
MASARYKOVA UNIVERZITA
Přírodovědecká fakulta

Ústav teoretické fyziky a astrofyziky

DIPLOMOVÁ PRÁCE

Brno 2020 Antónia Vojteková

MASARYKOVA UNIVERZITA

Přírodovědecká fakulta

Ústav teoretické fyziky a astrofyziky

REDUKCE ŠUMU ASTRONOMICKÝCH SNÍMKŮ ZA
POMOCÍ NEURONOVÝCH SÍTÍ

DIPLOMOVÁ PRÁCE

ANTÓNIA VOJTEKOVÁ

VEDOUCÍ DIPLOMOVÉ PRÁCE:
Mgr. FILIP HROCH, Ph.D.

BRNO 2020

Bibliografický záznam

Autor: Antónia Vojteková
Přírodovědecká fakulta, Masarykova univerzita
Ústav teoretické fyziky a astrofyziky

Název práce: Redukce šumu astronomických
snímků za pomocí neuronových sítí

Studijní program: Teoretická fyzika a astrofyzika

Obor: Astrofyzika

Vedoucí práce: Mgr. Filip Hroch, Ph.D.

Akademický rok: 2019/2020

Počet stran: ix + 90

Klíčová slova: průzkum, unet, šum
obrázků, neuronová síť

Bibliographic record

Author: Antónia Vojteková
Faculty of Science, Masaryk University
Department of Theoretical Physics and
Astrophysics

Title of Thesis: Neural network noise reduction of astronomical images

Degree Programme: Theoretical physics and astrophysics

Field of study: Astrophysics

Supervisor: Mgr. Filip Hroch, Ph.D.

Academic Year: 2019/2020

Number of Pages: ix + 90

Keywords: survey, image noise, unet,
neural network

ABSTRAKT

Astronomické snímky jsou klíčové pro zkoumání, a porozumění našemu
Vesmíru. Získání jejich dostatečného počtu je časově i přístrojově velmi
náročné. Mohutné optické přístroje, například Hubblův kosmický dalekohled,
přitahují velké množství astronomů. Počty projektů tak až šestkrát převyšují
kapacity tohoto přístroje. Proto hledáme způsoby, jak využít stávající data.

Snímky často obsahují dodatečný šum, který přikládá důležitosti do-
datečnému zpracování a analýze dat. To vede k použití metod strojového
učení ke získání maximálního využití dat ze snímků. Uvažujeme dvě metody
známé jako Astro U-net, a také fully-convolution neural networks, k redukci
šumu a zlepšení vzhledu snímků. Předkládaný přístup odpovídá expozicím s
dvojnásobným časem, minimálním vychýlením a ztrátou informace.

v

ABSTRACT

Astronomical images are essential for exploring and understanding the uni-
verse. To obtain the needed amount of images is time-consuming and
expensive. Deep optical telescopes such Hubble Space Telescope, attracts
vast numbers of astronomers that want to use it, however, the current over-
subscription rate is six-to-one. This means that the amount of observation
time requested is six times larger than the time awarded on the telescope.

Images also often contain additive noise, which makes mandatory denois-
ing step in post-processing data before further data analysis. To maximise
the efficiency and information gain in the post-processing of astronomical
imaging, we decided to turn on machine learning. We propose Astro U-net,
a fully-convolution neural network for image denoising and enhancement.
Our approach can produce images with double observation time and with
minimum bias or information loss.

MUNI
SCI

MASARYKOVA UNIVERZITA
Přírodovědecká fakulta

Kotlářská 2, 611 37 Brno
IČ: 00216224

DIČ: CZ00216224

Zadání
diplomové práce

Akademický rok: 2019/2020

Ústav: Ústav teoretické fyziky a astrofyziky

Studentka: Bc. Antónia Vojteková

Program: Fyzika

Obor: Teoretická fyzika a astrofyzika

Směr: Astrofyzika

Ředitel Ústavu teoretické fyziky a astrofyziky PřF MU Vám ve smyslu Studijního a zkušebního řádu MU určuje diplo-
movou práci s názvem:

Název práce: Redukce šumu astronomických snímků za pomocí neuronových sítí

Název práce anglicky: Neuron network noise reduction of astronomical images

Jazyk závěrečné práce:

Oficiální zadání:
Všudypřítomný fotonový šum je jednou se základních vlastností astronomických snímků. Od něj se odvíjí konstrukce
astronomických přístrojů, návrh pozorovacích programů, a také konečné zpracování snímků. Astronomové proto po
léta hledají způsoby, jak, za pomocí rafinovaných statistických metod, získat ze snímků maximální množství informací.

Jeden z moderně se rozvíjejících směrů je aplikace Bayesovského statistického přístupu v podobně tzv. neuronových
sítí.

Cílem práce je aplikace vlastnoručně sestrojeného algoritmu na vybraná astronomická data. K tomu bude třeba využít
nejnovějších poznatků matematických, fyzikálních a počítačových metod, především pak metod strojového učení.
Vedoucí práce: Mgr. Filip Hroch, Ph.D.

Datum zadání práce: 19. 5. 2020

V Brně dne: 27. 5. 2020

Poďakovanie

I’m a greater believer in luck,
and I find the harder I work the
more I have of it.

Thomas Jefferson

I want to say thank you to my supervisors Filip, Maggie, Ivan, Lyndsay
and Qifeng. Also, I would like to thank ESAC and everybody whom I met
there for a beautiful moment while working on this project. I’m grateful also
for my university, which helped me to grow not just in my career-wise, but
also as a person.
My family and friends also deserve thanks, especially my beloved partner,
Andreas.
For GPU power I would like to thank ESA, ESTEC, project Sandy and to
my university and for data the Hubble space telescope.

Čestné prohlášení

Prohlašuji, že jsem svoji diplomovou práci vypracovala samostatně pod
vedením vedoucího práce s využitím informačních zdrojů, které jsou v práci
citovány.

Brno 25. května 2020
Podpis autora

viii

Contents

1 Introduction 1

2 Method 2
2.1 Neural network . 2
2.2 Convolutional Neural network 3
2.3 How to create the architecture 5

2.3.1 Size of network and data-set matters 5
2.3.2 Activation function . 8
2.3.3 Loss function . 9
2.3.4 Back-propagation . 9

2.4 Architecture . 11
2.5 Training process . 11
2.6 Evaluation metrics . 13

2.6.1 Common metrics . 13
2.6.2 The source detection 14
2.6.3 The intensity distribution 15

3 Hubble space telescope data 18
3.1 Training data . 20

3.1.1 Simulated data . 20
3.1.2 Output data . 24

4 Results 26
4.1 Experiments . 26

4.1.1 Loss function . 26
4.1.2 Number of input channels 26
4.1.3 Segmentation map . 27
4.1.4 Exposure time ratio 27
4.1.5 Activation function . 28

4.2 Network Evaluation . 30
4.2.1 Source detection . 31
4.2.2 Randomness in the flux recovery 43
4.2.3 The intensity Distribution 51
4.2.4 Non-Astronomical image input 72
4.2.5 Real data . 76

ix

4.3 What is inside matters . 80

5 Conclusion and future work 86

Bibliography 88

Introduction

In every field of science, data are the crucial element to make a breakthrough
and to prove the theory. The history of astronomy, we see massive progress,
how we obtain the data and how we process it. An observation of the position
of the stars and planets helped our ancestors to predict the weather, even
when they did not fully understand how and why it works. Once upon the
time time, they were able to make a more sophisticated prediction – these
stars are visible in a specific time of year because the Earth orbits the Sun
and in that part of a year we can expect floods.

Edwin Hubble discovered new galaxies by poring over photographic plates,
but how to identify all galaxies in Hubble Space Telescope archive? Nowadays,
developing state-of-art telescope and cameras is very challenging. With new
technologies, we faced new challenges. The data is no use if we cannot turn
them into knowledge. That is the reason why humankind seeks for help, and
answers, in the new scientific field – machine learning. Machine learning can
help us to sort a big number of data, classify objects on the images (galaxies,
nebulaes), help us with computationally heavy simulations [Rodríguez et al.,
2018, Schawinski et al., 2017, Zingales and Waldmann, 2018], and maybe one
day it can help us solved the most important question about our existence.
We can just hope that answer will be not 42 [Adams, 1995].

Currently, we obtain high-quality data from long observations or from
stacking multiple images with shorter exposure time, to increase the depth
and to reduce noise in the image. This approach helps to increase the signal-
to-noise ratio (SNR); however, it requires long observation and extended
post-processing to select, align and combine the images [Zackay and Ofek,
2017a,b]. In our work, we turn to the machine learning in belief that one can
help with reducing observation time by denoising and enhancing the images.

1

Method

2.1 Neural network

In 1943 the first formal model of a neuron was proposed by McCulloch and
Walter Pitts. Their neuron worked like a logic gate. The neuron acted as
OR, AND, NOT logical operations; thus enable the network to act like a
computer. The model lack essential feature – learnable weight.

In 1950s Frank Rosenblatt introduced a perceptron. In this model, neu-
rons were connected by variable weights: the output is one of the weighted
sums of its input is above threshold, and zero if it is below. The first imple-
mentation of the perceptron was not by software, because it was prolonged
back then. Rosenblatt decided to build his device were weights were imple-
mented by variable resistors, and learning the weights was done by electric
motors that turned the knobs on the resistor [Domingos, 2018].

The fundamental principle of the neural network is usually compared
with the basic block of our brain – neuron. The basic unit of the neural
network is called a neuron. Every neuron n is connected trough weighted
connection wn (Figure 2.1). Input xn is multiplied by weight wn and sum up

z =
∑
n

wnxn + bn, (2.1)

where bn is a bias which helps to improve the performance of the network.
Because in neural networks, one is usually dealing with a large number
of inputs, and weights, it is convenient to write Equation 2.1 in matrix
multiplication form, where bias is inserted into weight (W), and input (X)
matrix on the zero position

z =

. . . wT0 . . .
. . . wT1 . . .
. . . wT2 . . .

...
. . . wTm . . .

x0
x1
x2
...
xm

or

z = WTX. (2.2)

2

2 METHOD

x1 w1

x2 w2 Σ f(z)

Activation
function

y
Output

x3 w3

Weights

z = WTX

Inputs

Figure 2.1: Scheme of the neuron

Next step is application of an activation function on output y = f(z) .
The activation function is an important part of the neural network; without it
the neural network would work like a linear transformation of its input. The
function introduces non-linearity to the network. If we want to create the
neural network we need to put basic units, neurons, in hierarchy structures
– layers. The first layer is called the input layer, it takes our training data.
The following layers are hidden layers. The number of hidden layers, and
neurons in it, are optional. We can choose how big network we want to
create depending on our problem (Subsubsection 2.3.1).

The input layer contains input data. The input information goes to the
first hidden layer where matrix multiplications are done; then the output is
used as an input for the second hidden layer et cetera. The output layer, the
last layer of the network, contains the output information, e.g. our input
belongs to class A or class B.

In the beginning, the neural network weights are initialised randomly to
non-zeros small values. This values must be different; otherwise, training of
the network would fail. During the training of the network, the information
goes from the input layer through hidden layers to the output layer. After
the last layer, a loss function is used to evaluate the performance of the
network. The loss function calculates an error of the output. The last step
is the backpropagation; errors are propagated to the network, and weights
are change [Goodfellow et al., 2016, Raschka, 2015].

