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Abstrakt

Tato práce se zaměřuje na analýzu strojovým učením a katalogizaci extragalak-
tických zdrojů. V první části své práce jsem použil umělé neuronové sítě, třídu al-
goritmů strojového učení pro automatickou detekci kandidátů kup galaxií. Použil
jsem obrazová data v rentgenových vlnových délkách z XMM-Newton s jejich
optickými protějšky z databáze SDSS. Tato práce byla úspěšná; Vytvořil jsem
konvoluční neuronovou síť, která dosahovala 90 % průměrné přesnosti v klasifi-
ikaci objektů na kupy galaxií a objekty které nejsou kupa galaxií. Druhá část mé
práce se zaměřila na vývoj nové metody kosmologické analýzy založené na ro-
zložení galaktických kup, speciálně navržené tak, aby se vyhnula nutnosti použí-
vat škálovací vztahy. K tomu jsem použil analytické simulace rentgenově po-
zorovatelných diagramů, znázorňujících rozložení kup galaxií v čistě pozorovatel-
ných veličinách, count rate, hardness ratio a spektroskopický červený posuv. K
odhadu kosmologických parametrů jsem použil Sequential Neural Posterior Es-
timation, metodu založenou na umnělých neuronových sítích. Tato práce byla
úspěšná a ve své práci uvádím, jak lze metodu použít k odhadu kosmologick-
ých parametrů Ωm a σ8 na základě čistě pozorovatelných patametrů galaktick-
ých kup. Ve třetí části mé disertační práce se zaměřuji na katalogizaci tvrdých
rentgenových zdrojů, s cílem lépe porozumět zdrojům přispívajícím ke kosmick-
ému rentgenovému pozadí. Provedl jsem multifrekvenční analýzu tvrdých rentgen-
ových zdrojů katalogu 3PBC, abych našel jejich nízkoenergetické protějšky a
přiřadil jim klasifikaci. Klasifikace byla založena na jejich multifrekvenčních in-
formacích, jako svítivosti a spektrech. Finálními produkty této práce jsou dva
katalogy: revidovaná verze katalogu 3PBC založená na našich multifrekvenčních
kritériích a druhé vydání Turin-SyCAT katalogu Seyfertových galaxií. Ve čtvrté
části mé práce jsem provedl následnou analýzu populace 218 dosud neidenti-
fikovaných zdrojů, které sme nalezly v předešlé analýze. Jsou to zdroje, které
dosud nemněli identifikovaný nízkoenergetický protějšek. Cíl byl stejný: lépe
porozumět zdrojové populaci přispívající ke kosmickému rentgenovému pozadí.
Abych to udělal, hledal jsem jejich nízkoenergetické protějšky v archivních dat-
ech Swift-XRT. Výsledným produktem této práce jsou dva katalogy. První je
katalog kandidátů na nízkoenergetické protějšky pro 73 zdrojů z 218 doteď nei-
dentifikovaných 3PBC objektů, z nichž 60 má jednoho kandidáta na protějšek
a 13 jich má více. Druhým je krátký katalog 10 zdrojů, ke kterým jsem našel i
vícefrekvenční informace které byli nutné k jejich klasifikaci.
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Abstract

This work focuses on machine learning analysis and cataloging of extragalac-
tic sources. In the first part of my work, I used artificial neural networks, a
class of machine learning algorithms for automatically detecting galaxy cluster
candidates. I used image data in X-ray wavelengths from XMM-Newton with
their optical counterparts from the SDSS database. This work was successful;
I created a convolutional neural network that achieved 90 % average accuracy,
classifying sources into galaxy clusters or non-clusters. The second part of my
work focused on developing a new cosmological analysis method based on the
distribution of galaxy clusters, specifically designed to bypass the need to use
scaling relations. To do this, I used analytical simulations of X-ray observable
diagrams, depicting galaxy cluster’s distribution in purely observable quantities,
X-ray count-rate, hardness ratio, and spectroscopical redshift. I utilized Sequen-
tial Neural Posterior Estimation, a class of simulation-based inference techniques
based on artificial neural networks for density estimation. This work was success-
ful, and I present in my thesis how the method can be used to estimate the Ωm

and σ8 cosmological parameters based on purely observable quantities of galaxy
clusters. In the third part of my dissertation thesis, I focus on cataloging hard
X-ray sources to understand better the sources contributing to the cosmic X-ray
background. I have performed a multifrequency analysis of 3PBC hard X-ray
sources to find their low-energy counterparts and assign them classification. The
classification was based on their multifrequency information, e.g., luminosities
and spectra. The final products of this work are two catalogs: the revised version
of the 3PBC catalog based on our multifrequency criteria and the second release
of the Turin-SyCAT catalog of Seyfert galaxies. In the fourth part of my thesis,
I performed a follow-up analysis of a population of 218 yet unidentified sources,
the sources for which there was no identified counterpart in my work described in
part three. The goal was the same: to better understand the source population
contributing to the cosmic X-ray background. To do this, I searched for their
low-energy counterparts in archival Swift-XRT data. The final product of this
work is two catalogs. First is a catalog of candidate counterparts for 73 3PBC
sources, of which 60 have a single candidate counterpart, and 13 have multiple.
The second is a short catalog of 10 sources with multifrequency information so
we could also provide their classifications.
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1

Introduction

1.1 machine learning

Author’s note: In this section, I provide a basic overview of the neural network
architectures and an explanation of how their core features work. I designed it to
be a complementary reading for Chapter 2 and Chapter 3, where I introduce my
scientific publications in which I used artificial neural networks. However, this
overview can not cover all features and mechanisms used in neural networks,
mainly the techniques used to fine-tune the architecture and other hyperparam-
eters during the training of the networks. Such a detailed text would require an
entire stand-alone book, which is out of the scope of my thesis. I would thus
like to kindly refer interested readers to some fantastic literature, e.g., (Bishop,
1997, 1994; Bishop, 2006).

