 2.33 0.01

t03 [HJD] 2457450 3246980 10
P3 [d] 5700 3700 10

4.3.2 Pair B

The O-C diagram with the initial values of ephemerides (see Table 4.1) can be seen in
Figure 4.10. The values are around the line with a negative slope, so the real period of
the system is shorter than the period used to plot the O-C diagram.

In addition, the primary and secondary minima are vertically shifted. This shift is
caused by the non-zero eccentricity of the orbital trajectory. This argument is also sup-
ported by the phase curves of pair B (Figures 4.5 and 4.7), where secondary minima occur
at phase smaller than 0.5.

Before making the linear fit, we first need to align the primary and secondary minima.
After that, by making the linear fit, we obtained the more precise values of ephemerides:
M0A = (2458511.44001±0.00004) HJD and PA= (6.522901±0.000005) d. The O-C dia-
gram with specified ephemerides and model can be seen in Figure 4.11.
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Figure 4.10: O-C diagram of pair B.

55



As both the O-C diagrams of pair A and B (Figures 4.9 and 4.11)have approximately
the same amplitude in the O-C diagram, the masses of pair A and pair B are comparable.
There is no strongly dominant pair in the system, and therefore, the value of the third
light used in the physical modeling in PHOEBE should be around 0.5 for both pairs. The
values of parameters of the LiTE model are listed in Table 4.3.
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Figure 4.11: O-C diagram of pair B - corrected ephemerides, model.

4.4 Spectra
There were 22 spectra analysed. Unfortunately, in any of these spectra, splitting into
four spectral lines is not observed. This can be caused by the limited spectral resolution
together with the fact that components in pair A are most probably very close to each
other (from the shape of the light curve in Figures 4.2 and 4.3). Although the splitting
into 4 lines is not observed, we can tell a lot from analysing the spectra. In Table 4.4,
there are listed phases for pair A and B for every measured spectrum.

Firstly, we will take spectra where pair A is in the minima and pair B is in different
phases (spectra 5, 10, 12, and 17). By plotting these spectra (see Figure 4.12), we do not
see any significant movement in any lines. This could suggest either that pair B is the
more dominant out of the system or that the radial velocities have approximately the
same value in phases of these spectra (0.019, 0.479, 0.624, 0.084 correspondingly) or that
we would need a better spectral resolution to capture the shift.

If we subtract these spectra (see Figure 4.14), the contribution of pair A will cancel
out as pair A is always in the minima. What will be left out will be the contribution
of pair B. Ideally, we should observe a splitting into two lines (primary and secondary
components of pair B). There is a splitting into two spectral lines at around 4310 Å.
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Table 4.4: Values of phase for individual spectra.

Spectrum M0 [HJD] Pair A Pair B

1 2460035.37656 0.670 0.571
out of minimum out of minimum

2 2460035.41655 0.736 0.577
out of minimum out of minimum

3 2460036.28331 0.174 0.710
out of minimum out of minimum

4 2460036.37761 0.330 0.724
out of minimum out of minimum

5 2460038.30392 0.525 0.019
secondary minimum primary minimum

6 2460039.26012 0.111 0.166
out of minimum out of minimum

7 2460040.25695 0.765 0.319
out of minimum out of minimum

8 2460040.32510 0.878 0.329
out of minimum out of minimum

9 2460041.25953 0.427 0.472
out of minimum out of minimum

10 2460041.30290 0.499 0.479
secondary minimum out of minimum

11 2460041.37144 0.613 0.489
out of minimum out of minimum

12 2460042.24695 0.065 0.624
primary minimum out of minimum

13 2460043.22077 0.680 0.773
out of minimum out of minimum

14 2460043.36149 0.914 0.794
out of minimum out of minimum

15 2460044.25284 0.392 0.931
out of minimum out of minimum

16 2460044.37342 0.592 0.949
out of minimum out of minimum

17 2460045.24811 0.043 0.084
primary minimum out of minimum

18 2460045.31393 0.152 0.094
out of minimum out of minimum

19 2460045.36272 0.233 0.101
out of minimum out of minimum

20 2460046.21790 0.652 0.232
out of minimum out of minimum

21 2460046.30342 0.794 0.245
out of minimum out of minimum

22 2460046.39335 0.943 0.259
out of minimum out of minimum
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Secondly, we will take spectra, where both pairs A and B are out of minima, but pair
B is in almost the same phase (0.084, 0.094, and 0.101 correspondingly). It would be ideal
if pair B was in minima, but the duration of eclipses in pair B is so short, and the period
is relatively long (see Table 4.1) that it was challenging to capture. A potential shift in
the position of spectral lines would be caused by pair A; however, no significant shift is
observed.