2.2 Convolutional Neural network

Convolutional neural network (CNN) is suitable to process image-like data,
which can be represented as a matrix with three dimensions – height × width

3

2 METHOD

Figure 2.2: Example of convolution. Filter slide on the input with stride two
and in every position filter is multiplied with the local regions of the input
and then it sums up and produce output.

× depth. These type of networks use a special mathematics operation called
convolution:

z(t) = x(t) ∗ y(t) =
∫ ∞
−∞

x(τ)y(t− τ)dτ. (2.3)

Like neural network (Subsection 2.1), CNN has the input – input feature
maps, weights – sets of filters and output – output feature maps, where
all of the mentioned are matrices with three dimensions. Sets of filters
contains learnable parameters, which are changed while training. Applying
the convolution input feature map are convoluted with set of filters and
result is output feature map (Figure 2.2):

O = (I ∗ F)(i, j) =
∑
m

∑
n

Im,nFi−m,j−n. (2.4)

An amount of output feature maps is influenced by a number of filters, it
is the same as the number of filters. Both height and width are a result of
spacial dimension of filters, stride and zero-padding. Zero-padding (P) is
boarder around input which contains just zeroes. Stride (S) is a step with
which is filter moved over the input map. Width (W) or height (H) of output
can be calculated as:

Woutput = Winput − FW + 2P
S

+ 1. (2.5)

Convolution layer can reduce spacial size of the input but more often a
pooling layer in employ. Pooling is applied on every feature map separately,

4

2 METHOD

Figure 2.3: Example of transpose convolution operation. This diagram shows
one way how to explain this operation, another explanation is Figure 2.4

preserving the important features in the map. Also, it helps to reduce
computational time.

Another type of layer is a transpose convolution [Dumoulin and Visin,
2016, Odena et al., 2016] sometimes incorrectly named as a deconvolution.
The goal of the layer is to increase the spacial size of input layer – it work as
up-sample layer (Figure 2.3). Wildly known types of up-sample layers are
nearest neighbour and bilinear up-sampling. These algorithms used common
interpolations techniques, which estimates values of newly added pixels.
Advantage of the transpose convolution are learnable filters which estimate
new pixels. Convolution and transpose convolution can be also represented
as matrix multiplication. As we can see at Figure 2.4, the convolution is
matrix multiplication of filter and the input and in transpose convolution
(Figure 2.5), we multiply a transpose filter and the input.

In the case of image-to-image translation networks [Chen et al., 2017,
Zhang et al., 2019] are usually fully-convolutional neural network [Long et al.,
2014] containing convolutional, transpose convolutional (up-sampling) and
pooling layer [Goodfellow et al., 2016].

2.3 How to create the architecture

There is no rule on how to create suitable architecture. Usually, more
types of architecture are created, and then their performances are evaluated.
Sometimes the architecture used for a similar problem can give us a hint on
how to move forward.

2.3.1 Size of network and data-set matters

One of the common problems is overfitting of the neural network. Overfitting
means that the network has good results on training data but bad results
on validation data (data unseen during training). The opposite problem

5

2 METHOD

Figure 2.4: Example of the convolution operation represented as matrix
multiplication. The filter is transformed into the matrix, the input into the
vector and after multiplication, we can transform the output back into the
form of the output feature map.

6

2 METHOD

Figure 2.5: Example of the transpose convolution, similar as in Figure 2.4
operation is represented as matrix multiplication but with transposed filter
matrix – from there name transpose convolution is derived.

7

2 METHOD

is underfitting; the network is not complex enough to capture pattern in
training data and performance is low on both training and validation data.

These problems can be caused by the size of the neural network and
the data-set. Good data-set is fundamental for the training of the neural
network. With small data-set, the big network could be able to memorise it
and cause overfitting. On the other hand, a small network would lack the
ability to fit the data then model would suffer from underfitting. The first
step before training of the network is to answer questions:

• Is data-set suitable for training?

• Is the architecture of the network suitable for data-set?

2.3.2 Activation function

Activation functions bring non-linearity into the neural network. The func-
tion has to be differentiable to learn the weights that connect the neurons
using a gradient-based approach. There are many different types of the
activation function – sigmoid, hyperbolic tangent, ReLU [Nair and Hinton,
2010], LeakyReLU, Parametric ReLU (PReLU) [He et al., 2015], self-gated
activation function (SWISH) [Ramachandran et al., 2017], etc...

In our project, we experimented with four activation functions. Leaky
Rectified Linear Unit (LeakyReLU) is one of the most wildly used activation
function. The advantages over other previous proposed activation function
is that it is an easily optimized, monotonic function, unbounded above and
bounded below. LeakyReLU was designed to avoid zero gradients, it leaks
small negative numbers. Functions are defined as:

f(x) =
{
x, x > 0
ax, x ≤ 0

}
(2.6)

where a is zero for ReLU and small constant number for LeakyReLU. The
difference between LeakyReLU and PReLU is that for PReLU a is not
constant but a trainable parameter. SWISH is non-monotonic function,
which is same as LeakyReLU unbounded above and bounded below. It is
defined as:

f(x) = x · sigmoid(β · x), (2.7)

where β > 0 can be trainable or constant. In our work, it is set to constant
equals to one.

8

2 METHOD

2.3.3 Loss function

In case of supervised learning, the data-set has three parts – the input, the
output and the ground truth. To evaluate performance of the network we
must to define a loss function. One compares the output of the network
with the ground truth. In our work we make experiments with three loss
functions – L1, L2 and perceptual loss [Johnson et al., 2016]:

L1 = 1
N
|y − y′|, (2.8)

L2 = 1
N

(y − y′)2, (2.9)

where N denotes the number of pixels and y, y′ the output image and ground
truth respectively. To calculate perceptual loss, one has to have a pre-trained
neural network (VGG-19). The output of the network is compared not just
with ground truth, but also output and ground truth serves as the input
of the pre-trained network, and there selected feature maps are compared.
This loss can measure high-level perceptual and semantic differences between
images.

2.3.4 Back-propagation

In the beginning, all weights in the neural network are initialised randomly.
To adapt it to our problem we have to train it. During training, information
flows through the network and in the end, the loss function is used to evaluate
the performance of the network. It is important to pick loss function suitable
to the problem. Zhao et al. [2017] discuss the most common loss functions
L1 and L2. After the loss calculation the optimising algorithm is used to
change weights in the network. The basic one is called gradient descent – it
takes the opposite direction of the gradient of the loss function with respect
to weights

wt = wt−1 − α∇L(w), (2.10)

where w denotes weight matrix in current t and previous t− 1 epoch and L
is the loss function and α is a learning rate. The learning rate is one of the
hyper-parameters, which we have to choose before training of the network.
To demonstrate how the backpropagation works, we have neural network
with input as in Figure 2.6. If we want to update w5 we have to calculate:

∂L

∂w5
= ∂L

∂y′
∂y′

∂z

∂z

∂w5
(2.11)

9

2 METHOD

Input
layer

Hidden
layer

Output
layer

x1 z1|h1

z|y

x2 z2|h2

w1

w2. w3

w4

w5

w6

Loss

Figure 2.6: Example of the neural network with one hidden layer.

wt5 = wt−1
5 − α∂L

∂y′
∂y′

∂z

∂z

∂w5
. (2.12)

And in same way to update w1 weight:

∂L

∂w1
= ∂L

∂y′
∂y′

∂z

∂z

∂h1

∂h1
∂z1

∂z1
∂w1

, (2.13)

wt1 = wt−1
1 − α∂L

∂y′
∂y′

∂z

∂z

∂h1

∂h1
∂z1

∂z1
∂w1

(2.14)

where h1 and z1 defined as:

h1 = fA(z1), (2.15)

z1 = x1 · w1 + x2 · w3, (2.16)

fA is an activation function. During years, many different optimising algo-
rithms were proposed and many of them helped to speed-up the training and
obtain better results. This is just a small example of the back-propagation,
note that in bigger networks and with the Keras [Chollet et al., 2015] or
the Tensorflow [Abadi et al., 2015], back-propagation works a bit differently.
Interested reader is encourage to look at the Goodfellow et al. [2016].

10

2 METHOD

2.4 Architecture

In our project, we focused on uniqe type of fully-convolutional neural network
(FCN) – U-net Chen et al. [2018]. As shown in Figure 2.7, we can see that
the network has U-shape. The first part of the network is down-sampling,
and it is build up from blocks with two convolutions with filter size 3 × 3
and step 1. Afterwards, the 2× 2 max-pooling is employed to down-sample
the feature maps twice. Every convolution layer is followed by LeakyReLU
activation function. In the bottom of the network, two convolution layers are
used, and after them, up-sampling starts. Up-sampling layer consists of the
block with single transpose convolution and two regular convolutions. After
each of these operations, the activation function follows. The feature maps
with same spacial size from down-sampling part are concatenated to the new
feature maps from transpose convolution before regular convolution is done.

The input and output shapes are the same 256× 256× 1. Although FCN
has the advantage of being used on any input size during the training, we
decided to use the same size during the training and evaluation. Default
loss function is L1 loss. For optimisation process we choose gradient descent
algorithm based Equation 2.10 Adam optimiser [Kingma and Ba, 2014]:

mt = b1m
t−1 + (1− b1)gt, (2.17)

vt = b2v
t−1 + (1− b2)(gt)2, (2.18)

gt = ∂L

∂wi
, (2.19)

wt = wt−1 − αmt

√
vt + ε

, (2.20)

where m is a first moment vector, v is second moment vector, b1 and b2 are
exponential decay rates for the moment estimates, gt is the gradient of the
lost function, α is the learning rate and ε is a small constant used to avoid
zero division.

2.5 Training process

The length of training is counted in the epochs; one epoch refers to one
cycle through all images from the data-set. In our project, the epoch has
150 iterations. During one iteration random part of each image is chosen
and used as the input for the network. The loss function is calculated, and
weights are updated after every iteration. The number of epochs depends on
loss calculations; if loss is not changed for several epochs, and it is sufficiently

11

2 METHOD

Figure 2.7: U-net architecture. Differently coloured arrows denote operations
between layers. Numbers above represent numbers of feature maps in each
layer. Numbers at the side of the images are width and high of the feature
map. Dashes lines shows which layer from down-sample part are concatenated
with layers in up-sample part. Notice that concatenates layers have the same
width and high.

low, training can be stopped. The training of the neural network can be
summarised as the algorithm:

1. Random weights initialisation.

2. Start of the epoch:

(i) Take an image from the data-set,
(ii) Pick a random position on the image, and crop 256× 256 part of

the image,
(iii) Feed it into the network,
(iv) Calculate the loss function,
(v) Update weights,

12

2 METHOD

(vi) Repeat (i)-(v) over whole data-set.

3. Repeat step 2 until loss converge.

4. Evaluate the network.

5. Win the Nobel prize for it (not you, me!)

2.6 Evaluation metrics

To evaluate the networks, we use several metrics. Standard metrics used to
check the performance of the network employ for denoising problem are the
Peak Signal-to-Noise Ratio (PSNR) and Structural SIMilarity (SSIM, Wang
et al. [2004]). However, for our purpose, we have also to create metrics to
examined the astrophysical properties of the images.

