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Abstract

Solar radio bursts with fine structures are used in diagnostics of the solar flare plasma. The zebra
structures, that are fine structures of Type IV radio bursts, belong to the most important. The zebras
are also observed in radiation from Jupiter and Crab nebula pulsar. In this doctoral thesis, we study
the solar radio zebras from the theoretical point of view. We use analytical and numerical methods
together with the three-dimensional electromagnetic particle-in-cell (PIC) simulations. This thesis
starts with an overview of solar radio bursts and their characteristics. We describe the models
of the solar radio zebras and present details of our improvement of the PIC model. We study
various aspects of the main model of the solar radio zebras, the double plasma resonance instability.
This model assumes a loss-cone type of distributions of the hot electron component together
with a cold and dense background plasma. We mainly study the growth rates of the electrostatic
waves, their saturation energies, and the frequency shifts of the growth rate peaks in dependence
on the temperature of the background and the hot component. Our results are compared with
zebra observations. Because in the upper-hybrid band, several types of waves can be unstable
simultaneously, we propose a concept of the integrated growth rate, which is useful for comparison
with the growth rate computed by the PIC model. Our results are published in Solar Physics,
Astronomy and Astrophysics, and Astrophysical Journal, see our five papers at the end of this
thesis.





Abstrakt

Sluneční radiová vzplanutí s jemnými strukturami se používají v diagnostice slunečního erupčního
plazmatu. Zebra struktury, které jsou jemnými strukturami radiových vzplanutí typu IV, patří mezi
nejdůležitější. Zebry jsou také pozorovány v záření Jupitera a pulzaru v Krabí mlhovině. V této
doktorské práci studujeme sluneční rádiové zebry z teoretického hlediska. Používáme analytic-
ké a numerické metody společně s třídimenzionálním elektromagnetickým částicovým modelem.
Práce začíná přehledem slunečních rádiových vzplanutí a jejich charakteristikami. Popisujeme
modely slunečních rádiových zeber a prezentujeme vylepšení částicového modelu. Studujeme
různé aspekty hlavního modelu slunečních rádiových zeber, dvojnou plazmovou nestabilitu. Tento
model předpokládá horké elektrony s distribuční funkcí s únikovým kuželem společně s chladnou
a hustou pozaďovou plazmou. Studujeme zejména rychlost růstů energií elektrostatických vln,
jejich saturační energie a frekvenční posuny maxim rychlostí růstů v závislosti na teplotě poza-
ďové i horké komponenty. Naše výsledky jsou porovnány s pozorováním zeber. Protože v pásmu
horně-hybridních vln může být několik nestabilních typů vln současně, navrhujeme koncept inte-
grované rychlosti růstu, která je užitečná pro srovnání s rychlostí růstu, která je počítána částicovým
modelem. Naše výsledky jsou publikovány v Solar Physics, Astronomy and Astrophysics, a Astro-
physical Journal, viz pět našich prací v závěru této dizertace.
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Introduction

Solar flares are the most energetic events in our Solar system, during which the energy can be
released in the range 1030 − 1032 erg. This energy is released by a process called magnetic
reconnection. Magnetic reconnection generally occurs when the oppositely directed magnetic field
lines interact with others. They are dynamically changing their internal structure, and they are
reconnecting towards the lower internal energy state. The energy difference is released in the form
of the plasma heating, particle acceleration, plasma flows, waves and emission in the radio, optical,
ultraviolet, soft and hard X-rays, and, in some cases, γ–rays. During the solar flares, the coronal
mass ejections (CME) and the solar energetic particle events (SEPs) often occur. Both propagate
through our heliosphere and, in some cases, they can reach the Earth, where they can damage
satellites or electrical devices.

The solar radio bursts are observed during and after the solar flares. Because their radio flux is
higher than the thermal radiation from the solar atmosphere, they are easily distinguishable. The
radio bursts were originally divided into five types, according to their time after the start of the
flare, their frequency range and the shape in the radiogram. They are broadband or narrowband.
The narrowband are mainly fine structure bursts generated by the plasma emission mechanisms.
They can help understand and diagnose the plasma during the flare.

The radio zebra structure is one of the most useful fine structures for a solar flare diagnostics.
In the radio spectra, the zebras are formed by the simultaneously excited parallel emission stripes
at nearly equidistant frequencies (Slottje, 1972, Chernov et al., 2012, Tan et al., 2012, 2014).
There are many models of the radio fine structures (Rosenberg & Tarnstrom, 1972, Kuijpers, 1975,
Zhelezniakov & Zlotnik, 1975a,c, Chernov, 1976, 1990, LaBelle et al., 2003, Bárta & Karlický,
2006, Ledenev et al., 2006, Kuznetsov & Tsap, 2007, Laptukhov & Chernov, 2009, Tan, 2010,
Karlický, 2013). For more details, see the reviews by Zhelezniakov (1997) Chernov (2010),
Chernov et al. (2014), Zheleznyakov et al. (2016), and Chernov et al. (2018). Among these models,
the most commonly used model is based on the double plasma resonance (DPR), see for example
Zheleznyakov et al. (2016).

In this thesis, we extend the double plasma resonance model from previous papers (Winglee
& Dulk, 1986, Yasnov & Karlický, 2004) by many aspects. We compute the growth rates of
the upper-hybrid and general electrostatic waves using the analytical theory and particle-in-cell
(PIC) model. We use the Dory, Guest, & Harris (1965) (DGH), loss-cone kappa and power-law
velocity distribution functions of the hot electrons. We also compute the saturation energies of the
electrostatic waves. We analyze the growth rate peaks, their frequency shifts, and the dependency on
the hot electrons and the background plasma temperatures. Based on the observation, the particle-
in-cell simulation and the collisional damping, we estimate the efficiency of the transformation of
the electrostatic waves into the electromagnetic radiation. Because in the double plasma resonance,
many unstable waves can exist simultaneously, we analyze their growth rates. We propose the
concept of the branch frequency “specific width” and the integrated growth rate that is in the
agreement with the particle-in-cell simulations.

– xv –



xvi INTRODUCTION

Thus, the obtained results are important not only for the study of the solar radio zebras and
the double plasma resonance instability but also for the diagnostics of the solar flares, planetary
atmospheres, and the laboratory plasma.

This thesis is structured as follows: first, used symbols are presented. In Chapter 1, we start
with an introduction of the solar radio observations, solar radio bursts, and solar radio zebras. In
Chapter 2, we present the radio zebra formation models, especially the double plasma resonance.
Because one of the aims of this thesis was a parallelization of the particle-in-cell code in domains,
details about the model itself and its improvements are in Chapter 3. A summary of our publications
is in Chapter 4. The work is supplemented by Appendixes A–E, where our papers are presented.



Symbols

For better orientation in the text, we propose these mathematical symbols. They are used for
description in the whole thesis. Because in the attached articles in Appendixes the symbol notation
may differ, to avoid the mistakes, please, always check the current notation in each paper.

B magnetic field
c light speed
cs sound speed
e electron charge
E electric field
f particle velocity distribution function
H magnetic induction
i imaginary unit
J electric current
k wave vector
lw length of absorption of whistler wave
me electron mass
mi ion mass
nb electron beam density
ne electron density
nh hot electron density
nσ refractive index
P period of oscillations
q electric charge
r position vector
s harmonic number
Tb brightness temperature
v velocity vector
vb electron beam velocity
vt hot electron velocity
vtb background electron thermal velocity
Z plasma function
vφ wave phase velocity
δij Kronecker delta
ε̂ permittivity tensor
εij components of permittivity tensor
ε0 permittivity of vacuum
φ electric potential

– xvii –



xviii Přehled použitého značení

γ growth rate
γrel relativistic factor
γσ absorption coefficient
Γ integrated growth rate
λD Debye shielding length
Λ Coulomb logarithm
ω frequency
ωpe plasma electron frequency
ωce electron-cyclotron frequency
θ loss-cone angle



Chapter 1

Solar Radio Emission

The facilities of the ground-based radio astronomical observations, like in optical observations,
depend on the transparency of the Earth’s atmosphere. For the cosmic radio waves, this frequency
range is 15 MHz – 30 GHz (Kruger, 1979). The low-frequency limit is caused by the ionosphere
and the high-frequency limit by the troposphere. In some special Earth’s locations, this range is
extended due to the low air humidity. E.g. ALMA is using its Bands 3-10 in range 84-950 GHz
(ESO, 2019).

Figure 1.1: The Sun at different wavelengths on 7 November 1993. The resolutions are 220′′

at 0.3 GHz, 50′′ at 1.4 GHz, 12′′ at 4.8 GHz and 17 GHz. The 0.3–4.8 GHz are from Very
Large Array telescope, 17 GHz is from Nobeyama Radioheliograph. White contours are brightness
temperatures in the range 0.8–4.5×106 K. The bottom row is the comparison with Hα from Big
Bear Solar Observatory and X-Rays from Yohkoh/SXT instrument. The figure was taken from
White (2001).

– 1 –



2 CHAPTER 1. SOLAR RADIO EMISSION

The observed wavelength strictly limits the spatial resolution of the solar observation. The
sample of the radio observations is in range 0.3–17 GHz, Hα, and X-rays in Figure 1.1. The largest
interferometric and spectroscopic instruments with not only solar targets include:

• Atacama Large Millimeter Array (ALMA) — a set of 66 radio telescopes observing at mil-
limeter and submillimeter wavelengths (84-950 GHz). The construction and the operation
are led by European South Observatory (ESO). The solar observation focuses on interfer-
ometric measurements of the structure of the quiet solar atmosphere, coronal holes, active
solar regions, filaments, and energetic solar phenomena. One of the ALMA Solar nodes is
located at Astronomical Institute at the Czech Academy of Sciences in Ondřejov (ALMA,
2019).

• Karl G. Jansky Very Large Array (VLA) — an interferometer consisting of 27 independent
radiotelescopes with 25 m diameter dish. The VLA is observing in range 1–18 GHz. The
solar observations focuse on active regions. The telescope is maintained by the National
Radio Astronomy Observatory (NRAO); VLA (2019).

• Low-Frequency Array (LOFAR) — the 48 LOFAR stations are located at several European
countries observing at 20 000 Low Band Antenna (LBA) and High Band Antennas (HBA)
in the range 10–80 MHz and 120–240 MHz, respectively. The antennas are omnidirectional,
and the signals are combined using aperture syntheses. LOFAR was founded by Netherlands
Institute for Radio Astronomy (ASTRON), and unlike others, it observes solar dynamic
activities(LOFAR, 2019).

• Square Kilometer Array (SKA) — a fully international project which aims to cover 106 m2 of
observation area with radio antennas creating long-baseline interferometric array consisting
of SKA-low array dipole antenna for low-frequency 50–350 MHz, SKA-mid array parabolic
antennas in 350 MHz–14 GHz and SKA-survey array of 12–15 m dishes about 350 MHz–
4 GHz. The first phase (SKA1), covering 10 % of antennas, should launch in 2023, second
full phase (SKA2) in 2030 (SKA, 2019).

There are many radio interferometers, that are focusing only on the Sun and that have rich long-term
history and partially or fully available datasets:

• Siberian Solar Radio Telescope (SSRT) — consists of 48 antenna array with 4–8 GHz
operating frequency and 10 MHz instantaneous band (Lesovoi et al., 2017).

• Nançay Radio Heliograph — 47 T-shaped antennas in the range 150–450 MHz that can do
imaging (NRA, 2019).

• Nançay Decameter Array (NDA) — 144 helical/conical antennas across 7 000 m2 in frequency
range 10–100 MHz (Zhang et al., 2018).

• MUSER — radio interferometric array located in Mingantu Station in Inner Mongolia of
China, MUSER I contains 40 antennas with 4.5 m dishes in range 0.4–2 GHz. MUSER II
has 60 antennas with 2 m dishes with range 2–15 GHz.

• Expanded Owens Valley Solar Array (EOVSA) — consists of 13 antennas, each has 2 m dish.
It observes in range 1–18 GHz with full Stokes parameters. The array size 1.08 × 1.22 km
enables observations with angular resolution 57′′ × 51′′ at 1 GHz.
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Apart from the interferometers, there are also the radiospectrographs. Many observations in this
work come from Hiraiso Radio Spectrograph (HiRAS) and Ondřejov Solar Radio Telescopes.

The propagation of the radio radiation is internally limited by a collective behavior – oscillations
of charged particles at angular plasma frequency

ωpe =

√
nee2

meε0
, (1.1)

where ne is the electron number density, e is the electron charge, me is the electron mass and ε0 is
the permittivity of free space. The plasma frequency from Equation 1.1 can be approximated by

fpe[kHz] = 9
√
ne[cm3]. (1.2)

In the plasma, the electromagnetic waves at frequencies lower than the plasma frequency do
not propagate and are damped. Plasma frequency plays an essential role in the observations of the
plasma emission. If we suppose that the emission is primarily at the plasma frequency, we can
estimate the height above the photosphere using a solar density model.

The second parameter influencing the plasma radiation is the electron (angular) cyclotron
frequency

ωce =
eB

me
, (1.3)

where B is the intensity of magnetic field. The approximation of cyclotron frequency is

fce [MHz] = 2.8B [G]. (1.4)

The radio emission is influenced by the magnetic field, if the angle between the magnetic field B
and wave vector k is nonzero. The electromagnetic propagation is damped under the cyclotron
frequency. The emission can be in the form of the electron-cyclotron maser (ECM) for the non-
relativistic unstable distribution function of hot electrons, the gyrosynchrotron emission for mildly
relativistic electrons and the synchrotron emission in the case of ultra-relativistic non-thermal
electrons (White, 2001).

1.1 Radio emission mechanisms

There are only two main groups of the radio non-thermal emission from the Sun: the plasma
emission and the gyromagnetic emission. Because at the Sun we assume the mildly-relativistic
electrons, we choose from the three types of gyromagnetic emission only the gyrosynchrotron
emission.

1.1.1 Plasma emission

The theory of plasma radio emission is a set of very complex, complicated, and often non-linear
theories. The emission processes at the fundamental and the first harmonics frequencies together
with different polarization types and with specific aspects of polarization are presented. They are
closely connected with Type I, Type II, Type III, Type IV fine structures and other observations
(Type-U, radio dots, . . . ).

The foundation of the plasma emission mechanism was laid by Ginzburg & Zhelezniakov (1958,
1959). They considered two emission mechanisms which they called “Rayleigh scattering”, later
named “nonlinear scattering” (Tsytovich, 1966) or “enhanced bremsstrahlung” (Tidman & Dupree,
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1965). Unlike the gyromagnetic emission, the plasma emission is a multi-stage process. The stages
cover the generation of Langmuir waves, their non-linear evolution and the successive conversion
into the electromagnetic radiation.

Melrose (1987) gave the following summary. The generation of the Langmuir turbulence
(longitudinal electrostatic waves) for the unmagnetized plasma (B = 0) and for the bump-in-tail
instability is described by the dispersion relation

ω2 = ω2
pe + 3v2tbk

2, (1.5)

with the absorption coefficient

γ(k) = −
πe2v2φ
ε0meωpe

∂f(vφ)

∂vφ
, (1.6)

where ω is the wave frequency, ωpe is the plasma frequency of the particles with density ne, mass
me and background thermal velocity vtb, k is the wave vector with size k = 2π/λ where λ is
wavelength, e is the electric charge, vφ = ω/k is the wave phase velocity, ε0 is the permitivity
constant for vacuum and the function f(v) describes the distribution function of the electron
stream. If the term ∂f(vφ)

∂vφ
> 0, the absorption is negative and the amplitude and the the energy of

the Langmuir waves is growing.
In the plasma, the electromagnetic waves are present together with the Langmuir waves. Their

dispersion is
ω2 = ω2

pe + k2c2. (1.7)

And in the magnetic loops, the ion-sound waves with the dispersion

ω = kcs, (1.8)

where c is the speed of light and cs is the sound speed, can be generated. Only the transverse waves
with the frequency ω > ωpe can escape from the medium.

Non-linear effects modify the Langmuir waves. One of the relevant processes is the three-wave
interaction. The waves are described by the frequencies ω1, ω2, ω3 and the wave vectors k1,k2,k3.
The energy and the momenta conservation implies that

ω3 = ω1 + ω2, k3 = k1 + k2, (1.9)

must be fulfilled. The interaction can also do the conversion of the Langmuir waves by the thermal
particles or the density fluctuations. In that case, one of the wave vectors in the three-wave process
in Equation 1.9 is replaced by the fluctuation described by kf .

In the three-wave process, the fundamental F and the first harmonic H electromagnetic wave
emissions are involved (higher orders are neglected). In the fundamental plasma emission, there is
an interaction of the Langmuir wave L with the ion-sound wave S generating the electromagnetic
transverse wave T in two forms

L+ S → T, L→ T + S. (1.10)

This processes allow us to compute the brightness temperature TB of the beam region with the
density nb, when the energy of Langmuir waves reaches WL ≈ 1

2nbmev
2
b and the emission of
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electromagnetic waves is into the angle ∆θ

TB ≤
1
2nbmevb

π(∆θ)2

(
vb
fp

)3

. (1.11)

The harmonic emission is connected with the coalescence

L+ L′ → T. (1.12)

From the momenta conservation it follows thatkL+kL′ = kT and kT ≈
√

3ωpe/c for the transverse
wave ω ≈ 2ωpe. This implies that L and L′ must be almost head on which gives specific conditions
for the emission generation and the velocity distribution function (Melrose, 1983).

1.1.2 Gyrosynchrotron emission

The gyrosynchrotron mechanism is one of the broadband generating mechanisms of the radio bursts
in the solar corona. An example can be the broadband Type IV bursts. The transition between
the gyroemission for the non-relativistic plasma and the synchrotron emission for γrel � 1 is the
gyrosynchrotron mechanism. It is a set of specific descriptions and only approximate analytical
methods. Generally, it must be solved numerically.

In the non-relativistic approximation, the emissivity is centered at frequencies ω = sωce.
The distribution for different angles creates 2s-multipole with the distribution proportional
cos2 θ sin2(s−1) θ. The orders of s = 1, 2, 3, . . . corresponds to the bipolar, quadrupolar, octu-
polar,. . . After the transition to the ultra-relativistic limit, the emission is strictly into the angle
θ = α, where α is the pitch-angle. The angle half-width ∆θ ≈ γ−1rel is centered on the frequency

ω =
sωce

γrel sin
2 θ
. (1.13)

Dulk et al. (1979) approximated the absorption coefficients for small angles |θ− π
2 | � ωce/2ω � 1

γσ(s, θ) =
ω2
pe

ωce

(πωce

2ω

) 1
2 1

β20 sin2 θ

(
eβ20ω sin2 θ

2ωce

)ω/ωce

(1− σ| cos θ|)2, (1.14)

and for θ = π/2

γx(s, θ) =
ω2
pe

ωce

(πωce

2ω

) 1
2 1

β20

(
e

2
β20

ω

ωce

)ω/ωce

, (1.15)

γo(s, θ) = β20γ
x(s, θ), (1.16)

β20 =
v2tb
c2
, (1.17)

where o is the ordinary wave and x is the extraordinary wave.
The theory assume (Melrose, 1980) the Doppler frequency shift given by orbiting movements

of particles

ω =
sωce

√
1− β2

1− nβ cosα cos θ
, (1.18)

where n = nσ(ω, θ) is the refractive index for polarization σ, θ is the wave angle, β = v/c is the
electron speed, s is the integer harmonic number and α is the pitch angle.
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Because in the plasma the waves below the plasma frequency cannot escape, the Razin effect
gives the frequency

ω .
{

2ωpe for γrel ≈ 1,
3
2

ω2
pe

ωce sin θ
for γrel � 1,

(1.19)

at which the radiation from the distribution of electrons is absorbed.

1.2 Solar radio bursts

The solar radio emission has been systematically studied since the 1940s. One of the pioneers
was Southworth (1945), who experimented in 3–10 cm wavelengths in 1942 and Reber (1944)
who looked for 1.9 m radiation from the solar corona. Reber (1944) found that the radio emission
exceeds the thermal emission of the solar photosphere. The greater brightness temperature at meter
wavelengths has been identified as thermal emission from the much hotter solar corona. Another
discovery by a chain of radar stations, which monitored the time variation of intensity, was by
Hey (1946) who collated the observations and associated the emission with the large flare on
the Sun. This discovery of enhancements and bursts opens a completely new view on the solar
activity. It stimulated theory and laboratory research in plasma generation and propagation of the
electromagnetic radiation.

The radio bursts are closely connected with the solar flares. The bursts are not created by
plasma thermal mechanisms but the non-thermal emission. This emission depends on a conversion
of the kinetic energy of particles into the electromagnetic waves, and the radio bursts are directly
linked to the particle streams. In this way, the very fast particles are ejected, accelerated, trapped,
and stored in the solar atmosphere during and after the flare. The zoo of the solar radio bursts was
divided into five groups by Wild et al. (1963).

The different burst types can be plotted into the frequency-time diagram (Figure 1.2). Typical
frequencies range from a few tens of MHz up to a few GHz. Time is measured after the start of the
flare. The first radio signatures of the flare are the Type III radio bursts. In the past, the observed
frequencies of maxima in the bursts were growing with an increase of the detection frequencies of
the radio instruments.

Figure 1.2: Type bursts Types I–V in dependence on frequency and time after the flare start for the
meter wavelengths. Figure was taken from Dabrowski et al. (2016).
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1.2.1 Type I bursts

The Type I radio noise storms are long series of bursts sometimes accompanied by continuum
radiation. During the increased solar activity, hundreds of bursts per hour can occur at meter
wavelengths. The duration of an individual burst can vary from 0.1 to 10 s with the bandwidth of
a few MHz (Wild, 1951, Vitkevich & Gorelova, 1960, Elgarøy, 1961). Elgarøy (1961) found that
half of the bursts have frequency drift between the Type II and Type III bursts, or they can approach
the Type III.

The Type I noise storm is associated with the sunspots in the active regions but not every
sunspot is radio noise active. The noise storm radiation is strongly circularly polarized (Payne-
Scott & Little, 1951). The polarization corresponds to the ordinary mode of a magneto-ionic
activity, while the storm center is polarized in the extraordinary mode. An example of Type I noise
storm is in Figure 1.3. Elgaroy (1977) also did the review of different emission processes.

Figure 1.3: An example of Type I radio bursts from radiotelescope HiRAS (2012).

1.2.2 Type II bursts

The Type II is slowly drifting structure which last approximately 10 min. They are associated
with large flares. The systematic frequency drift is interpreted as a shock with velocity 1 000 –
1 500 km/s (Wild et al., 1963). In the shock, the accelerated particles radiate at the plasma or
the gyrocyclotron frequency. Except for the fundamental branch, the harmonic branch is usually
formed at the double frequency. The examples of the observations from Hiraiso Radio Spectrograph
are in Figure 1.4 and 1.5. The recent observations and research were done by Vasanth et al. (2014),
Kong et al. (2015), Zucca et al. (2018).

The emission and the acceleration mechanisms are still under investigation. The emission at
the fundamental branch is assumed (Karlický & Bárta, 2011) to be caused by the coalescence of the
Langmuir waves (L) with the ion-sound waves (S). This leads to the electromagnetic radiation (T),
L±S → T . Two Langmuir waves compose into the harmonic electromagnetic wave, L+L′ → T .
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Figure 1.4: An example of Type II and III radio bursts from radiotelescope HiRAS (2012).

Figure 1.5: An example of Type II and IV radio bursts from radiotelescope HiRAS (2012).

1.2.3 Type III bursts

Type III are fast drifting radio structures (Wild et al., 1963) with a typical duration up to few
seconds. The structures have a strong tendency to form a cluster of tens. They are associated with
a flare, and they occur near the start of the event. Their spectrum is rapidly decreasing from high
to low frequencies. Because of the high-frequency drift (∼ 20 MHz/s) together with the broad
bandwidth (∼ 10 – 100 MHz), the harmonic and the fundamental branch are merged. Wild et al.
(1959) estimated from the interferometric measurement the velocity of the disturbance to be 0.4 c
at ∼1 solar radius above the solar photosphere.

The emission mechanism with estimated time scales by Sturrock et al. (1984), Aschwanden
et al. (1993) is following:

1. Energy release (during solar flare) with total duration ≈ 10 min with ≈ 1 min impulsive
phase.

2. Acceleration process of non-thermal particles, ≈ 5 s.
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3. Propagation of the particles along the magnetic field, < 1 s.

4. Generation of the electrostatic longitudinal waves, immediate.

5. Transverse of the electrostatic waves into the electromagnetic,� 1 s.

Figure 1.6: An example of Type III in the range from decimetric to hectometric waves by Reiner
et al. (2000) on 25 April 1998: (a) Intensity-time profile at 1.075 MHz, (b) Dynamic spectrum
Wind/WAVES instrument, (c) Dynamic spectrum in range 40–800 MHz, (d) Intensity-time profile
at 1, 2, and 3 GHz.

The bursts are rich in variety: from the sharply defined leading frequency, narrow bandwidth,
exponential probably collision decays and the short duration to another extreme when they are
followed by the Type V radiation. The properties of the electron streams causing these bursts are
still under the investigation (Reid & Kontar, 2018a,b). The examples of Type III radio observations
from Ondřejov radiospectrograph (2018) and HiRAS (2012) spectrographs are in Figures 1.4, 1.6
and 1.7.

1.2.4 Type IV bursts

The distinct phenomenon following major outburst was reported by Boischot (1958), who studied
the emission lasting tens of minutes after the initial flare. Using the interferometric measurements,
he found that the altitudes and movements of the plasma are inconsistent with the plasma emission
mechanism and the suggested synchrotron radiation. The designation Type IV was also used for
continuum radiation following a solar flare. Later, this radio burst was designated as “moving”,
assuming that the radiation region is moving outward with velocity ∼1 000 km/s, it can reach
5 solar radii above the photosphere, and the size can be > 10′ (Wild et al., 1963). The duration
is typically up to two hours. The emission was partially circularly polarized corresponding to the
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Figure 1.7: An example of Type III together with Type IV radio bursts from radiotelescope HiRAS
(2012).

extraordinary wave mode. This theory assumes that the electrons with the energies of few MeV are
trapped in a magnetic field and do not lose much of their energy by collisions or by radiation.

The second type of Type IV bursts is “stationary” which may live for more than a day. It
includes long-lasting continuum storms. The burst frequency position is not moving and occurs
slightly above the plasma frequency. The emission cone is narrow and the emission is strongly
circularly polarized in ordinary mode. The initial emission theory was stated by McLean (1959)
and clarified by Denisse et al. (1960). The high energy particles from the solar flare are trapped
in the magnetic field, they diffuse downward the magnetic field and excite the plasma waves. At
all frequencies, the intensity and polarization degree are proportional. Examples of Type IV radio
observations are in the Figures 1.5 and 1.7.

1.2.5 Type V bursts

The Type V continuum radio emission follows the Type III bursts. They occur in 10 % of the
Type III bursts as the diffusive broadband quasi-continuous emission. They are correlated with
the flare decay phase. The drift speeds 1 000 km/s are common. Wild et al. (1959), Raoult et al.
(1990) suggested that the burst can be the synchrotron emission from the same electron stream, that
is responsible for Type III. The emission is slightly circularly polarized (10 %).