Machine learning (ML) is a large domain encompassing many different types of
algorithms, e.g., decision trees (Quinlan, 1986), support-vector machines (Cortes
and Vapnik, 1995) or artificial neural networks (Mcculloch and Pitts, 1943) to
name a few. ML methods can be used for various tasks, such as classification, re-
gression, clustering, object detection, anomaly detection, segmentation, increas-
ing computational speed, or even searching for new physics.

1.1.1 Overview of recent advancements in the field

Artificial neural networks (NN) and ML methods, in general, are becoming
utilized significantly more in astrophysical research. Fig. 1.1 shows the num-
ber of refereed publications since 2000 up to 2023, included, that had machine
learning (red) or neural network (blue) in their keywords. The purple codes
the overlap region of the two. We can see that the number of publications has
sharply increased since ∼ 2017, mainly due to huge improvements in the state-
of-the-art artificial neural network’s architectures.

Even though not visible from this figure, the tide started shifting already
in 2012 when Alex Krizhevsky, with his convolutional neural network (CNN)
architecture (AlexNet) (Krizhevsky et al., 2012), placed first in the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) of the ImageNet bench-
mark dataset (Deng et al., 2009), creating a state-of-the-art architecture (and
a lecture material on the best universities around the world) for many years.
Neural networks were held back until that time by a large degree due to soft-
ware limitations; the core part of the theory was built already, but we did not
have enough processing power and GPU memory capacity. Krizhevsky et al.,
2012 created a workaround solution by splitting their CNN architecture into
two graphics processing units (GPUs) that had multiple places at which they
communicated, essentially mimicking the behavior of one larger CNN than what
could have been fed to their GTX 580 GPU that had only 3 GB of memory.
They also introduced a new concept that has been used as a standard technique

5



6 introduction

Figure 1.1: Number of refereed publications in astronomy with a ’machine learning’
keyword (blue) and ’neural network’ keyword (red) since 2000. The Violet
color indicates an overlay area. We can see a large increase in publications
over the last few years. The data were taken from the NASA Astrophysical
Data System (ADS).

ever since, the dropout, a regularisation technique based on randomly switching
off a set of neurons in each training iteration. Ever since 2012, the ILSVRC has
always been won by CNNs. In 2013, (Zeiler and Fergus, 2013) won the ILSVRC
with a modified AlexNet architecture.

In 2014, the ILSVRC was won by GoogleNet (Szegedy et al., 2014). The au-
thors perfected a revolutionary concept, ’network in network’ (Lin et al., 2013),
in building the CNN architectures, where instead of the usual feed-forward archi-
tecture where one layer follows another one in a streamlined fashion (feed-forward
neural networks), they created their inception blocks where the architecture
branches into four paths, each scanning the input to the block under different
resolution. These branches’ outputs are later concatenated to a single output
of the block. They have stacked multiple such inception blocks on top of each
other and completely removed the dense layer at the end of the architecture,
which eased the majority of the computational time and memory dependency as
this region is the bottleneck on the memory load of a neural network. However,
in 2014, another state-of-the-art architecture shared the winning placement, the
VGG16 (Simonyan and Zisserman, 2014), which beat GoogleNet in the local-
ization challenge. Even though being still a feed-forward neural network, the
authors introduced a novel concept of CNN filter sizes, where they used only
smaller convolutional filters of 3×3 dimensions (AlexNet also used 3×3 but also
11×11). This was coupled with transforming the information into a depth di-
mension (z-axis of a 3D array) with max pooling steps followed by an increased
number of convolutional filters after each max pooling operation. This concept
of smaller filters and progressive increase of depth dimension has been used as a
standard architecture building ever since.

The 2015 ILSVRC winner brought us another state-of-the-art masterpiece
in the form of ResNet architecture (He et al., 2015), introducing residual skip
connections that enabled them to construct very deep neural networks. These
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architectures became benchmark models used via transfer learning or training
from scratch in a plethora of scientific fields and use cases.

Even though these are advancements in the computer science fields, these
innovations hugely impacted astrophysics. This is expected as we are currently
in the epoch of big data science, where our astrophysical instruments, both on
the Earth and the satellites in space, provide such tremendous quantities of data
that astronomy is closely collaborating with data analysis, computer science, and
statistics.

Machine learning tools are being applied to all domains of astrophysical re-
search, e.g., X-ray cavity detection in hot atmospheres of galaxy clusters and
galaxies (Plšek et al., 2023), simulating galaxy images with deep generative
models (Lanusse et al., 2021), deconvolution of images in radio interferometry
(Schmidt et al., 2022), denoising of astronomical images (Vojtekova et al., 2021),
detecting galaxy clusters in combined X-ray and optical images (Kosiba et al.,
2020), detecting solar system objects (Lieu et al., 2019) or estimating galaxy
cluster’s masses with convolutional neural networks from mock Chandra X-ray
images (Ntampaka et al., 2019), to name a few. Another use-case scenario is
simulation-based inference machine learning methods, which have been recently
used by (Reza et al., 2022) on Quijote latin-hypercube simulations and analytical
models to conduct cosmological analysis based on galaxy clusters. Alternatively,
(Qiu et al., 2023) used ensemble decision trees, a different ML approach, for
their cosmological analysis. They created mock galaxy cluster catalogs based on
several hydrodynamical simulation sets, each corresponding to a different cos-
mology, and trained decision tree models in a classification regime to return an
estimate of to which cosmological set a mock galaxy cluster catalog corresponds.
de Andres et al., 2024 recently developed an ML method that predicts the overall
mass distribution of a galaxy cluster from multi-wavelength observations. They
used a U-net architecture (Ronneberger et al., 2015) and trained it on simula-
tions of galaxy clusters, particularly SZ, X-ray, and optical images, having access
to the ground truth mass distribution for training and calibration from the sim-
ulations. In practice, their U-net can predict the mass of these components of a
galaxy cluster when given the images in these three bands.