2.6.1 Common metrics

To compare the quality of noisy/denoised image to the original image PSNR
is useful. In case of normalised images,which have the same min and max
values, PSNR is always positive number. In our project, FITS files are used
and in that case, min and max values are not the same for the image. That
can result in negative PSNR. For identical images PSNR is indefinite as we
can see from its definition:

MSE = 1
mn

m−1∑
i=0

n−1∑
j=0

[I(i, j)− I ′(i, j)]2, (2.21)

PSNR = 10 log10

(max(I)2

MSE

)
, (2.22)

wherem×n is size of the images and max(I) is the maximum value of the orig-
inal image. In many cases, also original image contains noise, and therefore
denoised image can have higher quality and PSNR can be misleading.

SSIM is more sophisticated metrics and measure structure(s), contrast
(c) and luminance (l) of the image:

l(x, y) = 2µxµy + c1
µ2
x + µ2

y + c1
(2.23)

c(x, y) = 2σxy + c2
σ2
x + σ2

y + c2
(2.24)

13

2 METHOD

s(x, y) = σxy + c3
σxσy + c3

(2.25)

c1 = (k1L)2c1 = (k2L)2c3 = c2
2 (2.26)

where x and y denotes images (with same size), µ is average and σ is variance
in respect to their index, L is the dynamic range of pixel values and k1 and
k2 are small constant. Then SSIM is defined as:

SSIM(x, y) = [l(x, y)α · c(x, y)β · s(x, y)γ] (2.27)

where α, β, γ are weights and if we set them to one we get:

SSIM(x, y) = (2µxµy + c1)(2σxy + c2)
(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2) . (2.28)

2.6.2 The source detection

To examined astrophysical properties of the images we decided to used the
ratio of the signal (SNR or r), a number of detected stars and their flux.
SNR is a crucial quantity for astronomical observation, it is the ratio between
signal and noise. We calculate mean SNR for Ns stars by calculating their
total flux Fi, flux error Ei and measuring background (B) of image:

r = 1
Ns

N∑
i=1

Fi√
E2
i +B2

, (2.29)

If we want to improve r we can make more images of the same part of the sky
and stack them together. Because noise in the images is random, stacking
will help to reduce it and increase the depth of the image. rN of N stack
images is higher than r1 of a single image by a factor rf :

rf =
√
N = rN

r1
. (2.30)

In our work we are interested in: how many noisy images (N) we would need
to stack together in order to obtain SNR of image generated (rG) by the
network:

rf =
√
N = rG

rN
. (2.31)

Stars are also detected in real, noisy and generated images and then cross-
match tables and divided detected stars into categories:

14

2 METHOD

• True positive – stars detected on both, real image and compared image

• True positive rate – percentage of stars detected on both, real image
and compared image

For True positive stars we compare flux from real FR and noisy/generated
image FC and calculated δF :

δF = FR − FC
FR

. (2.32)

The relative δF is calculated for all stars and then mean value of the error
is used to compare quality of the images. To detect stars Star Extractor or
shortly SExtractor [Bertin and Arnouts, 1996] is used and to cross-match
tables of detected stars STILTS [Taylor, 2006] is employ. Results are different,
depending on parameters. Those are set to values DETECT_MINAREA = 10,
DETECT_THRESH = 7, BACK_SIZE = 64, for rest of ones see link1. SNR is
calculated from FLUX_ISO and corresponding error. To confirm the result for
the best network, we also detected stars with the Munipack [Hroch, 2014].

2.6.3 The intensity distribution

The image intensity distribution is another aspect which is important to
study. To test the distributions different tests are employ:

• Student’s t-test

• Kolmogorov-Smirnov test

• Kullback–Leibler divergence

Student’s t-test

The test measures whether the observed if difference in average values be-
tween the two groups is statistically significant. In our case, the two-sample
t-test for independent samples is utilised. The null hypothesis of the test
is that the means of two samples are equal in given dispersion σ1, σ2. The
t-test starts by computing a test statistic on the two sets of observations.
The t-statistic is defined as:

t = x̄1 − x̄2√
σ2

1
n1

+ σ2
2
n2

. (2.33)

1https://github.com/Sponka/Astro-U-net/tree/master

15

https://github.com/Sponka/Astro-U-net/tree/master

2 METHOD

Figure 2.8: Left: CDF of two Normal distributions. Right: CDF of Normal
and Uniform distribution. Image from Skiena [2017].

.

The x̄i, σi and ni are the mean, standard deviation and size of sample i. The
compared samples in our case have same size n1 = n2 = n and we assume
their standard deviations are also equal. For the t-statistic value there is
the significance level, usually denoted as α. For a desired significance level
and number of degrees of freedom (essentially the sample sizes), the table
entry specifies the value v that the t-statistic t must exceed. If t > v, then
the observation is significant to the α level. The p-value is probability that
|t| could be this large or larger just by chance, for distributions with equal
means. Therefore, a small numerical value of the p-value (0.001or0.01) means
that the observed difference is “very significant” (p-value from Press et al.
[2007])

The Kolmogorov-Smirnov test

The Kolmogorov-Smirnov (KS) test compares the cumulative distribution
functions (CDFs) of the two sample distributions and assesses how similar
they are. The statistic is defined as:

D = max
−∞≤x≤∞

|F1(x)− F2(x)| , (2.34)

where Fi is CDF of the first and second sample respectively. In Figure 2.8 is
the statistic D shown as black arrow. The null hypothesis is rejected when
two distributions differ at the significance level of α as:

D > c(α)
√
n1 + n2
n1n2

, (2.35)

16

2 METHOD

for same sized samples:

D > c(α)
√

2
n
, (2.36)

where the c(α) is defined as:

c(α) =
√
− ln

(
α

2

)
· 1

2 , (2.37)

then we can write:

D >

√
− ln

(
α

2

)
· 1

2 ·
√

2
n
. (2.38)

From Equation 2.38 it is apparent that when we want to confirm the null
hypothesis (eg. α = 0.05) for large sample (eg. n = 1000), the D statistic
have to be low (∼ 0.06).

The Kullback–Leibler divergence

The Kullback–Leibler (KL) divergence, or sometimes called relative entropy,
is a measure how one distribution differ from the other, however, it cannot
be used as distance between the samples. The KL divergence calculate how
much information is lost when we approximate one distribution with another.
When we want to find, which of our approximate distribution fit the target
distribution better, the lower the KL divergence value, the better we have
matched the true distribution with our approximation. It is defined as:

DKL(p||q) =
N∑
i=1

p(xi) · log p(xi)
q(xi)

, (2.39)

where p (original image) is the distribution which is supposed to be approxi-
mated by distribution q (generated/noisy image). It is important to noticed
that KL divergence is not symmetrical, therefore:

DKL(p||q) 6= DKL(q||p). (2.40)

17

Hubble space telescope data

Hubble Space Telescope is bringing us the light from distant worlds for
over 30 years now. In 2009 Wide Field Camera 3 (WFC3) was installed to
replace successful Wide Field Planetary Camera 2 (WFPC2) in the Hubble
Space Telescope (HST). WFC3 has two channels – Ultraviolet-Visible channel
(UVIS) and Infrared channel (IR). UVIS contains together 62 filters in wide-,
medium- and narrow-band. Range goes from near-UV (200 nm) to the
near-IR (1700 nm). WFC3 provide high-resolution, high-sensitive, wide-field
data with a broad wavelength range.

It is not possible to observe IR and UVIS simultaneously during the
observation. The optical and mechanical layout of the instrument is shown
in the schematic diagram in Figure 3.1.

In our work, we focus on the WFC3 instrument UVIS. Instrument field
of view is 162× 162” from 200− 1000nm with a plate scale of 0.040”/pixel.
The channel use mosaic of two 4096× 2051 pixels back-illuminated CCDs
with size approximately 6× 6 cm. There is small gab between CCDs ∼ 31
pixels which is ∼ 1.4”. The exposure time limitation is 0.5seconds. The
depth of the CCD full well is ∼ 70000 electrons in every pixel.

Filters of the UVIS instrument have been chosen to cover a wide variety
of scientific interest as photometry of stellar sources, imagining of nebulae
or colour selection of distant galaxies, et cetera... Also, some of the filters
match the most commonly used filters from WFPC2 and the Sloan Digital
Sky Survey (SDSS). In our work, we pick two wide-band filters (from 12 of
them), a wide V-band filter (F606W) and one of the Johnson-Cousins BVI
set (F555W), where both of them match two of WFPC2 filters. The effective
wavelength of F606W and F555W filters are 530.8 and 588.7 nm and width
of filters are 156.2 and 218.2 nm respectively. We have chosen these filters
because their width is the biggest one from all wide-band filters. The amount
of images captured in filters F606W and F555W is high, and they have
significant overlap, as shown in Figure 3.2. Measurements of properties of
filters are done in a laboratory at the temperature of 20◦C. However, in space,
they are operating at 0◦C so that this difference may cause a wavelength
shift.

As predicted in models of the UVIS detector, UVIS can exhibit different
types of ghost (artefacts) due to reflection. Our data also contains some
ghosts, and it is not in the goal of our work to remove them. For more
information see Dressel and Gennaro [2018].

18

3 HUBBLE SPACE TELESCOPE DATA

Figure 3.1: Image shows a schematic diagram of the instrument’s optical and
mechanical layout. From the HST Optical Telescope Assembly (OTA) light
is going to WFC3 pick-off mirror (POM) where is reflect to the instrument.
With a channel-select mechanism (CSM) it can be decide if light eill go into
UVIS channel or IR channel.

Figure 3.2: Throughput of the WFC3 UVIS wide-band filters, our target are
optical filters are F555W (full line) and F606W (dotted line).

19

3 HUBBLE SPACE TELESCOPE DATA

Figure 3.3: Exposure time of ground truth images in the training and the
validation data-set.

3.1 Training data

For training of ASTRO U-net, we went by hand trough the WFC3 F555W
and F606W data and picked 156 of them – 150 for training the network and
6 to evaluate it. The data contains various astronomical objects like nebulae,
galaxies, stars, clusters, etc. Images have different exposure time, as shown in
Figure 3.3. These real data are used as ground truth for the network, images
which are compared with the output of the network. The network input are
simulated data – real data with additional noise (Subsubsection 3.1.1). To
avoid loss of the information, we used FITS files for the training, and all
images are in electrons/second. To visualise images in this work, we use
ZScaleinterval and Linear stretch.

3.1.1 Simulated data

Astronomical images are degraded by different types of noise as instrumental
noise (dark noise, read-out-noise) or photon noise. The training data consist
of two types of images:

• Input data – short exposure images with added noise

• Ground truth – long exposure images which are used for comparison
of the network output images to calculate the loss function

Photons emitted from any incoherent source have an inherent statistical
variation and are distributed according to a Poisson distribution. The noise

20

3 HUBBLE SPACE TELESCOPE DATA

associated with the number of photons and randomness of its arrival to the
detector is photon noise (Nphoton) – it is directly dependent on the number
of photons recorded by the measuring device. Dark noise (Ndark) is caused
by thermally excited electrons of the CCD, and it is strongly correlated with
temperature and independent from light photons captured by the detector.
Because of radiation damage from the Earth radiation belts, the dark current
(DC) is slowly increasing every year by ∼ 0.5e−/hr/pix/year. In 2016 value
of the dark current of UVIS detector was 7e−/hr/pixel. During the read-out,
the information from CCD chip captured electrons are converted into a
voltage by amplifiers (UVIS has four amplifiers). This electronic device
brings read-out-noise (RON) into images, and its value is ∼three electrons.
Both dark and read-out noise has Poisson distribution P (µ).