1.3 Fine structure radio bursts

Except for the classical burst Types I – IV, in the radio spectrum are also observed other less
frequent phenomena, such as pulsations, spike bursts, fiber bursts, zebra patterns, S-bursts, and
others. A comprehensive study of the fine structure solar radio bursts was done by Chernov (2011).
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Table 1.1: Classification of pulsating structure models. Table was taken from Aschwanden (1987).
Modulation type Emissivity
MHD oscillations Gyrosynchotron modulation
(eigenmodes) Plasma emissivity modulation

Bounce motion of wave trains
Cyclic self-organizing systems Wave-wave interactions

Wace-particle interactions
(e.g. streams or loss-cone instability)

Modulation of acceleration Periodic injection
Periodic magnetic reconnection

1.3.1 Pulsations

The pulsations include several observational phenomena. Their observational properties were sum-
marized by Slottje (1982) and later, the models were proposed for pulsating events by Aschwanden
(1987). They were divided into three groups (Table 1.1). Pulsations are usually not observed alone,
but with a superimposition with the spikes, the fiber bursts, and the zebra patterns. A statistical
study of observations was made by Aschwanden (1987), who concluded that background of the
pulsations might be the Type IV burst, the Type III burst, the zebra pattern and the spikes, and
that the pulsations might be the result of the microwave oscillator modulated emission. Among
others, they also suggest that the flaring region consists of many current loops. In each, the tearing
instability forms multiscale magnetic islands that modulate the plasma emission, and the motion of
the loops causes the frequency drift. According to the mean period of pulsation P , Wang & Xie
(2000) classified the pulsation events into three groups: long period pulsations, P ∼ 10 s, short
period pulsations, P ∼ 1 s, very short period pulsations, P < 1 s. One of the recent studies was
done by Tan et al. (2007), Figure 1.8. The unit “sfu” is defined as 1 sfu = 10−22 W m2 Hz−1.

1.3.2 Spike bursts

The spike burst is a very narrow radio emission. Its typical duration is < 0.1 s. The spikes
occur in a groups of 104 bursts within a time ∼ 1 min and show a fine structure with up to six
harmonics. The total frequency bandwidth is typically 1–20 MHz. Generally, they are non-thermal,
coherent emissions caused by a particle acceleration and an energy release in the flare. Spikes were
observed in decametric (Barrow & Saunders, 1972) and also in microwave range (Droege, 1977,
Staehli & Magun, 1986). Usually, they are strongly polarized in the same sense as burst Type I
or Type III, the emission was related to the ordinary wave. Only the spikes related to the Type II
bursts were unpolarized. The review summarising the possible plasma emission mechanisms was
done by Fleishman & Mel’nikov (1998). They took into account proposed emission properties by
Zhelezniakov & Zaitsev (1975), Zaitsev et al. (1985), Melrose (1991) and concluded, that none of
them can fully explain the observational data.

1.3.3 Fiber Bursts

The fiber bursts are one of the fine structures of Type IV. They occur in groups of single narrowband
fibers with the frequency drift, which is slower than Type III, but one magnitude higher than Type II
(Bernold & Treumann, 1983, Benz & Mann, 1998, Jiřička et al., 2001). They appear in the clusters
of 10 – 30, the duration between the individuals is ≤ 1 s at one frequency. The fibers are explained
by two types of models. The first one, proposed by Kuijpers (1975) is based on the coupling
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Figure 1.8: An example of microwave quasi-periodic pulsating event on 13 December 2006 on
3:25:52 UT after the flare peak. Selected right polarization. Figure was taken from Tan et al.
(2007).

Figure 1.9: The burst from 26 April 2000, beginning at 14:10:05 UT. The arrow points to the
chains. Figure was taken from Dabrowski et al. (2005).

of Langmuir wave L with the whistler wave w producing the transverse electromagnetic wave T ,
L+w → T . The second one is the propagating Alfvén waves solitons which modulates the emission
by Treumann et al. (1990). Both of them can be used for an estimation of the magnetic field strength
(Benz & Mann, 1998). Kuznetsov (2006) based the model on the propagation of magnetoacoustic
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Figure 1.10: Fiber bursts on 23 November 1998 at 12:01:05 UT (left) and 12:01:16 UT (right).
Figure was taken from Karlický et al. (2013).

waves along the magnetic field. Karlický et al. (2013) have shown that the observed radio spectra
can be explained using the semiempirical and magnetohydrodynamical wave trains (Figure 1.10).

1.3.4 Zebra pattern

One of the most intriguing fine structure solar radio events are the solar radio zebras, and they
are correlated and classified as fine structures of the Type IV solar radio bursts. Usually, they are
classified as isolated, spectral, almost parallel stripes which are slowly drifting. Each zebra pattern
can be described in the set of measured parameters: central frequency, frequency of individual
stripes, phase time, polarization degree, stripe number, duration, frequency separation of the stripes
and the relative frequency width. Observations from the Ondřejov radiospectrograph and the
Yunnan observatory are in Figures 1.11 and 1.12.

Figure 1.11: Zebra radio fine burst on 2 May 1998 by Ondřejov radiospectrograph (Karlický &
Yasnov, 2018).

The comprehensive statistical study and classification was made by Tan et al. (2014) who
took into account of 202 zebra pattern events from 40 solar flares which were observed from the
Chinese Solar Broadband Radio Spectrometer at Huairou and the Ondřejov radiospectrographs.
They classified them into three groups:

1. Equidistant zebra pattern – short duration 1 − 2 s, strongly polarized stripes with less than
ten stripes, usually occurring in the rising flare phase.
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Figure 1.12: Left and right polarization of Zebra pattern from Yunnan observatory (YNAO,
Kunming, China). Figure was taken from Chernov et al. (2018).

2. Variable-distant zebra pattern – irregular patterns with duration 2 − 10 s with a different
polarization degrees, overlapping with other structures. The frequency between stripes is
changing in time.

3. Growing-distant zebra pattern – complex stripes with a long duration (> 10 s), weak polar-
ization and more than ten stripes are occurring in the decay flare phase.

They assume that the different mechanisms may have different physical formation mechanisms.
From the mechanisms, they estimated that the magnetic field is in range 10 – 145 G.

Kaneda et al. (2015) measured the polarization in the dependence on the frequency. They found
that the right circular polarization was 50-70 %. With cross-correlation, they found that the left
polarization was delayed by 50-70 ms due to the different group velocities of the right and the left
polarized wave. They concluded that the zebra pattern was created by the double plasma resonance.
Chernov et al. (2016) reported the evolution of the polarization during the burst. In the beginning,
there was a left circular polarization with the narrowband zebra stripes, in the decay phase, the
polarization was right-handed with the left-handed background type IV burst.

Karlický (2014) analyzed the frequency variations of the zebra stripes in time. They found that
the spectrum has a power-law form with index from −1.61 to −1.75 and assumed that the zebra
stripes are generated at the upper-hybrid frequency. They can be interpreted as the plasma density
variations. The frequency oscillations of the zebra stripes were interpreted by Yu et al. (2016)
as the magnetohydrodynamical fast sausage waves that modify the positions of the double plasma
resonance emission regions. They made the magnetohydrodynamical simulation of a plasma slab,
constructed the skeletons of time variations and concluded that they can be used as detection of
short-period oscillations. Kaneda et al. (2018) showed that the upward propagation sausage waves
can interpret the observation with the velocities 3 000 – 8 000 km/s.
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Recently, when searching for the most suited theory of the zebra pattern, Chernov (2018)
summarized the observational properties that are still unexplained or under discussion:

• Imposition of the radio fiber over the zebra stripes, why they limit it from the low-frequency
or the high-frequency range.

• Appearance in the pulsing mode.

• Wave-like or tooth-like frequency drifts in the columns.

• Growth of the frequency separation with the frequency.

• Superfine structure of the zebra stripes and the continuum.

The zebra pattern can be used for an estimation of the magnetic field and the plasma density.
We assume the theory that the stripes are generated when ωpe ≈ sωce, where s is the integer.
The estimation of harmonic s is not an easy task. The method, which takes into account the
height changes of the plasma density and the magnetic field, was proposed by Karlický & Yasnov
(2015). We can compute for each stripe the cyclotron frequency as ωce = ωpe/s. Because we
know the cyclotron frequency for each stripe, we can estimate the magnetic field from Equation 1.3.
Moreover, because we assume that the radiation is at or very close to the plasma frequency, we
can compute the plasma density from Equation 1.1. If we look at the zebra stripes modulation, we
know the electron density and the magnetic field temporal changes, see Karlický & Yasnov (2018).

The zebra patterns are also observed from the other objects. In our solar system, the known
source of them is the Jovian decametric radiation (Panchenko et al., 2010, 2018). Their interpretation
was done by Shaposhnikov et al. (2018). They showed that the double plasma resonance instability
model cannot be used. Instead of that, they used the excitation of the ion cyclotron waves at the
lower-hybrid frequency and the ion double plasma resonance regime. The radio zebras are also in
the high frequency and the high temporal resolution observations of the Crab nebula by Hankins &
Eilek (2007).





Chapter 2

Solar Radio Zebra Models

The theory of the zebra formation and the zebra pattern emission has been studied and discussed for
over forty years. The efforts of an explanation of the different radio fine structures were proposed
by the processes leading to the plasma emission mechanisms. Kuijpers (1980) gave a review of
existing fine structure theories and concluded, that the most important high-frequency instabilities
are connected with the magnetic traps in which the loss-cone instabilities generate the upper-hybrid
waves. Later, the models were developed and based on the double plasma resonance instability and
also other theories. The comparison of different zebra models was made by Zlotnik (2009) and
Chernov (2010, 2011).

2.1 The Double Plasma Resonance Instability Model

The culmination of the effort for an explanation of the zebra pattern was done by publishing the
series of papers by Zhelezniakov & Zlotnik (1975a,b,c). There are also other papers extending and
clarifying the theory (Dulk, 1985, Winglee & Dulk, 1986, Yasnov & Karlický, 2004, Kuznetsov,
2005, Benáček et al., 2017).

In the literature, the most widely used theory for explaining the zebra pattern is the double plasma
resonance (DPR), i.e., the resonance between the plasma frequency, the cyclotron frequency, and
the electrostatic wave. While the designation double plasma resonance is mostly used for the
condition ωpe > ωce, the electron cyclotron maser (ECM) theory is used for the case ωpe < ωce.

The theory of the electrostatic growth rate is computed from the permittivity tensor. We can
write Poisson equation

∇ · ε̂ ·E = 0, (2.1)

where ε̂ is the permitivity (dielectric) tensor with the components εij .
If we assume that the particles are non-relativistic and they have the Maxwellian distribution

function with the thermal velocity vtb, the components of the permitivity tensor derived from the
plasma kinetic theory are

εij(ω,k) = δij +
∑
s

ω2
pe

ω

e−λ

k‖vtb

∞∑
n=−∞

T̂ij , (2.2)

– 17 –
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where the tensor T̂ij is

T̂ij =

 n2In
Z
λ in(I ′n − In)Z −nIn Z′

√
2λ

−in(I ′n − In)Z
(
n2 Inλ + 2λIn − 2λI ′n

)
Z i

√
λ(I ′n − In) Z

′
√
2

−nIn Z′
√
2λ

−i
√
λ(I ′n − In) Z

′
√
2

−InZ ′ζn

 , (2.3)

and the parameters are

λ =
k2⊥v

2
tb

2ωce
, (2.4)

ζn =
ω − nωce

k‖vtb
, (2.5)

Z(ζ) =
√
π

∫ ∞
−∞

e−t
2

t− ζ
d. (2.6)

(2.7)

Il is the modified Bessel function of l-th order, ω is the wave frequency, k = (k‖, k⊥) is the wave
vector parallel and perpendicular to the direction of the magnetic field, respectively. The summation
in Equation 2.2 is over the index n. The plasma function Z(ζ) can be approximated in the case for
ζ � 1 by

Z(ζ) = i
√
πe−ζ

2 − 2ζ

[
1− 2ζ2

3
+

4ζ4

15
− 8ζ6

105
+ O(ζ8)

]
, (2.8)

or for the case of Re(ζ) > 0 by

Z(ζ) = i
√
πσe−ζ

2 − 1

ζ

[
1 +

1

2ζ2
+

3

4ζ4
+

15

8ζ6
+ O(ζ−8)

]
, (2.9)

where σ

σ =



0 y > 1
|x| ,

1 |y| < 1
|x| ,

2 y < −1
|x| .

(2.10)

We assume the electric field in the form

E = E0 + E1, (2.11)

where E0 is the constant part and E1 is a small perturbation. Then the perturbation E1 = −∇φ1,
where φ1 = φ10 exp i(kr− ωt), is

k · ε̂φ = k2xεxx + 2kxkz + k2zεzz = 0, (2.12)

where the Fourier transformation was used

∂

∂r
→ −ik, ∂

∂t
→ iω. (2.13)
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Now, for the longitudinal electrostatic wave parallel to the magnetic field (k‖ = 0) we get

ε‖ = ε
(0)
‖ + ε

(1)
‖ = 0, (2.14)

where the term ε
(0)
‖ corresponds to the background Maxwellian plasma and the term ε

(1)
‖ is a cor-

rection to the hot and rare plasma component. In our case with nh � ne,

ReZ(ζ) = −1

ζ
, (2.15)

and in agreement with Chen (1984), Zhelezniakov (1997), Fitzpatrick (2015) we can write

ε
(0)
‖ = 1− 2ω2

pe

e−λ

λ

∞∑
l=1

l2Il(λ)

ω2 − l2ω2
ce

= 0. (2.16)

The solutions of the real part of Equation 2.16 are the dispersion relations for the upper-hybrid waves
as well as for the Bernstein waves. Because in the present thesis we are interested in these waves
in the upper-hybrid band, where the problem is to distinguish between these waves sometimes,
therefore in the following we use for them the common term: the electrostatic waves.

For small λ� 1, Zhelezniakov & Zlotnik (1975a) gave the approximate relations

ε
(0)
‖ = 1−

ω2
pe

ω2 − ω2
ce

−
3ω2

peω
2
ceλ

(ω2 − 4ω2
ce)(ω

2 − ω2
ce)
−

ω2
pe

(ω2 − s2ω2
ce)

s

(s− 1)

(
λ

2

)s−1
, (2.17)

where s is the harmonic number of ratio ωpe/ωce. The solutions of this equation are

ω2 = s2ω2
ce +

ω2
peω

2
ce

(s2 − 1)ω2
ce − ω2

pe

s(s+ 1)

(s− 2)!

(
λ

2

)s−1
, (2.18)

and for the frequencies close to
ω2 = ω2

pe + ω2
ce, (2.19)

we get
ω2 = ω2

UH ≡ ω2
pe + ω2

ce + 3k2⊥v
2
tb. (2.20)

The relativistic theory of the double plasma resonance instability assumes the resonance between
the electrostatic wave with the frequency ω and the wave vector k, and the plasma characterized by
the electron plasma frequency ωpe and the electron cyclotron frequency ωce. The particles are mov-
ing at the velocities connected with the momenta u = (u‖, u⊥) = γrel(v‖, v⊥) = γrel/me(p‖, p⊥).
The resonance is in the form

ω − sωce

γrel
−
k‖u‖

γrel
= 0, (2.21)

where s is the resonance harmonic number. If the s is positive, we speak about “normal Doppler
effect”; if s is negative, it is called “anomalous Doppler effect”. If s = 0, it is only resonance
between the plasma frequency and wave frequency without the magnetic field and it is called
“Cherenkov radiation”.
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When searching for the dependence of u⊥ on u‖, the Equation 2.21 can be transformed into the
equation of an ellipse (Winglee & Dulk, 1986)

(k2‖c
2 + s2ω2

ce)
2

s2ω2
ce(k

2
‖c

2 + s2ω2
ce − ω2)

(
v‖

c
−

ωk‖c

k2‖c
2 + s2ω2

ce

)2

+
k2‖c

2 + s2ω2
ce

k2‖c
2 + s2ω2

ce − ω2

v2⊥
c2

= 1, (2.22)

which has the center at

v‖ = c
ωk‖c

k2‖c
2 + s2ω2

ce

, v⊥ = 0. (2.23)

The ellipse eccentricity is

e =

(
k2‖c

2

k2‖c
2 + s2ω2

ce

)1/2

, (2.24)

and the semimajor axis V along v⊥ is

V = c

(
k2‖c

2 + s2ω2
ce − ω2

k2‖c
2 + s2ω2

ce

)1/2

. (2.25)

If the condition in Equation 2.21 is satisfied, the electrostatic wave is unstable, and its amplitude
and the energy are growing or decaying dependent on the plasma velocity distribution function
f = f(v‖, v⊥). If the region exist in the distribution function, for which the derivations∂f/∂v⊥ > 0
or ∂f/∂v‖ > 0 are sufficiently larger than zero, the instability is growing. Otherwise, the energy
of the instability is constant or decreasing.

The electromagnetic waves are an essential part of the DPR model. During the instability, the
electrostatic waves are generated. Their group velocity is very close to zero, and they remain inside
the instability region. These waves are formed into a dispersion branches. The dispersion branch
is a relation between the frequency ω and the wave vector k, in general case φ(ω,k) = 0. In DPR
case of the electrostatic waves, the branches are given by Equation 2.2. It is assumed, that due to
the process of the plasma emission (Chapter 1.1.1), the electrostatic waves are transformed into the
electromagnetic radiation, which can escape the instability region. The explanation of the radiation
directionality and the polarization remains an open question.

2.2 Whistler Generation Model

The next zebra pattern model is based on the low-frequency electromagnetic waves in the solar
corona. First, the whistler model was used for the generation of the fiber bursts by Kuijpers (1975).
He assumed the non-linear coalescence of the whistler waves w and the Langmuir waves L, which
are both generated by the unstable distribution functions, into the electromagnetic waves T ,

w + L→ T. (2.26)

The theory for the explanation of the solar radio zebras was intensively developed using the same
model by Chernov (1976), who published a series of papers. The theory was summarized in the
work Chernov (2011). Even though the modulation of the plasma frequency by the whistler waves
with the frequency ωw ≈ 0.1ωpe is an appropriate assumption, the quasi-harmonic stripes are not
easily explainable (Zlotnik, 2009) by this theory, unlike the fiber bursts. One has to assume that the
whistler waves exist at some levels with a constant density to obtains the stripes. In the model, after
some time of evolution, the unstable velocity distribution function quenches the instability and the
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Langmuir waves generation. For the electrostatic wave generation, there must be a source of the
energetic particles in the magnetic trap.

The region of the magnetic trap is divided into the amplification and the absorption regions.
The length of the absorption where the whistlers are generated is

lw = Λ
cωce

ω2
pe

ne
nh
, (2.27)

where Λ is Coulomb logarithm. The length of the absorption is

∆lB = Tcv
w
gr

lB
2ve

vwgr, (2.28)

where ve is the electron velocity in a trap of length lB, and vwgr is the whistler group velocity. Both
distances are less than the trap size (Chernov, 2006). The coalescence in different amplification
regions creates the stripe structure.

There are also indices that the amplification is much larger than the expected size of the trap
(Bespalov & Trakhtenhertz, 1986). Though these problems in explanation, the whistler waves still
must be considered as one of the important mechanisms for interaction with the Langmuir waves
and the generation of the electromagnetic waves at the plasma frequency.

2.3 MHD Waves Model

The model based on the magnetohydrodynamical (MHD) waves with the aim to explain the solar
and the Crab nebula radio zebra was proposed by Karlický (2013). He used a simple semi-empirical
model of modulation of the radio continuum. He assumed the modulation by the density wave n(h)
(Roberts et al., 1984) in the form of the wave train

n(h) = n0exp

(
− h
H

){
1 + nR cos

[
2π

(h− h0 − cst)
Lw

]}
, (2.29)

where h is the height in the atmosphere, n0 is the density at height h = 0, H is the scale height,
nR is the relative density perturbation, cs is the velocity of the slow magnetoacoustic wave, t is the
time and Lw is the wavelength. Using this relation, he concluded that even for a small perturbation
nR, these two analyzed observations could be explained. The comparison of the computed and the
observed zebra stripes profile is in Figure 2.1.

2.4 Eigenfrequencies (Trapped Plasma Waves) Model

LaBelle et al. (2003) created the zebra model that uses the generation mechanism proposed by
Winglee & Dulk (1986), but is based on the trapping of the upper-hybrid waves in the density
cavities. It assumes the double plasma resonance condition, which generates the electromagnetic
Z-waves below the upper-hybrid frequency. Near the upper-hybrid frequency this mode becomes
electrostatic and is trapped by the density inhomogenities.

LaBelle et al. (2003) solved the equation electric field E in the cylindrical coordinates (r, φ)

1

r

d

dr

(
r
dE

dr

)
+

1

r2
d2E

dφ2
+ k2⊥(r)E = 0, (2.30)
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Figure 2.1: The comparison of computed (full line) and observed (dashed line) radio fluxes for
density amplitude nR = 0.005. Figure was taken from Karlický (2013).

with the dispersion relation of Z-mode for the background plasma

k2⊥(r) =
2

ρ2e

ω2
ce

ω2
pe(r)

[
ω2
pe(r) + ω2

ce

ω2
− 1

]
, (2.31)

where ρe =
√

2kBTe/meωce is the electron gyroradius. The eigenfrequencies were determined by
simple “waterbag” model where the density variation is

n(r) =

{
n0 for r > L,

n0(1 + δ) for r < L,
(2.32)

where L is the cavity dimension. They computed the eigenfrequencies dependent on the radial
“quantum” numbers n and the azimuthal quantum numbers m and showed how the frequency
positions are changing (Figure 2.2).

2.5 Interference Model

Another model using the plasma density fluctuations is that by Bárta & Karlický (2006), who
analyzed the regular structures and their impact on the spectra formation. Their model assumes
a finite series of the periodic density square-shaped wells of the frequency depth ∆ωp. The
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Figure 2.2: The computed eigenfrequencies of the cavity modes for ratio ωpe/ωce = 1.7 and four
cavity dimensions ρ = ρe/L = 0.001, 0.003, 0.01, 0.03 in the dependence on the radial number
n and the azimuthal number m. The frequency spacing (corresponding to the frequency distance
of the zebra stripes) 1 % between the eigenfrequencies are for ρ = 0.01. Figure was taken from
LaBelle et al. (2003).

Figure 2.3: Spectrum formed by a single density well. Figure was taken from Bárta & Karlický
(2006).

propagating electromagnetic wave is described by the Klein-Gordon equation

∂2E(r, t)

∂t2
− c2∆E(r, t) + ω2

pe(r)E(r, t) = 0, (2.33)

where the plasma frequency depends on the density structure n(r). They solved this equation
using the similarity with the Schödingers equation. The solutions are the discrete frequencies.
The electromagnetic wave with the frequency ω > ωpe is going through this region. It is partly
transmitted and partly reflected, and forming the expected zebra stripes (Figure 2.3).





Chapter 3

Particle-in-Cell Model

There are two main approaches to make plasma simulations. The first approach is represented
by the MHD models, which describe the plasma as a fluid with the parameters described by
statistical properties. The second group consists of the kinetic models, which describe the plasma
kinetic properties where the Vlasov, Fokker-Planck codes, and particle-in-cell (PIC) codes belong.
The hybrid codes combine some plasma kinetic properties with the fluid description to create
simulations, where the plasma is described more precisely than in the MHD models, but it is not as
challenging processes as the kinetic models (Figure 3.1).

Vlasov,
Fokker-

Planck codes

Particle
codes

Hybrid
codes

MHD codes

Kinetic
description

Fluid
description

Figure 3.1: The classification of the computer plasma simulation codes.

In our research we used the PIC simulations for the study of the kinetic effect of the DPR. The
PIC is a computational approach for solving the partial differential equations in the simplest form
that is the most acceptable for the computers

∂B

∂t
= −∇×E,

∂D

∂t
= ∇×H− J, (3.1)

dmv

dt
= q(E + v ×B), (3.2)

where E = D/ε0 is the electric field, B = µ0H is the magnetic field, t is time, J is the current and
m is the particle mass. ε is the relative permittivity and µ is the relative permitivity for the vacuum.
Plasma has been studied with the usage of the PIC codes since 1950s (Dawson, 1983). One of
the most advanced PIC codes used in this thesis is called TRISTAN (TRI-dimensional STANford
code). TRISTAN is three-dimensional, fully electromagnetic and relativistic code. Originally,
it was created by Buneman & Storey (1985) for planet magnetosphere simulations and later was
published by Matsumoto & Omura (1993, p.67-84). The parallelization in the particles was made

– 25 –
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Computation
of fields on grid

Interpolation of
fields to particles

Particle move

Interpolation
particle currents

to grids
∆t�

Figure 3.2: The computational steps of the general particle-in-cell method.

by Prof. Marian Karlický. The development of the parallelized version in the domains was one of
the aims of my doctoral study. For more details about the parallelization, see Chapter 3.2.

The fields interpolated on the grid and particles are the essence of this model. They are solved
as plasma superparticles in a four-part established loop (Figure 3.2). The Equations 3.1 and 3.2
are implemented as finite difference method in which the operators are implemented space- and
time-centered for a higher-order accuracy. The electric field E and magnetic field B must be
leap-frogged in time on the rectangular cubic grid. Therefore, the electric field E with indexes
(i′, j′, k′) in the same position as the magnetic field B with the indexes (i, j, k) is given by the
interpolation of the adjacent cells

ex(i, j, k) =
ex(i′ − 1, j′, k′) + ex(i′, j′, k′)

2
, (3.3)

ey(i, j, k) =
ey(i

′, j′ − 1, k′) + ey(i
′, j′, k′)

2
, (3.4)

ez(i, j, k) =
ez(i

′, j′, k′ − 1) + ez(i
′, j′, k′)

2
. (3.5)

It is the same for the magnetic field. Each of the cells has dimensions ∆x = ∆y = ∆z. The time
discretisation is ∆t = 1. Here, the Courant–Friedrichs–Lewy condition for an algorithm stability
(Courant et al., 1928)

c∆t <
∆x√

3
, (3.6)

must be satisfied. ∆t is the time step, ∆x is the cell size and c is the model light speed. The
TRISTAN model is normalized to ∆x = 1,∆t = 1, c = 0.5.

The summary of the independent model plasma parameters is in Table 3.1. TRISTAN uses the
scales such that ε0 = 1 and µ0 = 1/c2. This implies that E = D. For better computations, the
symmetry between the electric field E = (ex, ey, ez) and the magnetic field B = (bx, by, bz) is
introduced in the form using the components multiplied by speed of light cB.
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Parameter Symbol
Permittivity ε0
Speed of light c
Electron mass me

Mass ratio mi/me

Time step ωpe∆t
Frequency ratio ωpe/ωce

Thermal velocity vtb

Table 3.1: The independent parameters used in the TRISTAN particle-in-cell model.

3.1 Model Workflow

The model is implemented in the programming language Fortran 90/95. The code was divided
into several files. Except the main part of the model in the file model.f90, there are the
files savedata.f90 for the data storage on disk, boundptl.f90 and boundfield.f90
for the boundary conditions, init.f90 for the initial conditions, and size.inc for the array
configuration.

The parallelization is made by using the Message Passing Interface1 (MPI). This technique is
based on the principle that each processor has its data memory domain where it computes. The
data exchange between these domains is based on the messages which are exchanged between the
running processors. This library creates an interface for the effective and efficient creation of
a connection between the processors and the nodes. The main advantage is that the library can use
many types of hardware networks between the nodes. It can run on the supercomputers or computer
clusters, and use existing the Ethernet network or special independent Infiniband.