1.1.2 Artificial neuron

We can imagine an artificial neural network as a function consisting of many
free parameters. The basic building blocks of a neural network are called neurons
(Rosenblatt, 1958). This computational unit simply sums up its weighted inputs,
adding a bias to the output of the summation and feeding this number into
a non-linear activation function. The non-linear activation function is crucially
important as it enables the network to learn complex patterns. Without this step,
the entire neural network would perform only a linear regression. The input to
the neuron is either the input data or the outputs of neurons in the previous
layer. The weights and the bias parameter are the trainable parameters of the
neuron that we want to optimize during neural network training. Fig. 1.2 shows
a drawing example of an artificial neuron having three inputs.
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Figure 1.2: Example of an artificial neuron. It has three weighted (w) inputs, x1, x2, and
x3, that are summed. The bias term b, a specific trainable parameter for each
neuron, is added, and the output of this operation is transformed through a
non-linear activation function f , creating the output of the artificial neuron.

1.1.3 Dense layers

Artificial neurons are linked together, creating layers. The basic artificial neural
network’s architecture consists only of dense layers. The term hidden layer refers
to all the layers between the input and the output, and the term deep learning
refers to neural networks with more hidden layers, typically more than three.
The more layers a neural network has, the deeper it is. A dense layer is a stack
of artificial neurons connected only with the adjacent layers (or input data),
so the layer’s neurons do not have any connections inside the layer. Fig. 1.3
shows an example of a neural network’s architecture consisting of 4 layers. This
neural network has an image as its input that is observed by the 1st layer. The
neurons in each layer are visualized as white circles. The network’s connections
and information flow are depicted with black arrows, similar to Fig. 1.2. The final
layer has only two neurons that can be used to, e.g., estimate the probability
of some classification category being in the image or for a regression task of
some physical quantity from the input image, e.g., the luminosity and observed
size of an astrophysical source, this depends on the use case. The word flatten
between the input and the first layer indicates a dimensionality change of the
image data from the 3D PNG image to a 1D vector. This is a required shape
of the input data for a dense layer. Each neuron in the 1st layer has a weighted
input connection with each pixel of the flattened input image represented as a
1D vector.

1.1.4 Convolutional layers

Convolutional neural networks (CNNs) can still have dense layers in their ar-
chitecture, but as their name suggests, these neural networks use convolutional
layers. Convolutional layers do not have artificial neurons but instead consist of
a stack of convolutional filters (LeCun et al., 1999), where the weights are the
values of these filters. Each filter also has its bias term. The convolutional layer
uses filters to scan across its input in the spatial dimension (x and y axis of a 3D
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Figure 1.3: Example sketch of a fully connected artificial neural network’s layers. The
individual white circles represent neurons, and the black arrows, similar to
Fig. 1.2, show the weighted inputs to neurons from the previous layer. The
dense layer is defined such that each of its neurons is connected with either
the input data represented as a flattened 1D vector or neurons of adjacent
layers but with none from its own layer.

image). For each scanned place, it performs a convolution on that region across
all depth slices (the 3rd dimension of images, which, in the case of astrophysi-
cal images, can be used to code different wavelengths). The convolutional filter
outputs a single number for each scanned region. The convolutional filter thus
creates a 2D convolved representation, a feature map, of its input. The convo-
lutional layer consists of many convolutional filters. Their outputs, the feature
maps, are stacked together in the depth dimension, creating a 3D representation
of the layer’s input. For a case of input data being 3D images, we would use 2D
convolutional layers, where each filter automatically sets its depth dimension to
fit the third dimension of its input.

Fig. 1.4 shows the convolutional operation in a case of input with dimensions
5×5×3 that is scanned by a convolutional layer with two filters, each of a size
3×3. Note that each convolutional filter gets to have one depth slice for each
depth slice of its input. The scanned area is marked with a violet color. I have
indicated the result of a convolution operation for each depth slice with a red
number next to the first convolutional filter. These numbers are summed together
with the filter’s bias shown under the filter, and the result is one pixel of the
filter’s 2D output, the feature map. In this scenario, the convolutional layer has
two convolutional filters. Hence, the output of this layer is two 2D feature maps
that will be stacked together in the depth dimension, resulting in a 3×3×2 output
size. In contrast to the fully connected layer, where the trainable parameters were
the weights and biases of the artificial neurons, in the case of convolutional layers,
the trainable parameters are the individual values of the layer’s convolutional
filters together with their bias parameters.
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Figure 1.4: Example of a convolutional operation in a convolutional layer consisting of
two convolutional filters (red matrixes), each with their bias term below
them. This layer is scanning an input of 5×5×3 size (blue matrixes). The
situation of the first convolutional filter’s scanning of the first position on the
input (violet regions) is highlighted together with the convolutional results
of each depth slice (red numbers). As the black arrows indicate, these are
summed together with the bias parameter to create the first pixel of this
filter’s output feature map (green).

Giving a complete overview of all details on neural networks would deserve an
entire dedicated book, which is out of the scope of this thesis, so I would like to
kindly refer interested readers to some fantastic literature, e.g., (Bishop, 1997,
1994; Bishop, 2006). However, I will provide a basic overview of the ML methods
I used in my research later in the relevant chapters.

1.1.5 Max-pooling Layers

Max-pooling operation is another common feature in the neural network’s ar-
chitectures. It is implemented as an individual layer, but it does not have any
trainable parameters. The pooling is essentially used to compress the informa-
tion in the spatial dimension. Similar to a convolutional layer, the max pooling
layer has a filter that scans its input and, in the case of max pooling, outputs
only the maximum pixel value in the scanned region. As the filter moves across
the image, it creates a compressed representation of the input, whose dimensions
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are defined by the max-pooling filter size and the pixel step at which it moves
on its input (the stride). Fig. 1.5 shows a 2×2 max pooling filter scanning the
input with a stride 2. Its input has a 5×5 size with 1 zero padding, thus creat-
ing a 3×3 dimensional compressed representation of its input. The padding is
used to control the desired output dimension by artificially enlarging the input.
All these parameters, the max-pooling kernel size, the stride, and padding, are
called hyperparameters, which must be defined by the user. None of them are,
however, trainable parameters tuned during training. Max-pooling works like a
bottleneck that shrinks the information in the spatial dimension, keeping only
the strongest signal, the most relevant features.