A common long exposure time image is sum Ilong of detected photons
(S) and noise (N , in electrons):

Ilong = S +N. (3.1)

The noise consist of many different types of noise, and in our simulation we
will work with three types of noises mentioned above:

Nphoton = P (
√
S), (3.2)

Ndark = P (
√
IDC · t), (3.3)

Nron = N (0, σron) , (3.4)

where IDC is a dark current and t is the exposure time of the image. The
total noise is:

Ntotal = Nphoton+Ndark+Nron = Ishort+P (
√
Ishort)+P (

√
IDC · t)+N (0, σron) .

(3.5)
To create short exposure time image Ishort we divide long exposure one by
exposure time ratio (r), which is ratio between exposure time of Ilong and
Ishort:

Ishort = Ilong/r. (3.6)

In order to obtain the input images we add total noise into short exposure
image:

Iinput = Ishort +Nphoton +Ndark +Nron. (3.7)

To create input data, also called noisy images or images with artificial noise
the Equation 3.1 – Equation 3.7 are use to built up a code. The part of the
python code, which is used to produce simulated data noisy images is:

21

3 HUBBLE SPACE TELESCOPE DATA

"""exp_time - exposure time of the original image
ron - read out noise - from the Hubble handbook
dc - dark current - from the Hubble handbook"""

ratio = 2 # exposure time ratio
width, height = original_image.shape[0:2]
short = original_image/ratio
Dark noise
DN = np.random.poisson(np.sqrt(dc*exp_time/ratio), (width, height))
Read-out noise
RON = np.random.poisson(ron, (width, height))
Photon noise
SN = np.random.poisson(np.sqrt(np.abs(short))
noisy_image = (short + SN + RON + DN)

The code to download the data-set and produce simulated data is available
in the Appendix. We are fully aware of the differences between simulated
data and real data. We chose this option because, with the Hubble archive,
it is not straightforward to fulfil our requirements for training data. To
demonstrate the difference between real data and simulated, we picked two
images of Seyfert 2 Galaxy ESO 55-2 with 20 seconds exposure time and
combined them to obtain one longer exposure time image. As we can see in
the Figure 3.4, the pixel distribution of the shorter image is wider than the
distribution of longer exposure time image. Distribution of simulated images
with a ratio more that one is also more extensive.

22

3 HUBBLE SPACE TELESCOPE DATA

Figure 3.4: Pixel distribution of part of the image which contains the object

23

3 HUBBLE SPACE TELESCOPE DATA

Figure 3.5: Pixel distribution from same region as at Figure 3.4. The
distribution of simulated image is shifted by the difference of mean of both
distribution.

3.1.2 Output data

The network input has size 256× 256, but all of our images exceed this input
size. To create the output image, we employ the mosaic approach. First, the
zero-padding is added to the image – to ensure, that every part of the image
is generated same times. Then, image is cut to the pieces as – at the position
i, j the cut with kernel the size 256× 256 and then the kernel moves to the
position i+ 32, j + 32 and the same sized cut is done, et cetera. (Figure 3.7).
After that, all cuts serves as the input for the network and then return into
the original position in a new array, sum up and average. This method does
not change the resulting image significantly, although it helps to smooth
check-board artefact created by the transpose convolutional layer [Odena
et al., 2016].

24

3 HUBBLE SPACE TELESCOPE DATA

Figure 3.6: Pixel distribution from same region as at Figure 3.4. The
distribution of simulated image is shifted by the difference of mean and both
distribution of simulated and short exposure image are scaled by square root
of ratio two. As expected distribution almost completely overlap.

Figure 3.7: The mosaic method to create new image. After every cut, the
kernel is moved 32 pixels as shown on the image.

25

Results

4.1 Experiments

We trained over 30 networks with different parameters to find the best ones
during our study. In the following section, different experiments are described,
and for the best network, deeper analysis is made. In every experiment, we
used architecture from Subsection 2.4, input size of the images were 256×256
because of computational cost. The results of the experiments can be seen
in Table 4.1. The architecture is inspired by [Chen et al., 2018] and written
in Tensorflow [Abadi et al., 2015]. The networks are trained on the NVIDIA
GTX1080 Ti of project Sandy in ESTEC.

4.1.1 Loss function

Subsubsection 2.3.3 describes different types of loss functions – L1, L2 and
perceptual loss. Results of experiments showed that L2 and perceptual loss
is not suitable for our task, they do not improve the flux error of the network.
Moreover, L2 loss can easily get stuck in a local minima, as shown in Zhao
et al. [2017]. They also showed that L1 loss reaches a local minima more
efficiently. Therefore L1 is selected as the default loss function for every
other experiment. This experiment (Experiment 1) achieved 84% of True
positive rate, flux error 16%, PSNR 18 dB and SNR is 1.11.

We decided, after many different experiments, to make one more loss
function experiment (Experiment 6) – we combine L1 loss with Kullback-
Leibler divergence. Results showed that KL divergence does not improve the
performance of the network.

4.1.2 Number of input channels

As is mentioned in the introduction of this chapter, the size of the input
images is 256×256. However, we want to experiment with the third dimension
– the number of the channels. From all filters of the Hubble Space Telescope
two are chosen – F555W and F606, and we want to see if the results will
change if we put these filters in different channels. For F555W the first
channel is used and for F606W the second one. We find that there is no
difference in this approach and therefore, we do not consider separation of
filters beneficial for our project.

26

4 RESULTS

Figure 4.1: Example of segmentation map. The image on the right site is
the segmentation map of the image on the left side. The segmentation map
was created by star extractor.

4.1.3 Segmentation map

In Experiment 2, we have added the segmentation map of the input/output
image into the second channel of the input/output. The segmentation map
comprises from sources separated from sky background. We obtain these
maps from Star Extractor. The main idea is to assign more importance to
the object in the segmentation map because we want to recover the detected
object more accurately. The segmentation maps helped to improve result of
True positives – 98.9%, flux error – 3.9, PSNR – 20.3 dB and SNR – 1.58.

4.1.4 Exposure time ratio

In these sets of experiments, we are interested in how adding exposure time
ratio into network change the result. Hence we try different options: adding
ratio into the bottom of the network or multiplying images by it.

In Experiment 3, the network has input with image and segmentation
maps in separated channels and one channel in the output. The exposure
time ratio is added into the bottom of the U-net, and it is trained for 4000
epochs. We train the same network without segmentation map – Experiment
4. The flux error of Experiment 4 is slightly higher, and we have less true
positives; PSNR was the same although the training time is shorter – 3000
epochs.

In Experiment 5, we multiplied the input image and the segmentation
map by exposure time ratio. The network is trained for 5000 epochs, and
in comparison with previous experiments (3,4), the network is trained for
more epochs, and it has no significant impact on the results. After this, we
conclude that in the next experiments, the exposure time ratio will be added
at the bottom of the network.

Next to investigate are multiple exposure time ratios – we trained the

27

4 RESULTS

networks with higher exposure time ratios. We used set up from Experiment
4, and during the training of Experiment 7, the ratio is randomly chosen
from 2 to 5, this means, that during the random training crop with random
exposure time is feed into the network. In contrast with Experiment 8, the
ratio was not selected randomly. During one iteration, the network sees the
same crop from the image with all ratios from 2 to 5. After every ratio, the
weights of the network are updated. This approach gives us better results
than one with randomly selected ratios.

All the following experiments are done with ratio two added into the
bottom of the network.

4.1.5 Activation function

As a baseline for our project Leaky Rectified Linear Unit (LeakyReLU)
activation function is chosen; however, we want to try what market with
activation functions offer. All previous experiments are done with LeakyReLU
one. In the following experiments, settings from Experiment 4 are employ.
Experiment 9 – ReLU activation function results in higher flux error then
with LeakyReLU. Conversely, ParametricReLU (PReLU) in Experiment 10
improved flux error and SNR, though the network is trained longer, for 4000
epochs. Also, the PReLU activation function is adding almost 3000 trainable
parameters. The parameter a is high in the first layers and some of the last
layers and in every other, it is near zero (Figure 4.2, Table 4.2). In the last,
11th experiment, the self-gated activation function (SWISH) is used and it
helps to improve the SNR and the flux error. All activation functions are
describe in Subsubsection 2.3.2.

28

4 RESULTS

True positive Flux
Experiment rate [%] error [%] PSNR [dB] SNRf

1 84.0 16.9 18.0 1.11
2 98.9 3.9 20.3 1.58
3 99.0 3.5 20.4 1.60
4 98.9 3.8 20.3 1.60
5 98.8 3.3 20.4 1.59
6 97.9 5.0 19.1 1.51
7 98.7 6.9 18.8 1.57
8 98.4 4.9 19.4 1.60
9 98.9 4.0 20.4 1.56
10 99.0 3.2 20.3 1.60
11 99.0 2.8 20.1 1.65

Table 4.1: Comparison of the networks experiments. The flux is measured
by the Star Extractor.

Figure 4.2: Trainable a parameter from ParametricReLU activation function

29

4 RESULTS

Number of Median Mean
Layer feature maps [·10−3] [·10−3]
1 32 318.18 292.03
2 32 98.91 151.51
3 64 −0.24 −1.23
4 64 3.82 −4.39
5 128 0.16 −0.52
6 128 0.14 4.5
7 256 −1.18 −6.5
8 256 0.12 5.29
9 512 −0.3 -3.51
10 512 0.26 3.09
11 256 −1.15 −1.54
12 256 0.84 5.89
13 128 1.55 16.36
14 128 4.62 17.93
15 64 2.5 10.8
16 64 1.21 7.5
17 32 85.54 117.55
18 32 −2.79 6.52

Table 4.2: In experiment 10, the parametric ReLU activation function is
employ. The table shows information about the trainable parameter a in
different layers.

4.2 Network Evaluation

As the baseline network, we choose one with the best results presented as
Experiment 4. The loss function of the network is L1 loss, it has LeakyReLU
activation, and the exposure time ratio is added into the bottom of the
network. The network is trained for 37 hours or 3000 epochs on NVIDIA
GTX1080 Ti. It takes 30 seconds to generate an image with size 1200× 1400
on the GPU. Before we start the evaluation of the network, we would like to
remind our readers about the meaning of used terms:

• Ground truth, original image, comparison image – refers to an image
which is downloaded from HST archive. This type image also serves
as a comparison for our test – the goal of the network is to generate a
similar image.

• Input image, noisy image, the image with noise, simulated image – this

30

4 RESULTS

image is the input for the network. It is created from the original
image by adding artificial noise (Subsubsection 3.1.1)– it is supposed
to simulate image with short exposure time

• Generated image, output image – image generated (created) by the
network

4.2.1 Source detection

One of the most crucial evaluation techniques used is a comparison of star
flux. The original images are compared with both the noisy and generated
ones. For the evaluation, the Star extractor [Bertin and Arnouts, 1996] and
Munipack [Hroch, 2014] are employed.