The model block diagrams of the domain parallelized version of the TRISTAN code is shown
in Figure 3.3. First, the model loads parameters that are connected with the allocation of the field
and the particles arrays. Each processor allocates some subgrid of the fields and the corresponding
particles. The configuration specifies the number of processors in each dimension.

The models are prepared in a such way, that all processors have the same grid size for the whole
computing time. The number of particles per processor is given by the initial configuration. In
default, the number density is constant, but it can change due to the flow of the particles from one
processor to another, or by the other boundary conditions.

After the loading of the arrays, the MPI interface is initialized. MPI is automatically assigning
the position in the whole model’s grid to the processors in a dependence on the MPI library and
the server MPI configuration. Usually, the processors are assigned the way, that the close subgrids
are assigned to the close processors to minimalize the communication overhead between them.

Then, the model physical parameters that are the same for all the processors are loaded. From
the independent parameters, the other dependent parameters are computed. Then, the fields are
initialized. Usually, the initial electric field is set to zero. The magnetic field is configured according
to the astrophysical situation and the conditions.

In the model, the subroutines for saving the fields and the particles are created. Originally,
there were also subroutines for saving other parameters like the currents, the densities, the fluxes.
However, because of the high standard storage capacity in computing clusters, it is possible to save
all the data and then postprocess them. All the initial fields and the particles are stored before the
start of computing itself.

1https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
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Model start

Load MPI parameters:
Nprocs, Nnodes, grid size (∆x,∆y,∆z),

nparticles, tend, saving steps

Initialize MPI interface

Load physical parameters:
c, ε0,me,mi, ωpe, ωce, vtb, (vt)

Initialize fields: E,B

Initialize particles: x,v, distribution function

Save all initial values

t += 1

Compute

Save data? Save E,B,x,v

t < tend

Model stop

YES

NO

YES

NO

Figure 3.3: The specific computational steps of the TRISTAN particle-in-cell model. For more
detailed description see the Chapter 3.1.

The computing is repeating a cycle that is incrementing the time until it equals the defined
end time of the model. Each time step consists of the computation itself and, if required, the data
are stored on the disk. The data storage frequency can be configured for different time windows.
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Compute begin

B field first half advance

B field boundary copy MPI communication

Advance particles

B field second half advance
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Figure 3.4: The details on one computational step of the TRISTAN model.

For example, in instability initial evolution, only every 100-th time steps can be saved, but then an
interesting part occurs where every second time step can be saved. And then the interesting phase
ends and we can save only each 1 000-th time step. This behavior is provided by the implemented
storage module in the file savedata.f90.

More details about the computing algorithm are in Figure 3.4. The first half advance of
the magnetic field is computed together with the magnetic field boundary conditions. Then the
particles are advanced. The code computes the second part of the magnetic field half advance and
the boundary conditions for the particles. Next, the particles are exchanged between the processors,
and the current deposition into the electric field is computed. The time step is completed by the
computation of the electric field boundary conditions.

Even though it seems that there are many computational steps that take a lot of time, the particle
current deposition into the electric field consumes most of the time. This part of the model occupies
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70–80 % of the computing time for the typical number density 100 particles. Other time consuming
operation can be data storage. But this operation depends on the disk performance and also not
every time step is saved.

3.1.1 Field updates

The TRISTAN code solves the Equations 3.1 and 3.2. The time change of the magnetic field in one
time step is

bnewx (i, j, k) = boldx (i, j, k)

+c∆t

[
ey(i, j, k + 1)− ey(i, j, k)

∆z
− ez(i, j + 1, k) + ez(i, j, k)

∆y

]
,

(3.7)

bnewy (i, j, k) = boldy (i, j, k)

+ c∆t

[
ez(i+ 1, j, k)− ez(i, j, k)

∆x
− ex(i, j, k + 1) + ex(i, j, k)

∆z

]
,

(3.8)

bnewz (i, j, k) = boldz (i, j, k)

+ c∆t

[
ex(i, j + 1, k)− ex(i, j, k)

∆y
− ey(i+ 1, j, k) + ey(i, j, k)

∆x

]
.

(3.9)

For the better numerical stability of the code, the advance of the magnetic field is computed in
two sub-time steps with ∆t = 1

2 . The full advance of the electric follows the half advances of the
magnetic field and it is in the form

enewx (i, j, k) = eoldx (i, j, k)

+c∆t

[
by(i, j, k − 1)− by(i, j, k)

∆z
− bz(i, j − 1, k) + bz(i, j, k)

∆y

]
,

(3.10)

enewy (i, j, k) = eoldy (i, j, k)

+c∆t

[
bz(i− 1, j, k)− bz(i, j, k)

∆x
− bx(i, j, k − 1) + bx(i, j, k)

∆z

]
,

(3.11)

enewz (i, j, k) = eoldz (i, j, k)

+c∆t

[
bx(i, j − 1, k)− bx(i, j, k)

∆y
− by(i− 1, j, k) + by(i, j, k)

∆x

]
.

(3.12)

3.1.2 Particle update

The Lorentz difference equation is

vnew = vold +
q∆t

m

[
E +

1

2
(vnew + vold)×B

]
, (3.13)

rnext = rpresent + ∆tvnew. (3.14)



CHAPTER 3. PARTICLE-IN-CELL MODEL 31

For the computation of the particle advance, the three step form is used (Hockney & Eastwood,
1981, Chapter 4-7-1), (Birdsall & Langdon, 1991, Chapter 4-4):

1. First half of the electric acceleration

v0 = vold +
qE∆t

2m
, (3.15)

2. Magnetic rotation

v1 = v0 + 2
v0 × v0 × b0

1 + b20
× b0, (3.16)

3. Second half of the electric acceleration

vnew = v1 +
qE∆t

2m
. (3.17)

The fields interacting with the particle at the position r = (x, y, z) are linearly weighted in
a dependence on their distance δx, δy, δz from the closest grid point i, j, k, where

i = round(x), j = round(y), k = round(z), (3.18)

are the rounded values, and

δx = x− i, δy = y − j, δz = z − k, (3.19)

can be used in the expression of Fx,y,z . For example, x-component of the electric fields is computed
as

Fx,y,zex = Fx,y,kex + [Fx,y,k+1
ex − Fx,y,kex ]δz, (3.20)

Fx,y,kex = Fx,j,kex − [Fx,j+1,k
ex − Fx,j,kex ]δy, (3.21)

Fx,y,k+1
ex = Fx,j,k+1

ex − [Fx,j+1,k+1
ex − Fx,j,k+1

ex ]δy, (3.22)

2Fx,j,kex = ex(i, j, k) + ex(i− 1, j, k)

+ [ex(i+ 1, j, k)− ex(i− 1, j, k)]δx,
(3.23)

2Fx,j+1,k
ex = ex(i, j + 1, k) + ex(i− 1, j + 1, k)

+ [ex(i+ 1, j + 1, k)− ex(i− 1, j + 1, k)]δx,
(3.24)

2Fx,j,k+1
ex = ex(i, j, k + 1) + ex(i− 1, j, k + 1)

+ [ex(i+ 1, j, k + 1)− ex(i− 1, j, k + 1)]δx,
(3.25)

2Fx,j+1,k+1
ex = ex(i, j + 1, k + 1) + ex(i− 1, j + 1, k + 1)

+ [ex(i+ 1, j + 1, k + 1)− ex(i− 1, j + 1, k + 1)]δx.
(3.26)
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3.1.3 Current decomposition

TRISTAN does not calculate the charge density array like other PIC codes. Instead of that, it uses
a direct particle current deposition into the electric field. This approach removes the cohesion
between the particles and enables parallelization.

A charge conservation scheme was proposed by Villasenor & Buneman (1992). The electric
field is modified by the current J = (jx, jy, jz)

ex(i, j, k) = ex(i, j, k)− jx · cy · cz, (3.27)

ex(i, j + 1, k) = ex(i, j + 1, k)− jx · δy · cz, (3.28)

ex(i, j, k + 1) = ex(i, j, k + 1)− jx · cy · δz, (3.29)

ex(i, j + 1, k + 1) = ex(i, j + 1, k + 1)− jx · δy · δz, (3.30)

ey(i, j, k) = ey(i, j, k)− jy · cx · cz, (3.31)

ey(i, j + 1, k) = ey(i, j + 1, k)− jy · δx · cz, (3.32)

ey(i, j, k + 1) = ey(i, j, k + 1)− jy · cx · δz, (3.33)

ey(i, j + 1, k + 1) = ey(i, j + 1, k + 1)− jy · δx · δz, (3.34)

ez(i, j, k) = ez(i, j, k)− jz · cy · cx, (3.35)

ez(i, j + 1, k) = ez(i, j + 1, k)− jz · δy · cx, (3.36)

ez(i, j, k + 1) = ez(i, j, k + 1)− jz · cy · δx, (3.37)

ez(i, j + 1, k + 1) = ez(i, j + 1, k + 1)− jz · δy · δx, (3.38)

where
cx = 1− δx, cy = 1− δy, cz = 1− δz. (3.39)

3.1.4 Boundary conditions

In the domain parallelized code, there are two types of the boundaries between the computing grids:

1. Boundaries between the subgrids, which belong to the different processors. These boundaries
sew together the neighboring subgrids in all three dimensions. They are implemented in the
same way as the periodic boundaries because both of them smoothly connect subgrids. For
the continuity of the physical quantities, these boundaries must stay unchanged.

2. Outer boundaries of the whole computing domain. At his moment the code uses periodic
boundary condition. They must be implemented according to the studied situation.

The boundary data must be sent between the processors. Each processor must determine where
to send the data. Sending the fields is easier because the data amount is always the same. The size
of the sending buffers of the particle is changing.

The sending of the particles is more complicated. The particle can cross the boundary of the
sub-grid in 6 walls, 12 corners between two walls and 8 corners between three walls. According
to the direction of the particle, they migrate into one of the 26 other neighboring processors. The
number of particles at each processor is changing. For that reason, the initialized array containing
all the particles must be larger than the initial number of the particles. Each processor holds the
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variable with an actual number of the particles (ions or electrons). If the particle is flowing out of
the sub-grid it should be removed from the memory, the item in array is replaced by the particle
from the end of array and the number of particles decreases by one. If the particle inflows, it is
appended to the end of the particle array and the number of the particles is incremented by one.

3.1.5 Data storage

For the data storage, we use the high-performance parallelized library Hierarchical Data Format in
version 5 (HDF52). It was created for the fast I/O processing and the storage. It has support for
many programming languages, and the data can be read from many visualizing programs or data
processing routines in Python. The library enables storage of one data array into one file by many
processors simultaneously. HDF5 internally uses the MPI interface.

3.2 Domain Parallelisation and Other Code Improvements

The TRISTAN model was the initial starting point of our work and it was originally parallelized
only in the particles. Each of the MPI processes was computing the fields on the grids separately.
The only source of a change was the electric field generated by the particle currents. Each processor
was handling a specific subset of the particles. Their electric fields were summed across all the
processors and distributed between them. The boundary conditions were the next advantage of this
solution. They were solved locally without MPI communication. The maximum number of the
processors that could be efficiently used was smaller or equal to the number of the particles per
cell. If a processor had in mean less than one particle per cell, the computation became inefficient.
Each processor had a whole grid, but almost no particles, and it was not computing effectively.

The solution for the scaling up is to implement a domain parallelization. The main domain is
divided into the subgrids. In our case, each of them has the same size, and they are distributed
among the processors. Each processor is computing a specific subgrid and the particles in it. In
comparison with the particle parallelization, this implementation is suitable for large domains with
a small particle density, and in the case we need to use more processors than the mean particle
density.

This type of parallelization is scaling up to a point, where the time spent by the boundary
communication exceeds the computing part. It is approximately proportional to the ratio between
the size of the boundaries and the volume of the grid. For 100 particles per cell, the subdomain
size should be larger than 10∆× 10∆× 10∆.

The implemented improvements for a domain parallelization in TRISTAN are following:

• The interpretation of the domain size changes from the global domain scale to subdomain
scale; the introduction of new parameters connected with the number of the processors in
each dimension.

• The position in cartesian topology is assigned to each processor using the
MPI_Cart_create and MPI_Cart_coords commands.

• Implementation of the boundary conditions for the fields with the MPI communication.

• Implementation of the boundary condition for the particles using MPI.

• Parallel data storage using HDF5. The fields from the grids are saved into one file. The
particle data are stored into separate files.

2https://www.hdfgroup.org/solutions/hdf5/
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There have been small improvements of the code including:

• Transition of the code from Fortran 77 to Fortran 90/95.

• Division of one long file into more files following the logical arrangements – initialization,
storage, particle boundary, field boundary.

• Replacement of the the CPU_TIME() method by the SYSTEM_CLOCK() method.
The SYSTEM_CLOCKmethod gives the real-time instead of CPU_TIME time. The difference
shows up when the processors are not 100 % utilized. CPU_TIME gives computing time,
not the wall time of the simulation.

• Adding a new random seed method. The method reads a random number from the Linux
system and uses it as the seed. It also guarantees that each processor generates a different
order of the numbers.

• Transition from real(4) to real(8) with all the fields and particles. It includes the
real(8) random generator.

• Implementing method Add_Step(), which sets the saving interval for the fields and parti-
cles for the given time step.

• Implementation of a better Gaussian random number generator. Adding the relativistic cor-
rection for the velocity. Until now, a “five-hump” generator was used, which only combined
normal generators and created a “humped” Gaussian distribution.

• Implementation of the loss-cone types of the distribution function: DGH, loss-cone Maxwell,
loss-cone Kappa, loss-cone cut-off Kappa, and loss-cone power-law.

• Creation of the starting scripts for the supercomputers Salomon and Anselm, the clusters
Oasa and Metacentrum, and for the PCs. They can be used for the PBS Pro or the Slurm job
scheduler.

The model includes the parameter cartd which can be set to 0 for the particle parallelization or to
3 for the 3D domain parallelization. It can always be chosen, which model is more efficient.

Because the code was developed for the scaling on a large number of the processors, the crucial
part at the end of the implementation was testing its performance. The result of the scaling is in
Figure 3.5. The testing model had the following parameters: the size was 120∆× 60∆× 1800∆,
the particle density ne = ni = 96 and the thermal velocity of the particles vtb = 0.018 c. 6–720
processor cores were used on the Salomon cluster. The wall time per one model time step is
computed as a mean of 10 computing steps. The initial loading of the model is not included,
because it is negligible in comparison with the typical computing times of the real models.

For the scaling, the cluster parameters are important. The main computing clusters are Oasa
in Ondřejov and Salomon in Ostrava. They both have similar computing nodes. Both are using
2 sockets with 12 core CPUs (Oasa has Intel Xeon E5-2650v4 @ 2.20GHz, Salomon has Intel
Xeon E5-2680v3 @ 2.5 GHz) and Infiniband. Both have 128 GB RAM per node. In Oasa, up to
11 nodes, and in Salomon up to 1008 nodes can be used.

Figure 3.5 shows that both models are scaling differently. While the model parallelized in
particles is more efficient for the small number of the particles, its efficiency is changing at around
40 processors. For a higher number of processors, some of them have only one particle per cell,
and their computing becomes inefficient. For the number of processors higher than 96, in particle
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Figure 3.5: Scaling of the code with parallelization in the particles (blue line) and after paral-
lelization in the domains (green line). The dotted green line is the ideal scaling of the model with
increasing the number of processors. For more details about the model parameters, see the text.

parallelized model, there are processors that do not even have particles. They are computing only
the fields, and their run is useless.

On the other hand, the domain parallelized model is less efficient for less processors than the
older version. However, the model is scaling well up to the tested 720 processors, where the
slowdown on 30 nodes in comparison with the ideal scaling is about 50 %.

The conclusions of the model usage are following: for computing of small models, ideally
on one node, or model with the number of the particles per cell much larger than the number
of processors, use the older particle parallelization. For large models, where the number of the
particles per cell is not much larger than the used number of processors, use the newer version.

Next parameter influencing the computing time is the storage performance. The amount of time
spent on data storage is highly dependent on the saving frequency, the data amount, the overloading
of storage by other users. The storage time of one array is increasing with the number of processors.
How often and what amount the data are stored and how they influence the total computing time,
must be carefully selected. The storage of all particles and all fields from the previous model on
Salomon using 720 processors can take a few seconds. Several tens of GB can be saved in one time
step.

3.3 Proposed future development

Even though the aims of the model development, the domain parallelization, are fulfilled, there are
still adjustments that could or probably, in the near future, should be done, and which we recommend
from our knowledge of the code. They concern the code maintainability, the new Fortran features,
increasing the representation of the accelerators in the clusters, and others:

• Transition from Fortran 90/95 to newer version Fortran 2008/2018. This Fortran version
brings better support for the object oriented programming, the support of the command
forall, using the AVX vector instructions, and others.

• Packing of the model parameters and the arrays into the objects. For example, the physical
parameters could be stored in one object, MPI parameters in another, particles in the next
one.
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• Support of an acceleration offloading for a better scaling under 1 000 processors – using
OpenMP, support for CUDA or Salomon’s Xeon Phi.

• Optimizing the part of the code, where the currents are transformed into the electric fields.

• Usage of the Single Instruction Multiple Data (SIMD) instructions. E.g., Advanced Vector
Instructions AVX and AVX-512. Appropriate usage of AVX could increase the computing
power by four.



Chapter 4

Summary of my Results

The presented papers are published in the journals: Astronomy and Astrophysics, Solar Physics, and
Astrophysical Journal. They are included in Appendixes A–E. The following sections summarize
the main aims, the used methods and the results.

4.1 Paper I: Temperature Dependent Growth Rates of the Upper-
hybrid Waves and Solar Radio Zebra Patterns

Benáček, J., Karlický, M., Yasnov, L. 2017, Astronomy & Astrophysics, 598, A106.

The double plasma resonance instability is the most promising model of the solar radio zebras. The
unstable loss-cone type of the distribution function generates the electrostatic waves that are trapped
in the instability region. Then, the electrostatic energy is transformed into the electromagnetic
waves, which can escape the instability region. In this paper, we numerically computed the growth
rates of the upper-hybrid waves in the double plasma resonance instability. For computing of the
growth rates, we used the numerical approach of theory by Winglee & Dulk (1986) with a relativistic
correction from Yasnov & Karlický (2004). We used the thermal electron component with DGH
distribution function of the hot electrons. The thermal velocity was in the range 0.1–0.3 c, the
background thermal velocity 0–0.018 c, the magnetic field 10–100 G. The results were computed
for the ratio ωpe/ωce = 3–20.

We numerically analyzed the values and shapes of the growth rate profiles as a function of the
ratio ωpe/ωce. For each value ωpe/ωce, we computed the growth rates in k⊥–k‖ domain, and then
we selected the highest growth rate value and determined its position. We computed the growth
rates dependent on the background and the hot electron thermal velocity.

We found that the growth rate dependence on ωpe/ωce shows distinct peaks for the thermal
velocities of hot electrons up to 0.3 c. For higher hot electron thermal velocities, the peaks are
smoothed. In our case, the frequency shift can be up to 16 % for vt = 0.3 c. Moreover, there is
a frequency shift of the growth rate peaks for a non-zero temperature of the background component.
The frequency shift is increasing with the thermal velocity of the hot electrons, but also with the
temperature of the background plasma. The frequency shift is linearly proportional to the harmonic
number s. We showed how the shift is changing the values of the magnetic field strength obtained
by the observations.

We also presented that the values of the wave vectors deviate from the analytical estimations for
maximal growth rate value. However, the condition k⊥ � k‖ is fulfilled in both cases. Figure 4.1
shows the growth rate in dependence on the ratio ωpe/ωce for three hot electron thermal velocities

– 37 –
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Figure 4.1: The growth rate of the upper-hybrid waves in dependence on ratio ωpe/ωce for three hot
electron temperatures. The growth rate peaks becomes smoothed with increasing the temperature of
hot component. With increasing temperature of hot electrons, the peaks are shifted in the frequency
towards the low values of the ratio ωpe/ωce.
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Figure 4.2: The frequency shifts of the peaks in the dependence on harmonic number s for three
temperatures of hot component.

vt = 0.1–0.3 c. The Figure 4.2 presents the peak frequency shift for the same thermal velocities of
the hot electrons.
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4.2 Paper II: Brightness Temperature of Radio Zebras and Wave
Energy Densities in Their Sources

Yasnov, L.V., Benáček, J., Karlický, M. 2017, Solar Physics, 292, 163.

In this paper, we analyzed three zebra pattern observations. We estimated the brightness tempera-
tures for two scale heights (1 and 0.21 Mm) and the conversion rates from the electrostatic to the
electromagnetic energy. We used the prescription for the emission of the electromagnetic waves
into the angle θ (Zhelezniakov, 1997)

θ = arcsec

(
ω

ωL

)
= arcsec

(
s√

s2 − 1

)
, (4.1)

where ω is the emission frequency, ωL is the plasma frequency at the source. It is supposed that
the emission frequency is at the upper-hybrid freuqency, and at the height h and the radius r from
the loop axis the particle density is (Chernov et al., 1994, Kuznetsov & Kontar, 2015)

ne(r, h) = nem(h0) exp

(
−r

2

d2

)
exp

(
−h− h0

H

)
. (4.2)

d is the loop width, H is the scale height, nem is the density at the height h0. The brightness
temperature (Zaitsev & Stepanov, 1983) was computed in the form

Tb =
S

7× 10−11
1

f2GHzl
2
8

, (4.3)

where S is the electromagnetic flux, fGHz is the observed frequency in units of GHz, L8 is the size
of the emission region in units of 108 cm.

Using the two density scale heights, two loop widths (1 and 2 arcsec) and the zebra stripes ob-
servations, we found that the plasma emission region can be very small. The brightness temperature
was estimated 1.1× 1015− 1.3× 1017 K for the scale height 1 Mm and 4.7× 1013− 5.6× 1015 K
for the scale height 0.21 Mm. Though the non-coherent emission mechanism does not enable
the temperatures higher than 1012 K, these high temperatures are due to the coherent emission
processes.

Then, we computed energy density of the electrostatic waves using the PIC simulations. It was
assumed that all the generated electrostatic energy is in the form of the upper-hybrid waves. We
used the DGH electron velocity distribution function. The model size was λ∆×λ∆×32∆, where
λ is the typical electrostatic wave wavelength. The plasma frequency was ωpe∆t = 0.05, the time
step ∆t = 1, and the harmonic number s = 3–18. The particle density per cell was ne = 1920.
The density ratios of the hot and the background component were nh/ne = 1/8, 1/16, and 1/32.

We showed the initial exponential growth of the electric energy in PIC. We found that the
saturation energy of the electrostatic waves is proportional to the ratio nh/ne. We fitted the
saturation energy profile for s = 3–18 by the exponential function and estimated the energies
for s > 20. The saturation energy density of the electrostatic waves was found 1.6 × 10−3 of
the initial kinetic energy of the hot electrons. We estimated the density of the hot component
nh = 1.28×1013 m−3 using the instability growth rate of the upper-hybrid waves (Thejappa, 1991)

− γUH = 4.4× 10−2ωpe
nh
ne
, (4.4)
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and the collisional damping

γc = 2.75
ne

T
3/2
e

ln

(
104

T
3/2
e

n
1/3
e

)
, (4.5)

where Te is the background plasma temperature. From the hot electrons density and the saturation
energy of the electrostatic energy in PIC model, we got the energy density of the upper-hybrid
waves in the DPR region 4.4 × 10−5 J m−3. When we compared the local energy density of the
electrostatic waves and the measured flux of electromagnetic radiation, we got the transformation
efficiency from the electrostatic waves into the electromagnetic waves 2.54× 10−6− 8.86× 10−4.

4.3 Paper III: Double Plasma Resonance Instability as a Source of
Solar Zebra Emission

Benáček, J., Karlický, M. 2018, Astronomy & Astrophysics 611, A60.

In this paper, we numerically analyzed the processes in the double plasma resonance instability.
We used three-dimensional particle-in-cell code TRISTAN. The PIC model brings a new view to
the instability. Using it, we could compute other important aspects of the instability like the growth
rate of the electrostatic energy of all waves, the evolution of the particle distribution function or the
electrostatic saturation energies.

In the simulation, we used two types of models — the multi-mode model with size 128∆×60∆×
128∆ and the specific mode model with the size λ∆ × λ∆ × 32∆, where λ is the wavelength
of the most unstable wave found by searching for the model size with the highest growth rate.
While the multi-mode model is used for detailed analyses, the specific-mode model is used to save
computational time in the computations of a broader range of the parameters. We used the DGH
distribution of the hot electrons in range of the thermal velocity vt = 0.15–0.3 c and the background
thermal velocity vtb = 0.03–0.05 c. The plasma frequency was ωpe∆t = 0.05. The cyclotron
frequency varied ωce = 0.056–0.38ωpe, corresponding to s = 3–18. We used the particle density
per cell ne = 960 and the ratio of the hot and the background particles ne/nh = 8.

First, we showed a good agreement between the specific-mode model and the multi-mode
model. Then, we computed the growth rates and the saturation energies for a broader range of ratio
ωpe/ωce = 3–7. They were both computed for selected values of background temperatures vtb and
hot electrons temperatures vt.

We found a good agreement between the analytical (numerically computed) and the simulation
results. The positions of the growth rate and the saturation peaks are at almost the same position
ωpe/ωce. Also, there is a good agreement in the peak position between the analytical theory a PIC
simulations. The saturation energies have a higher contrast between the minima and the maxima
than the growth rates. The saturation energy is proportional to the number density of the hot
electrons. It can be up to 1 % of the initial kinetic energy of the hot electrons. With increasing the
ratio ne/nh, the growth rate peaks are shifted towards the lower ratio ωpe/ωce.

We analyzed the time evolution of the velocity distribution function of the hot electrons. The
distribution density is decreasing in a region of the DPR resonance ellipses. In these regions, the
hot electrons lose their kinetic energy. The kinetic energy is converted into the electrostatic waves.
After the transfer of energy, the hot electrons shift to the lower values of v⊥ in the velocity space.
An example of the evolution of the distribution is in Figure 4.3.
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Figure 4.3: The changes of the distribution function of the hot electrons in the multi-mode models.
Left column: The model with parameters vt = 0.2 c, vtb = 0.03 c, and s = 6. Right column: The
model with parameters vt = 0.3 c, vtb = 0.03 c, and s = 5. First row: The state at initial time
ωpet = 0, Second row: The distribution function at ωpet = 1 000. Third row: The change between
the initial distribution and distribution at ωpet = 1 000. The regions with the enhanced density are
red, and with the reduced density are blue. The curvers are the resonance ellipses and the arrows
indicate the position change by increasing the value of k‖.

4.4 Paper IV: Growth Rates of the Upper-Hybrid Waves for Power-
Law and Kappa Distributions with a Loss-Cone Anisotropy

Yasnov, L. V., Benáček, J., Karlický, M. 2019, Solar Physics, 294, 29.

Although the growth rates were studied by many authors (Winglee & Dulk, 1986, Yasnov &
Karlický, 2004, Benáček et al., 2017) using the DGH distribution function, this distribution is not
fully physical for the magnetic mirror in the solar magnetic loops. In this paper, we analyzed
the growth rates of the upper-hybrid waves for two types of the anisotropic velocity distribution
functions: the power-law and the kappa distributions. The power-law is characterized by the
parameter δ and the kappa distribution by the parameter κ. The δ was in range 5 and 10, the
κ parameter was used in two limit cases κ = 1.5 and κ = ∞. The kappa distribution function
is approaching the Maxwellian distribution for κ → ∞. The thermal velocities were used in
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range 10 vt–0.5 c, where vt = 6.75 × 107 m s−1. The pitch angle was used in the steps θc =
10◦, 30◦, 50◦, 65◦ and 80◦. The background plasma had temperature T = 3× 106 K.