1.1.5.1 Max-pooling Layers

Figure 1.5: Maxpooling operation of a kernel size 2×2 scanning a 2D 5×5 input embed-
ded by padding = 1 with a stride 2. This results in a 3×3 output compressed
representation of the input. Color codes the output of individual max-pooling
scans of the input data.

1.1.6 Training

Before the training starts, all the trainable parameters in the network, e.g., the
weights, biases, or convolutional filters, are initialized. Xavier Glorot’s initializa-
tion (Glorot and Bengio, 2010) or He initialization (He et al., 2015) are some
common choices for the initialization, to name a few. The training process of a
neural network can be a bit different based on the type of neural network we
use and its use case. For example, in an unsupervised clustering task, we would
present the neural network data without additional knowledge of the classifica-
tion categories and essentially train the model to learn the relevant features it
has to use to discriminate and categorize data independently without any prior
labels. In the case of a supervised classification task, which is the type of problem
I considered in my classification of galaxy cluster candidates, we have a dataset
with classification categories that are presented to the neural network together
with the data. A typical scenario of training a neural network for a supervised
classification task on image data is splitting our annotated images into three
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datasets: training, validation, and testing. The training data are used to train the
network. The validation data are used to monitor its performance during train-
ing. The network does not update itself based on its validation prediction. We
make it compute predictions on the validation data to see how its performance
progresses during training. The network predicts the validation data after a cer-
tain number of training iteration steps or after one epoch (once it goes through
the entire training dataset). The testing data are never used until the very end
of the project when we use them to make the final predictions. This is important
because, during the training phase, where we look at how the network performs
on the training data and the validation data, we are augmenting its architecture
and hyperparameters, essentially tuning it to perform the best specifically on
the validation sample, which could in principle introduce undesired biases.

Instead of feeding the neural network with our entire training dataset at once,
we commonly let it make predictions only on a small subset of the data, a batch.
One of the many parameters of a neural network is a loss function1 defined by the
user based on the task the network is trained to perform. This is the metric used
to evaluate the performance of our model. In the case of a supervised multi-class
classification, this would be categorical cross-entropy. Let’s consider an example
of an image classification task of five categories. The prediction output of our
network for an input image of the sky would be a vector of five float numbers,
all together summing exactly to one, such that they could be interpreted as
probability estimates of the source on the image being a particular classification
class.

Once our neural network makes predictions for a batch of data and we have
a result of the loss computed based on our loss function, the backpropagation
algorithm computes gradients of each trainable parameter with respect to the
computed loss. Its high efficiency is based on clever use of the chain rule (Leib-
niz et al., 19202), avoiding the computation of costly derivations. Once we have
the gradients, an optimization function (e.g., SGD or ADAM, (Ruder, 2016))
computes the direction and amplitude of the weight change so that the neural
network would have a smaller loss if it had to classify these data again. This
weight update happens after each batch. The optimization function comes with
one of the most important hyperparameters, the learning rate, which is a co-
efficient directly tuning the amplitude of the weight update’s change. Modern
neural networks also use clever tricks on how to dynamically change this pa-
rameter during training (e.g., Xu et al., 2019) so that the network would better
overcome local minima or saddle points in the multidimensional landscape of
trainable parameters in its desired way towards the global minima.

1.2 galaxy clusters & cosmology

1.2.1 Galaxy Clusters

Galaxy clusters are the largest virialized gravitationally bound objects in the
observable Universe. Their main components in the total mass are the galaxies
(∼2%), extremely hot gas of low density (∼12%), and a mysterious component,

1 We can also find it called error function or cost function in the literature
2 The chain rule was already mentioned by G. W. F. von Leibniz in 1676, later translated from

Latin by J. M. Child in 1920
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the dark matter (∼ 86 %), which particles have not been detected yet and we
observe only its indirect gravitational effects (e.g., Sanderson et al., 2013). The
smallest galaxy clusters have about 50 galaxies while the largest galaxy clusters
consist of more than 1 000 galaxies (e.g., Wen and Han, 2018). There is no sharp
boundary on the total mass between galaxy groups and galaxy clusters. Studies
in the literature usually report a threshold of ∼ 1014 M⊙. Besides cosmology,
galaxy clusters are frequently used as astrophysical laboratories to study highly
energetic phenomena on extragalactic scales. The SMBH living in centers of the
cluster’s member galaxies have such powerful jets that they can interact even
with the ICM of the galaxy cluster, depositing energy in the ICM (e.g., Fabian,
2012.

Galaxy clusters grow via mergers that result in shock fronts heating the ICM
(Botteon et al., 2018; Ha et al., 2018; Macario et al., 2011). These mergers also
provide a tool to study the nature of dark matter because we can investigate how
it interacts with itself during collisions. One of the best examples is the bullet
cluster (Robertson et al., 2017). This system shows two galaxy clusters that
are merging and they already experienced their first encounter. We can thus
observe how the galaxies behave in these collosal collisions thanks to optical
observations, the ICM thanks to the X-ray observations and the mysterious
dark matter thanks to tracking the overall mass distribution via weak lensing
that yields us the footprint of the gravitational potential. The galaxies behave
like a collisionless fluid. The ICM, however, experienced a collision, which slows
it down, thus stripping it from the individual cluster’s centers, creating shock
fronts radiating at radio wavelengths. Finally, the weak lensing revealed that
the overall gravitational potential is centered on the galaxies, however, they
constitute only a fraction of the entire baryonic mass budget of the cluster, with
the ICM gas being the most massive baryonic component. This strongly indicates
the presence of dark matter and its collisionless behavior when encountering such
a flythrough in a galaxy cluster merger.