If we plot the subtraction of these spectra (19-17 and 18-17), we see the splitting
of spectral lines, which correspond to the primary and secondary component of pair A,
specifically, hydrogen lines Hδ (4102 Å) and Hγ (4340 Å).

Finally, additional spectra with better spectral resolution were measured. From these
spectra, radial velocity curves were constructed (see Appendices, Figures 5.15 and 5.16).
Moreover, the splitting into 4 lines is present and the contribution of individual pairs in
the spectra was distinguished (see Appendices, Figure 5.17).
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Figure 4.12: Spectra 5, 10, 12 and 17.
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Figure 4.13: Spectra 17, 18 and 19.
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Figure 4.14: Subtraction of spectra 5, 10, 12 and 17.
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Figure 4.15: Subtraction of spectra 17, 18 and 19.

4.5 Physical models

4.5.1 Pair A

The values of parameters of physical fit in PHOEBE can be seen in Table 4.5 and the
physical fit itself in Figures 4.16 and 4.17. When analysing the values of parameters
obtained by the physical fit, we have to take into account that the fit is not precise as
we lack information about the stellar spots. Moreover, the disentanglement by iteration
method was influenced by the presence of the O´Connell effect.

The size of components is significantly different, as expected from the phase of constant
brightness in secondary minima. The temperatures of components are very similar, which
is typical for eclipsing binaries of type W UMa.

TESS 0 and TESS 1 have slightly different values of inclination and mass ratio than
TESS 3 and TESS 4 datasets. This may be caused by the different exposure times.
Therefore, phase curves from data TESS 3 and 4 are more detailed. Physical fits of TESS
3 and 4 are, therefore, more precise.
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Figure 4.16: Pair A - TESS data, physical model.
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Figure 4.17: Pair A - ground-based data, physical model.

60



Table 4.5: Pair A – parameters of physical model.

Parameter TESS 0 TESS 1 TESS 3 TESS 4 filter R error
R1

a
4.75 4.69 4.94 4.85 4.71 0.01

R2

a
3.13 3.11 3.70 3.66 3.17 0.01

Mbol1 [mag] 0.641 0.672 0.555 0.589 0.655 0.001

Mbol2 [mag] 1.961 1.942 1.503 1.445 1.893 0.001

Tef1 [K] 6 820 6 820 6 820 6 820 6 820 10

Tef2 [K] 6 200 6 250 6 250 6 450 6 250 10

i [°] 68.00 68.02 87.00 88.00 69.5 0.01

q 0.38 0.40 0.48 0.48 0.41 0.01

e 0.01 0.01 0.01 0.01 0.01 0.01

4.5.2 Pair B

The physical fit done in PHOEBE of pair B can be seen in Figure 4.18, and the values of
parameters can be seen in the Table 4.6. The physical fit for ground-based data of Pair B
was not done due to the insufficient coverage of the phase curve. Unlike in pair A, the sizes
of primary and secondary components are almost the same, as are their temperatures.
The value of inclination is high, as expected for all datasets. As well as in the case of pair
A, the values of mass ratio for the first two TESS datasets are a bit different than for the
remaining two.

Finally, the orbital eccentricity is non-zero, which is in unity with the vertical shift of
primary and secondary minima in the O-C diagram (see Figure 4.10).
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Figure 4.18: Pair B - TESS data, physical model.
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Table 4.6: Pair B – parameters of physical model.

Parameter TESS 0 TESS 1 TESS 3 TESS 4 error
R1

a
1.21 1.18 1.18 1.18 0,01

R2

a
1.09 1.18 1.17 1.16 0,01

Mbol1 [mag] 3.60 3.60 3.662 3.662 0,001

Mbol2 [mag] 3.87 3.69 3.720 3.720 0,001

Tef1 [K] 6 820 6 820 6 820 6 820 10

Tef2 [K] 6 750 6 750 6 750 6 700 10

i [°] 85,90 86,56 84,80 84,80 0,01

q 0,68 0,75 0,73 0,73 0.01

e 0.20 0.19 0.19 0.19 0,01

4.6 Summary
For system S1 Pup, both ground-based data and data from the TESS satellite were
analysed. The phase curves from iteration and Fourier method slightly differ due to the
presence of the O´Connell effect. The physical fits for both pairs were calculated using
PHOEBE software.