The Table 4.4 and 4.5 show tables containing information about measured
flux from 22 tested generated and noisy images respectively, where stars are
detected by the Munipack. The Figure 4.4 and Figure 4.8 show the flux error
versus the star flux from image generated by the network. Stars are detected

Figure 4.3: Network 1 training loss

31

4 RESULTS

Image Aperture Mean Median True positive
Method type size [pixel] error [%] error [%] rate [%]
Munipack G 1 3.6 1.7 92.1
Munipack N 1 3.8 3.0 64.9

Star Extractor G 1 6.5 4.7 95.4
Star Extractor N 1 6.0 3.9 57.8
Star Extractor G 10 3.5 2.0 95.4
Star Extractor N 10 4.8 4.1 57.8

Table 4.3: The network experiments results. Image type can be G for the
generated image or N for the noisy image. The mean and median error (star
flux error) are mean of all tested images.

at the images shown in the Figure 4.6 and Figure 4.10 respectively.

The Table 4.6 and 4.7 show 9 tested generated and noisy images respec-
tively by Star Extractor. Tables contains flux error for apertures with size 1
and 10 pixels, where first error correspond to size 1 and the second error to
size of aperture 10. The Figure 4.7 and Figure 4.7 shows the detected stars
with the star flux error denoted by the coloured circle.

The Table 4.4 and Table 4.6 show the result of measured flux is generated
by Munipack and Star Extractor. The mean results for both methods are in
Table 4.3. We find that error for different sized apertures varies; the median
error is 1.7% and 4.7% for Munipack and Star Extractor respectively for
aperture with size 1 pixel and 2.0% for Star Extractor with aperture size 10
pixels. The mean (median) error can be higher for the generated images than
for the noisy images in Table 4.5, because the faint stars have the highest
error as seen in Figure 4.5 and 4.9 are not detected. For both methods, it
is obvious that there is a lack of detection in noisy images for lower fluxes.
The true positive rate is higher for generated images by both star detection
methods.

This test shows that the network is able to recover stars with low star
flux error compared to the original images. Moreover, the number of detected
stars is higher by ∼ 30% than on the noisy images. Note, that to detect
stars in all type of the images same sky threshold is used. This suggests that
the image noise is lower in the generated images. If we decrease or increase
the threshold, the results will vary.

32

4 RESULTS

Mean Median True True positive
Image error [%] error [%] positive rate [%]

1 1.4 0.6 265 97.4
2 2.1 1.1 252 96.2
3 6.1 2.9 171 91.0
4 8.9 6.3 158 70.5
5 9.3 4.2 224 68.3
6 5.8 2.0 618 97.6
7 4.7 1.7 728 96.8
8 4.6 1.5 2201 97.6
9 3.9 1.5 2606 94.8
10 4.5 2.9 15835 98.8
11 1.0 0.4 62 95.4
12 4.9 1.5 7146 97.8
13 2.3 1.1 17234 98.9
14 2.1 0.6 156 85.2
15 0.6 0.3 6733 97.5
16 2.7 1.1 615 91.4
17 1.2 0.6 44 91.7
18 7.9 2.7 688 82.1
19 2.1 1.3 2119 96.2
20 1.5 0.8 2366 96.9
21 1.0 0.5 4892 99.1
22 1.1 0.7 59 92.2

Mean 3.6 1.7 2960 92.1

Table 4.4: The results of 22 generated images from the validation dataset.
Stars are detected, and flux is measured by Munipack. For cross-match of
tables, the Topcat is used, and the maximum positional difference is 1 pixel.
The mean/median error refers to star flux error.

33

4 RESULTS

Mean Median True True positive
Image error [%] error [%] positive rate [%]

1 3.3 2.5 238 87.5
2 3.2 2.3 202 77.1
3 4.7 3.6 125 66.5
4 4.2 3.6 38 17.0
5 5.0 3.9 100 30.5
6 5.8 4.4 463 73.1
7 5.5 4.3 547 72.7
8 4.7 3.7 1643 72.9
9 4.7 3.6 1975 71.9
10 5.8 4.6 10981 68.5
11 1.6 1.4 62 95.4
12 5.0 3.9 5790 79.2
13 4.7 3.6 15554 89.2
14 2.9 1.9 133 72.7
15 1.5 1.4 5103 73.9
16 2.9 1.8 434 64.5
17 1.4 1.4 29 60.4
18 4.8 3.3 373 44.5
19 3.9 3.0 858 38.9
20 3.2 2.6 1060 43.4
21 2.4 2.2 3109 63.0
22 2.5 2.1 41 64.1

Mean 3.8 3.0 2220 64.9

Table 4.5: The results for 22 noisy images. Stars are detected, and flux is
measured by Munipack. For cross-match of tables, the Topcat is used, and
the maximum positional difference is 1 pixel. In comparison with Table 4.4
we can see, that true positive rate is always lower, that signify Munipack
detect fewer stars on the noisy images. The mean/median error refers to
star flux error.

34

4 RESULTS

Aperture 1 pixel Aperture 10 pixels
Mean Median Mean Median True True

Image error [%] error [%] error [%] error [%] positive positive rate [%]
1 4.9 3.6 2.1 0.9 195 95.1
2 4.2 3.2 1.5 0.7 161 99.4
3 7.0 5.2 4.5 1.7 78 94.0
4 10.1 8.6 8.6 6.9 76 78.4
5 7.6 5.0 5.9 2.8 78 95.1
6 5.4 4.2 2.4 1.3 379 99.5
7 5.3 4.0 2.2 1.2 464 99.4
8 5.2 4.2 2.2 1.2 1370 99.0
9 5.1 3.9 2.3 1.1 1532 98.3

Mean 6.1 4.7 3.5 2.0 481 95.4

Table 4.6: The flux error of generated images detected by Star Extractor.
The images correspond to the first nine from the Table 4.4. The flux is
measured with aperture size 1 and 10, which corresponds to the first and
the second mean and median errors, respectively. The size of the aperture
does not influence the number of detection. The mean/median error refers
to star flux error.

35

4 RESULTS

Aperture 1 pixel Aperture 10 pixels
Mean Median Mean Median True True

Image error [%] error [%] error [%] error [%] positive positive rate [%]
1 5.0 3.8 3.0 2.5 143 69.8
2 4.4 3.1 3.4 3.0 123 75.9
3 6.4 3.6 4.5 3.8 42 50.6
4 8.8 4.9 6.8 5.1 20 20.6
5 7.0 4.6 4.2 3.7 38 46.3
6 5.2 3.9 5.4 4.9 230 60.4
7 5.7 3.8 5.8 5.3 302 64.7
8 5.7 3.8 5.3 4.4 895 64.7
9 5.7 3.6 4.9 4.3 1049 67.3

Mean 6.0 3.9 4.8 4.1 316 57.8

Table 4.7: The flux error of noisy images detected by Star Extractor. The
images correspond to the first nine from the Table 4.5. The flux is measured
with aperture size 1 and 10, which corresponds to the first and the second
mean and median errors, respectively. The size of the aperture does not
influence the number of detection. The mean/median error refers to star
flux error.

36

4 RESULTS

Figure 4.4: Flux error versus star flux for the second generated image in the
Table 4.4; the image is generated by the network. Stars are detected, and
flux is estimated by Munipack. The stars detection are from the generated
image shown in the Figure 4.6.

Figure 4.5: Flux error versus star flux for the second image with artificial noise
from Table 4.5. Stars are detected, and flux is estimated by Munipack. In
comparison with the same image generated by the neural network (Figure 4.4),
it is apparent that with the network, we have more defections in the lower
star flux region.

37

4 RESULTS

Figure 4.6: Stars detection on the second image from Table 4.4 for Munipack
detection. The mean error is 1.4%, the median error is 0.6%, and the true
positive rate is 97.4%. The green dotted circles are stars detected on the
original image but missed on the generated; the blue dashes circles are stars
detected just on the generated image. The full circles represent true positive
stars, and the colour of the circle indicates flux error. In comparison with the
same image with detection done by Star Extractor Figure 4.7, it is visible,
that Munipack is able to detect (and cross-match) more sources.

38

4 RESULTS

Figure 4.7: Stars detection on the second image from Table 4.6 for Star
Extractor detection. The results for aperture 1 are the mean error 4.2%, the
median error 3.2% and for the aperture 10 the mean error 1.5%, the median
error 0.7% and the true positive rate for both apertures is 99.4%. The green
dotted circles are stars detected on the original image but missed on the
generated; the blue dashes circles are stars detected just on the generated
image. The full circles represent true positive stars, and the colour of the
circle indicates flux error. Many sources are not detected on the original
image; on the other hand, they were detected on the generated image. If we
compare those sources with sources detected at Figure 4.6, we observe that
Munipack does not miss most of them.

39

4 RESULTS

Figure 4.8: Flux error versus star flux for 5. generated image from Table 4.4.
Stars are detected, and flux is estimated by Munipack. The generated image
is shown in the Figure 4.6. The stars detection are from the generated image
shown in the Figure 4.10

Figure 4.9: Flux error vs star flux for 5. noisy image from Table 4.5. In
comparison with Figure 4.8 it is visible that there are much fewer detection
of stars with flux smaller than 0.25. Stars are detected and flux is estimated
by Munipack.

40

4 RESULTS

Figure 4.10: Stars detection on the 5. image from Table 4.4 for Munipack
detection. The mean error is 9.3%, the median error is 4.2%, and the true
positive rate is 68.3%. The green dotted circles are stars detected on the
original image but missed on the generated; the blue dashes circles are stars
detected just on the generated image. The full circles represent true positive
stars, and the colour of the circle indicates flux error. It is apparent that
Munipack detected a lot of false sources/cosmic rays on the original image
(green circles). At the generated image there are a lot of false detection on
the edge of the image (blue circles).

41

4 RESULTS

Figure 4.11: Stars detection on the 5. image from Table 4.6 for Star Extractor
detection. The results for aperture 1 are the mean error 7.6%, the median
error 5.0% and for the aperture 10 the mean error 5.9%, the median error
2.8% and the true positive rate is 95.1%. The green dotted circles are stars
detected on the original image but missed on the generated; the blue dashes
circles are stars detected just on the generated image. The full circles denote
true positive stars, and the colour of the circle indicates flux error.

42

4 RESULTS

4.2.2 Randomness in the flux recovery

There is an important question: Is the flux of the star recovered randomly?
Unfortunately, the answer to this question is not 42. Luckily experiment
to answer the question is simpler than the Deep Thought experiment. The
experiment is performed on two images, and it goes as:

1. Pick small sub-window of image

2. Add simulated noise

3. Feed the image with noise to the network

4. Use Star Extractor to estimate the star flux

5. Repeat steps 2-4 ten times

6. Compare fluxes of the same stars in different generated images

The image is shown in Figure 4.12 was feed into the network ten times, every
time with different random simulated noise. In Figure 4.13 we can see error
of 20 stars on ten images. Star error was calculated by Equation 2.32. The
stars with lower fluxes have more variable error than stars with high fluxes;
a mean star flux error is ∼ 3.3%. The Figure 4.15 and Figure 4.16 shows
spread of flux from generated image around original flux value. The grey
dashed line shows the error estimated by Star Extractor. All generated stars
are within the error bars.