For the analytical computations, we followed the procedure by Kuznetsov & Tsap (2007). The
growth rates are not searched as the maximum on the upper-hybrid branch (Benáček et al., 2017),
but as maximum for ω > ωpe in the ω–k⊥ domain. Finally, we compared the growth rates and the
observations on 1 August 2010.

Figure 4.4: The growth rates of the upper-hybrid waves as a function of ωpe/ωce. The velocity
distribution is the loss-cone power-law with δ = 5, the harmonic number s = 16 and the low-
velocity cut-off vm = 0.3 c. The loss-cone angles are: 10◦ (black line), 30◦ (red line), 50◦ (blue
line), 65◦ (green line) and 80◦ (violet line).

We found that the growth rates for the power-law distribution strongly depend on the hot electron
loss-cone angle θc. For small angles, the growth rate is broad; for the high angles, the growth rate is
negative (Figure 4.4). The maximal growth rate was found for the angle θc = 50◦. For power-law
index δ = 10, the growth-rate peaks are more distinct than for δ = 5. For δ = 5 the growth rates
peaks are higher than for δ = 5 but they are distinguishable only in an interval around 10 vt. An
example of the growth rate dependence on the loss-cone angle is in the Figure 4.4.

The analysis of the growth rates for the kappa distribution showed that for both cases of the
κ index, the maxima are shifted with decreasing characteristic momentum pκ towards the lower
values of ωpe/ωce. The peaks become broader and therefore, indistinguishable. We assumed for the
kappa distribution, which is isotropic up to some large momentum but forms loss-cone distribution
above, that the growth rates form distinct peaks and the zebra pattern can be generated.
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4.5 Paper V: Growth Rates of the Electrostatic Waves in Radio Zebra
Models

Benáček, J., Karlický, M. 2019, Astrophysical Journal, 881, 21.

In this paper, we analyzed dispersion branches of the electrostatic waves in the upper-hybrid band.
In the magnetized plasma, a series of the electrostatic branches is generated. The branches appear
approximately at the multiples of the cyclotron frequency. Although the upper-hybrid branch
usually approximates the branches near the plasma frequency, the position of the branches in ω–k⊥
domain is not the same. The difference in the frequency is essential for calculating the right values
of growth rates.

4.0 4.2 4.4 4.6 4.8 5.0 5.2
ωpe/ωce

0.00

0.01

0.02

0.03

0.04

Γ/
ω

ce

4.0 4.2 4.4 4.6 4.8 5.0 5.2
ωpe/ωce

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Γ/
ω
ce

Figure 4.5: The comparison of the growth rates using different techniques. Left: The numerically
integrated analytical growth rates when taking into account the “specific width” of the electrostatic
branches. Right: The growth rates of the electrostatic energy estimated from the PIC model.

We computed the growth rates γ of all electrostatic branches and found, that almost all the
branches go through the positive growth rate region. We calculated the growth rates as a maximum
found at all the electrostatic branches. The result is that the growth rates in the dependence on the
ratio ωpe/ωce are almost flat, and no peaks are formed. This is in a disagreement not only with the
general theory of the formation of the radio zebras, but also with the PIC results.

We introduced a new quantity called the integrated growth rate Γ, which takes into account the
different “specific widths” of the branches in the frequency. It is assumed that this “specific width”
is a product of the particle thermal motion which causes small fluctuations in the plasma frequency.
Because of that, the positions of the electrostatic branches are also slightly varying. The “specific
width” is different for the electrostatic branches at different harmonics, but it is also changing along
each branch. We assumed that the amount of the carried energy is proportional to this “specific
width”.

We found that the branches near the plasma frequency are the widest. With increasing the
branch frequency distance from the plasma frequency (to lower or higher frequencies), the branch
width is increased by several orders. In contrast with the growth rate γ, the integrated growth rate
Γ forms significant peaks. The peak is formed when a sufficiently wide dispersion branch crosses
the positive growth rate region through enough length. We showed the effects of the background
plasma and the hot electron temperatures.

Because the PIC model includes all the electrostatic branches, we computed the growth rates
using it. The resulting PIC growth rates are very similar to our integrated growth rates. We found
a very good agreement between the theory and the simulation. The growth rate forms a peek at the
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same position and has similar values as the result of the PIC simulations. The comparison between
the PIC growth rate and the integrated growth rate is in Figure 4.5.



Conclusions

The Sun is our closest star and an essential element for the life on Earth. Although from the public
point of view, the Sun is continually shining on Earth every day, it is actively influencing its sur-
rounding. The humans are protected from the X-ray, the γ-ray radiation and the energetic particles
by the atmosphere and the magnetosphere. But the radiation and the particles are influencing
satellites in the space, the long power lines or people flying in an airplane near the magnetic poles.

Although there are several astronomical devices and probes monitoring the Sun, we are still
not able to predict the most powerful energy releases — the solar flares. To predict the impact
of the solar activity on Earth, we have to be able to understand not only the flare energy release
processes, but also the processes in the solar wind, the interplanetary space, and in the near-Earth
environment. The observations of solar radio bursts are the foundation for the understanding of the
kinetic plasma processes in solar activity, solar flares, and in the corresponding plasma instabilities
and the propagation of the observed radio emission. The gained knowledge can be used not only
for understanding of solar flares but also in similar processes in the magnetospheres of planets and
the laboratory plasma applications.

In this doctoral thesis, we studied the solar radio zebras. The radio zebra are fine structures
occurring during the Type IV radio bursts. Because of the frequency width of the stripes, it is
assumed that they are generated by the plasma emission processes. For their study, we used the
most probable model based on the double plasma resonance instability. This model assumes the
unstable loss-cone type velocity distribution of the hot electrons that are formed in the magnetic
loop with the magnetic mirror. The cold and dense electrons in the background plasma give the
properties of the electrostatic waves, while the unstable loss-cone determines the growth rates of
these waves. It is assumed that the growth rates form peaks at specific frequencies. Then, the
corresponding electromagnetic radio emission is proportional to the growth rates, and therefore,
the radio zebra stripes are generated at the same frequencies as the corresponding growth rate peaks.

We analytically computed and analyzed the growth rates of the electrostatic waves dependent on
the temperature of the hot and the background electrons. We used the DGH distribution function.
We found that the growth rate peaks are shifted towards the lower values of ωpe/ωce. Increasing the
temperature of the hot electrons, the growth rate peaks become smoother and for the temperatures
vt ∼ 0.3 c they disappear. The temperature of the background component has only a small impact.
We also analyzed the growth rates for other distribution functions — the loss-cone kappa and the
loss-cone power-law.

We computed the saturation energies, temporal changes in the velocity distribution function,
and the wavelengths using the three-dimensional electromagnetic relativistic PIC model. We
found that the electrostatic energy is around 0.1 % of the initial kinetic energy of the superthermal
electrons. From the knowledge of the energy density of the electrostatic waves and the zebra pattern
observation, we estimated the conversion efficiency of the energy from the electrostatic waves into
the electromagnetic ones. The electromagnetic waves close to the plasma frequency are emitted
into the very narrow cone towards the observer (radiotelescopes on the Earth). During this process,

– 45 –



46 CONCLUSIONS

the distribution function of the hot electrons is changing due to the energy loss. The electron kinetic
energy is decreasing in the perpendicular direction to the magnetic field. The resonance ellipses
form the regions of a velocity decrease in agreement with the analytical theory. Many electrostatic
branches are formed in the ω–k⊥ domain. We found that most of them cross the positive growth
rates area. For comparison of the analytical results with the PIC simulations, we introduced the
frequency “specific width” and the integrated growth rate. If we assume, that the amount of the
carried energy of each dispersion branch is proportional to it “specific width”, most of the energy
is carried by the branches near the plasma frequency.

Although we now understand the electrostatic growth rates in more details, a lot of work still
needs to be done. For example, from the theoretical point of view, the energy transfer from
the electrostatic waves into the electromagnetic radiation is still very poorly understood. That is
a general problem of the radio bursts generated by the plasma emission mechanisms. From the
observational point of view, except some first attempts, the spatial observations of the zebras are
still missing. Such observation would give us information about the zebra’s formation, what the
size of the zebra source and the best model are.
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ABSTRACT

Context. The zebra patterns observed in solar radio emission are very important for flare plasma diagnostics. The most promising
model of these patterns is based on double plasma resonance instability, which generates upper-hybrid waves, which can be then
transformed into the zebra emission.
Aims. We aim to study in detail the double plasma resonance instability of hot electrons, together with a much denser thermal
background plasma. In particular, we analyse how the growth rate of the instability depends on the temperature of both the hot plasma
and background plasma components.
Methods. We numerically integrated the analysed model equations, using Python and Wolfram Mathematica.
Results. We found that the growth-rate maxima of the upper-hybrid waves for non-zero temperatures of both the hot and background
plasma are shifted towards lower frequencies comparing to the zero temperature case. This shift increases with an increase of the
harmonic number s of the electron cyclotron frequency and temperatures of both hot and background plasma components. We show
how this shift changes values of the magnetic field strength estimated from observed zebras. We confirmed that for a relatively low
hot electron temperature, the dependence of growth rate vs. both the ratio of the electron plasma and electron cyclotron frequencies
expresse distinct peaks, and by increasing this temperature these peaks become smoothed. We found that in some cases, the values
of wave number vector components for the upper-hybrid wave for the maximal growth rate strongly deviate from their analytical
estimations. We confirmed the validity of the assumptions used when deriving model equations.

Key words. Sun: radio radiation – instabilities – methods: analytical

1. Introduction
Zebra patterns (zebras) are fine IV radio-burst type structures,
observed during solar flares in the dm- and m-wavelength ranges
(Slottje 1972; Chernov et al. 2012). They are considered to be
an important source of information about the plasma density and
intensity of the magnetic field in their sources.

There are many zebra models (Rosenberg 1972; Kuijpers
1975; Zheleznyakov & Zlotnik 1975; Chernov 1976, 1990;
LaBelle et al. 2003; Kuznetsov & Tsap 2007; Bárta & Karlický
2006; Ledenev et al. 2006; Laptukhov & Chernov 2009; Tan
2010; Karlický 2013). The most promising one is based on the
double plasma resonance instability of the plasma, together with
loss-cone type electron distribution function (Zheleznyakov &
Zlotnik 1975; Zlotnik 2013). In this model, the upper-hybrid
waves are first generated, then transformed to electromagnetic
(radio) waves with the same (fundamental branch) or double
frequency (harmonic branch) as the upper-hybrid waves. This
model has the simple resonance condition

ωUH ≈ sωB, (1)

where ωUH =

√
ω2

p + ω2
B is the upper-hybrid frequency of

the background plasma, ωp and ωB are electron-plasma and
electron-cyclotron frequencies and s is a integer harmonic num-
ber, is used for estimations of the magnetic field strength and
electron plasma density in zebra radio sources (Ledenev et al.
2001; Zlotnik 2013; Karlický & Yasnov 2015). However, this

resonance condition is only valid in the zero-temperature limit.
If we want to analyse effects of temperatures on the zebra gen-
eration processes, we need to take the resonance condition in its
general form, see relation 3.

In this paper we study these temperature effects in detail. It
is shown that these effects require a correction in the method
used to estimate magnetic field strength in zebra radio sources,
especially for zebra stripes at high harmonics.

The paper is structured as follows: in Sect. 2 we present
model equations describing the double plasma resonance insta-
bility and methods of their solution. Results are summarized in
Sect. 3. Finally, the paper is completed by discussions and con-
clusions in Sects. 4 and 5.

2. Model

Similarly to Winglee & Dulk (1986), Yasnov & Karlický (2004),
for the hot electron component we consider the DGH distribution
function with the parameter j = 1 (Dory et al. 1965)

f =
u2
⊥

2(2π)3/2v5
t

exp

−
u2
⊥ + u2

‖
2v2

t

 , (2)

where u⊥ = p⊥/me and u‖ = p‖/me are electron velocities and
p⊥ and p‖ are components of the electron momentum perpen-
dicular and parallel to the magnetic field, and me is the electron
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mass. For simplification and in agreement with Winglee & Dulk
(1986), we call vt here the thermal velocity of hot electrons and
we use the term the temperature of hot electrons, although the
distribution function in relation 2 is not Maxwellian.

Unlike Winglee & Dulk (1986), we included the background
plasma with non-zero temperature. Its density nb is assumed to
be much greater than the density of the hot electrons nh.

In agreement with the approach by Melrose & Dulk (1982),
Winglee & Dulk (1986), Yasnov & Karlický (2004), we use the
condition for double plasma resonance instability in the form

ωUH −
k‖u‖
γ
− sωB

γ
= 0, (3)

where ωUH =

√
ω2

p + ω2
B + 3k2v2

tb is the upper-hybrid frequency
of the background plasma, where the temperature effect is in-
cluded, vtb is the thermal velocity of the background plasma,
γ =

√
1 + u2/c2 is the Lorentz factor, k is the absolute value of

the wave number vector. Its componets k‖ and k⊥ are in parallel
and perpendicular directions to the magnetic field.

Then, starting from the basic equations presented in
Winglee & Dulk (1986), Yasnov & Karlický (2004), we derived
the relation for the growth rate ΓUH of the upper-hybrid waves as

ΓUH

ωBnh
=

π2e2

ω2
Bme

√
r2

pB + 1

∑

s

∫ u⊥,max

0
(h+ + h−)du⊥, (4)

h± =

s2G±e
− 1

2v2t

(
u±2
‖ +u2

⊥
)

J2
s

( √
λu⊥
vt

)

2
√

2πλ f ±v5
t

(
u±2
‖ + u2

⊥ + 1
) , (5)

f ± =
su±‖ − u2

⊥+1
σvt(

u±2
‖ + u2

⊥ + 1
)3/2 , (6)

u±‖ =
1
β

(
σsvt ∓

√
β + 1

√
−β

(
u2
⊥ + 1

)
+ σ2s2v2

t

)
, (7)

β = −1 + v2
t σ

2(1 + r2
pB) + 3v2

tb(1 + λσ2), (8)

where nh is the hot electron density, e is the electron charge,
rpB is the ratio ωp/ωB, Js(x) is the Bessel function of first kind
of sth order and λ, σ are dimensionless parameters

k⊥ =
√
λ
ωB

vt
, k‖ =

ωB

σvt
, (9)

and G± are functions

G± = g1 + g±2 , (10)

g1 = s
(
−u3
⊥ + 2u⊥v2

t

)
, (11)

g±2 =
u3
⊥u±‖

svt

√
u±2
‖ + u2

⊥ + 1
· (12)

The term g±2 comes from original relation of derivation distribu-
tion function of hot electrons (k‖u⊥∂ f /∂u‖)/γ (Winglee & Dulk
1986, Eq. (A8)). As shown below, this term is negligible, and
thus in our computations we use G± = g1.

The sum h+ + h− expresses a simultaneous effect of the both
operators h+, h− on one upper-hybrid wave described by the spe-
cific k-vector. In our computations we used both operators, but
we found that term h− was always at least two orders lower than
h+ and the typical difference was ten orders.

Equations (4)–(8) are valid for k⊥ � k‖, see Winglee & Dulk
(1986). We note that comparing these relations with those in the
paper by Yasnov & Karlický (2004) the growth rate (relation 5,
G± = g1) is proportional to s3, not to s2.

The integration is done for velocities up to their maxima

u⊥,max =

√
−1 + (1 + r2

pB − s2)v2
t σ

2 + 3v2
tb(1 + λσ2)

√
1 − (1 + r2

pB)v2
t σ

2 − 3v2
tb(1 + λσ2)

, (13)

from which we get the followning conditions for maximal and
minimal value of λ and σ (expressions under root in previous
equations equal zero):

σmax(vt, vtb, s, λ) =

√
1 − 3v2

t
√

(1 + r2
pB − s2)v2

t + 3v2
tbλ

, (14)

σmin(vt, vtb, s, λ) =

√
1 − 3v2

t
√

(1 + r2
pB)v2

t + 3v2
tbλ

, (15)

λmin(vt, vtb, s) =
(−1 − r2

pB + s2)v2
t

3v2
tb

· (16)

For the comparison below, we add values of σ and λ for the max-
imal growth rate as follows from analytical estimations made by
Winglee & Dulk (1986)

σΓmax =
1√

2(r2
pB + 1)v2

t

, (17)

λΓmax =
s2

2
, (18)

when we suppose u⊥,max =
√

2vt.

2.1. Methods

We used Python SympPy1 library for analytical application and
Python SciPy2 library for numerical computations of growth rate
Eqs. (4)–(8), (13)–(16).

Generally, the analytical expressions for the growth rate (re-
lations 4–8) depend on vt, vtb, λ, σ, s and rpB. Their numerical
solutions are made in several steps as described below.

First of all is the choice of thermal velocities vt, vtb. Then
we selected the rpB interval in which computations are made and
steps in this interval. We usually use the interval rpB = 3−20
with the step as ∆rpB = 0.03.

For each value of rpB we searched for s which fulfill s =
s0 − m, . . . , s0 + n, where s0 = Round(rpB) is the round value of
rpB. Numbers m, n ∈ N creates the interval of s for which the
growth rate can be computed. However, we limited this interval
only for s, maximal values of the growth rate of this interval are
at least one hundredth of the maximal growth rate for s0.

Next, values of vt, vtb, rpB and s were chosen, and values of
remaining variables λ and σ, which correspond to the k-vector
components of the upper-hybrid waves, need to be specified. We
chose these values in the intervals σ ∈ (σmin, σmax) and λ ∈
(λmin, λmax) on equidistant lattice. If the maximal values of σmax
and λmax are too large or not defined, the upper boundaries are

1 http://www.sympy.org
2 http://www.scipy.org
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Table 1. Computation parameters.

Model No. vt vtb

1 0.1 c 0.018 c
2 0.1 c 0.009 c
3 0.1 c 0 c
4 0.2 c 0.018 c
5 0.3 c 0.018 c

5.4 5.6 5.8 6.0 6.2 6.4
ωUH/ωB

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Γ
U
H
/(
n
h
ω
B
)

1e−10
No correction
Corrected

Fig. 1. Example of the comparison of the growth rates computed with
and without the term g±2 (Eq. (5)), for Model 1 and s = 6. We note
that the growth rate at this and following figures are normalized by the
term nhωB.

chosen as ten times of their minimal values. It was found to be
sufficient in all cases.

Only then it is possible to compute the growth rate given by
relations between four and eight for parameters vt, vtb and rpB for
each s and in all points of the map λ − σ. In following step we
summed the maps in each specific (λ − σ)-point over s. Finally,
in the resulting map we searched for the point (λΓmax, σΓmax),
where is the highest value of the growth rate, which is then that
determined for chosen rpB. The wave number components of the
upper-hybrid wave with the maximal growth rate is then deter-
mined by Eq. (9).

3. Results

We solved the above described equations for the parameters
shown in Table 1, for rpB = 3−20 and B = 100 G. In
Models 1−3, we changed background temperature while temper-
ature of the hot electrons remains constant. Models 4 and 5 con-
sider higher temperatures of the hot electrons comparing with
Model 1, while the temperature of the background plasma is
fixed.

First, we tested an importance of the correction term g±2 in
Eq. (10) for computation of the growth rate. An example of such
comparison is shown in Fig. 1. We found that in all models dif-
ferences in values of the growth rate in models with and without
this term is less than 5%, and at their maxima even smaller. Thus,
we consider the effect of this term negligible and in all following
computations we suppose g±2 = 0.

In computations of the growth rate in all models (see Table 1)
we followed steps described in Methods. Thus, we obtained
many maps in the λ − σ space, corresponding to the k-vector

Fig. 2. Growth rates in the λ−σ space: Model 1 (top), Model 4 (middle),
Model 5 (bottom); all computed for s = 6 and rpb, for which the growth
rate is maximal. In Model 1 rpb = 5.8, compare with Fig. 3. Black
diamonds show positions of maximal values of the growth rate.

space. We note that the relations between the λ−σ and k-vector
space is given by relation 9.

Examples of such maps for s = 6 at their maxima are shown
in Fig. 2. In each of these maps the maximal growth rate is in-
dicated. Then we summed the maps over s and in the resulting
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Fig. 3. Values of σ (top) and λ (bottom) for Model 1 and s = 6, where
the growth rate has the maximal value depending on rpB. Solid lines
show values of the maximal growth rate, dash-dotted lines are bound-
aries of the σ − λ space. Where dash-dotted lines are not shown, the
boundaries are outside the presented region.

map we searched for the maximal growth rate. This growth rate
then corresponds to one point of the curve in Fig. 4.

To compare the computed and analytically estimated (rela-
tions 17–18) k-vectors, which correspond to the maximal growth
rate for the cases presented in Fig. 2, these are shown in Table 2.
Thus, the assumption (k⊥ � k‖) used in derivation of the growth-
rate relations was fulfilled in all studied Models. All computed
k-vectors are smaller than that analytically predicted. Their com-
puted perpendicular components are systematically two times
less than analytical ones. This is due to assumptions and simplifi-
cations made in analytical estimations of these values. Computed
values of k‖ decrease with increasing temperature in contradic-
tion with analytical predictions.

Examples of values σΓ,max, λΓ,max for vt = 0.1 c (Model 1),
where the growth rate has the maximal value depending on
rpb, are presented in Fig. 3. Values of σΓ,max for rpB ∼ 5 and
rpB > 6 are close to the lower boundary (given by Eq. (15)).
However, in the region around the growth-rate maximum they
deviate from the lower boundary. Values of λΓ,max are changing
only slightly. The steps in curves are due to discretisation of the
λ − σ space. Note that the value λΓ,max ≈ 5 (Fig. 3, bottom) is
less then predicted value s2/2 = 18.
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h
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vtb=0.018 c
vtb=0.009 c
vtb=0 c

Fig. 4. Growth rates in Models shown in Table 1 in dependence on
rpB = ωp/ωB. Upper part: growth rates for Models 1, 4 and 5 with the
fixed background temperature vtb = 0.018 c. Bottom part: growth rates
for Models 1–3 with the fixed temperature of hot electrons vt = 0.1 c;
detailed view.

Based on many such λ − σ maps the growth-rate in depen-
dence on the rpB = ωp/ωB were computed for all Models accord-
ing to Table 1. These growth rates are shown in Fig. 4. The upper
part of this figure shows an effect of the temperature increase of
the hot electrons for fixed temperature of the background plasma
electrons, and its bottom part an effect of the temperature in-
crease of the background plasma electrons for fixed temperature
of hot electrons.

As seen in the upper part of this figure, Model 1 with the
lower velocity of hot electrons have higher growth rates than
those in Models 4 and 5 for all rpB = ωp/ωB. Furthermore,
the temperature increase of hot electrons smooths peak maxima
in the growth rate. While Model 1 shows distinct maxima, in
Model 5 the maxima for s > 5 are hardly recognisable.

On the other hand, the change of the thermal velocity of
background electrons in Models 1–3 for fixed temperature of
hot electrons (see the bottom part of the Fig. 4) do not change
values of the growth rate, but the temperature increase shifts the
maxima slightly to lower rpB. The values of maxima generally
decrease with an increase of rpB.

As already mentioned, maxima of the growth rates are more
distinct for lower temperatures of the hot electrons. Therefore
in Fig. 5 we present ratios of these maxima and neighbouring
minima of the growth rate in dependence on s. We note that there

is a simple relation between s and rpB; s =
√

r2
pB + 1. As seen in
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Table 2. Positions of maximal growth rates (diamonds) from Fig. 2 in
k-space for s = 6. All values agrees k‖ � k⊥.

Model No. k‖ k‖,theor k⊥ k⊥,theor
[cm−1] [cm−1] [cm−1] [cm−1]

1 0.078 0.049 1.49 2.48
4 0.054 0.086 0.66 1.24
5 0.034 0.117 0.41 0.83

Notes. Computed values are lower than analytically predicted.
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Fig. 5. Ratio between maxima and minima of growth rate depending
on s for Models 1, 4 and 5.

Fig. 5, the ratios decrease with increasing s. It does not depend
on the temperature of background electrons.

There is another interesting effect of temperatures of the both
hot and background plasma electrons. Namely, by increasing
these temperatures, the growth-rate maxima are shifted to lower
frequencies as shown in Fig. 6.

In Fig. 7 we present this effect in a way that is more ap-
propriate for zebra pattern analysis. Here we show growth-rate
dependence on the ratio ωUH/ωB = s for Model 1, meaning that,
with the magnetic field intensity B = 100 G ( fB = ωB/2π =
280 MHz) and for the model with similar parameters as in
Model 1, except that the magnetic field intensity is B = 10 G
( fB = ωB/2π = 28 MHz). At the horizontal axis of this figure we
used the ratio ωUH/ωB, because ωUH can be directly determined
from frequencies of the observed zebra stripes. As shown here,
the growth-rate maxima do not correspond to a simple resonance
conditions (relation 1), which is used in estimations of the mag-
netic field and plasma density in the zebra radio sources from
observed zebras. The maxima are shifted to lower frequencies,
and this shift increases with the increase of s. Moreover, as seen
in Fig. 7, the relative bandwidth of the growth-rate maxima also
increases with the increase of s.

We also analyzed an effect of summation over s in relation 4
in comparison with the case for s with the maximal growth rate,
see Fig. 8 made for Models 1 and 5. As seen here, for lower tem-
peratures vt the summation increases values of the growth-rate
minima and for higher temperatures the growth rate is enhanced
in the whole range. We found that if for a given s the growth rate
decreases steeply from its maximum (the case with lower vt),
the summation is important at places where the individual orders
overlap. But if the decrease of the growth rate from its maximum
is gradual (the case with higher vt), the summation influences the
growth rate in a broad range of rpB.

2 4 6 8 10 12 14 16 18 20
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Fig. 6. Relative frequency shift ∆ω of growth-rate maxima between pre-
dicted values by ωUH = sωB and its computed position (see Fig. 4). Top:
Models 1, 4 and 5 with changing hot electrons temperature; bottom:
Models 1–3 with changing background temperature.

4. Discussion

In the present paper we studied effects of non-zero tempera-
tures of the both hot and background plasma on the growth rate.
We showed that including effects of non-zero temperatures leads
to shifts in the growth-rate maxima to lower frequencies, com-
paring frequencies derived from the simple resonance condition
ωUH = sωB. We found that these shifts are greater for higher
values of the cyclotron harmonic number s. Because the simple
resonance condition is used in estimations of the magnetic field
and plasma density in the zebra radio sources, these shifts influ-
ence such estimations.