The moments of minima of both pairs have been determined via SILICUPS software,
and the O-C diagrams for both pairs were plotted. From the O-C diagrams the values of
ephemerides were corrected (see Table 4.7). The O-C diagrams were fitted by the LiTE
model, and even though the full sine curve is not seen, the O-C diagrams clearly appear in
the antiphase. While the O-C diagram of pair A is a parabola open upwards (the period
is prolonging), the diagram of pair B is a downward open parabola (the period is getting
shorter).

Moreover, from the spectroscopic measurements, there is clearly a shift in the position
of spectral lines when comparing spectra with one pair in the minimum and the other
one not. After subtracting the spectra, there is also a clear splitting into two spectral
lines. Furthermore, the contribution of individual components was distinguished in the
newest spectroscopic measurements with a better spectral resolution. The shapes of radial
velocity curves support the doubly eclipsing quadruple model.

In conclusion, both spectroscopic and photometric measurements prove the gravita-
tional bond between pair A and pair B. System S1 Pup is, therefore, a confirmed doubly
eclipsing quadruple.
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Table 4.7: Specification of ephemerides of pairs A and B.

Parameter Pair A - original Pair A - new
M0 [HJD] 2458497.57000 2458497.57501 ± 0.00004

P [d] 0.6029032 0.602915 ± 0.000002
Parameter Pair B - original Pair B - new
M0 [HJD] 2458510.90000 2458511.44000 ± 0.00004

P [d] 6.524546 6.522901 ± 0.000005
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Chapter 5

S1 Peg

5.1 Basic information
The basic information about S1 Peg star is listed in the Table 5.1. The strongest crite-
rion for the selection of optimal comparison star was again the value of B − V . In the
TESS chart, another star falls into the same pixel. On the other hand, in ground-based
observations, the star S1 Peg is easily distinguishible. The chart displaying the position
of the variable and comparison star in the sky is shown in Figure 5.1.

The analysed TESS data were captured in 2019, 2022, and 2024. The ground-based ob-
servations for system S1 Pup were measured by František Lomoz (FL), Anna Richterková
(AR), Rudolf Novák (RN), Miloslav Zejda (MZ), and Jakub Kolář (JK). The list of
observations can be seen in Table 5.2.

For star S1 Peg, no spectroscopic measurements were available. S1 Peg was observed
from the northern hemisphere, and it is not bright enough (12.3 mag in the visible range)
for measuring spectra at available observatories (e.g., at Ondřejov). Therefore, only pho-
tometric measurements will be analysed.

As we lack the spectroscopic measurements, the only possible way in this thesis to
prove whether or not there is a gravitational bond between individual pairs of star S1
Peg is the search for the LiTE effect in the O-C diagrams.

Table 5.1: Basic information about S1 Peg star.

Variable star Comparison star

Name TYC 2201-991-1 UCAC4 592-128770
RA 21h 38m 04.77s 21h 38m 12.32s

DEC 28◦ 10′ 07.8′′ 28◦ 13′ 30.08′′

T [K] 6200 4800
B − V [mag] 1.38 1.31

M0A in HJD [days] 2459207.13900
PA [days] 0.747245

M0B in HJD [days] 2458726.71000
PB [days] 2.083732
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Table 5.2: List of photometric observations of star S1 Peg.