The second studied image in Figure 4.17 shows the same trend as the
first one. Low star fluxes are more variable than the stars with higher flux,
although they do not exceed the error assign by Star Extractor. The mean
star flux error is ∼ 2.1%. From Figure 4.19 and Figure 4.20 one can observe
that higher fluxes are less variable, the spread around the original flux is
smaller.

This experiment shows that there is some variability within flux recovery;
nevertheless, the variability is still in boundaries of the estimates star flux
error from the original image.

Near edges stars can have worse results. This can be caused by two
factors: the training data contained near-edge artefacts, which the network
could learn or the Star Extractor has a problem during the detection.

43

4 RESULTS

Figure 4.12: Sub-window image contains twenty stars. The star number is
associated with star fluxes in Figure 4.13

Figure 4.13: The star flux error of twenty stars from ten times simulated
image Figure 4.12. The star error was calculated according Equation 2.32.
Same stars have similar colour and shape of the marker. In legend flux
correspond to the flux of star from original image.

44

4 RESULTS

Figure 4.14: Munipack star detection. In comparison with Figure 4.12 we see,
that Munipack detected more stars than Star Extractor. The Star Extractor
is struggling to distinguish between stars 17 and 19 (star 15 in Figure 4.12)
and it has higher error. All of detected stars are within the estimated error
of Munipack.

45

4 RESULTS

Figure 4.15: Star flux of 6 stars estimated by Star Extractor. Stars correspond
to first six stars in Figure 4.13.

46

4 RESULTS

Figure 4.16: Star flux of 6 stars estimated by Star Extractor. Stars correspond
to 8.− 13. star in Figure 4.13.

47

4 RESULTS

Figure 4.17: Sub-window image contains sixteen stars. The star number is
associated with star fluxes in Figure 4.13

Figure 4.18: The star flux error of sixteen stars from ten times simulated
image Figure 4.17. The star error was calculated according Equation 2.32.
Same stars have similar colour and shape of the marker. In legend flux
correspond to the flux of star from original image.

48

4 RESULTS

Figure 4.19: Star flux of 6 stars estimated by Star Extractor. Stars correspond
to first six stars in Figure 4.18.

49

4 RESULTS

Figure 4.20: Star flux of 6 stars estimated by Star Extractor. Stars correspond
to 11.− 16. star in Figure 4.18.

50

4 RESULTS

4.2.3 The intensity Distribution

The distribution is another important feature which we want to examined to
evaluate the network. As said in the Press et al. [2007]: "Can we disprove, to a
certain required level of significance, the null hypothesis that two data sets are
drawn from the same population distribution function?" In our case, we will
try to prove the null hypothesis that our samples are consistent with a single
distribution function. For this, we choose to apply three statistical tests
– Student’s t-test, Kolmogorov–Smirnov (KS) test and Kullback–Leibler
(KL) divergence. To addition to the test, the histograms (Figure 4.21)
and the cumulative distribution functions (CDF, Figure 4.22, Figure 4.26,
Figure 4.28...) are plot. We use two approaches to analyse the images:

• Statistic on big images with mixed sources and background

• Statistic on small sub-windows

Statistic for whole images

The null hypothesis of the t-test is that two distributions have the same
mean. The mean t-test statistic for the generated images is −0.91, and the
mean p-value is 0.49 and for the noisy images −181.82 and 0 respectively.
The null hypothesis in case of noisy images can be disproved, but in the case
of the generated image, we proved the null hypothesis. The result shows
that the mean value of the generated images is closer to the mean of the
original images, which can also be seen in Table 4.10.

The KS-test is used to find out if two data samples come from the same
distribution. The KS-statistic is done on the normalised images:

Inorm = I − Ī
σ

, (4.1)

where I denotes image Ī image mean and σ its standard deviation. In
Table 4.8 and Table 4.9 we can see that mean KS-statistic is smaller for the
generated images 0.10 than for the images with noise 0.20, which suggest that
the cumulative distributions function of the generated and original images
are more similar.

The experiments with CDF show the following trend: more noise we add
to the image the slope of the CDF line decrease, the CDF is wider and more
shifted to the higher values. This is also seen in Figure 4.22 and on the
histograms shown in Figure 4.21 which follows same trend. The images with
noise are always shifted and more extended in comparison with the original

51

4 RESULTS

T-test T-test KS-test KL divergence
Image statistic p-value statistic 10−7

1 -0.36 0.72 0.02 9.93
2 -0.62 0.54 0.03 3.38
3 -1.97 0.05 0.12 1.91
4 -0.93 0.35 0.15 -9.18
5 -2.64 0.01 0.12 2.92
6 0.04 0.97 0.16 2.53
7 -0.16 0.88 0.15 7.80
8 -0.90 0.37 0.11 2.02
9 -0.61 0.54 0.10 5.95

Mean -0.91 0.49 0.10 3.03

Table 4.8: The summary of the t-test, KS-test and KL divergence for the
generated images. The p-value of the KS-test is not shown because despite
the statistic is close to zero, the p-value was zero for all images.

images. Conversely, the CDF of the generated images shows that slope of
the line and the value range is in good match with the original one which
signifies the noise reduction. The Figure 4.23 shows normalised CDF and it’s
residuals. We observe that the residuals of the generated images are close to
zero in the range of 0.2− 0.8, that implies it is a good fit.

The KL-divergence reveals that approximate the original distribution by
generated image cost less loss of information 3.03 than approximation by the
noisy image 11.21. Nevertheless, we can see that with the generated image,
there is some loss of information.

52

4 RESULTS

Figure 4.21: Example of the distribution for the six first images from Table 4.8
and 4.9

53

4 RESULTS

Figure 4.22: Cumulative distribution function for first three images from
Table 4.8 and 4.9 and Figure 4.21. The figures the left correspond to CDF
of the original, noisy and generated image and the right ones are CDF of the
original and generated images.

54

4 RESULTS

Figure 4.23: The left figure shows normalised CDF and right figure the
residual of the of the CDF from Figure 4.22. The CDF correspond to the
first three images from Table 4.8 (Generated images), 4.9 (Noisy images)
and Figure 4.21.

55

4 RESULTS

T-test T-test KS-Test KL divergence
Image statistic p-value statistic 10−7

1 -40.76 0.0 0.10 15.88
2 -88.19 0.0 0.13 12.13
3 -192.54 0.0 0.24 4.37
4 -625.25 0.0 0.22 -4.78
5 -217.47 0.0 0.24 5.60
6 -183.07 0.0 0.22 19.38
7 -103.23 0.0 0.22 22.63
8 -114.3 0.0 0.21 11.84
9 -71.55 0.0 0.21 13.84

Mean -181.82 0.0 0.20 11.21

Table 4.9: The summary of the t-test, KS-test and KL divergence for the
noisy images. The p-value of the KS-test is not shown because despite the
statistic is close to zero; the p-value was zero for all images.

Mean Median
Image Original Generated Noise Original Generated Noise

1 0.1522 0.1534 0.2910 0.0887 0.0890 0.2291
2 0.1020 0.1030 0.2394 0.0789 0.0793 0.2173
3 0.0322 0.0331 0.1213 0.0290 0.0299 0.1181
4 0.0335 0.0336 0.1313 0.0322 0.0324 0.1300
5 0.0327 0.0337 0.1215 0.0296 0.0307 0.1185
6 0.0482 0.0482 0.2018 0.0316 0.0310 0.1852
7 0.0564 0.0566 0.2102 0.0320 0.0315 0.1858
8 0.0641 0.0651 0.1929 0.0287 0.0290 0.1580
9 0.0734 0.0745 0.2025 0.0294 0.0297 0.1590

Table 4.10: The summary of mean, median and standard deviation of the
original, generated and noisy images.

56

4 RESULTS

Statistic for image sub-windows

In Table 4.11 ten different areas from image Figure 4.24 are studied – five
containing source and five pure background areas. As it is obvious from
Table 4.11 that the T-statistic is in every examined area better for generated
images than for the noisy ones (Table 4.12). This indicates that mean of
the generated images is close to the original images. On the other hand, we
notice the background areas have significantly poorer results. The generated
images have roughly 4 times lower KL-Divergence than the noisy ones; the
KS-statistic is approximately similar in both cases.

The pixel distribution in Figure 4.25 confirms that the generated images
fit the original better than the noisy images. However, there is still space for
improvement. From the CDF of sub-windows containing source shown in
Figure 4.26, we observed that the network could reconstruct the mean value
of the original image well. Nevertheless, the CDFs of the generated images
are comparatively narrower than the original ones. This mean, that noise is in
generated image reduced, images are less noisy than the original images. The
Figure 4.27 show the normalised CDF from previously mentioned plot and
the residuals. From residual, we observe that there are minimal variations
between the original and generated image.

The Figure 4.28 shows the CDFs for the sub-window of the background.
It is evident, that background sub-windows across the original image shares
similar features; they have almost similar CDFs. The same goes for the
sub-windows from the generated image, although the shifts of mean values are
visible and the slope of the line is higher, which indicates the noise reduction.
After normalisation, shown in Figure 4.29 we see, that the generated data
fits the original well, the residuals show small variation around zero.

The Figure 4.30 display second examined image of the galaxy NGC 3344.
In the Table 4.13 one can find the statistical test results for ten sub-windows
from generated image.

A mean KL-divergence for sub-windows from the generated images is 5.2,
which is lower than for the noisy images with a mean KL-divergence 12.3. A
mean KS-statistic for the generated image is 0.03; for the noisy images, the
result is 0.06. The pixel distribution of the images is shown in Figure 4.31.

The T-statistic reveals the same trend as in the previous example – the
mean values of the generated images are closer to original images. In the
histograms shown in Figure 4.31, we see that the distribution of the images
with noise is wider and shifted to the left. The distributions of the generated
images are shifted closer to the original image distribution, which underlines
the correctness of our method. The Figure 4.32 and Figure 4.34 shows CDFs

57

https://sky.esa.int/?target=160.87979166666668%2024.92221944444444&hips=DSS2+color&fov=0.14892406158825688&cooframe=J2000&sci=true&lang=en

4 RESULTS

Figure 4.24: Red shows rectangles are examined areas for Table 4.11 and
Table 4.12. The first five areas contains different sources and another five
areas the background.

of sub-windows which have different type and density of stars and the dust
of the galaxy. The CDFs of the generated and original images are more
similar than the CDFs of the noisy and original images. When we study
the corresponding normalised CDF and their residuals (Figure 4.33 and
Figure 4.35) we see small variations close to zero in F (x) range 0.2− 0.8.

Tests done on the sub-windows indicates that distributions of the gener-
ated images are more similar to the original images than the distributions
of the noisy images, although they are not the same. The problem can be
partially caused by simulated noise added to the images.