1.2.1.1 Optical & infrared identification of galaxy clusters

In the optical and infrared wavelengths, galaxy clusters appear as overdensities
of galaxies. George O. Abell liad one of the first cornerstones in the galaxy
clusters research, creating the first catalog of galaxy clusters (Abell, 1958). Abell
manually worked with the Palomar optical plates with a bare-eye inspection to
search for overdensities of galaxies. His first catalog of galaxy clusters contains
2 712 galaxy clusters, focusing on the northern sky. Abell built upon this work,
surveying also the southern hemisphere where he identified 1 361 galaxy clusters.
After Abell’s death3, his colleagues published the southern and northern catalogs
collectively containing 4 073 optically identified galaxy clusters under Abell’s
name. This work is now known as Abell’s catalog of 4 073 rich galaxy clusters
(Abell et al., 1989).

Abell defined clusters as overdensities of galaxies that had magnitude larger
than m3 + 2, where m3 was the magnitude of the 3rd brightest cluster’s galaxy.
The next criterion was the number of galaxies. Abell defined galaxy clusters as
galaxy overdensities with at least 50 of the galaxies in the mentioned magnitude
range. They have been further subdivided into a few categories based on their

3 George O. Abell passed away on October 7th, 1983.
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richness, and the number of cluster’s galaxies. Galaxies were included in the
galaxy cluster if they were within Abell’s counting radius4. But to calculate
the physical radius, Abell first needed to determine the distance of the galaxy
cluster, its redshift. Abell based his distance estimate on the apparent brightness
of the 10th brightest cluster galaxy, m10, and finally defined his counting radius
as 1.72 z arcminutes. Abell also excluded clusters closer than z = 0.02 to cut off
nearby galaxy clusters. This was necessary because such clusters’ galaxies were
distributed across more than a single Palomar plate, which would introduce
unwanted biases, making his selection inconsistent when conducted based on the
same criteria for such low redshift clusters. He also set an upper limit of 0.2
z, corresponding to 60 000km s−1 based on his estimates due to the magnitude
brightness limit of the m3 galaxy. It was later established that Abell’s catalog
contains some clusters exceeding this redshift boundary.

Since Abell’s first catalog of galaxy clusters, much progress has been made.
Technological progress granted us the capabilities to construct telescopes and
satellites observing in wavelengths previously unreachable, allowing us to search
for galaxy clusters in infrared (e.g., Two Micron All Sky Survey (2MASS) (Skrut-
skie et al., 2006), Wide-field Infrared Survey Explorer (WISE) (Wright et al.,
2010)), X-ray (e.g., Röntgen Satellite (ROSAT ) (Hasinger et al., 1999), X-ray
Multi-Mirror Mission Observatory - Newton satellite (XMM-Newton) (Jansen,
1999) and the eROSITA X-ray instrument on board of the Spectrum-Roentgen-
Gamma mission (Predehl et al., 2021)) or microwave millimeter wavelengths
(e.g., South Pole Telescope (SPT) (Carlstrom et al., 2011)).

Wen et al., 2018 created a catalog of 47 600 galaxy clusters, in which 26 125
were new detections. They also identified new 779 candidate galaxy clusters
in the X-ray wavelengths crossmatching their catalog with existing data of the
ROSAT and XMM-Newton.

In the same year, another catalog of optically selected galaxy clusters was
published based on The Sloan Digital Sky Survey Data Release 9 (SDSS DS9)
(Ahn et al., 2012). This catalog (Banerjee et al., 2018) provides 46 479 galaxy
clusters in the redshift range of 0.045 ≤ z < 0.641 of a ∼ 11 500 deg2 survey
area.

Just at the time of writing this thesis, Wen and Han, 2024 published a catalog
of 1.58 million galaxy clusters using the DESI Legacy Imaging Surveys data.
This survey is a joint project of three public projects: the Dark Energy Camera
Legacy Survey, the Beijing-Arizona Sky Survey, and the Mayall z-band Legacy
Survey. The joined project covers more than 14 000 deg2 of the northern sky.
The DESI Legacy Imaging Survey database provides a catalog of sources and
sky images in the g, r, and z bands in the optical wavelengths together with
the satellite data of the Wide-field Infrared Survey Explorer (WISE) satellite
(Wright et al., 2010) in the mid-infrared bands at 3.4, 4.6, 12, and 22 µm.

1.2.1.2 X-ray identification of galaxy clusters

In the X-ray wavelengths, galaxy clusters are detected as objects characterized
by extended X-ray emission. The source of their extended X-ray emission is
nowadays established to be due to bremsstrahlung radiation from their hot,
diffuse intracluster gas (Felten et al., 1966). However, nearby galaxies that are

4 Later know nas Abell’s radius
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massive enough to host X-ray atmospheres are also sources of extended X-ray
emission and can appear highly similar to galaxy clusters in the X-ray images.
This is why constructing X-ray-selected galaxy cluster catalogs usually involves
manual screening of the selected cluster candidates.

There have been many galaxy cluster catalogs constructed based on the Rosat
All-Sky Survey data (Truemper, 1992, Voges, 1993) constructed thanks to the
ROSAT satellite. Piffaretti et al. (2011) created a meta catalog unifying 12
previous catalogs based on the ROSAT observations, the Meta-Catalogue of
X-ray detected Clusters (MCXC) of 1743 galaxy clusters.

More recently, Xu et al. (2022) decided to implement new dedicated source
detection and characterization algorithm developed specifically to search for ex-
tended X-ray emission in the X-ray low-count images on the archival ROSAT
observations. They created a catalog of 944 galaxy clusters and groups, out of
which 641 galaxy clusters were already identified based on their X-ray emission,
154 clusters were detected only in optical or infrared wavelengths and they found
149 clusters identified for the first time.

Multiple galaxy cluster catalogs have been constructed based on the XMM-
Newton observations. The XXL Survey collaboration created a catalog of 365
well-defined galaxy clusters specifically designed for cosmological research (Adami
et al., 2018). When using galaxy clusters as cosmological probes, it is essential
to have precise knowledge of their mass function and the sample has to have
a high degree of purity. Their clusters are identified with a mean number of 6
spectroscopically identified galaxies. This galaxy cluster’s catalog is based on the
XMM-XXL north and south fields, covering 25 deg2 each.