date observer filter device location
05. 09. 2021 FL C Newton 300/1200+ST2000XM
19. 10. 2022 AR, RN R Newton 400/1715 + G2-402 Prostějov
19. 10. 2022 AR, RN V Newton 400/1715 + G2-402 Prostějov
19. 10. 2022 AR, RN C RC 250/2000 + G2-4000 Úpice
05. 10. 2022 AR, RN C RC 250/2000 + G2-4000 Úpice
6. 10. 2022 AR, RN C RC 250/2000 + G2-4000 Úpice
17. 10. 2022 AR, RN C RC 250/2000 + G2-4000 Úpice
20. 10. 2022 AR, RN C RC 250/2000 + G2-4000 Úpice
31. 10. 2022 AR, RN C RC 250/2000 + G2-4000 Úpice
02. 11. 2022 AR, RN C RC 250/2000 + G2-4000 Úpice
05. 11. 2022 AR, RN C RC 250/2000 + G2-4000 Úpice
13. 11. 2022 AR, RN C RC 250/2000 + G2-4000 Úpice
14. 11. 2022 AR, RN C RC 250/2000 + G2-4000 Úpice
02. 10. 2023 MZ V AZ800/5480 + G4-16000 Ždánice
02. 10. 2023 MZ R AZ800/5480 + G4-16000 Ždánice
03. 10. 2023 MZ V AZ800/5480 + G4-16000 Ždánice
03. 10. 2023 MZ R AZ800/5480 + G4-16000 Ždánice
08. 10. 2023 MZ V AZ800/5480 + G4-16000 Ždánice
08. 10. 2023 MZ R AZ800/5480 + G4-16000 Ždánice
17. 10. 2023 MZ V Newton 600/2780 + G4-16000 Brno
17. 10. 2023 MZ R Newton 600/2780 + G4-16000 Brno
05. 08. 2024 AR, RN V Newton 400/1715 + G2-402 Prostějov
05. 08. 2024 AR, RN R Newton 400/1715 + G2-402 Prostějov
12. 08. 2024 MZ g AZ800/5480 + C5A-150M Ždánice
12. 08. 2024 MZ g AZ800/5480 + C5A-150M Ždánice
29. 08. 2024 AR, RN R Newton 400/1715 + G2-402 Prostějov
05. 09. 2024 AR, RN R Newton 400/1715 + G2-402 Prostějov
07. 09. 2024 AR, RN R Newton 400/1715 + G2-402 Prostějov
21. 10. 2024 MZ r AZ800/5480 + G4-16000 Ždánice
25. 12. 2024 JK g AZ800/5480 + G4-16000 Ždánice
25. 12. 2024 JK r AZ800/5480 + G4-16000 Ždánice
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Figure 5.1: Chart of S1 Peg - Prostějov

5.2 Disentangled lightcurves
The contribution of individual pairs was distinguished by the iteration method (seen in
Figures 5.2 and 5.5) and by the Fourier method (seen in Figures 5.3 and 5.6).

The contributions distinguished by the Fourier method are less noisy. This is caused
mainly by the fact that pair A has a decrease in brightness in minima in the range of 0.1
and pair B in the order of 0.01. Therefore, when using the iteration method, the ability
to fit precisely the shape of the minima for pair B is limited by the noise.

Comparing the contributions from iteration and the Fourier method, the depth and
duration of the minima are the same. This suggests that the disentanglement was done
correctly. For further analysis (O-C diagram and physical models), we will use the con-
tributions obtained using the Fourier method.

5.2.1 Pair A

Just from the phase curve in Figures 5.2 and 5.3, we can say a lot about the pair. Pair A
is the case of detached binary (type Algol). The depth of the primary minima is larger
than the depth of the secondary minima yet is still comparable. Therefore, the primary
component will have a higher surface temperature than the secondary component, but
the temperatures will not differ much.
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Figure 5.2: Pair A - TESS data, iteration method.
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Figure 5.3: Pair A - TESS data, Fourier method.

There is no constant phase of brightness in primary nor secondary minima. Together
with the fact that the duration of the eclipses is quite large, the distance of individual
components is relatively small, and their sizes are comparable.

There is a slight bump between structures instead of the constant phase of brightness
between the primary and secondary minima. This effect can be caused by the proximity
effect. Due to gravitational interaction between components, the shape of the components
changes, resulting in the different shape of the light curve.
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Figure 5.4: Pair A - ground-based data.

5.2.2 Pair B

In phase curves determined by both Fourier and iterative methods, there is an increase
in brightness in both primary and secondary minima. This can be either caused by the
presence of stellar spots (Oláh et al., 2025) or by the mid-eclipse brightening effect (Budaj,
J., 2011). This effect is caused by a dust disc around one of the stars. The shape of the
phase curve in minima suggests that the primary component is more dominant than
the secondary one. The secondary component is surrounded by the dust disc. As the
secondary component gets in front of the primary one (the moment of primary minima),
the light from the primary component passes through the dust disc, where it is partially
blocked and scattered. This scattered light is the source of the mid-eclipse brightening.