58

4 RESULTS

T-test T-test KS-Test KL divergence
Image statistic p-value statistic 10−7

1 -0.36 0.72 0.07 0.14
2 2.32 0.02 0.01 0.71
3 0.62 0.54 0.01 1.41
4 0.91 0.36 0.06 0.69
5 0.42 0.67 0.04 1.50
6 -2.66 0.01 0.08 1.05
7 4.08 0.0 0.04 0.97
8 -19.3 0.0 0.03 1.24
9 27.6 0.0 0.04 0.8
10 -28.14 0.0 0.02 1.32

Table 4.11: The summary of the t-test, KS-test and KL divergence for the
parts of the generated images on Figure 4.24. The p-value of the KS-test is
not shown because despite the statistic is close to zero, the p-value was zero
for all images. The first 5 rows corresponds to the different sources and rest
to the background.

T-test T-test KS-Test KL divergence
Image statistic p-value statistic 10−7

1 -171.22 0.0 0.09 3.21
2 -270.5 0.0 0.06 3.76
3 -90.1 0.0 0.07 4.4
4 -112.06 0.0 0.05 3.52
5 -55.93 0.0 0.07 4.55
6 -1741.26 0.0 0.01 4.24
7 -2149.47 0.0 0.01 4.1
8 -1931.68 0.0 0.01 4.42
9 -2051.46 0.0 0.02 3.91
10 -2412.72 0.0 0.01 4.55

Table 4.12: The summary of the t-test, KS-test and KL divergence for the
parts of the noisy images on Figure 4.24. The p-value of the KS-test is not
shown because despite the statistic is close to zero, the p-value was zero for
all images. The first 5 rows corresponds to the different sources and rest to
the background.

59

4 RESULTS

Figure 4.25: The distribution of ten sub-windows from image Figure 4.24.
The statistic is shown in Table 4.11 and 4.12

60

4 RESULTS

Figure 4.26: The cumulative distribution function of first five sub-windows
(1-5) from image Figure 4.24 and first five histograms shown in Figure 4.25.
The statistic is shown in Table 4.11 and 4.12

61

4 RESULTS

Figure 4.27: The left figure shows normalised CDF and right figure the
residual of the of five sub-windows from Figure 4.26

62

4 RESULTS

Figure 4.28: The cumulative distribution function of second five sub-windows
(6-10) from image Figure 4.24 and second five histograms shown in Figure 4.25.
The statistic is shown in Table 4.11 and 4.12

63

4 RESULTS

Figure 4.29: The left figure shows normalised CDF and right figure the
residual of the of five sub-windows from Figure 4.28

64

4 RESULTS

Figure 4.30: Red shows rectangles are examined areas for Table 4.13 and
Table 4.14

65

4 RESULTS

T-test T-test KS-Test KL divergence
Image statistic p-value statistic 10−7

1 -0.3 0.76 0.05 2.13
2 -0.73 0.46 0.04 3.85
3 -0.07 0.94 0.05 25.16
4 -1.95 0.05 0.03 1.8
5 18.98 0.0 0.04 4.05
6 4.85 0.0 0.02 2.88
7 -3.26 0.0 0.01 3.86
8 0.12 0.91 0.01 3.31
9 8.8 0.0 0.01 1.84
10 14.64 0.0 0.01 2.62

Table 4.13: The summary of the t-test, KS-test and KL divergence for the
parts of the generated images on Figure 4.30. The p-value of the KS-test is
not shown because despite the statistic is close to zero, the p-value was zero
for all images.

T-test T-test KS-Test KL divergence
Image statistic p-value statistic 10−7

1 -1347.63 0.0 0.10 10.31
2 -184.94 0.0 0.04 11.02
3 -3.27 0.0 0.01 21.75
4 -580.11 0.0 0.13 10.53
5 -1383.44 0.0 0.06 12.02
6 -2185.74 0.0 0.05 11.97
7 -1241.32 0.0 0.06 12.19
8 -858.10 0.0 0.03 11.52
9 -1594.61 0.0 0.04 10.66
10 -1206.12 0.0 0.03 10.57

Table 4.14: The summary of the t-test, KS-test and KL divergence for the
parts of the noisy images on Figure 4.30. The p-value of the KS-test is not
shown because despite the statistic is close to zero, the p-value was zero for
all images.

66

4 RESULTS

Figure 4.31: The distribution of ten sub-windows from image Figure 4.30.
The statistic is shown in Table 4.13 and 4.14

67

4 RESULTS

Figure 4.32: The cumulative distribution function of first five sub-windows
(1-5) from image Figure 4.30 and first five histograms shown in Figure 4.31.
The statistic is shown in Table 4.13 and 4.14

68

4 RESULTS

Figure 4.33: The left figure shows normalised CDF and right figure the
residual of the of five sub-windows from Figure 4.32

69

4 RESULTS

Figure 4.34: The cumulative distribution function of second five sub-windows
(6-10) from image Figure 4.30 and second five histograms shown in Figure 4.31.
The statistic is shown in Table 4.13 and 4.14

70

4 RESULTS

Figure 4.35: The left figure shows normalised CDF and right figure the
residual of the of five sub-windows from Figure 4.34

71

4 RESULTS

4.2.4 Non-Astronomical image input

To confirm, that the network is not creating artefact as fake stars out of
nowhere, we used as input non-astronomical image. The output images
are created in two ways. The first is that the image is created as ’Mosaic’
(Subsubsection 3.1.2) as all our images. The second one is that the whole
image is used as input to the network – denoted ’No Mosaic’ (certain creativity
problem). Images are scaled by ZScale interval. Note that the network is
not trained on this type of data, and in case we generate an image with the
same inputs, the results are the same.

The Figure 4.36 shows the outputs of the network with black/white input.
In the images, the checker-board pattern is visible. In case of ’No Mosaic’
image, the pattern is created by the transpose convolutional layer as explain
in Odena et al. [2016]. The pattern on the ’Mosaic’ image is a combination
of the layer artefact and the way how is the image created. Even though, in
both cases the input is an array with just one value the output distributions
look different – they are wider when the white image is used as the input.
This is caused by the created checker-board pattern, which is the case of
’Mosaic’ image sum up and average.

In the Figure 4.37 and Figure 4.38 we can see images with random values
with different distributions – Poisson, Normal, Uniform. The result from
the image with Normal distribution reminds the distribution of noisy and
generated image – original distribution is wider and shifted to higher values.
In comparison, the generated image has narrower distribution shifted to the
left. In comparison with original distribution, the generated one is more
smooth – the standard deviation is smaller than one of the original image.

It is not straightforward to explain the resulting distributions of this
experiment. Nevertheless, it proves that not fake stars are created out of
random fluctuation on the image.

72

4 RESULTS

Figure 4.36: The upper row: input is white image or an array full of ones.
The left image is created as Mosaic and to create a the right one the whole
image is used as an input. The middle row: input is black image or an array
full of zeros. The left image is created as Mosaic and to create a the right
one the whole image is used as an input. The last row: the pixel distribution
of the images.

73

4 RESULTS

Figure 4.37: The upper row: input is an image with the Poisson distribution
. The left image is created as Mosaic and to create a the right one the whole
image is used as an input. The middle row: input is an image with normal
distribution. The left image is created as Mosaic and to create a the right
one the whole image is used as an input. The last row: the pixel distribution
of the images.

74

4 RESULTS

Figure 4.38: Here, as input serves completely image with uniform distribu-
tions. The left image is created as Mosaic and to create a the right one the
whole image is used as an input.The second row shows pixel distribution of
the images.

Figure 4.39: The non-astronomical input of the network. Although there are
two stars on the image, the network does not change input image noticeably.

75

4 RESULTS

4.2.5 Real data

Even-thought the network is trained on simulated data; we want to apply it
on real data to see the network performance. We do not expect good results,
and this result is not considered for network evaluation. This section is just
an example, where we discuss one image, which means, it is not statistically
relevant.
In Table 4.15 we can see results for real data. The input of the network is an
image with exposure time 3 sec and is denoted as the short exposure. This
image contains NAN values which have to be replaced by zeroes because the
network is not able to work with, and the network output would contain
infinity values afterwards. The long exposure image for comparison is a
combination of two images from the same area both with exposure time, 3
sec. Images are combined by Munipack. The number of true positives varies
among the used method. The results show that the image generated by the
network have better results in star flux and the higher number of detected
stars. The Figure 4.41 and Figure 4.42 shows star detection. The Munipack
detected more sources than the Star Extractor (also seen in Table 4.15 the
True positive column). Because the long exposure image is a bit shifted in
comparison with the short exposure and generated image, few sources are
missed by the Topcat. The selected maximal distance is 5 pixels. The missed
sources can be recognised by blue dashes and green dotted circles close to
each other.

The t-test for short exposure time image has results – 1.53 for t-statistic
and 0.13 for the p-value. The generated image results are 2.06 and 0.04
respectively. This means that the mean value of long exposure time image
is more similar to the short exposure time image. On the other hand, the
KS-statistic is better for the generated image 0.09 than for the short exposure
time image 0.17. This result is also seen in Figure 4.40 where we can see
that CDF of the generated image fits the long exposure time image better.

76

4 RESULTS

Figure 4.40: The histogram and CDF of the tested images. From the CDF
is seen, that down part od the distribution of the generated image is much
closer to the long exposure time image than the short exposure one.

Image Aperture Mean Median True True positive
Method type size [pixel] error [%] error [%] positive rate [%]
Munipack G 1 16.4 12.4 55 62.4
Munipack SE 1 16.7 12.7 45 76.5

Star Extractor G 10 3.3 2.7 14 82.4
Star Extractor SE 10 6.1 6.2 13 76.5

Table 4.15: The results of the network for real data. Image type can be G
for the generated image or SE for the short exposure time image, which is
used as network input. The mean/median error refers to star flux error.

77

4 RESULTS

Figure 4.41: Munipack star detection. The upper image is short exposure
image and lower image is generated by the network. The green dotted circles
are stars detected on the original image but missed on the generated,the
blue dashes circles are stars detected just on the generated image. The full
circles represent true positive stars and colour of circle indicates flux error.

78

4 RESULTS

Figure 4.42: Star Extractor detection. The upper image is short exposure
image and lower image is generated by the network. The green dotted circles
are stars detected on the original image but missed on the generated,the
blue dashes circles are stars detected just on the generated image. The full
circles represent true positive stars and colour of circle indicates flux error.

79

4 RESULTS

4.3 What is inside matters

Because humans are from the nature curious creatures, we want to examine
the neural network from the inside. In the beginning the network weights
are initiated randomly with uniform distribution. The weights are trainable
parameters, which are changed during the training. Examination of weights
after training show that distribution of weights in different layers follow
the some distribution. In theory the weights should follow the Laplace
distribution:

Laplace(µ, b) = 1
2b exp

(
−|x− µ|

b

)
. (4.2)

The distribution is influenced by a loss function, which in this case is L1.
The relationship between the Laplace distribution and L1 loss function can
be shown as: imagine you have input-output pairs (x1, y1) . . . , (xN , yN):

yi = β0 + β1xi1 + ...+ βpxip + εi, (4.3)

the model is linear regression, where β refers to trainable parameter and ε is
noise or uncertainty in the model which has Laplace distribution. This gives
rise to a the likelihood function:

N∏
n=1
L(yn|βxn, b). (4.4)

Lets take the logarithm of the above expression to find optimal estimates of
parameters. Dropping some constants we get:

log
n∏
i=1

1
2b exp

(
−|yi − µ|

b

)
(4.5)

∼
n∑
i=1
−|yi − µ|

b
. (4.6)

In this expression it becomes apparent why the Laplacian prior can be
interpreted as the L1 loss. The weights in first layer are more important
than in latter one, so one should expect less pattern in first layer.