In the X-CLASS collaboration, we published a catalog of 1646 X-ray-selected
galaxy clusters (Koulouridis et al., 2021). This catalog results from a serendipi-
tous galaxy cluster’s search in XMM-Newton archival observations up to August
2015. For this catalog, we used XAmin v3.5 (an older version compared to the
work of Adami et al., 2018). XAmin cluster detection pipeline is designed for de-
tecting galaxy clusters in the low-count raw XMM-Newton X-ray images. Once
the XAmin creates a list of galaxy cluster detections, they are split into multiple
samples. The interesting one is the ’C1’ sample which is designed, based on the
XAmin characteristics, such that it should have very little contamination. How-
ever, the XAmin v3.5 we used in this work had some problems resolving AGNs,
mainly when embedded in an extended X-ray emission of a nearby galaxy or a
galaxy cluster, resulting in more false detections. We thus conducted a manual
inspection of a few thousand detections. This procedure involved visually com-
paring the X-ray raw image, the wavelet-smoothed X-ray image, and the optical
Digitized Sky Survey POSS-II (DSS2) (Lasker et al., 1996) counterpart image
with the X-ray contours superimposed and a zoomed DSS2 image on the cen-
tral region of the detection. Two experts examined each source. We had three
independent experts not participating in the mentioned classification overseeing
all classifications. These three were charged to decide on the final classification.
The XXL Survey collaboration team also did this manual inspection process.
However, they fortunately used a newer version of the XAmin, resulting in much
less contamination of their C1 sample.

Very recently, at the time of writing this thesis, the eROSITA team released
their first catalog of galaxy clusters (Bulbul et al., 2024), presenting 12 247 op-
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tically confirmed galaxy clusters and groups based on 13 116 deg2 eROSITA
western galactic field observations in the 0.2 − 2.3 keV energy range.

1.2.1.3 SZ identification of galaxy clusters

The Sunyaev-Zeldovich effect (Sunyaev and Zeldovich, 1972) describes the inter-
action of the cosmic microwave background (CMB) photons with the ICM. As
the CMB photons interact with the ICM electrons, they are inverse-Compton
scattered to higher energies. Therefore, looking at a galaxy cluster at a certain
wavelength, we observe a deficit of CMB luminosity and at a higher wavelength,
we observe a corresponding increment of the CMB luminosity. This method
is particularly useful in detecting high redshift clusters because it is redshift-
independent. Its sensitivity depends on the ICM pressure, thus favoring massive
unrelaxed clusters and clusters undergoing major mergers with other clusters.

Based on the Sunyaev-Zeldovich effect (Sunyaev and Zeldovich, 1972), (Bleem
et al., 2015), using the SPT observing in microwave bands constructed a catalog
of galaxy clusters (SPTSZGALCL). The SPTSZGALCL is based on SPT obser-
vations covering 2 500 deg2 and provides 677 galaxy clusters above the signal-to-
noise threshold of 4.5.

Planck Collaboration et al., 2014 created The Planck catalog of Sunyaev-
Zeldovich sources (PSZ) using the SZ effect in the 15.5 months of the Planck
satellite all-sky survey data (Planck Collaboration et al., 2020). The PSZ catalog
contains 1 227 detections, among which 861 confirmed galaxy clusters, where 178
were confirmed with follow-up observations, and 683 were already known clusters.

Using a similar methodology and 29 months of the Plank observations, Planck
Collaboration et al., 2016 updated this catalog and released The second Planck
catalog of Sunyaev-Zeldovich sources (PSZ2) containing 1 653 detections, from
which 1 203 confirmed galaxy clusters using multi-wavelength search in the avail-
able literature, in radio, microwave, infra-red, optical, and X-ray data sets.

At the time of writing this thesis, Bahk and Hwang, 2024 compiled the data
of galaxy clusters and galaxies with spectroscopically available redshifts and
released an updated galaxy cluster catalog of the second Planck catalog of
Sunyaev-Zeldovich sources (PSZ2). They took the centroids of the yet uncon-
firmed Sunyaev-Zeldovich detections, created a search radius of 4 555 kms−1 in
the velocity space and of a 15 arcmin radius to search for candidate member
galaxies for these SZ detections. If a detection contained more than nine galax-
ies matching these criteria, they consider them strong candidates. Following this
methodology, they updated the PSZ catalog, validating 139 yet unconfirmed SZ
detections and updating the redshift information of 399 previously confirmed
galaxy clusters.

1.2.2 Galaxy Clusters as Cosmological probe

In the hierarchical clustering scenario of structure formation in the Universe,
galaxy clusters emerge from the quantum fluctuations in the primordial density
field (e.g., Peebles, 1993, Coles and Lucchin, 1995, Bond et al., 1996, Peacock,
1999). Their number density is thus very sensitive to the underlying cosmological
parameters of the Universe (e.g., (Kofman et al., 1993; Press and Schechter,
1974)). Galaxy cluster’s number density and mass distribution across redshift
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is particularly sensitive to Ωm and σ8. The Ωm parameter stands for the mean
fraction of the energy density of all forms of matter, baryonic and dark, in the
total energy budget of the Universe, while the σ8 is linked to the amplitude
of the fluctuations in the time-space continuum at the birth of the Universe.
The number 8 indicates that it is on a scale of 8 h−1 Mpc. These parameters
are essentially physical characteristics of our Universe. Due to their nature, they
determine when (at what redshift) and how the structures in the Universe form.
We can thus calculate these cosmological quantities based on large-scale structure
observations, the growth rate of galaxy clusters, the mass distribution of galaxy
clusters, and their distribution across redshift (e.g., Oukbir and Blanchard, 1992,
Eke et al., 1998).

Unfortunately, the mass of a galaxy cluster is not a directly observable char-
acteristic. However, we can use X-ray spectra to calculate the X-ray luminosity
and temperature of the hot ICM cluster’s gas (Mitchell et al., 1979). The higher
the mass of a galaxy cluster, the higher the luminosity and temperature of its
ICM. We can use this to our advantage, using scaling relations to derive the total
cluster’s mass from its temperature or luminosity.