Unfortunately, we do not have any information about the number or position of po-
tential stellar spots nor the size and orientation of potential dust discs surrounding the
secondary component of pair B. Therefore, the physical fit of pair B will be done without
them and will not correspond to the phase curve with high precision.

The iterative and Fourier methods of disentanglement result in the same shape, posi-
tion, and duration of both primary and secondary minima. The contribution of individual
pairs by the Fourier method will be used for further analysis (such as O-C diagrams and
physical models) as it is less noisy.

The primary and secondary minima have different depths, so the primary component
will have a higher temperature than the secondary. If there was no mid-eclipse brightening,
there would be a phase of constant brightness in both primary and secondary minima,
which indicates that the sizes of individual components will be significantly different. At
the same time, in order to observe this, the value of inclination must be relatively high
(80°-90°). The value of the mass ratio parameter should be small, around 0.4. The minima
are separated; therefore, there is no mass transfer, and this eclipsing binary is of type
Algol II.
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Figure 5.5: Pair B - TESS data, iteration method.

0.6 0.4 0.2 0.0 0.2 0.4 0.6
phase

0.000

0.025

0.050

0.075

0.100

0.125

0.150

m
/m

ag

TESS 0
TESS 1
TESS 2
TESS 3

Figure 5.6: Pair B - TESS data, Fourier method.
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Figure 5.7: Pair B - ground-based data.

5.3 O-C diagrams
In the O-C diagrams, the full points represent primary minima, and the empty points
represent secondary minima.

5.3.1 Pair A

The O-C diagram of pair A with initial values of ephemerides (see Table 5.1) can be seen
in Figure 5.8. The points in the O-C diagram are along the line with a positive slope. It
means that the real period of pair A is longer than the period from Table 5.1. The new
values of ephemerides: PA = (0.747264±0.000001) d and M0A = (2459207.15103±0.00002)
HJD, were obtained by a linear fit. The O-C diagram with corrected ephemerides and
the model can be seen in Figure 5.9. The parameters of the LiTE model are in the Table
5.3.

Table 5.3: Orbital parameters of pair A and B of star S1 Peg.

Parameter Pair A Pair B Error
asin(i3) [au] 0.11 0.81 0.01

e3 0.00 0.00 0.01
ω [rad] 4.65 2.49 0.01

t03 [HJD] 2459650 2457010 10
P3 [d] 2940 3030 10

5.3.2 Pair B

If we look at the phase curves of pair B (Figures 5.5 and 5.6), we can see that the position
of the minima changes in each sector. Moreover, the points in the O-C diagram with initial
ephemerides (see Table 5.1) are located along the line with a negative slope. This suggests
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that the real period of pair B is shorter than the period in Table 5.1. New, more precise
ephemerides: PB = (2.083265±0.000005) d and M0B = (2458725.66000±0.000003) HJD
were calculated using a linear fit. The O-C diagram with new ephemerides and LiTE
model are plotted in Figure 5.11, and the parameters of the model are listed in the Table
5.3.
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Figure 5.8: O-C diagram of pair A.
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Figure 5.9: O-C diagram of pair A - corrected ephemerides, model.
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Figure 5.10: O-C diagram of pair B.
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Figure 5.11: O-C diagram of pair B - corrected ephemerides, model.
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5.4 Physical models

5.4.1 Pair A

The physical fit calculated by PHOEBE software can be seen in Figures 5.12 and 5.13.
Comparing the values of parameters of TESS data and ground-based observations (see
Table 5.4), we see that they are in good agreement. The sizes of the components are
comparable yet not the same. The temperatures of the components are also very similar.
The values of inclination and eccentricity are also consistent throughout all datasets.

The mass ratio discrepancy can be caused by the different values of exposure times of
used TESS datasets 0,1,2, and 3 (1426 s, 465 s, 158 s, 158 s correspondingly). Nevertheless,
the mass ratio has a high value in all datasets.

Table 5.4: Pair A – parameters of physical model.