To test this theory, we used the KS-test to compare if weights come
from Laplace or the Normal distribution. The distribution of weights in
different layers can be seen at Figure 4.44 and Figure 4.45. If we test all
filters separately, the KS-test showed that p-value for Network 1 is 0.73 for
Laplace and 0.69 for Normal distribution.

80

4 RESULTS

Figure 4.43: Red square is shows part of the image which is the input image
for Network 1 in Figure 4.44, 4.46,4.47, 4.48

Figure 4.44: Histogram from the first convolutional layer and activation
function. Left: histogram of the feature map after convolution. Right: same
feature map after LeakyReLU activation function.

81

4 RESULTS

Figure 4.45: Distribution of weights in different layer of Network 1. One
histogram corresponds to all weights in one convolutional layer. Upper left
figure correspond to the first convolutional layer and right one to second
convolutional layer. In the middle are figures for 5. and 9. layer. Last row
corresponds to histohrams of 13. and last convolutional layer.

82

4 RESULTS

Figure 4.46: Example of weights in Network 1. The down left filter corre-
sponds to the last layer.

83

4 RESULTS

Figure 4.47: Example of convolution feature maps after LeakyReLU activa-
tion function from Network 1. Every row corresponds to one convolution
layer. From upper left – 1.,2.,5.,7.,13.,16.,18. layer.

84

4 RESULTS

Figure 4.48: Example of transpose convolution feature maps from Network
1. Every row corresponds to one transpose convolution layer

85

Conclusion and future work

To explore the universe, it is necessary to observe it with different telescopes
and create a vast number of astronomical images. To obtain Reducing the
noise is an essential and almost mandatory step for further data analysis.

The main idea of our project is to create the convolutional neural network
to enhance and denoise astronomical images. The goal of this image process-
ing is to decrease the need for the observational time. For interested readers,
the convolutional neural network described in Subsection 2.1. The networks
are trained on simulated data with synthetic noise; details about the data
can be found in Subsection 3.1. We conduct more than 30 experiments to
find suitable architecture (Subsection 4.1). The accuracy of the network is
tested by several metrics (Subsection 2.6) – PSNR, SSIM, the star flux error,
true positive rate, and different distribution tests. The initial step to finding
the best architecture was to examine the image by eye, if there is no artefact
and if image by itself makes sense. After that, we combine the loss plot with
the PSNR and SSIM to find the best epoch of the training. For the best
epoch, the star flux error is made together with a true positive rate and KL-
divergence. The rest of the test is done just with the best network describe
in Subsection 4.2. The star flux error and the true positive rate is evaluated
by two tools – Munipack and Star extractor. The results for the best network
are as follows: the mean star flux error is 3.5% with a true positive rate of
95.4%. The test of randomness flux recovery shows that the recovered stars
are always within the error assign by employ tool. By examining the image
distribution, we find out that the null hypothesis that our generated images
come from the same distribution as original ones cannot be disproved. The
histograms and the CDF in the Figure 4.21 and Figure 4.22 show agreement
between the distribution of the generated and original images. From the
normalised CDF and the residuals shown in Figure 4.23 it is obvious that the
difference between the original and generated distribution is small. Deeper
analysis of the image distribution is available in Subsubsection 4.2.3.

During the evaluation of the network, we also noticed downsides of the
network as: Cosmic rays. The network can reconstruct cosmic rays as stars.
It is good to remove them before using the network. Edges. The image edges
can contain an artefact learn due to the artefacts at the edges of the training
data. Nan values. Nan values cause network problems. It is good to change
those values before using the network. Like any other platform created
for image processing, also this one cannot be used blindly. The network

86

5 CONCLUSION AND FUTURE WORK

can be in this point used at real data, although the results are not guaranteed.

In the future, we would like to train the network on real data also in
different bands. Our next step is to apply the network on all Hubble space
telescope archive collaborating with the ESA Hubble archive. Also, currently
(May 2020) another working group is appalling the trained network on the
XMM-Newton data. We believe our work helps the scientific community to
work more efficiently and to get better results. Use of the machine learning
in astrophysics is extensive, and we hope that it brings us to enhanced future
in astrophysics!

87

Bibliography

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving,
Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manju-
nath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry
Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit
Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke,
Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin
Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensor-
Flow: Large-scale machine learning on heterogeneous systems, 2015. URL
https://www.tensorflow.org/. Software available from tensorflow.org.

Douglas Adams. The hitchhiker’s guide to the galaxy. 1995.

E. Bertin and S. Arnouts. SExtractor: Software for source extraction. , 117:
393–404, June 1996.

Chen Chen, Qifeng Chen, Jia Xu, and Vladlen Koltun. Learning to See in
the Dark. arXiv e-prints, art. arXiv:1805.01934, May 2018.

Qifeng Chen, Jia Xu, and Vladlen Koltun. Fast Image Processing with
Fully-Convolutional Networks. arXiv e-prints, art. arXiv:1709.00643, Sep
2017.

François Chollet et al. Keras. https://keras.io, 2015.

Pedro Domingos. The Master Algorithm: How the Quest for the Ultimate
Learning Machine Will Remake Our World. Basic Books, Inc., USA, 2018.
ISBN 0465094279.

et al. Dressel, L. “Wide Field Camera 3 Instrument Handbook, Version 12.0”
(Baltimore: STScI).

V Dumoulin and F Visin. A guide to convolution arithmetic for deep learning.
ArXiv 1603.07285, 2016.

et al. Gennaro, M. WFC3 Data Handbook”, Version 4.0, (Baltimore:
STScI). 2018. URL https://hst-docs.stsci.edu/display/WFC3DHB/
WFC3+Data+Handbook.

88

https://www.tensorflow.org/
https://keras.io
https://hst-docs.stsci.edu/display/WFC3DHB/WFC3+Data+Handbook
https://hst-docs.stsci.edu/display/WFC3DHB/WFC3+Data+Handbook

BIBLIOGRAPHY

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into
rectifiers: Surpassing human-level performance on imagenet classification.
CoRR, abs/1502.01852, 2015. URL http://arxiv.org/abs/1502.01852.

Filip Hroch. Munipack: General astronomical image processing software,
February 2014.

Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual Losses for
Real-Time Style Transfer and Super-Resolution. arXiv e-prints, art.
arXiv:1603.08155, Mar 2016.

Diederik P Kingma and Jimmy Ba. Adam: {A} Method for Stochastic
Optimization. ArXiv 1412.6980, 2014. URL http://arxiv.org/abs/
1412.6980.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully Convolutional
Networks for Semantic Segmentation. arXiv e-prints, art. arXiv:1411.4038,
Nov 2014.

Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted
boltzmann machines. In Proceedings of the 27th International Conference
on International Conference on Machine Learning, ICML’10, page 807–814,
Madison, WI, USA, 2010. Omnipress. ISBN 9781605589077.

Augustus Odena, Vincent Dumoulin, and Chris Olah. Deconvolution and
checkerboard artifacts. Distill, 2016. doi: 10.23915/distill.00003. URL
http://distill.pub/2016/deconv-checkerboard.

William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P.
Flannery. Numerical Recipes 3rd Edition: The Art of Scientific Computing.
Cambridge University Press, USA, 3 edition, 2007. ISBN 0521880688.

Prajit Ramachandran, Barret Zoph, and Quoc V. Le. Searching for activation
functions. CoRR, abs/1710.05941, 2017. URL http://arxiv.org/abs/
1710.05941.

Sebastian Raschka. Python Machine Learning. Packt Publishing, 2015. ISBN
1783555130.

Andres C. Rodríguez, Tomasz Kacprzak, Aurelien Lucchi, Adam Amara,
Raphaël Sgier, Janis Fluri, Thomas Hofmann, and Alexandre Réfrégier.

89

http://www.deeplearningbook.org
http://arxiv.org/abs/1502.01852
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://distill.pub/2016/deconv-checkerboard
http://arxiv.org/abs/1710.05941
http://arxiv.org/abs/1710.05941

BIBLIOGRAPHY

Fast cosmic web simulations with generative adversarial networks. Com-
putational Astrophysics and Cosmology, 5(1):4, Nov 2018. doi: 10.1186/
s40668-018-0026-4.

Kevin Schawinski, Ce Zhang, Hantian Zhang, Lucas Fowler, and Gokula Kr-
ishnan Santhanam. Generative adversarial networks recover features in
astrophysical images of galaxies beyond the deconvolution limit. , 467(1):
L110–L114, May 2017. doi: 10.1093/mnrasl/slx008.

Steven S. Skiena. The Data Science Design Manual. Springer Publishing
Company, Incorporated, 1st edition, 2017. ISBN 3319554433.

M Taylor. Stilts - a package for command-line processing of tabular data. AS-
TRONOMICAL SOCIETY OF THE PACIFIC CONFERENCE SERIES,
351:666, 06 2006.

Zhou Wang, Alan Bovik, Hamid Rahim Sheikh, and Eero Simoncelli. Image
quality assessment: From error visibility to structural similarity. Image
Processing, IEEE Transactions on, 13:600 – 612, 05 2004. doi: 10.1109/
TIP.2003.819861.

Barak Zackay and Eran O. Ofek. How to COAAD Images. I. Optimal Source
Detection and Photometry of Point Sources Using Ensembles of Images. ,
836(2):187, Feb 2017a. doi: 10.3847/1538-4357/836/2/187.

Barak Zackay and Eran O. Ofek. How to COAAD Images. II. A Coaddition
Image that is Optimal for Any Purpose in the Background-dominated
Noise Limit. , 836(2):188, Feb 2017b. doi: 10.3847/1538-4357/836/2/188.

Xuaner Cecilia Zhang, Qifeng Chen, Ren Ng, and Vladlen Koltun. Zoom To
Learn, Learn To Zoom. arXiv e-prints, art. arXiv:1905.05169, May 2019.

H. Zhao, O. Gallo, I. Frosio, and J. Kautz. Loss functions for image restoration
with neural networks. IEEE Transactions on Computational Imaging, 3
(1):47–57, March 2017. doi: 10.1109/TCI.2016.2644865.

Tiziano Zingales and Ingo P. Waldmann. ExoGAN: Retrieving Exoplanetary
Atmospheres Using Deep Convolutional Generative Adversarial Networks.
, 156(6):268, Dec 2018. doi: 10.3847/1538-3881/aae77c.

90

	Introduction
	Method
	Neural network
	Convolutional Neural network
	How to create the architecture
	Size of network and data-set matters
	Activation function
	Loss function
	Back-propagation

	Architecture
	Training process
	Evaluation metrics
	Common metrics
	The source detection
	The intensity distribution

	Hubble space telescope data
	Training data
	Simulated data
	Output data

	Results
	Experiments
	Loss function
	Number of input channels
	Segmentation map
	Exposure time ratio
	Activation function

	Network Evaluation
	Source detection
	Randomness in the flux recovery
	The intensity Distribution
	Non-Astronomical image input
	Real data

	What is inside matters

	Conclusion and future work
	Bibliography