One has to be careful when using scaling relations to derive the cluster’s
masses, as they can introduce biases because some effects can cause deviations
from simple scaling relations. For example, effects such as radiative cooling of
the ICM, feedback from supernovae, and AGNs that deposit energy into the
ICM originating from cluster’s galaxies. Another effect causing discrepancy of
mass estimates from scaling relations is the galaxy cluster’s mergers with other
clusters or smaller groups of galaxies, which cause shocks and heating of the
ICM.

1.3 cataloging hard x-ray sources

In my work presented in Chapter 4 and Chapter 5, I mainly focused on analyzing
multi-wavelength archival data with the goal of finding new counterparts to yet
unclassified hard X-ray sources of the 3PBC catalog (Cusumano et al., 2010). In
this section, I introduce the Cosmic X-ray Background (CXB) and the unified
AGN model (Antonucci, 1993, Urry and Padovani, 1995) together with the main
types of AGNs. This context is relevant to my research on cataloging hard X-ray
sources with their lower-energy counterparts.

1.3.1 Cosmic X-ray Background

Scorpius X-1 was the first observed cosmic X-ray source (Giacconi et al., 1962).
Together with this observation, we also discovered that the Universe has a com-
ponent of diffuse X-ray radiation uniform across all directions except the galactic
plane, the Cosmic X-ray background (CXB)5.

The CXB stretches across a wide range of energies, from ∼100 eV up to 1 MeV.
Its integrated energy density constitutes ∼10 of the total energy in the cosmic
radiation.

In the first decades of CXB research, it was not clear what source was be-
hind its origin. There was a hypothesis explaining the CXB due to a diffuse

5 In older literature, the CXB is called X-ray background (XRB)
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intergalactic gaseous source of X-ray radiation emitting the light by thermal
bremsstrahlung radiation (e.g., Cowsik and Kobetich, 1972, Marshall et al., 1980,
Guilbert and Fabian, 1986, Taylor and Wright, 1989). While this model could fit
the observed CXB spectrum well, it struggled to explain how the intergalactic
gas would have heated so much to provide the observed CXB radiation at the
present time via bremsstrahlung radiation. The second leading explanation was
a model describing the CXB radiation as an integrated light of a population of
distant X-ray point sources (Giacconi et al., 1979a).

The ROentgen SATellite ROSAT (Hasinger et al., 1999) deep images obtained
in the early ninety’s provided a huge step towards our understanding of the CXB
nature, resolving about 80 % of the CXB between 0.5 keV and 2 keV to originate
from discrete X-ray point sources of cosmological origin (Hasinger et al., 1998), as
suggested by Cavaliere and Fusco-Femiano (1976). A few years later, the Chan-
dra X-ray Observatory (Weisskopf et al., 2000) and the XMM-Newton satellite
(Jansen, 1999) provided even better insights on the CXB. Finally, Chandra’s
deep-field south observations resolved the majority of the CXB due to individ-
ual X-array point sources of various AGN types (Gilli et al., 2007). At hard X-ray
energies, Swift and INTEGRAL resolved 2% of the CXB (Bottacini et al., 2012)
and NuSTAR resolved 35% of the CXB (Harrison et al., 2016) as being due to
hard X-ray point sources. It is now confirmed that the majority of the CXB radi-
ation originates from hard X-ray sources of extragalactic origin. A large fraction
of these sources constitute various types of active galactic nuclei (AGNs) (Gilli
et al., 2007). Understanding the population of different types of AGNs and their
characteristics is thus crucial to comprehend the CXB.

1.3.2 The unified AGN model

The unified AGN model is an effort to explain the various types of observed char-
acteristics of AGNs with a single model (Antonucci, 1993, Urry and Padovani,
1995). The model explains different observed characteristics and types of objects
based on the geometry, the line-of-sight angle at which we observe the AGN
with respect to the AGN’s rotation axis, the AGN’s luminosity, and the AGN
jets’ presence or absence. Fig. 1.6 is a sketch of the unified AGN model showing
the classification classes of objects that would be observed based on these three
physical parameters. The model is first split in top and bottom halves. The top
half is radio-loud AGNs (with a jet), and the bottom is radio-quiet (without the
jets). There is also a vertical split to low-power and high-power left and right
hemispheres, respectively. An observing direction nearly exactly to the axis of
an active jet is left for the Blazar category. Each of the mentioned classification
classes is further split into subcategories, which are briefly introduced in the fol-
lowing sections. However, before going to the individual classes, we should take
a look at the morphology and physical characteristics of the AGNs.

The unified AGN model consists of several components. In the center lies a
supermassive black hole (SMBH). If it is active and accretes matter, an accre-
tion disk is formed. Usually, the main source of X-ray radiation in AGN is the
interaction of highly energetic electrons in the so-called corona with the photons
from the accretion disk. These photons are scattered via the inverse Compton
effect to X-ray energies (Haardt and Maraschi, 1993). This X-ray radiation may
also get reflected from the accretion disk of the central SMBH. This interaction
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Figure 1.6: Schematic representation of the unified AGN model. The top half of the
image shows an active AGN with a jet activity (radio-loud AGN), while
the bottom half shows an AGN without jet activity (radio-quite AGN). The
figure is also cut into the left (low-power AGN) and right (high-power AGN)
halves. The top left represents a radio-loud low-power AGN, and the top
right represents a radio-loud high-power AGN, both having a jet activity.
The bottom left represents radio-quiet low-power AGN without jet activity.
Depending on the angle at which the AGN is observed with respect to the
inclination axis of the AGN, the presence of the jet, and the luminosity, we
observe different spectral and morphological features. These observational
characteristics are used to categorize radio galaxies. Graphic courtesy of
Marie-Luise Menzel (MPE), published by Beckmann and Shrader, 2012.

is also responsible for the X-ray fluorescent iron lines (Fabian et al., 2000; Reeves
et al., 2001).