Parameter TESS 0 TESS 1 TESS 2 TESS 3 filter C filter R filter V error
R1

a
3.77 3.64 3.45 3.57 3.46 3.39 3.66 0.01

R2

a
3.17 3.05 3.04 3.08 2.87 3.15 3.41 0.01

Mbol1 [mag] 1.549 1.628 1.744 1.672 1.743 1.785 1.620 0.001

Mbol2 [mag] 2.052 1.121 2.145 2.105 2.287 2.263 1.885 0.001

Tef1 [K] 6 200 6 200 6 200 6 200 6 200 6 200 6 200 10

Tef2 [K] 6 030 6 040 6 030 6 030 6 000 5 900 6 040 10

i [°] 88.48 85.92 87.16 89.95 86.00 80.02 84.00 0.01

q 0.94 0.90 0.87 0.99 0.92 0.87 0.87 0.87

e 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5.4.2 Pair B

Due to the almost integer value of the orbital period of pair B and lack of observational
nights, the phase curve of pair B is not fully covered (see Figure 5.7). Therefore, the
physical fit was only for TESS measurements. The physical models of pair B can be seen
in Figure 5.14, and the values of parameters are listed in Table 5.5.

When comparing values of parameters of the physical fit of pair B, we have to take
into account that the fit was done without any stellar spots. Moreover, the exposure times
change, as was mentioned in the analysis of the physical fit of pair A. Even though the
values of parameters are only estimates, they are consistent throughout all datasets.

The physical fit supports the assumption (based on the shape of minima in phase
curves of pair B) that components have significantly different sizes and different effec-
tive temperatures. All parameters would be determined more precisely if we had some
information about the stellar spots.
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Table 5.5: Pair B – parameters of physical model.

Parameter TESS 0 TESS 1 TESS 2 TESS 3 error
R1

a
3.75 3.61 3.61 3.69 0.01

R2

a
0.77 0.55 0.60 0.60 0.01

Mbol1 [mag] 1.165 1.248 1.248 1.198 0.001

Mbol2 [mag] 5.764 6.152 6.234 5.977 0.001

Tef1 [K] 6 800 6 800 6 800 6 800 10

Tef2 [K] 5 200 5 600 5 300 5 600 10

i [°] 88.00 88.00 88.00 88.00 0.01

q 0.08 0.08 0.08 0.08 0.01

e 0.00 0.00 0.00 0.00 0.01
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Figure 5.12: Pair A, TESS data - physical model.
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Figure 5.13: Pair A, ground-based data - physical model.
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Figure 5.14: Pair B, TESS data - physical model.
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5.5 Summary
Available photometric measurements of S1 Peg were analysed. By two independent meth-
ods (Fourier and iteration method), the phase curves of both pairs were obtained. For pair
A, the physical models were calculated for both TESS and ground-based datasets. Due to
the almost integer orbital period and lack of observational nights, the phase curve based
on ground-based observations of pair B is not fully covered. Nevertheless, the change in
brightness is clearly visible.

The timings of minima of both the pairs were determined via SILICUPS software and
then plotted via OCFit. In the O-C diagram of both the pairs, the change in the orbital
period is seen. In the case of pair A, the position of points resembles a parabola open
upwards (the period of pair A is prolonging). On the other hand, the points in the O-C
diagram of pair B are along a downward open parabola (the period of pair B is getting
shorter). The ephemerides of both the pairs were further specified and are compared with
the initial values of ephemerides in Table 5.6.

Even though we lack the spectroscopic data and O-C diagrams of individual pairs do
not cover the whole phase of the sine curve, the O-C diagrams of individual pairs clearly
go in antiphase. This is a sufficient reason to claim that the system S1 Peg is a doubly
eclipsing stellar system.

Table 5.6: Specification of ephemerides of pairs A and B.

Parameter Pair A - original Pair A - new
M0A [HJD] 2459207.13900 2459207.15103 ± 0.00002

PA [d] 0.747245 0.747264 ± 0.000001
Parameter Pair B - original Pair B - new
M0B [HJD] 2458726.71000 2458725.66000 ± 0.00005

PB [d] 2.083732 2.083265 ± 0.000003

76



Conclusion

Three candidates for doubly eclipsing stellar systems were studied in this thesis: ASAS
J073054-1840.7, V0674 Pup, and TYC 2201-991-1. For this analysis, the photometric and
spectroscopic measurements were used.

In the case of ASAS J073054-1840.7 (S2 Pup), the photometric data from the TESS
satellite from years 2019, 2021, 2023, and 2025 were analysed. The ground-based ob-
servations were measured in 2022-2024 in photometric filters V and I at the La Silla
observatory. The contributions of individual pairs were identified by two independent
methods (iteration and Fourier). After removing pair A and B, in the residuals, the peri-
odic changes in the brightness were found in all examined datasets. The period of these
eclipse-like changes in brightness was estimated from the residuals (PC = 10.4 d), and due
to the strong dominance of pair A in this system, no other peaks in the Lomb-Scargle pe-
riodogram were observed. The most probable cause of these periodic changes is a mutual
eclipse in both pairs.