Therefore, let us estimate an error in the magnetic field de-
termination from some zebra stripes using the simple resonance
condition. For this purpose, let us assume the zebra stripe on
the frequency f = fUH = ωUH/2π = 504 MHz (assuming the
emission on the fundamental frequency) with s = 18. If we use
the simple resonance condition then for such high s the ratio of
rpB = ωp/ωB ≈ s, and thus fB = ωB/2π = 28 MHz, which gives
the magnetic field B = 10 G, see also Fig. 7. But, for modified
Model 1 with B = 10 G we found that the emission maximum for
s = 18 is shifted to ωUH/ωB = 17.3. From observations, we have
fUH = ωUH/2π = 504 MHz, thus fB = 504/17.3 ≈ 29.1 MHz,
which gives the magnetic field B = 10.4 G. This example shows
a 4% error in magnetic field estimation. As shown in Fig. 6,
the shift of the growth rates grows linearly with s. However, the
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Fig. 7. Growth rate for Model 1 (B = 100 G, fB = ωB/2π = 280 MHz)
(blue line) and the model with similar parameters to Model 1, except
the magnetic field intensity B = 10 G ( fB = ωB/2π = 28 MHz) in
dependence on ωUH/ωB. Numbers close the growth-rate maxima desig-
nate s from computations. We note that the growth rate at this figure is
normalized by the term nhωB.
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Fig. 8. Comparison of the growth rates with summation over s and for
s with the maximal growth rate, for Model 1 (blue line) and Model 5
(green line). Dashed lines show summation over s and solid lines corre-
spond to s with the maximal growth rate.

relative error of determining the magnetic field does not depend
on s. For higher temperatures of hot electrons errors in magnetic
field estimations are larger. For example, for Model 4 (recognis-
able maxima only for s < 11) this error is ≈16%.

The growth rate is proportional to the density of the hot
plasma nh and inversely proportional to the magnetic field. If we
multiply the growth rate for Model 3 (with zero temperature of
the background plasma), expressed in our paper as ΓUH/(ωBnh)
by the density nh = 108 cm−3 we obtain the growth rate, which
agrees with that by (Winglee & Dulk 1986).

In agreement with the results by Yasnov & Karlický (2004)
we found that for a relatively low temperature of the hot elec-
trons (Model 1) the dependence of the growth rate vs. the ratio
of the electron plasma and electron cyclotron frequencies ex-
presses distinct peaks and increasing this temperature (Models 4
and 5) these peaks are smoothed, especially for high s. This
growth-rate behaviour differs from those in previous studies
(Zheleznyakov & Zlotnik 1975; Winglee & Dulk 1986). The
difference is caused by relativistic corrections used in the present

paper in both resonance terms in Eq. (3) and in selection of max-
imal growth rates in k-maps. We note that a similar effect in
growth-rate behaviour was found by Kuznetsov & Tsap (2007).
Namely, considering the power-law and loss-cone distribution
function of hot electrons, they showed that stripes of a zebra pat-
tern become more pronounced with an increase of the loss-cone
opening angle and the power-law spectral index.

We also studied effects of the neglected term in the growth
rate with ∂ f

∂u‖
(Winglee & Dulk 1986, Eq. (A8)). We found that

these effects are negligible.

5. Conclusions

We found that the growth-rate maxima of the upper-hybrid
waves for non-zero temperatures of the both hot and background
plasma are shifted towards lower frequencies comparing to the
zero temperature case. It was found that this shift increases with
an increase of the harmonic number s of the electron cyclotron
frequency and temperatures of the both hot and background
plasma components.

We showed that this shift of the growth-rate maxima influ-
ences estimations of the magnetic field strength in sources of
observed zebras. In agreement with previous studies we found
that for a relatively low temperature of the hot electrons the de-
pendence of the growth rate vs. the ratio of the electron plasma
and electron cyclotron frequencies expresses distinct peaks and
increasing this temperature these peaks are smoothed.

We found that in some cases the values of components of the
wave number vector of the upper-hybrid wave for the maximal
growth rate strongly deviate from their analytical estimations.
Validity of the assumptions used in derivation of the model equa-
tions was confirmed.
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Abstract We estimated the brightness temperature of radio zebras (zebra pattern – ZP),
considering that ZPs are generated in loops having an exponential density profile in their
cross section. We took into account that when in a plasma there is a source emitting in all
directions, then in the escape process from the plasma the emission has a directional char-
acter nearly perpendicular to the constant-density profile. Owing to the high directivity of
the plasma emission (for emission at frequencies close to the plasma frequency), the region
from which the emission escapes can be very small. We estimated the brightness tempera-
ture of three observed ZPs for two values of the density scale height (1 and 0.21 Mm) and
two values of the loop width (1 and 2 arcsec). In all cases, high brightness temperatures
were obtained. For the higher value of the density scale height, the brightness temperature
was estimated to be 1.1 × 1015 – 1.3 × 1017 K, and for the lower value, it was 4.7 × 1013 –
5.6 × 1015 K. These temperatures show that the observational probability of a burst with
a ZP, which is generated in the transition region with a steep gradient of the plasma den-
sity, is significantly higher than for a burst generated in a region with smoother changes
of the plasma density. We also computed the saturation energy density of the upper-hybrid
waves (according to the double plasma resonance model, they are generated in the zebra
source) using a 3D particle-in-cell model with a loss-cone type of distribution of hot elec-
trons. We found that this saturated energy is proportional to the ratio of hot electron and
background plasma densities. Thus, comparing the growth rate and collisional damping of
the upper-hybrid waves, we estimated minimum densities of hot electrons as well as the
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minimum value of the saturation energy density of the upper-hybrid waves. Finally, we
compared the computed energy density of the upper-hybrid waves with the energy density
of the electromagnetic waves in the zebra source and thus estimated the efficiency of the
wave transformation.

Keywords Sun: corona · Sun: flares · Sun: radio radiation

1. Introduction

Fine structures of solar radio bursts are very important for understanding flare energy-release
processes and diagnostics of the flare plasma. Of the various fine structures, the zebra struc-
ture (ZP – zebra pattern) is the most intriguing. It occurs in Type IV radio bursts. In radio
spectra it appears as several parallel stripes distributed uniformly in frequency; see examples
bellow. The number of these zebra stripes in a ZP is typically large (> 5 – 8, sometimes even
exceeding 20).

There are still questions about the generation mechanism of these ZPs. Of the many pro-
posed models (Zheleznyakov and Zlotnik, 1975; LaBelle et al., 2003; Bárta and Karlický,
2006; Kuznetsov and Tsap, 2007; Tan, 2010; Karlický, 2013), the most commonly accepted
model is that based on the double-plasma resonance (DPR) (Zlotnik, 2013; Karlický and
Yasnov, 2015). Based on this model, most of the observed characteristics of ZPs were ex-
plained: the frequency range, polarization, amount of stripes and their frequencies, their
high-frequency limit, and their temporal changes.

However, only a few estimations of the ZP brightness temperature have been reported
so far, which is important for further specification of the generation mechanism of ZPs. For
example, Chernov et al. (1994) estimated the brightness temperature of metric ZPs to be
1010 K, with the source size constrained by the Nançay radioheliograph.

Another estimation of the ZP brightness temperature (Tb = 1013 K) has been reported
by Chernov, Yan, and Fu (2003), where the ZP consisted of spiky superfine structures; see
also Chernov (2006). On the other hand, Chernov (2006) stated that the metric ZP radio
sources occupy a notable part of the background continuum source or even the entire active
region. The half-width of one source of the metric ZP was about 1.9 arcmin, which gives a
brightness temperature of 1010 K.

Using the Siberian Solar Radio Telescope (SSRT), Altyntsev et al. (2005) observed a ZP
burst at ≈ 5.7 GHz (the highest frequency ever reported for ZP emission), which yielded a
lower limit of Tb ≈ 2 × 107 K.

Chen et al. (2011) estimated the lower limit for the decimetric ZP brightness tempera-
ture to be 1.6 × 109 K. Finally, Tan et al. (2014) estimated the brightness temperature of a
decimetric ZP to be Tb ≈ 2 × 1011 K.

In the present article we estimate the brightness temperature of a ZP, considering that
a ZP is generated in a loop whose cross section has an exponential density profile. In this
case, the ZP source size and brightness temperature depend on the loop cross-section size.
Furthermore, using a 3D particle-in-cell model with a loss-cone type of distribution of hot
electrons, we compute the energy density of the upper-hybrid waves. Then this energy den-
sity is compared with that of the electromagnetic waves, and thus the efficiency of the wave
transformation (which is not well known) is estimated.
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Figure 1 Maximum escape
angle of the plasma emission in
conditions of the double-plasma
resonance depending on the
gyroharmonic number s.

2. Sizes of the Zebra Source

If in a plasma there is a source emitting in all directions, then the emission during its es-
cape process has a directional character. The range of angles ≤ �max in which the emission
escapes can be expressed as (Zheleznyakov, 1997)

�max = arcsec

(
ω

ωL

)
, (1)

where ωL is the plasma frequency in the source and ω is the emission frequency. In the
conditions of a double-plasma resonance, the ratio of these frequencies is (Karlický and
Yasnov, 2015)

ω

ωL
= s√

s2 − 1
, (2)

where s is the gyroharmonic number.
In Figure 1 the maximum escape angle of the plasma emission for the double-plasma

resonance in the dependance on the gyroharmonic number s is shown.
Owing to the high directivity of the plasma emission (for emission frequency close to the

plasma frequency), the region from which the emission escapes can be very small. This is
connected with the fact that the emission region in the flare loop at a fixed frequency is not
flat because of the density inhomogeneity across the loop (the maximum density is expected
at the loop axis). It has a convex form, and thus the emission with a high directivity (with
a maximum value in the direction perpendicular to the constant-density layer) can reach an
observer only from a limited region.

Watko and Klimchuk (2000) showed that the width of loops close to their footpoints,
where the decimetric bursts are generated, is about 0.5 arcsec (0.36 Mm), and the typical
width of higher loops is about 1 arcsec. Note that the decimetric ZPs are generated in loops
at low heights (about 3 Mm) (Karlický and Yasnov, 2015; Yasnov, Karlický, and Stupishin,
2016). The width of some loops can be even smaller. For example, Peter et al. (2013) found
tiny 1.5 MK loop-like structures that they interpreted as miniature coronal loops. Their coro-
nal segments above the chromosphere have a length of only about 1 Mm and a thickness of
less than 200 km. Moreover, Peter and Bingert (2012) showed that in a 3D self-consistent
magnetohydrodynamic model of the solar corona, the loop width remains constant with
height, and profiles of intensities along the loop radius correspond to Gaussian profiles.
The Gaussian profile along the loop radius was also considered by Chernov et al. (1994).
Kuznetsov and Kontar (2015) assumed a Gaussian function (exp(−r2/a2), where r is the
loop radius and a = 1 arcsec) describing the electron distribution in the flare loop.
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Therefore, in agreement with the above-mentioned articles, we assume that the density
inside the magnetic loop at a specific height [h0] has the exponential form

ne(r) = nem(h0) exp

(
− r2

d2

)
, (3)

where nem is the density at the loop axis, d is the loop width, and r is the radius across
the loop. Moreover, the density in the loop decreases with height as ≈ exp(−(h − h0)/H),
where h is the height in the solar atmosphere and H is the scale height. Thus, the density
inside the loop can be expressed as

ne(r, h) = nem(h0) exp

(
− r2

d2

)
exp

(
−h − h0

H

)
. (4)

Now, we calculate the form of a layer with constant plasma density. For the height where
this layer is located, we can write

C = nem(h0) exp

(
− r2

d2

)
exp

(
−h − h0

H

)
, (5)

h(r) = h0 − H
r2

d2
+ H ln

(
nem(h0)

C

)
, (6)

where C is a constant.
In a loop with constant magnetic field, it follows from the pressure equilibrium and den-

sity variations that the temperature varies, and thus also the scale-height. However, for sim-
plification in further calculations, we assume that the scale-height [H ] inside the loop is
constant.

Then the derivation of dh/dr is

dh

dr
= −2Hr

d2
. (7)

When we use this derivation, the extent of the emission region for which the emission
direction is nearly perpendicular to the constant-density profile can be estimated as

�rsource = d2 tan(�max)

2H
, (8)

where �max is the maximum escape angle of the plasma emission according to Equation 1
(Figure 1). Note that the extent is independent of r . An example of the dependance of
�rsource/d on H/d for �max = 2◦ is shown in Figure 2.

Figure 2 Source extent
[�rsource/d] as a function of
H/d for the emission nearly
perpendicular (for the maximum
escape angle = 2◦) to the
constant-density profile.
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The emission source is also extended in height. This dimension can be estimated as hs =
H(df/f ), where df is the bandwidth of the zebra stripe and f is the zebra-stripe frequency.

3. Estimations of the Brightness Temperature of Zebra Structures

Now, we estimate the brightness temperature of some observed ZPs. For this purpose, we
selected three ZPs observed by the Ondřejov radiospectrograph (Jiricka et al., 1993); see
Figures 3, 4, and 5.

Figure 3 Left panel: Example of
the zebra pattern observed by the
Ondřejov radiospectrograph
during the 2 May 1998 solar
flare. Right panel: Radio-flux
profile as a function of frequency
at 14:29:27.3 UT.

Figure 4 Left panel: Example of
the zebra pattern observed by the
Ondřejov radiospectrograph
during the 14 February 1999
solar flare. Right panel:
Radio-flux profile as a function
of frequency at 12:08:57.7 UT.

Figure 5 Left panel: Example of
the zebra pattern observed by the
Ondřejov radiospectrograph
during the 6 June 2000 solar
flare. Right panel: Radio-flux
profile as a function of frequency
at 15:43:12.6 UT.
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Table 1 ZP source parameters. S is the radio flux in SFU units and s1 is the gyro-number of the stripe with
the lowest frequency.

ZP 2 May 1998 ZP 14 February 1999 ZP 6 June 2000

Event location S15W15 N16E09 N23E15

S [SFU] 650 170 210

fGHz 1.45 1.67 3.78

s1 21 32 34

�max 2.70 1.79 1.68

L8 (2 d = 1 arcsec) 0.0059 0.0038 0.0035

L8 (2 d = 2 arcsec) 0.023 0.015 0.014

Tb (2 d = 1 arcsec) 13 × 1016 K 6 × 1016 K 1.7 × 1016 K

Tb (2 d = 2 arcsec) 0.83 × 1016 K 0.39 × 1016 K 0.11 × 1016 K

Source height [km] 28 14.7 12.5

Table 2 ZP source parameters for H = 0.21 Mm

ZP 2 May 1998 ZP 14 February 1999 ZP 6 June 2000

L8 (2 d = 1 arcsec) 0.028 0.018 0.017

L8 (2 d = 2 arcsec) 0.11 0.070 0.067

Tb (2 d = 1 arcsec) 5.6 × 1015 K 2.7 × 1015 K 0.73 × 1015 K

Tb (2 d = 2 arcsec) 0.36 × 1015 K 0.18 × 1015 K 0.047 × 1015 K

The brightness temperature can be expressed as (Zaitsev and Stepanov, 1983)

Tb = S

7 × 10−11

1

f 2
GHzL

2
8

, (9)

where S is the radio flux in SFU, fGHz is the frequency in GHz, and L8 (= 2�rsource) is the
dimension of the emission region in units of 108 cm.

To compute the brightness temperature, we therefore need to determine the source size
[�rsource]. First, using the method presented by Karlický and Yasnov (2015), we determined
the gyroharmonic numbers s1 for the observed zebras. Knowing s1 (see Table 1) and con-
sidering the scale height as H = 1 Mm (according to the relation H [m] = 50T [K] (Priest,
2014) for the temperature T = 2 × 104 K), we calculated the source size of the observed
zebras for two values of 2d (1 and 2 arcsec). All of the computed parameters of the zebra
sources together with the brightness temperatures are shown in Table 1.

However, in a region with a rapid change of the plasma temperature, the scale height
can be shorter. Therefore, we estimate the brightness temperature using the model by Sel-
horst, Silva-Válio, and Costa (2008). For typical densities in ZP sources of 5.0×109 cm−3 –
3.6 × 1010 cm−3, the model gives heights in the solar atmosphere of between 2.84 Mm
and 3.27 Mm. Thus, the scale height is H = 0.21 Mm, which is almost five times shorter
than that according to the formula of Priest used above. For this scale height, the ZP source
parameters are given in Table 2.
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Table 3 Energy densities of electromagnetic and upper-hybrid waves in the ZP source for the 2 May 1998
event. ε = Welm/WUH,min is the parameter expressing the efficiency of transformation of the upper-hybrid
waves into electromagnetic waves.

L8 [Mm] Welm [J m−3] WUH,min [J m−3] ε

0.0059 3.90 × 10−8 4.40 × 10−5 8.86 × 10−4

0.023 2.57 × 10−9 4.40 × 10−5 5.84 × 10−5

0.028 1.73 × 10−9 4.40 × 10−5 3.93 × 10−5

0.11 1.12 × 10−10 4.40 × 10−5 2.54 × 10−6

4. Energy Densities of Electromagnetic and Upper Hybrid Waves
in the ZP Source

We consider the zebra observed during the 2 May 1998 event. Knowing the ZP radio flux
(650 SFU) and the zebra line frequency width (40 MHz), and computing the ratio of the
emission area at 1 AU (corresponding to the emission directivity angle (2.7◦ for s = 21, see
Figure 1)), and ZP source area (L8 × L8 for four cases according to Tables 1 and 2), the
energy density of electromagnetic waves in the ZP source was calculated; see the second
column in Table 3.

In the double-plasma resonance (DPR) model of ZPs, it is assumed that there are hot
electrons with a loss-cone type distribution together with much denser background plasma
in the ZP source. The distribution is unstable and generates the upper-hybrid waves, which
after their transformation produce the observed ZPs.

In addition to estimating the energy density of electromagnetic waves, it is therefore
highly desirable to estimate the energy density of the upper-hybrid waves in the ZP source.
For this purpose, we used a 3D particle-in-cell (PIC) relativistic code (Buneman and Storey,
1985, Matsumoto and Omura, 1993, Karlický and Bárta, 2008). Although this code is very
useful for these computations, it has its own limitations, which means that some param-
eters of the ZP of 2 May 1998 cannot be reproduced in the following PIC computations.
For example, computing high gyro-harmonic numbers (s > 20 in our case) is problematic
because it is very difficult to select PIC plasma parameters that reproduce resonances with
high harmonic numbers, especially because of the discrete space (grids) in PIC models.

The size of the model is Lx × Ly × Lz = λ� × λ� × 32�, where � is the grid size and
λ is the wavelength of the upper-hybrid wave in resonance in normalized units. We chose
a model containing only one wavelength of the upper-hybrid wave to simplify the process-
ing and decrease computing time. The model time step was dt = 1, the plasma electron
frequency was ωpe dt = 0.05, the initial magnetic field was in z-direction, and the electron–
cyclotron frequency was, e.g., ωce = 0.176 ωpe for the harmonic number s = 7. The har-
monic number was considered in the interval s = 4 – 18. We used two groups of electrons:
a) cold background electrons with a thermal velocity vtb = 0.03 c (c is the light speed), cor-
responding to a temperature 5.35 MK, and b) hot electrons with a DGH (Dory, Guest, and
Harris, 1965) distribution function for j = 1 in the form

f = u2
⊥

2(2π)3/2v5
t

exp

(
−u2

⊥ + u2
‖

2v2
t

)
, (10)

where u⊥ = p⊥/me and u‖ = p‖/me are electron velocities, p⊥ and p‖ are components of
the electron momentum perpendicular and parallel to the magnetic field, me is the electron
mass, and vt = 0.2 c is the thermal spread in the velocities of hot electrons.
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Figure 6 Left: Temporal evolution of the ratio of the energy of the upper-hybrid waves WUH to the kinetic
energy of hot electrons Eh,kin for s = 7 and three values of nh/ne. Right: Ratio of the saturated energy of
the upper-hybrid waves to the kinetic energy of hot electrons for nh/ne = 1/8 as a function of s. The full line
shows the exponential fit.

The electron density of cold electrons per cell was taken to be ne = 1920 and the ratio of
hot and background plasma electrons was nh/ne = 1/8. We also made computations with
nh/ne = 1/16 and 1/32 to determine the dependence of the saturation energy of the upper-
hybrid waves on the density ratio nh/ne. There were as many protons as electrons, and their
temperature was the same as that of the cold electrons.

The results obtained with this PIC code are shown in the left panel of Figure 6: the tempo-
ral evolution of the energy of the upper-hybrid waves [WUH], generated by hot electrons, for
s = 7 and three values of nh/ne . The ratio of the saturated energy of the upper-hybrid waves
to the kinetic energy of hot electrons is the same in all three cases (WUH = 8 × 10−3 Eh,kin).
This means that the saturated energy of the upper-hybrid waves is proportional to the nh/ne

ratio because Eh,kin depends on nh. The saturated energy of the upper-hybrid waves also de-
pends on s, as shown in the right panel of Figure 6. The computed values can be well fit by
the exponential fit. Therefore, for the 2 May 1998 zebra that was analyzed, where s = 21, we
used this exponential fit, which gives the value of the saturated energy of the upper-hybrid
waves as WUH = 1.6 × 10−3 Eh,kin, where Eh,kin is the kinetic energy of the hot electrons.

For the following estimations, we derived the minimum value of the parameter nh/ne.
For this purpose we used the analytical expression for the growth rate of the upper-hybrid
waves as derived by Thejappa (1991):

−γUH ≈ 4.4 × 10−2ωpe
nh

ne
. (11)

This growth rate agrees with the rate in our PIC simulations. To generate the upper-hybrid
waves, this growth rate needs to be greater than the damping of these waves by collisions,

γc = 2.75
ne

T
3/2

e

ln
(
104T 3/2

e /n1/3
e

)
, (12)

where Te is the background plasma temperature. Thus, when we set γUH equal to γc, then for
the mean ZP frequency (1.45 GHz and corresponding plasma density ne = 2.6 × 1016 m−3)
and for a Te in the ZP source of 2 × 104 K (at the bottom of the transition region), the
minimum ratio of nh/ne is 4.93 × 10−4.

When we take the density of the hot electrons in the ZP source as equal to the minimum
density nh = 2.6 × 1016 × 4.93 × 10−4 = 1.28 × 1013 m−3 and use the extrapolated value
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of the saturated energy of the upper-hybrid waves for s = 21 and the linear dependance of
the saturated energy of the upper-hybrid waves on nh, found in the PIC simulations, the
minimum energy density of the upper-hybrid waves [WUH,min] is calculated; see the third
column in Table 3.

Moreover, when we assume that the energy density of the upper-hybrid waves in the ZP
source from 2 May 1998 is the same as WUH,min, we can calculate the parameter expressing
the transformation efficiency of the upper-hybrid waves into electromagnetic waves; see
the last column in Table 3. However, the ratio nh/ne in real conditions needs to be greater
than its minimum value, and therefore ε in real conditions should be lower. On the other
hand, values of the parameter ε would be greater if we considered the absorption of the
electromagnetic waves near the ZP source.

5. Discussion and Conclusions

The closeness of the emission frequency of decimetric zebras to the plasma frequency de-
termines a narrow directivity of the ZP emission. For the exponential density profile across
the flaring loop, it gives a small area of this emission and thus high brightness temperatures.
We considered two variants of the density dependance on height, i.e. two values of the scale
height: 1 Mm according to the formula of Priest (2014) and 0.21 Mm for the transition region
(Selhorst, Silva-Válio, and Costa, 2008), and two values for the loop width (1 and 2 arcsec-
onds). In all cases, high brightness temperatures were obtained. For the higher value of the
density height scale the brightness temperature was estimated as 1.1×1015 – 1.3×1017, and
for the lower value as 4.7 × 1013 – 5.6 × 1015.

As shown in the Introduction, previous estimations of the ZP brightness temperature
were noticeably lower (from 2×107 to 1013 K). The high brightness temperature found here
together with the short duration of zebras and their frequent strong polarization can only be
explained as generated by a coherent emission mechanism. Namely, in the non-coherent
emission mechanism, the brightness temperature cannot be higher than 1012 K, which is
given by the Compton limit. The mechanism of the coherent emission of the plasma waves
(including the upper-hybrid waves considered here) has been described in detail, e.g. by
Fleishman and Mel’nikov (1998). Here, we only mention that for the processes described
in the present article, an anisotropic distribution of superthermal electrons is necessary. As
shown by Yasnov and Karlický (2015), the most probable location of the zebra generation
is the transition region in the solar atmosphere of active regions. In the transition region,
the temperature as well as the pressure change rapidly, and thus the magnetic fields fan out
to form funnels; see, e.g., Wiegelmann, Thalmann, and Solanki (2014). In these magnetic-
field funnels, superthermal electrons with momentum perpendicular to the magnetic field are
more numerous than those with parallel momentum. The consequence is that in this spatially
small region, a high level of anisotropy of the superthermal electrons is easily reached, and
thus upper-hybrid waves are generated there (Benáček, Karlický, and Yasnov, 2017).

Note that these brightness temperatures are close to the brightness temperatures of deci-
metric spikes (Benz, 1986), which indicates that the energies of electrons in the two types
of bursts are similar. Because the emission frequency is close to the plasma frequency, the
emission absorption can be high, and thus the brightness temperature can be even higher.

Observed sizes of ZP sources can be larger than those assumed here because they are
enlarged by the scattering of the emission in density fluctuations in the corona (Bastian,
1994).
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We found a lower brightness temperature for a shorter scale height. It has been indicated
independently in findings presented by Yasnov and Karlický (2015), Karlický and Yasnov
(2015), and Yasnov, Karlický, and Stupishin (2016) that the observational probability of a
burst with zebras, which is generated in the transition region with a steep density gradient, is
generally greater than the burst generated in a region with smoother changes of the plasma
density. This is caused by an enlargement of the visible emission area in the atmosphere
with a high density gradient.

Note that ZPs sometimes appear irregularly or quasi-periodically (on timescales of sec-
onds) in the radio spectrum of a Type IV (continuum) burst. This can be explained by small
irregular or quasi-periodic motions of the flare loop in the case when the ZP source area is
sufficiently small. Then the narrow cone of the emission directivity is oriented toward an
observer and the zebra is observed, or vice versa.

Numerical simulations with a 3D particle-in-cell model in which hot electrons are de-
scribed by the DGH distribution function show that first the energy density of the upper-
hybrid waves exponentially grows with a linear growth rate and then is saturated. We found
that the saturation energy of the upper-hybrid waves is proportional to the ratio nh/ne. This
dependence enabled us to calculate the saturation energy of the upper-hybrid waves for
much lower ratios of nh/ne. The saturation energy of the upper-hybrid waves also depends
on the gyroharmonic number s. For s = 7 – 18 we found that the computed saturated en-
ergies can be well fit by an exponential function. This fit enabled us to find the saturated
energy of the upper-hybrid waves for the analyzed 2 May 1998 zebra with s = 21 of about
WUH = 1.6 × 10−3 Eh,kin.

Upper-hybrid waves are generated when the growth rate exceeds the damping of these
waves by collisions. For the zebra observed during the 2 May 1998 event, this condition
is fulfilled if the ratio of hot and cold electrons [nh/ne] is greater than 4.93 × 10−4. Using
this value, we computed the minimum energy density of the upper-hybrid waves in the ZP
source (WUH,min = 4.40 × 10−5 J m−3) and the transformation efficiency of the upper-hybrid
waves into electromagnetic waves (ε = 2.54 × 10−6 – 8.86 × 10−4).