From the results of disentanglement by iteration method, the phase curves were plot-
ted, and from their shape, the basic parameters of individual pairs were estimated. With
this, the initially estimated values of parameters for the physical fits of pairs A and B
were calculated using PHOEBE software. The phase curves of both pairs indicate that
pair A and pair B are detached eclipsing binaries type Algol.

After that, the timings of minima were identified using SILICUPS software, and O-
C diagrams for both pairs were plotted via OCFit. In the O-C diagram of pair A, the
LiTE effect was modeled. Concerning the O-C diagram of pair B, a strong apsidal motion
was modeled. After the elimination of the apsidal motion, no significant changes in the
O-C diagram were observed. The values of ephemerides of pair B were further specified
PB=1.728520 d and M0B=2458508.97300 HJD.

In the spectroscopic measurements, the splitting into four lines is not directly observed.
However, the shift in the position of Hδ (4102 Å) and Hγ (4340 Å) lines when one pair
is in the eclipse is visible.

To prove whether or not the system S2 Pup is a doubly eclipsing system in the
arrangement 2+2 (and its components are gravitationally bound) we would need more
photometric data or more precise spectroscopic measurements.

Secondly, the system V0674 Pup (S1 Pup) was examined. The photometric measure-
ments from the TESS satellite were captured in years 2019, 2023, and 2025. Ground-based
observations were done in 2023-2025 at Los Leones and Boyden observatories.

By the disentanglement of the contribution of individual pairs, the O´Connell effect
in pair A was identified. From the shape of the phase curves, the initial estimates of
parameters of physical fit were determined. Due to the presence of the O´Connell effect,
the physical model of pair A was only approximate. On the other hand, the physical
model of pair B was very consistent throughout the studied datasets.
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Using the determined moments of minima, the O-C diagrams of both pairs were plot-
ted and modeled using the LiTE effect. Moreover, the values of ephemerides were specified
for both the pairs (M0A = 2458497.57501 HJD, PA = 0.602915 d, M0B = 2458511.44000
HJD and PB = 6.522901 d).

The spectroscopic measurements did not show a splitting into four spectral lines, but
in the subtraction of spectra, where pair B is in the same phase and pair A in a different
phase, there is a significant splitting at hydrogen lines Hδ (4102 Å) and Hγ (4340 Å).

Both photometric and spectroscopic measurements prove that there is a gravitational
bond between pair A and pair B, and therefore, S1 Pup is a doubly eclipsing stellar
system in the arrangement of 2+2.

Thirdly, the photometric observations of system TYC 2201-991-1 (S1 Peg) were anal-
ysed. The TESS data were captured in the years 2019, 2022, and 2024. The ground-based
data were measured in 2021-2024.

Via iteration and the Fourier method, the contribution of individual pairs was deter-
mined. From the shape of the phase curves, the initial values of parameters in PHOEBE
were estimated. In the minima of pair B, there is significant mid-eclipse brightening
caused either by stellar spots or dust discs. As we lack information about the size and
number of spots as well as the disc, the physical fit of pair B is only approximate. On the
other hand, the physical fit of pair A corresponds well with the data.

The moments of minima were determined, and O-C diagrams were plotted for both
pairs A and B. The LiTE effect was modeled, and the points in the O-C diagrams resemble
parts of the sine curve that go in the antiphase. Therefore, even though we lack spectro-
scopic measurements for star S1 Peg, the position of points in the O-C diagram proves
that it is indeed a doubly eclipsing stellar system in the arrangement 2+2. Moreover, the
values of ephemerides were specified (M0A = 2459207.15103 HJD, PA = 0.747264 d, M0B

= 2458725.66000 HJD and PB = 2.083265 d) using the O-C diagrams.
In conclusion, out of the three analysed candidates, two were proven to be doubly

eclipsing systems in the arrangement 2+2. More measurements are essential to prove the
gravitational bond in the remaining system.
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Appendices
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Figure 5.15: Pair A - radial velocity curve.
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Figure 5.16: Pair B - radial velocity curve.
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Figure 5.17: S1 Pup - splitting into 4 spectral lines.
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