The transformation efficiency strongly depends on the plasma parameters in the radio
source, such as plasma turbulence, levels of low-frequency plasma waves (e.g. the ion-sound
waves), and density gradients, see Melrose (1985). Unfortunately, most of these parameters
in ZP sources are not known, and moreover, the theory of wave conversions is not fully
established, especially in the nonlinear regime. For example, Melrose (1985) presented this
efficiency in the very broad range from 10−10 for the scattering on the thermal ions to 10−4

for small-scale density inhomogeneities (10 – 102 km). Based on comparing the transforma-
tion efficiency found in the present article with the efficiency shown by Melrose (1985), we
conclude that the zebra source probably has small-scale density inhomogeneities.
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ABSTRACT

Context. The double plasma resonance (DPR) instability plays a basic role in the generation of solar radio zebras. In the plasma,
consisting of the loss-cone type distribution of hot electrons and much denser and colder background plasma, this instability generates
the upper-hybrid waves, which are then transformed into the electromagnetic waves and observed as radio zebras.
Aims. In the present paper we numerically study the double plasma resonance instability from the point of view of the zebra interpre-
tation.
Methods. We use a 3-dimensional electromagnetic particle-in-cell (3D PIC) relativistic model. We use this model in two versions:
(a) a spatially extended “multi-mode” model and (b) a spatially limited “specific-mode” model. While the multi-mode model is used
for detailed computations and verifications of the results obtained by the “specific-mode” model, the specific-mode model is used for
computations in a broad range of model parameters, which considerably save computational time. For an analysis of the computational
results, we developed software tools in Python.
Results. First using the multi-mode model, we study details of the double plasma resonance instability. We show how the distribution
function of hot electrons changes during this instability. Then we show that there is a very good agreement between results obtained
by the multi-mode and specific-mode models, which is caused by a dominance of the wave with the maximal growth rate. Therefore,
for computations in a broad range of model parameters, we use the specific-mode model. We compute the maximal growth rates of
the double plasma resonance instability with a dependence on the ratio between the upper-hybrid ωUH and electron-cyclotron ωce
frequency. We vary temperatures of both the hot and background plasma components and study their effects on the resulting growth
rates. The results are compared with the analytical ones. We find a very good agreement between numerical and analytical growth
rates. We also compute saturation energies of the upper-hybrid waves in a very broad range of parameters. We find that the saturation
energies of the upper-hybrid waves show maxima and minima at almost the same values of ωUH/ωce as the growth rates, but with a
higher contrast between them than the growth rate maxima and minima. The contrast between saturation energy maxima and minima
increases when the temperature of hot electrons increases. Furthermore, we find that the saturation energy of the upper-hybrid waves
is proportional to the density of hot electrons. The maximum saturated energy can be up to one percent of the kinetic energy of hot
electrons. Finally we find that the saturation energy maxima in the interval of ωUH/ωce = 3–18 decrease according to the exponential
function. All these findings can be used in the interpretation of solar radio zebras.

Key words. instabilities – methods: numerical – Sun: radio radiation

1. Introduction

The loss-cone type of distribution of hot electrons superim-
posed on the distribution of much denser and colder back-
ground plasma is unstable due to the double plasma res-
onance instability (Zheleznyakov & Zlotnik 1975; Melrose
& Dulk 1982; Zaitsev & Stepanov 1983; Winglee & Dulk
1986; Ledenev et al. 2001; Zlotnik 2013; Karlický & Yasnov
2015). This instability generates the upper-hybrid waves, which
have their maxima close to the gyro-harmonic number s =
ωUH/ωce, where ω2

UH = ω2
pe + ω2

ce and ωUH, ωpe, and ωce are
the upper-hybrid, electron-plasma, and electron-cyclotron fre-
quency, respectively. Owing to this property, the double plasma
resonance (DPR) instability is used in models of solar radio
zebras (Zheleznyakov & Zlotnik 1975; Winglee & Dulk 1986;
Ledenev et al. 2001; Treumann et al. 2011; Zlotnik 2013;
Karlický & Yasnov 2015; Yasnov & Karlický 2015; Benáček
et al. 2017).

The resonance condition for the double plasma resonance
instability in the relativistic case can be expressed as

ωUH −
k‖u‖
γ
− sωce

γ
= 0, (1)

where k = (k‖, k⊥) is wave vector, u = (u⊥, u‖), u⊥ = p⊥/me,
and u‖ = p‖/me are the hot electron velocities perpendicular
and parallel to the magnetic field; me is the electron mass,
γ =
√

1 + u2/c2 is the relativistic Lorentz factor, s is the gyro-
harmonic number, and c is the speed of light. In theoretical
models studying the double plasma resonance instability, the
distribution of hot electrons is usually taken as the Dory–Guest–
Harris (DGH; Dory et al. 1965) distribution for j = 1 in the form

f =
u2
⊥

2(2π)3/2v5
t

exp

−
u2
⊥ + u2

‖
2v2

t

 , (2)

Article published by EDP Sciences A60, page 1 of 7



A&A 611, A60 (2017)

where vt we call the thermal velocity of hot electrons, although
the distribution function in the relation (2) is not Maxwellian.
The distribution of the background plasma is taken as a
Maxwellian one. The combination of both these distributions
is considered to be the prototype distribution generating radio
zebras (Winglee & Dulk 1986).

In our previous paper (Benáček et al. 2017) we studied the
double plasma resonance instability analytically. We showed that
the maxima of growth rates of the upper-hybrid waves are shifted
to lower ratios of ωUH/ωce and the contrast between maxima and
minima of the growth rate decreases as the temperature of hot
electrons increases. On the other hand, when the temperature
of the background plasma is increased, the contrast remains the
same.

In studies of solar radio zebras (e.g. Ledenev et al. 2001),
the frequencies of the zebra stripes and the contrast of these
stripes to the background continuum are analyzed. The frequen-
cies are used for the determination of the magnetic field in
zebra radio sources. Therefore, it is important to know the rela-
tion between the zebra stripe frequencies and the gyro-harmonic
number s ≈ ωUH/ωce. Furthermore, the contrast of the zebra
stripes is believed to be connected with the temperature of hot
electrons (Yasnov & Karlický 2004). Moreover, some zebras
have many stripes and their frequencies correspond to high gyro-
harmonic numbers (sometimes >20; Karlický & Yasnov 2015).
All these facts require computations in a very broad range of
the gyro-harmonic number s, which are difficult to make with
the spatially extended multi-mode model. Fortunately, we found
that the maximal growth rates and saturation energies computed
in the multi-mode model agree very well with that computed
in the spatially limited specific-mode model. This agreement is
caused by the fact that the wave with the maximal growth rate
becomes very soon dominant over other growing waves (due to
its exponential growth). Using this specific-mode model, which
considerably saves computational time, we compute the maxi-
mal growth rates and saturation energies of the DPR instability
in a broad range of parameters. Because in the analytical analy-
sis of growth rates of the DPR instability several assumptions
were made, these numerical computations serve to verify the
analytical results.

The paper is structured as follows. In Sect. 2, we describe our
numerical model and initial conditions for the studied double
plasma resonance instability. In Sect. 3, we present the results
for different model parameters. Discussion of these results and
conclusions are in Sect. 4.

2. Model

We use a 3D particle-in-cell (PIC) relativistic model (Buneman
& Storey 1985; Matsumoto & Omura 1993; Karlický & Bárta
2008) with multi-core message passing interface (MPI) paral-
lelization. Further details can be found in Matsumoto & Omura
(1993, p. 67–84) and on the link below1. In the present article we
use this model in two versions: (a) the spatially extended model
with many wave modes (multi-mode model), and (b) spatially
limited model with specific wave mode (specific-mode model),
which is used for relatively fast computing in the broad range of
model parameters. The model size in x-, y-, and z-directions is
128× 60∆× 128∆ for the multi-mode model, and λ∆×λ∆× 32∆
for the specific-mode model, respectively, where ∆ = 1 is the
grid size and λ is the wavelength of the specific upper-hybrid

1 https://www.terrapub.co.jp/e-library/cspp/text/10.
txt

wave. For chosen gyro-harmonic numbers and plasma temper-
atures, we fit the size of the specific-mode model to find the
wave mode with the maximal growth rate. In all models we use
periodic boundary conditions in all three directions.

The model time step is dt = 1, electron plasma frequency
ωpe = 0.05, initial magnetic field is in the z-direction, and elec-
tron cyclotron frequency ωce varies from 0.38 ωpe to 0.056 ωpe
approximating the gyro-harmonic numbers s = 3–18. For depen-
dencies of the growth rate on temperatures, we use s in the range
of s = 3–7. Higher values of s up to 18 are used for calculat-
ing the saturation energies of the generated upper-hybrid waves,
which is needed for zebras with many zebra stripes. In the model
we use two groups of electrons: cold background Maxwellian
electrons with the thermal velocity vtb = 0.03–0.05 c, corre-
sponding to the temperature in the interval 5.4–14.8 MK, and
hot electrons with the DGH distribution having the velocity
vt = 0.15–0.3 c. Higher values of the background plasma temper-
atures are given by the requirements of the PIC model. However,
as known from the previous analytical study (Benáček et al.
2017) and shown in the following, variations of the background
plasma temperature have little effect.

The electron density of background electrons was taken as
ne = 960 per cell and the ratio of background to hot electrons
was taken as ne/nh = 8 with some exceptions mentioned in the
following. The number of protons is the same as the number
of electrons and their temperature is always the same as that of
background electrons. The proton-to-electron mass ratio mp/me
is 1836.

To find the maximal growth rate for specific physical parame-
ters, we changed the model size λ∆ in the perpendicular direction
to the magnetic field. Namely, we fit the wavelength of the
upper-hybrid wave with the maximal growth rate to a distance
of grids used in the PIC model. Thus, we get the maximal sim-
ulated growth rate. We found that the optimal model size does
not change when computing with different ratios of the elec-
tron plasma and electron cyclotron frequencies, but is changed
by changing the temperature.

At the beginning of DPR instability, the electric wave energy
grows exponentially. We fit this part of the electric energy evo-
lution by the function WUH = A0 exp(2Γt), where A0 is the initial
electric energy, t is time, and Γ is the growth rate in model units.
Finally we expressed the growth rate of the upper-hybrid waves
in the ratio to the upper-hybrid frequency.

3. Results

Firstly we compute an evolution of the DPR instability and gen-
eration of the upper-hybrid waves in the multi-mode models with
the parameters summarized in Table 1. We show an example of
the time evolution of the electric energy density in the paral-
lel and perpendicular directions to the magnetic field lines in
Model 2M normalized to the kinetic energy density of hot elec-
trons for the maximal growth rate and the gyro-harmonic number
s = 6 in Fig. 1. As can be seen here, the electric energy density
in the perpendicular direction dominates over the parallel energy
density by at least two orders of magnitude, which indicates the
generation of the upper-hybrid waves.

Examples of the time evolution of the energy density of
the upper-hybrid waves normalized to the kinetic energy den-
sity of hot electrons for three values of nh/ne, the gyro-harmonic
number s = 6, the maximal growth rate, and Model 2M are pre-
sented in Fig. 2. The growth rates, estimated in the early stages
of the evolution, are written in this figure. As seen here, these

A60, page 2 of 7
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Table 1. Parameters of the multi-mode models.

Comp. no. vt vtb s

1M 0.15 c 0.03 c 6
2M 0.2 c 0.03 c 6
3M 0.2 c 0.03 c 3
4M 0.3 c 0.03 c 5

Fig. 1. Time evolution of the electric energy density in the parallel
and perpendicular directions to the magnetic field lines in Model 2M
(Table 1), normalized to the kinetic energy density of hot electrons for
the maximal growth rate and the gyro-harmonic number s = 6.

Fig. 2. Time evolution of the energy density of the upper-hybrid waves
normalized to the kinetic energy density of hot electrons for three values
of nh/ne and for the maximal growth rate and s = 6. Other parameters
are the same as in Model 2M.

growth rates are proportional to the density of hot electrons, in
agreement with the paper by Yasnov & Karlický (2004). Further-
more, the normalized energy density of the upper-hybrid waves
in all three models converges to the same saturation energy,
which indicates that the saturation energy of the upper-hybrid
waves is also proportional to the density of hot electrons. The
kinetic energy density of hot electrons Ek,hot depends on the
plasma density of hot electrons.

3.1. DPR instability in detail

To see the processes during the DPR instability in detail, we
make a comparison of the distributions in the initial state and
at ωpet = 1000 for Models 2M and 4M (Table 1; see Fig. 3).

Comparing changes of the distribution in these models (left and
right columns in Fig. 3), we can see that the instability with
different model parameters causes different changes of the distri-
bution function. The distribution function does not change only
in one point of the phase space, but in the subspace defined by
resonance ellipses corresponding to the range of k‖. In Fig. 3,
in the third row, we show these resonance ellipses in the phase
space, where the changes are dominant. We also show how the
resonance ellipses shift across the distribution function in depen-
dance on k‖ (see the arrows). In both models, the loss-cones of
the distributions are step by step fulfilled by electrons (see the
red regions in the third row of Fig. 3) and thus the distributions
become closer to the Maxwellian distribution. These changes are
due to an increasing energy level of the upper-hybrid waves.

We analyzed time evolution of energies in waves with the
k-wave vectors perpendicular to the magnetic field in Model
2M (Fig. 4). As seen in this figure, the interval of k-vectors is
relatively narrow and remains practically the same during the
instability evolution. It shows that the energy of the upper-hybrid
waves is concentrated in the relatively narrow interval of k-
vectors. As will be shown in the following, it enables us to use
the specific-mode models.

3.2. Comparison of specific-mode and multi-mode model
saturation

Because our main objective is to determine the growth rates
and saturation energies in a broad range of parameters (which is
important for the interpretation of observed zebras), we search
for ways to accelerate computations. We decided to use the
specific-mode models that are much faster than the multi-mode
ones. To justify their use, we compare the growth rate and sat-
uration energies for all multi-mode models shown in Table 1
with the specific-mode models with the same physical param-
eters. An example of this comparison for Model 2M is shown in
Fig. 5. While in the multi-mode model we use the model size
128∆ × 60∆ × 128∆, in the specific-mode model in this case we
use the model size 12∆ × 12∆ × 32∆. This specific-mode model
covers interval of k⊥c/ωpe above 5.23 (see Fig. 4). This means
that this specific-mode model covers the k-vector waves that are
important for the DPR instability. This explains why the results
from the multi-mode and specific-mode models are very similar
(see the following).

As seen in Fig. 5, the growth rate and saturation energy in
both the models agree very well. The same result is found for all
other models according to Table 1. This agreement is caused by a
dominance of the wave with the maximal growth rate (exponen-
tial increase) during an evolution of the double plasma resonance
instability. We utilize this agreement in the following computa-
tions of the growth rates and saturation energies in a broad range
of the model parameters. The agreement between numerically
and analytically computed growth rates, shown in the following,
also justifies the use of the specific-mode models in our case.

3.3. Effects of temperatures of hot and background plasma
electrons on the growth rate

In the following computations with the specific-mode models,
we use the model parameters as shown in Table 2. Figure 6
presents the effects of the temperature of hot and background
electrons on the growth rate. Every point in this figure is com-
puted for at least three model sizes of the specific-mode models.
Error bars are estimated from their fit and the probability that
the same initial parameters give the same result. Models with
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Fig. 3. Changes of the electron distribution functions of hot electrons during the DPR instability. Left column: Model 2M with s = 6. Right column:
Model 4M with resonance s = 5. First row: the distribution at the initial state. Second row: the distribution at ωpet = 1000. Distributions are
normalized to their maximal value. Third row: the difference of the distributions between the initial state and at ωpet = 1000. Red regions are with
enhanced densities and blue ones are with reduced densities. Elliptical lines show the resonance ellipses for a given k-wave vector along magnetic
field. Black arrows show that the ellipses shift with increasing value of k‖.

Fig. 4. Time evolution of energies in waves with the k-wave vectors in
perpendicular direction to the magnetic field lines in Model 2M.

higher temperatures have lower errors because generated waves
are more dominant over the background noise.

Growth rates have the maxima that are shifted to frequencies
lower than those given by the gyro-harmonic number s (Fig. 6,
upper part and Fig. 7) and this shift increases with increasing
temperature. The ratio between maximal and minimal growth

Fig. 5. Time evolution of the upper-hybrid wave energies for the
multi-mode model 2M and specific-mode model with the same model
parameters.

rates for each temperature is up to one order and increases with
the decreasing temperature of hot electrons. These effects are
in agreement with the analytical results (Benáček et al. 2017).
However, contrary to the analytical results, the growth rate for
vt = 0.3 is higher than that for lower temperatures. We think
that this difference is caused by differences in the analytical and
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Fig. 6. Growth rates in dependence on ωUH/ωce for Models 1S–4S. Top:
plots for three different temperatures of hot electrons vt. Bottom: plots
for two different temperatures of background plasma electrons vtb.

Table 2. Parameters of the specific-mode models.

Model no. vt vtb

1S 0.15 c 0.03 c
2S 0.2 c 0.03 c
3S 0.3 c 0.03 c
4S 0.3 c 0.05 c

numerical approach. While in the analytical approach we cal-
culate the growth rate only for one specific k-vector wave, in
numerical computations k-vectors in some interval are always in
operation. The effect of the temperature of background plasma
electrons is small (Fig. 6, bottom part), which agrees with the
analytical theory (Benáček et al. 2017). We also determined the
shifts of maxima of growth rate (Fig. 7). They increase with
increasing s and also depends on temperature of hot electrons.

3.4. Effect of the hot-cold plasma density ratio on the
frequency of the growth rate maximum

As shown in Fig. 8, the frequency of the growth rate maximum
also depends on the ratio of the background and hot electron
densities ne/nh . This dependence is exponential as shown by its
fit and converges to ωUH/ωce = 5.1 for high values of the ne/nh

Fig. 7. Shifts of frequency of growth rate maxima from frequency given
by gyro-harmonic number s.

Fig. 8. Frequency of growth rate maximum (ωUH/ωce)Max as function of
ratio of background and hot electron densities ne/nh for parameters in
Model 2S and s = 6.

ratio. Namely, low values of the ne/nh ratio shift the resonance
of the DPR instability and thus the frequency of the growth rate
maximum. In the analytical analysis it is supposed that the den-
sity of cold electrons is much greater than that of hot electrons
(ne � nh).

In most of our simulations the density ratio nh/ne is 1:8 in
order to keep a low numerical noise. However, such dependen-
cies enable us to extrapolate our results to much lower density
ratios, for example to 1:100 as usually considered in the zebra
interpretation (see the following).

3.5. Comparison of the numerical and analytical growth rates

We compared the simulated growth rates with the analytical ones
presented in the paper by Benáček et al. (2017). The comparison
is shown in Fig. 9. It was made as follows. We chose the upper-
hybrid frequency and hot electron density as ωUH = 7 × 109 s−1

( fUH = 1.11 GHz) and nh = 108 cm−3. We changed the growth
rate plot expressed in dependence on ωce (Benáček et al. 2017)
to that in dependence on ωUH. Then, we transformed the sim-
ulated growth rates, computed for ne/nh = 8, to those with
ne/nh = 100. The transformation was made in two steps. We
shifted the simulated growth rate maxima toward lower values
of ωUH/ωce according to the relation expressed in Fig. 6. Finally,
the growth rates were multiplied by the factor 8/100 using
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Fig. 9. Comparison of the simulated and analytically derived growth
rates for vt = 0.2 c and vtb = 0.03 c.

Fig. 10. Maximal saturation energies of the upper-hybrid waves in
dependence on the gyro-harmonic number s for Model 2S with the
exponential fit.

the linear relation between the growth rate and density of hot
electrons (Yasnov & Karlický 2004). As shown in Fig. 9, there
is good agreement between the numerically and analytically
computed growth rates.

3.6. Saturation energy levels of the upper-hybrid waves
in a broad range of gyro-harmonic numbers

In all models, we determined the saturation energy of the upper-
hybrid waves. The saturation energy is reached when the growth
rate is balanced by nonlinear effects. The time when the satura-
tion begins depends on the model parameters. In our cases, the
saturation time was in the time interval ωpetsatur = 300–1200.
Mostly, the maximal growth rate leads to maximal saturation
energy, but this is not a rule. In some cases, the saturated energy
is higher in the model with lower growth rate. In other cases, the
saturation energies have recognizable maxima, while the growth
rate is nearly constant in the broad range of ratios of ωUH/ωce.

We computed one set of models changing the gyro-harmonic
number s from s = 3 up to s = 18 and keeping the same tem-
peratures as in Model 2S. As shown in Fig. 10, the saturation
energy level in local maxima decreases with increasing s and

Fig. 11. Saturation energies as a function of ωUH/ωce. Top: plots for
three different temperatures of hot electrons vt. Saturation maxima
are shifted to lower ratios ωUH/ωce. Bottom: plots for two different
temperatures of background plasma electrons vtb.

converges to the value WUH ≈ 1.6 × 10−3Eh,kin (see the expo-
nential fit as presented in Fig. 10). This exponential function
can be used for an extrapolation of the saturation energies for
even higher parameter s, which is useful for zebras with many
stripes.

Maximal values of the saturated energy levels of the upper-
hybrid waves for low values of s are about one percent of
the kinetic energy of hot electrons. The saturated energy levels
increase with an increase in the kinetic energy (temperature) of
hot electrons.

Similarly to the growth rates, the saturation energies (Fig. 11)
have the maxima and minima shifted to lower ratios of ωUH/ωce
than those given by the integer values of the gyro-harmonic
number s. Figure 12 shows these shifts. The frequency of the
growth rate and saturation energy maximum is not generally the
same. The saturation energy maxima are usually less shifted to
lower frequencies than the growth rate maxima. However, con-
trary to the growth rates, the contrast between the maxima and
minima increases with the increasing temperature of hot elec-
trons (Fig. 11, upper part). Similarly, in the models that vary
the temperature of background plasma electrons, the contrast
between the saturation energy maxima and minima is higher than
that for the growth rates (Fig. 11, bottom part).
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Fig. 12. Shifts of the frequency of the saturated energy maxima from
the frequency given by the gyro-harmonic number s.

4. Discussion and conclusions

Using the 3D PIC model in two versions (multi-mode and
specific-mode models) we computed not only the growth rates of
the double plasma resonance instability, but also saturation ener-
gies of the generated upper-hybrid waves. We described details
of the DPR instability by showing how the distribution func-
tion of hot electrons changes during the DPR instability. We
found that the growth rate as well as the saturation energy are
proportional to the density of hot electrons.

Owing to many assumptions made in our previous analyt-
ical study, we checked the analytical results using the present
numerical models. We found a very good agreement between
the numerical and analytical results. This justifies a use of the
specific-mode models in this case. We confirmed that the growth
rate maxima are shifted to lower frequencies in comparison with
those given by the gyro-harmonic number s. This frequency shift
increases with an increase of the temperature of hot electrons, in
agreement with the analytical results. We confirmed that the con-
trast between maxima and minima of the growth rate decreases
with the increasing of the hot electron temperature. On the other
hand, the temperature of the background plasma has only a small
effect on the growth rates.

We found that the frequency of the growth rate maximum
depends on the ratio of the background and hot electron densi-
ties ne/nh. We used this dependence to extrapolate our numerical
results, made mostly for the ratio ne/nh = 8, to those with the
ratio ne/nh = 100 considered usually in the analytical studies
of zebras. Using this dependence in detailed comparison of the
analytical and numerical growth rates, made in the interval of

ωUH/ωce = 3–7 and the parameters considered in zebras, we
found very good agreement.

We think that some small differences between the numeri-
cal and analytical results are caused by differences in the two
methods. In numerical simulations, as in reality, the DPR insta-
bility works in some regions of the k-vector space, not only with
one k-vector as assumed in the analytical theory. Furthermore,
in some of the present simulations we found deviations from the
assumption made in the analytical approach (k⊥ � k‖).

We computed the saturation energies of the generated upper-
hybrid waves, which is beyond the possibilities of the analytical
theory. We compared the results of the multi-mode and specific-
mode models considering the same physical parameters. We
found very good agreement between the results from both types
of model. This agreement is caused by a dominance of the wave
with the maximal growth rate during an evolution of the double
plasma resonance instability. Therefore we used the specific-
mode models, which considerably save computational time, for
the computation of the saturation energies in a broad range of the
parameter s. A use of the specific-mode models is also justified
by a very good agreement between the growth rates computed
numerically and analytically. We found that the saturation energy
decreases with increasing s and this decrease is exponential. This
exponential dependance of the saturation energy can be used
for an extrapolation of the saturation energies for the parame-
ter s even greater than 18, which is useful for the interpretation
of zebras with many zebra stripes (Karlický & Yasnov 2015;
Yasnov & Karlický 2015).
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Abstract Fine structures of radio bursts play an important role in the diagnostics of the
solar flare plasma. Among them the zebras, which are prevalently assumed to be generated
by the double-plasma resonance instability, belong to the most important ones. In this pa-
per we compute the growth rate of this instability for two types of the electron distribution:
a) for the power-law distribution and b) for the kappa distribution, in both cases with the
loss-cone type anisotropy. We find that the growth rate of the upper-hybrid waves for the
power-law momentum distribution strongly depends on the pitch-angle boundary. The max-
imum growth rate is found for the pitch angle θc ≈ 50◦. For small angles the growth rate
profile is very flat and for high pitch angles the wave absorption occurs. Furthermore, ana-
lyzing the growth rate of the upper-hybrid waves for the kappa momentum distribution we
find that a decrease of the characteristic momentum pκ shifts the maximum of the growth
rate to lower values of the ratio of the electron-plasma and electron-cyclotron frequencies,
and the frequency widths of the growth rate peaks are very broad. But if we consider the
kappa distribution which is isotropic up to some large momentum pm and anisotropic with
loss-cone above this momentum then distinct peaks of the growth rate appear and thus dis-
tinct zebra stripes can be generated. It means that the restriction of small momenta for the
anisotropic part of distributions is of principal importance for the zebra stripe generation.
Finally, for the zebra stripes observed on 1 August 2010, the growth rates in dependence
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on the radio frequency are computed. It is shown that in this case the growth rate peaks
are more distinct than in usually presented dependencies of growth rates on the ratio of the
plasma and cyclotron frequencies.

Keywords Sun: corona · Sun: flares · Sun: radio radiation

1. Introduction

The zebra structure is a fine structure of Type IV radio bursts observed during solar flares
in the decimetric, metric and centimetric wavelength ranges (Slottje, 1972; Chernov et al.,
2012; Tan et al., 2012, 2014). There are many models of this fine structure (Rosenberg and
Tarnstrom, 1972; Zheleznyakov and Zlotnik, 1975; Kuijpers, 1975; Chernov, 1976, 1990;
LaBelle et al., 2003; Bárta and Karlický, 2006; Ledenev, Yan, and Fu, 2006; Kuznetsov and
Tsap, 2007; Laptukhov and Chernov, 2009; Tan, 2010; Karlický, 2013), see also reviews by
Chernov (2010), Chernov, Yan, and Fu (2014), Zheleznyakov et al. (2016). Among these
models the most commonly used model is based on the double-plasma resonance (DPR)
instability; see e.g. the review by Zheleznyakov et al. (2016).

The process of the double-plasma resonance, which generates upper-hybrid waves, is
most effective in flare loop regions, where the condition ωp � sωB is fulfilled (ωp and ωB

means the electron-plasma and electron-gyro frequency, s is the gyro-harmonic number).
However, this process strongly depends on distributions of accelerated electrons. In many
papers (Zheleznyakov and Zlotnik, 1975; Winglee and Dulk, 1986; Yasnov and Karlický,
2004; Benáček, Karlický, and Yasnov, 2017; Yasnov, Benáček, and Karlický, 2017; Benáček
and Karlický, 2018) studying zebra stripes the distribution of accelerated electrons were de-
scribed by the Dory–Guest–Harris (DGH) type function (Dory, Guest, and Harris, 1965).
However, this distribution has no clear physical foundation. The distributions that are a re-
sult of processes of accelerations and reflections of electrons in magnetic mirrors in closed
magnetic loops are physically more acceptable (Stepanov, 1974; Kuijpers, 1974; White,
Melrose, and Dulk, 1983). Therefore Winglee and Dulk (1986) considered the loss-cone
distribution with an exponential function of the momentum of electrons. Furthermore, in
the paper by Kuznetsov and Tsap (2007), the authors considered the loss-cone distribution
with a power-law function of the momentum of electrons. This distribution is more realistic
because it is used in a power-law fitting of hard X-ray spectra of solar flares. But in this
distribution the low-energy cut-off needs to be defined, which is difficult to estimate from
observations (Holman et al., 2003; Saint-Hilaire and Benz, 2005; Kontar, Dickson, and Kaš-
parová, 2008). Therefore, in recent years interest in the kappa distribution has been increas-
ing. This distribution has no low-energy cut-off and is close to a Maxwellian distribution at
low energies and at high energies is similar to the power-law one. Kappa distributions are
supported by theoretical considerations of particle acceleration in collisional plasmas (Bian
et al., 2014). Furthermore, the X-ray spectra of coronal X-ray sources are well fitted using
kappa distributions (Kašparová and Karlický, 2009; Oka et al., 2013, 2015).

In the present article, first of all, we follow the study of Kuznetsov and Tsap (2007). We
extend their analysis in order to show changes of the growth rate for the power-law mo-
mentum distribution in dependence on the low-energy cut-off and loss-cone angle. Then we
present growth rates for the anisotropic kappa distribution and the kappa distribution which
is isotropic up to some large momentum and anisotropic above this momentum. Finally, for
the first time, for the zebra stripes observed on 1 August 2010, we compute the growth rates
in dependence on the radio frequency.
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2. Growth Rates for Power-Law Distributions

Let us briefly describe the growth rate calculation. We follow the method according to
Kuznetsov and Tsap (2007). We consider a plasma with two components: a) a background
Maxwellian plasma and b) a hot non-equilibrium plasma component, with the plasma den-
sities n0 and nh, respectively, where n0 � nh. The electron distribution function of this hot
non-equilibrium component is taken as

f (p, θ) = ϕ(p)

⎧
⎨

⎩

0, θ ≤ θc − �θc,
θ−θc+�θc

�θc
, θc − �θc < θ < θc,

1, θ > θc.

(1)

This function describes the distribution with the loss-cone having the pitch-angle bound-
ary θc and the boundary width �θc � 1. The function ϕ(p) describes the distribution in
dependence on the electron momentum.

Here the ϕ(p) function is taken in the power-law function form:

ϕ(p) =
{

δ−3
2π(π−θc)p

3
m

(
p

pm

)−δ

, p ≥ pm,

0, p < pm,
(2)

where pm is the low-momentum cut-off, and δ is the power-law index. Note that this distri-
bution is normalized to 1.

Generally, for the growth rate of the upper-hybrid waves we can write

γ = − Im ε‖
∂ Re ε‖

∂ω
|ε‖=0

, (3)

∂ Re ε‖
∂ω

∣
∣
∣
∣
ε‖=0

� 2

ω

(

2 − ω2
p

ω2

)

, (4)

where ε‖ is dielectric permeability and ω is the frequency of the upper-hybrid waves.
For the term Im ε‖ we use Equation 17 from the paper by Kuznetsov and Tsap (2007)

Im ε
(s)
‖ � −2π2m4c2

ω2
p

k2

nh

n0
�3

r J
2
s

(
k⊥p⊥
mωB

)

×
[

∂ϕ(p)

∂p
+ ϕ(p) tan θc

p�θc

(
sωB

�rω sin2 θc
− 1

)]
�pz

p0
, (5)

where Js is the sth order Bessel function, ωB is the electron-cyclotron frequency, p =
(p⊥,pz0) = (p0 sin θc,p0 cos θc) is the electron momentum, m is the electron mass, c is
the speed of light, k is the wave number. The distance in momentum space �pz between
intersection points with a straight line for small parameter �θc � 1 is

�pz = 2pz0
ω

sωB

√
2�θc tan θc. (6)

Then the normalized growth rate can be expressed in agreement with the paper by
Kuznetsov and Tsap (2007) as
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Figure 1 Maximum growth rate
of the upper-hybrid waves for the
power-law momentum
distribution in dependence on the
ratio ωp/ωB and the loss-cone
angle 10◦ (black line), 30◦ (red
line), 50◦ (blue line), 65◦ (green
line) and 80◦ (violet line). The
power-law index of the
power-law distribution is δ = 5,
the gyro-harmonic number is
s = 16 and the minimum electron
momentum pm corresponds to
the velocity 0.3 c, i.e. to the
low-energy cut-off ≈ 30 keV.

γn = γ

ωp

n0

nh

√
�θc = 4√

2
π2m4c2 ωωp

k2
�4

r J
2
s

(
k⊥p0 sin θc

mωB

)

× ϕ(p0)
tan3/2(θc) cos(θc)

p0(2 − ω2
p

ω2 )

(
1

�2
r sin2 θc

− 1

)

, (7)

where p0 is the lower boundary for hot electron momentum

p0 =
mc

√

ω2 − s2ω2
B

sωB
, (8)

k = (kz, k⊥) is the wave vector with the components along and in the perpendicular direction
to the magnetic field,

k2 = k2
z + k2

⊥ = ω2 − s2ω2
B

c2 cos2(θc)
+ ω4 − ω2ω2

p − ω2
Bω2

p

3v2
Tω2

p

, (9)

�r is the relativistic factor

�r = ω

sωB
, (10)

and vT is the thermal velocity of the background plasma.
Now using Equation 7 we compute the growth rate for the following parameters: The

lower limit for the momentum of electrons pm is taken as corresponding to the minimum
energy Em ≈ 30 keV, i.e., to the minimum velocity of electrons vm/c = 0.3, the power-
law index is δ = 5 and the gyro-harmonic number is s = 16. The pitch-angle boundary
varies as θc = 10◦, 30◦, 50◦, 65◦ and 80◦ and the temperature of the background plasma is
T0 = 3 × 106 K.

In the computations we only vary the magnetic field B , while the plasma frequency
is kept constant (fp = ωp/2π = 1 GHz). For each value of ωp/ωB the growth rate γn is

computed in the frequency interval
√

ω2
p + ω2

B < ω ≤ ωmax. The frequency ωmax is taken in
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an experimental way in order to find the maximum value of γn in this interval. The results of
these computations are shown in Figure 1. As seen here the growth rate strongly depends on
the value of the pitch-angle boundary. The maximum peak is for θc ≈ 50◦. For small angles
no distinct peak is visible, and for high angles the absorption appears.

Now, let us analyze an effect of variation of pm (i.e., the low-velocity limit of elec-
trons) on the growth rate. The result for δ = 5 and θc = 50◦ is shown in Figure 2. The
value of pm varies in correspondence with the minimum electron velocity vm ∈ (0.5 c –vT),
vT = 6.75 × 106 m s−1. Figure 2 shows that the maximum contrast between peaks is for
the growth rates with the minimum electron velocities in the 0.3 c – 10 vT range; see also
Table 1. For velocities greater than 0.5 c the contrast of the peaks decreases and for the
velocities ≤ 5 vT the peaks are shifted to much lower ratios of ωp/ωB. If we accept that the
growth rate profiles correspond to the intensity of the zebra stripes, it means that for low pm

no zebra stripes can be generated.
The same computations are made also for the power-law distribution with the power-law

index δ = 10. The computed growth rates for this power-law distribution with different pitch
angles are shown in Figure 3. Similar to the case with the power-law distribution with the
power-law index δ = 5, we can see a strong dependence on the pitch angle, however, the
maximum is one again for the pitch angle θc ≈ 50◦. On the other hand, the growth rates are
higher and narrower in frequency than in the previous case.

Summarizing all these results, in Table 1 we present the ratio (ωp/ωB)m, where the
growth rate has maximum and the peak width �(ωp/ωB) (taken at half of the maximum) in
dependence on the minimum electron velocity vm (minimum of pm) for the gyro-harmonic
number s = 16 and for the power-law index δ = 5 and 10. To see separate zebra stripes
the peak width needs to be smaller than 0.5. Meanwhile, for the power-law index δ = 5
the zebra structure can be formed only in a limited interval of vm around the velocity
10 vT = 6.75 × 107 m s−1; in the case with δ = 10 the widths of the growth rates are twice
smaller and thus more favorable for the zebra pattern generation. The positions of the growth
rate maxima in both cases are approximately the same.

3. Growth Rates for Kappa Distributions

Now, we consider a plasma with the hot component having the kappa distribution with the
loss-cone anisotropy for all electron momenta. The kappa distribution is taken as (Bian et al.,
2014)

fκ(v) = nκ�(κ + 1)

π
3
2 θ3

κ κ
3
2 �(κ − 1

2 )

(

1 + v2

κθ2
κ

)−κ−1

, (11)

where κ is the kappa index, nκ = ∫
f d3 v,

θ2
κ = 2kBTκ

m

κ − 3
2

κ
, (12)

is the characteristic velocity, m is the electron mass, kB is the Boltzmann constant, Tκ is the
mean kinetic temperature and � is the Gamma function.

Similar to the calculation of the growth rate for the power-law distribution we assume
the loss-cone type distribution according to Equation 1. However, in this case the function
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Figure 2 Maximum growth rate of the upper-hybrid waves for the power-law momentum distribution in
dependence on the ratio ωp/ωB and the minimum electron momentum pm for the gyro-harmonic number
s = 15 (red line) and s = 16 (blue line). Plot a) is for pm corresponding to the velocity 0.5 c, b) for pm
corresponding to 0.3 c, c) for pm corresponding to 10 vT, d) for pm corresponding to 5 vT, e) for pm
corresponding to 3 vT, and f) for pm corresponding vT. The power-law index is δ = 5 and the loss-cone is
θc = 50◦ . Note that the scale on the y-axis increases from plot a) to f).
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Table 1 Frequency ratio of the growth rate maximum (ωp/ωB)m and the bandwidth of the growth rate peak
�(ωp/ωB) for the harmonic number s = 16 in dependence on the minimum velocity vm (corresponding to
pm) of the power-law distribution for two power-law indices (δ = 5 and 10).

δ vm 0.5 c 0.3 c 10 vT 5 vT vT

5 (ωp/ωB)m 18.41 16.60 16.16 14.42 5.98

5 �(ωp/ωB) 0.73 0.56 0.46 0.84 1.90

10 (ωp/ωB)m 18.43 16.50 15.95 14.41 6.00

10 �(ωp/ωB) 0.40 0.26 0.25 0.61 1.19

Figure 3 Maximum growth rate
of the upper-hybrid waves for the
power-law momentum
distribution in dependence on the
ratio ωp/ωB and the loss-cone
angle 10◦ (black line), 30◦ (red
line), 50◦ (blue line), 65◦ (green
line) and 80◦ (violet line). The
power-law index of the
power-law distribution is δ = 10,
the gyro-harmonic number is
s = 16 and the minimum electron
momentum pm corresponds to
the velocity 0.3 c, i.e. to the
low-energy cut-off ≈ 30 keV.

ϕ(p), derived from Equation 11, has the form

ϕ(p) = 2�(κ + 1)

π
3
2 p3

κκ
3
2 �(κ − 1

2 )(π − θκ)

(

1 + p2

κp2
κ

)−κ−1

, (13)

where p is the electron momentum and pκ = mθκ .
Using these relations we compute the maximum growth rates for the kappa momentum

distributions with the loss-cone anisotropy. The results are shown in Figures 4, 5 and 6.
Figure 4 presents the growth rate in dependence on the ratio ωp/ωB for the kappa distribution
with the kappa index κ = 1.5 (it corresponds to δ = 5 for the power-law distribution) for the
gyro-harmonic numbers s = 15 (red solid line) and 16 (red dashed line), θc = 30◦, and pκ

corresponding to the velocity 0.3 c). The growth rate for the same parameters, but for κ = 4,
are expressed by the blue solid line for s = 15 and by the blue dashed line for s = 16. As
seen in this figure when the kappa index increases, i.e. the kappa distribution becomes closer
to the Maxwellian one, the bandwidths of the growth rate peaks are broader. Furthermore,
while the values of growth rates for s = 15 and 16 and κ = 1.5 are similar, the value of the
growth rate for s = 16 and κ = 4 is much smaller than that with s = 15.
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Figure 4 Maximum growth rate
of the upper-hybrid waves for the
kappa momentum distribution in
dependence on the ratio ωp/ωB
for the kappa index κ = 1.5 and
the gyro-harmonic number
s = 15 (red solid line), k = 1.5
and s = 16 (red dotted line),
k = 4 and s = 15 (blue solid
line), and κ = 4 and s = 16 (blue
dotted line). The loss-cone is
θc = 30◦ , and pκ corresponds to
the velocity 0.3 c.

Figure 5 Left: Maximum growth rate of the upper-hybrid waves for the kappa momentum distribution in
dependence on the ωp/ωB. The kappa index is κ = 1.5, the gyro-harmonic number is s = 16 and the loss-cone
is θc = 30◦ . The red line is for pκ corresponding to 0.3 c, the blue line for pκ corresponding to 10 vT, the
green line for pκ corresponding to 5 vT, and the violet line for pκ corresponding to 3 vT. Right: The same,
but for θc = 50◦ .

Furthermore, in Figure 5 we show the dependence of the growth rate for the kappa dis-
tribution in dependence on the ratio ωp/ωB and pκ for two values of the loss-cone angle
θc = 30◦ and 50◦. As seen in both these figures, when we decrease pκ the maximum of the
growth rate increases and shifts to lower values of the ratio ωp/ωB. The growth rates for
θc = 50◦ are greater than those for θc = 30◦.

Finally, for comparison with Figure 5 left, in Figure 6 we added the growth rates for the
kappa distribution in dependence on the ratio ωp/ωB for the kappa index κ = ∞. The plots
of the growth rates are similar, but the values of the growth rates for κ = ∞ are higher.
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Figure 6 Maximum growth rate
of the upper-hybrid waves for the
kappa momentum distribution in
dependence on the ωp/ωB. The
kappa index is κ = ∞, the
gyro-harmonic number is s = 16
and the loss-cone is θc = 30◦ .
The red line for pκ

corresponding to 0.3 c, the blue
line for pκ corresponding to
10 vT, the green line for pκ

corresponding to 5 vT, and the
violet line for pκ corresponding
to 3 vT.

In both Figures 5 and 6 in all cases the peaks of the growth rates are very broad. If we
assume that the growth rate profiles correspond to radio emission, it means that in the case
with the kappa momentum distribution distinct zebra stripes cannot be generated.

Therefore now we consider a more realistic case, namely, the kappa distribution in all
momenta (p > 0), isotropic up to some large momentum pm and anisotropic above this
momentum pm. Now the isotropic part of the kappa distribution plays a role of the dense
background plasma and the anisotropic part with the kappa momentum distribution and
loss-cone anisotropy plays a role of the low density hot component. Such a division of the
distribution is possible due to the fact that only the anisotropic part of this distribution is
important for the growth rate of the upper-hybrid waves. The isotropic part of the kappa
distribution does not contribute to the growth rate. Therefore for the following computations
only the anisotropic part with momenta above pm needs to be expressed. For it we take the
distribution, which is normalized to 1, as follows:

ϕ(p) =

⎧
⎪⎨

⎪⎩

(2κ−1)

(
p2

p2
m

+ κp2
κ

p2
m

)−κ−1

2π(π−θc)p
3
m 2F1

(
κ− 1

2 ;κ+1;κ+ 1
2 ;− κp2

κ

p2
m

) , p > pm,

0, p ≤ pm,

(14)

where 2F1(κ − 1
2 ;κ + 1;κ + 1

2 ;−κ) is the hypergeometric function.
For this distribution function we computed the maximum growth rates of the upper-

hybrid waves in dependence on the ratio ωp/ωB for θc = 50◦, κ = 1.5, s = 16 and s = 15,
and pκ = pm corresponding to 0.3 c.

Figure 7 shows that the kappa distribution, bounded at small momentum values, also
yields peaks in the spectrum of the growth rate which are distinctly isolated, similar to the
peaks for the power-law distribution (compare with Figure 2b).

4. Frequency Spectrum of Growth Rates

Zebras are observed in the spectrum in dependence on the radio frequency, not in the spec-
trum depending on the ratio ωp/ωB. Therefore, it is of interest to compute such a frequency
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Figure 7 Maximum growth rate
of the upper-hybrid waves for the
kappa momentum distribution 14
in dependence on the ωp/ωB.
The kappa index is κ = 1.5, the
gyro-harmonic number s = 15
(red line) and s = 16 (blue line),
the loss-cone is θc = 50◦ ,
pκ = pm corresponds to 0.3 c.

Figure 8 Dependence of the
growth rate of the upper-hybrid
waves on the frequency f for the
distribution 14, with κ = 1.5,
θc = 50◦ , pm corresponds to the
velocity 0.3 c. The solid line is
for s = 25, the dashed line for
s = 26 and the dot-dashed line
for s = 27.

spectrum. For it we need to take the plasma frequency from some observed zebra stripes. In
the following computations, we take them for three stripes of the zebra (s = 25, 26 and 27)
observed in the 1 August flare (Yasnov, Karlický, and Stupishin, 2016): fp = 1.344×109 Hz
for s = 25, fp = 1.323 × 109 Hz for s = 26 and fp = 1.301 × 109 Hz for s = 27. To ob-
tain the frequency spectrum, it is necessary to integrate the above derived growth rates with
respect to ωp/ωB, setting for each band its own plasma frequency,

γ̄n =
∫

γn d

(
ωp

ωB

)

. (15)

Figure 8 shows the dependence of the growth rate of the upper-hybrid waves on the
frequency f for the distribution 14, with κ = 1.5, θc = 50◦, pm corresponds to the velocity
0.3 c. Here and in the following, the value of pκ is taken as corresponding to the temperature
of the thermal plasma (Te = 3 × 106 K). As seen here the spectrum shows distinct isolated
peaks giving in the spectrum distinct stripes. An analogous result was also obtained for the
power distribution, not shown here.

Now, let us check if the conclusion as regards the significant influence of the value of
the pitch-angle boundary on the frequency spectra is valid. Figure 9 shows the frequency
spectrum of the growth rate of the upper-hybrid waves for the distributions 14 with θc = 80◦,
κ = 1.5 and pm corresponding to velocity 0.3 c. As seen here, similar to the case with the
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Figure 9 Dependence of the
growth rate of the upper-hybrid
waves on the frequency f for the
distribution 14, with κ = 1.5,
θc = 80◦ , pm corresponds to the
velocity 0.3 c. The solid line is
for s = 25, the dashed line for
s = 26 and the dot-dashed line
for s = 27.

Figure 10 Dependence of the
growth rate of the upper-hybrid
waves on the frequency f for the
distribution 14, with κ = 1.5,
θc = 10◦ , pm corresponds to the
velocity 0.3 c. The solid line is
for s = 25, the dashed line for
s = 26 and the dot-dashed line
for s = 27.

Table 2 Frequencies of the growth rate maxima and their frequency differences in dependence on θc and vm
for the gyro-harmonic numbers s = 25, 26 and 27.

θc
(◦)

vm f s=25
max

(GHz)
f s=26

max
(GHz)

f s=27
max

(GHz)
�f (s = 25 – 26)

(GHz)
�f (s = 26 - 27)

(GHz)

50 0.2 c 1.381 1.359 1.337 0.022 0.022

50 0.3 c 1.359 1.338 1.317 0.021 0.021

50 0.4 c 1.365 1.347 1.328 0.018 0.019

30 0.3 c 1.379 1.358 1.336 0.021 0.022

65 0.3 c 1.356 1.334 1.313 0.022 0.021

power-law distribution, the growth rates are negative. Note that the negative spectral peaks
are well separated from each other.

Figure 10 shows the frequency spectrum of the growth rate of the upper-hybrid waves for
the distribution 14 with θc = 10◦, κ = 1.5 and pm corresponding to velocity 0.3 c. Now the
spectral bands are very broad. As a result, these bands merge and thus do not form isolated
peaks, which are necessary for zebra stripe generation.

Finally, we compute the growth rate of the upper-hybrid waves for the distribution 14
in dependence on frequency with κ = 1.5, for different θc and pm (corresponding to the
velocity vm). Other values in computations are taken the same as for Figure 8. In Table 2 we
show the frequencies of the growth rate maxima and frequency differences of their maxima.
It seems that for θc = 50◦ the frequency difference slightly decreases with the increase of vm.
For fixed vm this difference (within errors of computations corresponding to the last number
in �f ) practically does not depend on θc.
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5. Discussion and Conclusions

It was shown that the growth rate of the upper-hybrid waves for the power-law momen-
tum distribution with the low-momentum cut-off and the loss-cone anisotropy strongly de-
pends on the pitch-angle boundary. The maximum growth rate was found for the pitch angle
θc ≈ 50◦. For small angles the growth rate is broad and flat and for high pitch angles even
absorption occurs.

We made computations for two power-law indices for δ = 5 and 10. While for the power-
law index δ = 5 the zebra structure can be formed only in a limited interval of vm around
the velocity 10 vT = 6.75 × 107 m s−1, in the case with δ = 10 the width of the growth rates
are twice smaller and thus more favorable for the zebra pattern generation. The positions of
the growth rate maxima in both cases are approximately the same. These results agree with
those of Kuznetsov and Tsap (2007).

An analysis of the growth rate of the upper-hybrid waves for the anisotropic kappa mo-
mentum distribution for all electron momenta (p > 0) (which is a contribution to the dense
background plasma) shows the following:

i) When we decrease the characteristic momentum pκ then the maximum of the growth
rate is shifted to lower values of ωp/ωB.

ii) The growth rates for the kappa distribution with κ = 1.5 and κ = ∞ shows a similar
behavior, but values of the growth rates for κ = ∞ are a little bit higher. It is due to the
fact that in this case the distribution with κ = ∞ has more electrons for low momentum
values than that with κ = 1.5.

iii) The frequency widths of the growth rate maxima are very broad.

We also found that the frequency difference between the frequencies of the growth rate
maxima slightly decreases with the increase of vm. For fixed vm this difference practically
does not depend on θc.

But if we take a more realistic distribution, namely, the single kappa distribution which
is isotropic up to some large momentum pm and anisotropic with loss-cone above this mo-
mentum, then distinct peaks of the growth rate appear and thus distinct zebra stripes can
be generated. It means that the restriction for small momenta for the anisotropic part of
distributions (power-law or kappa) is of principal importance for the zebra stripe generation.

For the first time, the dependence of the growth rate on the radio frequency was com-
puted. In this case the spectral peaks are much more distinct than in the case of the de-
pendence of the growth rate on the ratio of the plasma and cyclotron frequencies. Thus,
analyzing the observed radio spectra, we can assume smaller values of the power-law or
kappa indices.

Note that, for high values of the pitch-angle anisotropy, where the absorption occurs, the
inverse zebra stripes can be produced on some radio continua.
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Abstract

Zebras were observed not only in the solar radio emission but also in radio emissions of Jupiter and the Crab
Nebula pulsar. In their models, growth rates of the electrostatic waves play an important role. Considering the
plasma composed from the thermal background plasma and hot and rare component with the Dory–Guest–Harris
distribution, we compute the growth rates γ and dispersion branches of the electrostatic waves in the ω−k⊥
domain. We show complexity of the electrostatic wave branches in the upper-hybrid band. In order to compare the
results, which we obtained using the kinetic theory and particle-in-cell (PIC) simulations, we define and compute
the integrated growth rate Γ, where the “characteristic width” of dispersion branches was considered. We found a
very good agreement between the integrated growth rates and those from PIC simulations. For maximal and
minimal Γ we showed locations of dispersion branches in the ω−k⊥ domain. We found that Γ has a maximum
when the dispersion branches not only cross the region with high growth rates γ, but when the dispersion branches
in this region are sufficiently long and wide. We also mentioned the effects of changes in the background plasma
and hot component temperatures.

Key words: instabilities – methods: analytical – methods: numerical – planets and satellites: individual (Jupiter) –
pulsars: individual (Crab Nebula pulsar) – Sun: radio radiation

1. Introduction

Solar radio zebras belong to the most important fine
structures used in diagnostics of solar flare plasmas (Chen
et al. 2011; Chernov 2011; Zlotnik 2013). Similarly, the zebras
observed in the radio emission of Jupiter and the Crab Nebula
pulsar (Hankins & Eilek 2007; Hankins et al. 2016; Panchenko
et al. 2018) can also be used for diagnostics purposes. Among
many models of all these zebras, the model based on the double
plasma resonance (DPR) instability belongs to the most
probable (Zheleznyakov & Zlotnik 1975b; Melrose &
Dulk 1982; Zaitsev & Stepanov 1983; Winglee & Dulk 1986;
Ledenev et al. 2001; Zlotnik 2013; Karlický &
Yasnov 2015, 2018a, 2018b; Zlotnik et al. 2016).

In this model the DPR instability generates the upper-hybrid
waves with the frequency
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and electron-cyclotron frequency, k=(kP, k⊥) is the wave
vector, vtb is the thermal electron velocity of the background
plasma, = ^u u u,( ) , u⊥=p⊥/me, and =u p me  are the hot
electron velocities perpendicular and parallel to the magnetic
field; me is the electron mass, γrel is the relativistic Lorentz
factor, s is the gyro-harmonic number, and c is the speed of
light. For details, see, e.g., Benáček & Karlický (2018).

In theoretical models of the DPR instability, a two-
component plasma with the background plasma having the
Maxwellian distribution and hot and rare component with the
Dory–Guest–Harris electron distribution for j=1 (Dory et al.

1965)
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is assumed. Here vt we call the thermal velocity of hot
electrons, although the distribution function in this relation is
not Maxwellian.
In interpretations of zebra observations, which use this

model, it is usually supposed that the electron-plasma
frequency is related to the electron-cyclotron frequency as
follows

w w» s . 4pe ce ( )

However, Benáček et al. (2017) showed that there can be the
frequency shift from this simple equation up to 16% for Dory–
Guest–Harris velocity distribution and even higher for other
velocity distributions (Yasnov et al. 2017).
Besides the zebra model based on DPR instability, there is

the model that explains zebras by a nonlinear interaction of
Bernstein modes (Kuznetsov 2005; Zlotnik & Sher 2009). This
model was supported by zebra observations made by Altyntsev
et al. (2005). In principle, Bernstein modes can also be
generated in the upper-hybrid band. Both the upper-hybrid
waves and Bernstein mode are the electrostatic (longitudinal)
waves. Because in the upper-hybrid band in some cases it is
difficult to distinguish these waves; therefore, in the following
we use the general term–the electrostatic waves.
As will be shown in the following, in the upper-hybrid band

(i.e., at frequencies close to the upper-hybrid frequency) there
can be several dispersion branches of the unstable electrostatic
waves in which energy can grow simultaneously. Therefore, we
define the “characteristic width” of dispersion branches and
compute the wave growth rates integrated over the upper-
hybrid band. Thus, for the first time we compare the results
obtained using the analytical kinetic theory with the results of
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particle-in-cell (PIC) simulations. We study the integrated
growth rate dependent on the ratio of the electron-plasma and
electron-cyclotron frequency and in relation to positions of the
wave dispersion branches in the ω−k⊥ domain. We use a
three-dimensional PIC model. Note that PIC models naturally
give the integrated growth rates.

The paper is structured as follows. In Section 2 we start with
a theory of the electrostatic (longitudinal) waves perpendicular
to the magnetic field. The integrated growth rates of these
waves in the upper-hybrid band computed from the analytical
relations are in Section 3. Section 4 includes the growth rates
obtained numerically. A discussion of the results and our
conclusions are in Section 5.

2. Electrostatic Waves in the Upper-hybrid Band and Their
Growth Rates

Let us consider the plasma composed from the background
Maxwellian plasma with the density ne and the thermal velocity
vtb and hot plasma having the density nh and the “thermal”
velocity vt, where nh=ne. Then the dispersion relation of the
electrostatic (longitudinal) waves in such a plasma is given by
the permittivity tensor

= + =   0, 50 1 ( )( ) ( )
  

where the term  0( )
 corresponds to the background Maxwellian

plasma and the term  1( )
 is a correction to the hot and rare

plasma component.
In our case with nh = ne and in agreement with Chen (1974),

Zheleznyakov (1996), and Fitzpatrick (2015) we can write
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where ωpe and ωce are the plasma frequency of the background
plasma and the electron-cyclotron frequency, ò0 is the
permittivity of free space, λ is the dimensionless parameter,
Il(λ) is the modified Bessel function of lth order, me is the
electron mass, e is the electron charge, ω is the wave frequency,
k=(kP, k⊥) is the wave vector parallel and perpendicular to
the direction of the magnetic field, respectively.

Solutions of the real part of Equation (6) are the dispersion
relations for the upper-hybrid waves as well as for the
Bernstein waves. Because in the present paper we are interested
about these waves in the upper-hybrid band, where it
sometimes is a problem to distinguish between these waves;
therefore, in the following we use the common term for them:
the electrostatic waves.

For the growth rate of these waves, we can write
(Zheleznyakov & Zlotnik 1975a)
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In accordance with Kuznetsov (2005, AppendixA) the
nominator of Equation (8) can be written as
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where c is the speed of light, vP and v⊥ are the velocities on
resonance ellipse in Equation (2). f is the electron velocity
distribution function in the form

= +^ ^ ^f v v f v v
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The f0 means the background Maxwellian distribution for
temperature vtb, fhot is in our case the Dory–Guest–Harris
distribution given by Equation (3) described by the “thermal”
velocity vt and lJl ( ) is the Bessel function.
Furthermore, the denominator of Equation (8) can be

expressed as
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3. Analytical Growth Rates

In this section, we compute the growth rates using
analytically derived equations expressed in the previous
section. As an example we make computations for the ratio
of the electron-plasma and electron-cyclotron frequency
(ωpe/ωce) in the 4.0–5.3 range. Namely, we want to determine
the growth rates also for a noninteger ratio of ωpe/ωce. The
relatively low values of this ratio are chosen due to a
comparison with the numerical simulations, where computa-
tions with the low values of ωpe/ωce are more reliable.
If we do not mention explicitly, in our analytical computa-

tions and also in the following numerical simulations, we use
the parameters shown in Table 1. Considering the propagation
of waves in the strictly perpendicular direction to the magnetic

Table 1
Parameters Used for Computing of the Growth Rates

Parameter Value

vtb 0.018c (2 MK)
vt 0.2c
ne/nh 32
fhot DGH
ωpe/ωce 4.0–5.3
k⊥c/ωpe 0–15 range
ω/ωpe 0–2 range

2
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field (kP= 0) and using Equations (6) we compute their
dispersion branches and growth rates in the ω−k⊥ domain.

Because we want the frequency precision of dispersion
branches at least 10−8 ωpe, we searched for a sufficient number
l in relation 6. We increased l until the precision of a dispersion
branch position was higher than w-10 8

pe. Thus, we got

lmax=40 and in relation 6 we use the summation å =
=

l
l

1
40max .

The same number l is also used in the summation in
Equation (9).

Roots of Equation (6) (dispersion branches) are searched
numerically using the Levenberg–Marquardt damped root
method (Levenberg 1944; Marquardt 1963; More et al. 1980;
Press et al. 2007) from the SciPy package in Python. This
method was selected for its good convergence properties and
ability to find the most narrow branches. The minimization is
made in variable ω. First, the ω−k⊥ domain is divided into the
regular orthogonal grid, which gives starting values of ω and k⊥
for the algorithm. Typically, we use 103−104 grid points in the
ω direction and 20–40 grid points in k̂ . In each step the method
computes gradients in the Jacobian matrix and by the gradient
descent method it proceeds until the required precision of ω is
obtained. In our case we set this precision as 10−8 ωpe. From
the last step in this procedure we get the covariance matrix,
which represents the gradient in a neighborhood of the found
solution. We take the inverted absolute value of this gradient as
the “characteristic width” of the dispersion branches, see the
following. From a physical point of view the “characteristic
width” of the dispersion branch is given by thermal fluctuations
of the electron-plasma density. This “characteristic width” does
not represent the actual relative frequency range occupied by
the waves, but is rather proportional to that frequency range;
the proportionality coefficient depends on many factors
(fluctuations etc.), but its absolute value is unimportant for
this study.

First, we compute the maxima of the growth rate γ at the
upper-hybrid branch (Equation (1)) with dependance on
w wpe ce. The result is shown in Figure 1 by the green line.
Then using Equation (6) we compute the maximal growth rate
at all electrostatic branches in the ω−k⊥ domain, see the blue
line in Figure 1. Note that these maximal growth rates are
always taken in one specific point of the ω−k⊥ domain.
While the growth rate at the upper-hybrid branch has distinct
maximum (γ/ωce≈0.06) at about ωpe/ωce=4.8, the growth

rates for all branches are similar. This means that at almost all
branches in the w - k̂ domain there are positive growth rates.
Because our main goal is to compare the results obtained

from analytical relations with those from the following PIC
simulations, where the growth rate is given by compositions of
growth rates in the whole w - k̂ domain, we define a new
quantity—the integrated growth rate Γ as

ò g w s w d w wG =
G

^ ^ ^ ^k k k d dk
1

, , , , 16
0

0( ) ( ) ( ( )) ( )( )


where δ is the Dirac delta function and γ(ω, k⊥) is the growth
rate at the specific ω and k⊥. This integral counts the growth
rates over the dispersion branches of the electrostatic waves in
the whole ω−k⊥ domain with their “characteristic width” σ.
The function Γ0 is the normalization factor

ò s w d w wG = ^ ^ ^k k d dk, , . 170
0( ) ( ( )) ( )( )


In our case the integral is computed over the ω−k⊥ area with
ω/ωpeä(0, 2) and w Îk̂ c 0, 20pe ( ). At higher frequencies
the branches are very narrow and thus do not contribute
effectively to the integrated growth rate and at higher values of
the wave vectors γ=0.
Using the plasma parameters from Table 1 we computed the

integrated growth rates Γ (Equation (16)) for the ratios
ωpe/ωce=4.0–5.3, see Figure 2. As can be seen in this figure,
the maximum of Γ is for ωpe/ωce=4.8 and the minimum for
ωpe/ωce=4.4.
Now, a question arises of how the integrated growth rate Γ is

related to the positions of dispersion branches in the ω−k⊥
domain. To answer this question, we compute the dispersion
branches in the w - k̂ domain for the maximal and minimal
values of the integrated growth rate Γ. We also plot growth
rates in the whole domain w - k̂ , although growth rates
outside dispersion branches are non-physical. It is because the
growth rates are defined only for roots of Equation (6). But, we
use this type of presentation to show a relation between
positions of dispersion branches and regions favorable for the
wave amplification.
The results are shown in Figure 3, where the growth rates

and dispersion branches are in a broad area of ω−k⊥ (Plots a,
b). The detailed views are from the upper-hybrid band (Plots c,
d). We note that the parts of dispersion branches with the

Figure 1.Maximal growth rate found at the upper-hybrid branch (Equation (1))
(green line), and at all electrostatic branches (Equation (6); blue line). The
frequency and wave vector intervals are the same as for the integrated growth
rate in Figure 2.

Figure 2. Integrated growth rate Γ computed from Equation (16) as a function
of the ratio ωpe/ωce normalized to ωce for the parameters given in Table 1. Its
maximum is for ωpe/ωce=4.8 and minimum for ωpe/ωce=4.4.
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“characteristic width” σ less than 10−6 are very narrow and
thus they are not represented in the figure, see also the
following and Table 2.

As seen here, in the ω−k⊥ domain there are the regions
with the high growth rates. The maximal growth rate on
dispersion curves in the field of view of Figure 3(c) is

Figure 3. Analytical growth rates γ/ωce and dispersion branches in the ω−k⊥ domain (the blue–red scale) for the maximal value of Γ, i.e., for ωpe/ωce=4.8 (a, c)
and for the minimal value of Γ, i.e., for ωpe/ωce=4.4 (b, d) taken from Figure 2. The green crosses show dispersion branches of the electrostatic waves. The growth
rates and dispersion branches in a broad range of (ω, k⊥) are in (a, b) and the same in a detailed view in the upper-hybrid band are in (c, d).

Table 2
“Characteristic Width” of the Dispersion Branches σ for the Maximum Γ with w w = 4.8pe ce (see Figure 2) and for the Minimal Γ with ωpe/ωce=4.4. ωbranch Means

the Frequency of the Dispersion Branch for w =k̂ c 10pe

Maximum Minimum

ωpe/ωce=4.8 ωpe/ωce=4.4

ωbranch/ωpe ωbranch/ωce σ ωbranch/ωpe ωbranch/ωce σ

0.334 1.603 7.4×10−3 0.373 1.788 9.1×10−3

0.593 2.846 1.0×10−2 0.652 3.128 1.2×10−2

0.821 3.943 1.2×10−2 0.897 4.306 2.0×10−2

1.030 4.945 9.9×10−2 1.069 5.133 4.0×10−1

1.076 5.164 3.4×10−1 1.140 5.471 2.2×10−2

1.250 6.001 6.6×10−4 1.364 6.546 1.46×10−4

1.456 6.989 1.5×10−5 1.591 7.636 3.95×10−6
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γ/ωce≈0.06. Comparing the cases with the maximal and
minimal integrated growth rates Γ, we can see differences in
distributions of the dispersion branches and growth rate
regions. While in the case with the maximal Γ the dispersion
branches in most cases cross the region with high growth rates
γ, in the case with the minimal Γ the thickest branches are
outside of these regions. Note that for the integrated growth
rate not only is this crossing over these regions important but
also the lengths and width (area) of the dispersion branches
over these regions. Namely, the wave energy is given by the
wave energy density in the area unit times the area. We suppose
that the width of the dispersion branch is proportional to σ
calculated during computations of the dispersion branches.
Thus, there are the dispersion branches, which go through the
high growth rate regions even for the minimal growth rate Γ
(see Figure 3(b), e.g., the region ω/ωpe= 1.4, k= 6–15), but
their “characteristic widths” are very small and therefore do not
significantly influence the integrated growth rate Γ.

In Table 2 we present the “characteristic width” of different
dispersion branches σ. A difference in the “characteristic
width” can be several orders. The maximal Γ appears, when the
dispersion branch with the highest “characteristic width”
crosses the high growth rate area around the plasma frequency,
see Figure 3(c). It is interesting that in this case, two dispersion
branches of the electrostatic waves are very close to each other.

To show how the dispersion branches change, in Figure 4 we
present the dispersion branches for three values of the ratio
ωpe/ωce=4.925, 4.950, and 4.975. Here in the left part of the
figure we can see that the dispersion branch, which is first
under the plasma frequency, is going up to higher frequencies
with decreasing ωpe/ωce. During this shift it extrudes the upper
dispersion branch up (Figure 4(c)). In the region where the
branches meet, a knee is formed on the bottom dispersion
branch; i.e., for lower k⊥ than this knee there is a part of the
dispersion branch with the normal dispersion and for higher k⊥
is the part with the anomalous dispersion (Figure 4(c)). Thus, in
some cases, the electrostatic waves are generated at the part
with the normal dispersion and in others at that with the
anomalous dispersion.

For the value of vtb=0.018 c considered in Figures 4(a),
(c), (e), this interplay of dispersion branches happens slightly
out of the region with high growth rates; therefore, the
integrated growth rate Γ does not have the maximal value.
However, we found that for lower background thermal velocity
(vtb= 0.007 c), the dispersion branches not only meet, but they
also are in the region with high growth rates (Figures 4(d), (f))
and thus for these plasma parameters the high integrated
growth rate Γ can be expected.

We also studied the distribution of the growth rates γ and
dispersion branches dependent on the background plasma
temperature (Figure 5). With increasing the background plasma
temperature the center of the region with the high growth rates
remains at the same position, but the size of this region
decreases. Moreover, the point where dispersion branches meet
and cross the region with the high growth rates shifts to lower
k⊥. The reason is that for the constant l w= k̂ v2

tb
2

ce
2 the

component of the wave vector k⊥ has to decrease when vtb
increases. It implies that for the dispersion branches close to the
plasma frequency and <v 0.018tb c the electrostatic waves are
generated at the normal part of the dispersion branch, while for
higher thermal velocities in its anomalous part.

On the other hand, Figure 6 shows the distribution of the
growth rates and dispersion branches dependent on the
“thermal” velocity of hot electrons vt. With increasing this
velocity the position of the region with high growth rates shifts
to lower k⊥. For a constant argument in the Bessel function in
Equation (9), const w=G ^ ^v k ce, k⊥ decreases as v⊥ increases.
The region with high growth rates expands along the frequency
axis with increasing vt. However, the maximal values of γ in
the region center decrease. The reason is that the value of the
term ¶ ¶^ ^f v v v,( ) decreases with increasing of vt. For
temperatures <v 0.15t c the area of the region with high
growth rates γ is so narrow that the integrated growth rate Γ is
without a distinct peak.

4. Numerical Growth Rates in the PIC Model

We make simulations using a 3D PIC relativistic model
(Buneman & Storey 1985; Matsumoto & Omura 1993;
Karlický & Bárta 2008; Benáček & Karlický 2018) with
multicore message passing interface (MPI) parallelization.
Further details can be found in Matsumoto & Omura (1993,
p. 67–84) and at the link below.3

The model size is 48Δ×48Δ×16Δ in x-, y-, z-directions
respectively. The generated electrostatic waves are in x–y
plane, the z coordinate corresponds to the magnetic field
direction. One run takes 80,000 time steps with the time step
w =t 0.025pe . The electron distribution function is DGH
distribution, the number of electrons per cell is ne=960, the
ratio of densities of the background plasma and hot electrons is
ne/nh=32, ωpe/ωce=4–5.3. Other parameters are the same as
in Table 1.
Varying the ratio of w wpe ce in the range 4.0–5.3 we made

the PIC simulations and estimated the growth rates from the
growth of the electrostatic wave energy (Figure 7). Note that
these growth rates correspond to the integrated growth rates Γ
in the analytical approach. The profile of the growth rate and
the growth rate values are very similar to that presented in
Figure 2. In the range of ωpe/ωce=4.1–4.5 the growth rate is
very weak, and at w w = 4.88pe ce there is the growth rate
maximum. It is at slightly higher values of ωpe/ωce comparing
with the maximum Γ shown in Figure 2.

5. Discussion and Conclusions

In this paper we computed two types of growth rates: (a) the
growth rate γ that corresponds to one point in the ω−k⊥
domain, i.e., located at one specific dispersion branch and (b)
the growth rate Γ integrated over the upper-hybrid band, where
we took into account the fact that in real conditions as well as
in PIC simulations the instability can start simultaneously not
only at one point in the ω−k⊥ domain, but in some area in
this domain and even on several dispersion branches. While the
maximal growth rate γ/ωce is found to be about 0.06, the
maximal integrated growth rate Γ/ωce is about 0.03. The
maximal growth rate γ is similar to those presented by
Zheleznyakov & Zlotnik (1975a), Winglee & Dulk (1986), and
Benáček et al. (2017), but due to various thermal velocities,
plasma densities, and magnetic fields used in these papers this
comparison is not straightforward. For example, for the
parameters as in our Table 1, Zheleznyakov & Zlotnik
(1975a) and also Zlotnik & Sher (2009) found the maximal

3 https://www.terrapub.co.jp/e-library/cspp/text/10.txt
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growth rate to be γ/ωce≈0.03, which is twice smaller than our
maximal growth rate γ/ωce≈0.06. The difference in these
values is probably due to different computational precisions in
these studies.

The integrated growth rate is the parameter allowing a direct
comparison with the PIC simulations, contrary to the growth
rates at one branch of the electrostatic waves (Zheleznyakov &
Zlotnik 1975a; Winglee & Dulk 1986; Kuznetsov 2005;

Figure 4. Analytical growth rates normalized to ωce and dispersion branches dependent on ratio ωpe/ωce and 4.975 (a, b), 4.950 (c, d), and 4.925 (e, f) for two
background temperatures: vtb=0.018 c (a, c, e) and vtb=0.007 c (b, d, f).
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Zlotnik & Sher 2009; Benáček et al. 2017), see also
Aschwanden (1990). In computations of the integrated growth
rate we use the “characteristic width” of dispersion branches.
We think that this “characteristic width” is a result of thermal
fluctuations of the electron-plasma density. We found that the
“characteristic width” can differ for different dispersion
branches. Just these differences lead to the integrated growth
rate Γ, which agrees to that computed by PIC simulations.
When we would use the constant “characteristic width” of
dispersion branches (σ= 1) then the integrated growth rate
would be without peaks at resonances.

We found that the profile of the integrated growth rate Γ
obtained by analytical calculations and that in PIC simulations
are very similar and their maxima are at almost the same value
of ωpe/ωce. This difference can be explained by slightly
different positions of dispersion branches in the analytical and
numerical approaches. Namely, the condition nh=ne, which
is used in the analytical approach, is diffucult to fulfill in PIC
simulations, where it has an impact on positions of dispersion
branches in PIC model. We found that the growth rate peak in
PIC simulations is broader than that in the analytical approach.
We think that it is because in the PIC model there can also be
the electrostatic waves with ¹k 0 .
We also compared the maximal Γ from the present PIC

simulations with that in our previous paper (Benáček &
Karlický 2018). We found that due to an error in the growth
rate normalization in our previous paper the growth rate in this
paper was overestimated 20 times. Considering this correction,
the maximal growth rate Γ from the present paper agrees to that
in the paper by Benáček & Karlický (2018).
In dispersion diagrams with dispersion branches, calculated

analytically, we showed how the plasma parameters influence
their positions in the w - k̂ domain. We found that when the
dispersion branch with the sufficient “characteristic width” and
length crosses the region with high growth rates then the
integrated growth rate Γ is high.
Varying the plasma parameters, we showed that in some

range of ωpe/ωce the dispersion branches can meet and change
the form to that with a knee. We found that sometimes a
dominant contribution to the integrated growth rate Γ comes
from the normal part of the dispersion branch and sometimes
from the anomalous part. Moreover, when some branches meet

Figure 5. Analytical growth rates normalized to ωce (blue–red scale) and dispersion branches dependent on the background thermal velocity: (a) vtb=0.007 c, (b)
vtb=0.018 c, and (c) vtb=0.030 c. The thermal velocity of the hot component vt=0.2 c and ωpe/ωce=4.8 are kept constant in all of these cases.

Figure 6. Analytical growth rates normalized to ωce and dispersion branches dependent on the hot electron velocity: (a) vt=0.1 c, (b) vt=0.2 c, and vt=0.3 c.
vtb=0.018 c and ωpe/ωce=4.8 are kept constant.

Figure 7. Growth rates from PIC simulations as a function of the ratio ωpe/ωce

for vt=0. 2c, vtb=0.018c. Compare it with Γ in Figure 2.
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then it is sometimes difficult to distinguish the type of
electrostatic wave.

We found that in the upper-hybrid band there can be several
dispersion branches of the electrostatic waves perpendicular to
the magnetic field with normal and anomalous dispersions. We
showed that sometimes two branches can even meet in the
ω−k⊥ domain. In the DPR models of radio zebras only the
instability of the upper-hybrid waves with the normal
dispersion (Equation (1)) is considered. Thus, in new zebra
models, instabilities on all branches in the upper-hybrid band
should be taken into account. Although it complicates the
models, especially analytical ones, they will be more realistic
than the present models. New zebra models need to describe
the processes in the whole upper-hybrid band, because for the
zebra emission the whole electrostatic wave energy, generated
on different dispersion branches, is important. PIC models
naturally solve this problem, but they also need to be improved.
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obs-nancay.fr/-Radioheliographe-.html

Ondřejov radiospectrograph. 2018, Ondřejov solar radio archive RT5 (0.8-2.0 GHz) 2017, http:
//www.asu.cas.cz/˜radio/rt5_2018.htm

http://www.lofar.org/
https://www.obs-nancay.fr/-Radioheliographe-.html
https://www.obs-nancay.fr/-Radioheliographe-.html
http://www.asu.cas.cz/~radio/rt5_2018.htm
http://www.asu.cas.cz/~radio/rt5_2018.htm


108 REFERENCES

Panchenko, M., Rošker, S., Rucker, H. O., et al. 2018, A&A, 610, A69

Panchenko, M., Rucker, H. O., Kaiser, M. L., et al. 2010, Geophys. Res. Lett., 37, L05106

Payne-Scott, R. & Little, A. G. 1951, Australian Journal of Scientific Research A Physical Sciences,
4, 508

Raoult, A., Mangeney, A., & Vlahos, L. 1990, A&A, 233, 229

Reber, G. 1944, ApJ, 100, 279

Reid, H. A. S. & Kontar, E. P. 2018a, A&A, 614, A69

Reid, H. A. S. & Kontar, E. P. 2018b, ApJ, 867, 158

Reiner, M. J., Karlický, M., Jiřička, K., et al. 2000, ApJ, 530, 1049

Roberts, B., Edwin, P. M., & Benz, A. O. 1984, ApJ, 279, 857

Rosenberg, H. & Tarnstrom, G. 1972, Sol. Phys., 24, 210

Shaposhnikov, E. V., Zaitsev, V., & Litvinenko, G. 2018, Journal of Geophysical Research: Space
Physics

SKA. 2019, Square Kilometer Array, https://www.skatelescope.org/

Slottje, C. 1972, Sol. Phys., 25, 210

Slottje, C. 1982, PhD thesis, Utrecht, Rijksuniversiteit

Southworth, G. 1945, Journal of the Franklin Institute, 239, 285

Staehli, M. & Magun, A. 1986, Sol. Phys., 104, 117

Sturrock, P. A., Kaufman, P., Moore, R. L., & Smith, D. F. 1984, Sol. Phys., 94, 341

Tan, B. 2010, Astrophys. Space Sci., 325, 251

Tan, B., Tan, C., Zhang, Y., Mészárosová, H., & Karlický, M. 2014, ApJ, 780, 129

Tan, B., Yan, Y., Tan, C., & Liu, Y. 2007, ApJ, 671, 964

Tan, B., Yan, Y., Tan, C., Sych, R., & Gao, G. 2012, ApJ, 744, 166

Thejappa, G. 1991, Sol. Phys., 132, 173

Tidman, D. A. & Dupree, T. H. 1965, Physics of Fluids, 8, 1860

Treumann, R. A., Guedel, M., & Benz, A. O. 1990, A&A, 236, 242

Tsytovich, V. N. 1966, Soviet Physics Uspekhi, 9, 370

Vasanth, V., Umapathy, S., Vršnak, B., Žic, T., & Prakash, O. 2014, Sol. Phys., 289, 251

Villasenor, J. & Buneman, O. 1992, Computer Physics Communications, 69, 306

Vitkevich, V. V. & Gorelova, M. V. 1960, AZh, 37, 622

https://www.skatelescope.org/


REFERENCES 109

VLA. 2019, Very Large Array - National Radio Astronomy Observatory, https://public.
nrao.edu/telescopes/vla/

Wang, M. & Xie, R.-x. 2000, Chinese Astron. Astrophys., 24, 95

White, S. M. 2001, Stellar Coronae in the Chandra and XMM-Newton Era ASP Conference Series,
12

Wild, J. P. 1951, Australian Journal of Scientific Research A Physical Sciences, 4, 36

Wild, J. P., Sheridan, K. V., & Neylan, A. A. 1959, Australian Journal of Physics, 12, 369

Wild, J. P., Smerd, S. F., & Weiss, A. A. 1963, ARA&A, 1, 291

Winglee, R. M. & Dulk, G. A. 1986, ApJ, 307, 808

Yasnov, L. V. & Karlický, M. 2004, Sol. Phys., 219, 289

Yu, S., Nakariakov, V. M., & Yan, Y. 2016, ApJ, 826, 78

Zaitsev, V. V. & Stepanov, A. V. 1983, Sol. Phys., 88, 297

Zaitsev, V. V., Stepanov, A. V., & Sterlin, A. M. 1985, Soviet Astronomy Letters, 11, 192

Zhang, P. J., Wang, C. B., & Ye, L. 2018, A&A, 618, A165

Zhelezniakov, V. V. 1997, Radiation in astrophysical plasmas [in Russian]; Original Russian Title
— “Izlucheniye v astrofizicheskoy plasme”

Zhelezniakov, V. V. & Zaitsev, V. V. 1975, A&A, 39, 107

Zhelezniakov, V. V. & Zlotnik, E. I. 1975a, Sol. Phys., 43, 431

Zhelezniakov, V. V. & Zlotnik, E. I. 1975b, Sol. Phys., 44, 447

Zhelezniakov, V. V. & Zlotnik, E. Y. 1975c, Sol. Phys., 44, 461

Zheleznyakov, V. V., Zlotnik, E. Y., Zaitsev, V. V., & Shaposhnikov, V. E. 2016, Physics Uspekhi,
59, 997

Zlotnik, E. Y. 2009, Central European Astrophysical Bulletin, 33, 281

Zucca, P., Morosan, D. E., Rouillard, A. P., et al. 2018, A&A, 615, A89

https://public.nrao.edu/telescopes/vla/
https://public.nrao.edu/telescopes/vla/



	Front page
	Bibliographic Entry
	Bibliografický záznam
	Abstract
	Abstrakt
	Acknowledgments
	Content
	List of Publications
	List of Publications
	Introduction
	Introduction
	Symbols
	Symbols
	Solar Radio Emission
	Radio emission mechanisms
	Plasma emission
	Gyrosynchrotron emission

	Solar radio bursts
	Type I bursts
	Type II bursts
	Type III bursts
	Type IV bursts
	Type V bursts

	Fine structure radio bursts
	Pulsations
	Spike bursts
	Fiber Bursts
	Zebra pattern


	Solar Radio Zebra Models
	Solar Radio Zebra Models
	The Double Plasma Resonance Instability Model
	Whistler Generation Model
	MHD Waves Model
	Eigenfrequencies (Trapped Plasma Waves) Model
	Interference Model

	Particle-in-Cell Model
	Particle-in-Cell Model
	Model Workflow
	Field updates
	Particle update
	Current decomposition
	Boundary conditions
	Data storage

	Domain Parallelisation and Other Code Improvements
	Proposed future development

	Summary of my Results
	Paper I: Temperature Dependent Growth Rates of the Upper-hybrid Waves and Solar Radio Zebra Patterns
	Paper II: Brightness Temperature of Radio Zebras and Wave Energy Densities in Their Sources
	Paper III: Double Plasma Resonance Instability as a Source of Solar Zebra Emission
	Paper IV: Growth Rates of the Upper-Hybrid Waves for Power-Law and Kappa Distributions with a Loss-Cone Anisotropy
	Paper V: Growth Rates of the Electrostatic Waves in Radio Zebra Models

	Conclusions
	Conclusions
	Appendix A
	Appendix A
	Appendix B
	Appendix B
	Appendix C
	Appendix C
	Appendix D
	Appendix D
	Appendix E
	Appendix E
	References