At about an order of magnitude larger distance, in the disk plane, lies a torus.
At this distance from the SMBH, the temperature allows the existence of dust
grains and neutral hydrogen, which form the torus and act as an absorber of
optical light and also of X-ray radiation due to the photoelectric effect. The
absorbed X-ray and optical light from the central part of the AGN by the torus is
subsequently radiated in the infrared spectrum. The torus is relatively thick and
extends well above and below the plane of the accretion disk. We can imagine the
torus as a doughnut, and in its hollow center lies the SMBH with the accretion
disk. Simulations (Krolik and Begelman, 1988) and observations (e.g., Liu et al.,
2016) predict the torus to have a clumpy composition.

Going back to the close vicinity of the SMBH, we can find gas clumps scattered
spherically around the SMBH that have extreme velocities of thousands km s−1

and high-density ne ≲ 109 cm−3. These gas clouds are highly ionized and are
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responsible for broad emission lines observed in the spectrum. Compared to the
distance of this broad emission lines region (BLR), much further away lie gas
clumps with an order of magnitude lower speeds and considerably lower density
(ne ∼ 103 − 106 cm−3), responsible for the narrow emission lines observed in the
spectrum. This is the narrow emission line region (NLR). Depending on several
factors, such as the accretion rate and possibly the spin of the black hole, the
SMBH may be launching ultrarelativistic jets. These penetrate the atmosphere of
the entire galaxy, reaching up to tens of kiloparsecs away into the intergalactic
medium. When they slow down below the speed of sound of the surrounding
gaseous medium, they start having fascinating interactions with it and emit
synchrotron radiation observed at radio frequencies.

Depending on the observed angle, there are situations in which the region
responsible for the broad emission lines will be obscured by the torus. This is
not the case for the NLR, in which light is produced at distances much larger
where the obscuration does not occur. We will thus not see the broad emission
lines in the spectra in a situation where we observe the AGN such that the
torus is blocking our view on the central part of the AGN. In a situation where
we do not have an obscured view and see directly to the central region of the
AGN with a jet, we would observe a source with a much larger luminosity. If
the AGN’s jet’s axis points directly to us, we would observe the most luminous
sources also exhibiting relativistic effects due to the relativistic speed of particles
in the jet, such as Doppler boosting and relativistic beaming. All these observed
characteristics have been used to classify radio galaxies into a generous number
of classification classes. It is important to note that many of these classification
classes overlap with other ones, which are discussed in the following sections.

1.3.3 Radio loud and Radio quiet AGNs

Most of the radio-quiet AGNs are spiral galaxies, while radio-loud AGNs are typ-
ically elliptical galaxies, which encountered major mergers in their history. The
line and thermal continuum emission of radio-loud and radio-quiet galaxies are
very similar. However, the radio-loud galaxies are associated with much larger
radio luminosities and distinct radio structures such as lobes and jets, which
are created due to the central SMBH interaction with the galaxy’s gaseous at-
mosphere. Based on these observable characteristics, Wilson and Colbert, 1995
propose that the observed differences are not due to the accretion rate and SMBH
mass, but instead due to the spin of the SMBH, because the SMBH’s spin would
be much larger for an elliptical galaxy which’s SMBH merged with another one
of a similar mass. On the contrary, the supermassive black hole in the AGN of a
spiral galaxy would have a much smaller spin as the spin dissipates during the
accretion process due to processes such as Penrose process (Penrose and Floyd,
1971) and Blandford–Znajek process (Blandford and Znajek, 1977).

1.3.4 Fanaroff-Riley classification

B.L. Fanaroff and J.M. Riley researched 57 extragalactic radio sources (Fanaroff
and Riley, 1974) in the radio wavelengths. These were the sources from the 3CR
catalog (Spinrad et al., 1985). The studied sources were radio galaxies of low
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Figure 1.7: VLA map of the FR Class I galaxy 3C 449 at 1465 MHz, with angular reso-
lution 4.8 × 3.4 arcsec2 (Perley et al., 1979). We can see large jets that peak
at their brightness close to the center of the AGN and decline in brightness
as they flow from the galaxy’s center.

power (the host galaxy is visible in the optical band) and high power (the optical
band shows only a point source; the host galaxy is not visible, quasar). They
created a classification system to categorize these sources. First, they calculated
the distance of the two spots of the highest surface brightness on opposite sides
of the object, DRF . Next, they calculated the total extent of the source up to
the lowest brightness contour in the radio map, ERF . Finally, they established a
ratio of these two quantities, RF R as

RF R =
DRF

ERF

and defined Class I (FRI) as sources with RF R < 0.5 and Class II (FRII) for
sources with RF R > 0.5. The sources classified in the FRI category turned out to
be compact objects with radio emission closer to the galaxy’s center. The sources
in the FRII category exhibit extended radio structures and highly collimated
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Figure 1.8: 4.9 GHz VLA map of the FR Class II quasar 3C 47 (Bridle et al., 1994) with
1.45 × 1.13 arcsec2 resolution. We can observe the bubbles inflated by the
get

jets that weaken and interact with the surrounding gaseous envelop that they
penetrate later than the FRIs.

Fanaroff and Riley, 1974 found that most of the radio sources in the FRI class
had luminosity L178MHz ≤ 2 × 1025h−2

100WHz−1str−1 while most of the sources in
their FRII class had their L178MHz larger than this threshold. They thus discov-
ered that the radio luminosity of these objects correlates with the morphological
characteristics of the sources, with the relative position of the regions of high
and low surface brightness.

What exactly stands behind these two distinct jet behaviors is still an open
question. FRII jets are highly collimated, slowing and interacting with the sur-
rounding medium only at large distances. In contrast, FRI jets start to slow
down and interact with the surrounding matter shortly after (in comparison
with FRIIs) being launched from the central SMBH. The possible reasons be-
hind these distinct morphological characteristics could be the speed at which the
jet is being launched, the density of the surrounding medium, the collimation of
the jet, the accretion rate of the SMBH, the mass of the SMBH or the strength
of the SMBH magnetic field. It could also be an interplay of these effects or some
different mechanisms that have not yet been considered.
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Radio galaxies are also classified based on their excitation level into high-
excitation radio galaxies (HERG) and low-excitation radio galaxies (LERG).
HERGs are nearly always FRII, while LERGs can be either FRI or FRII (Buttiglione
et al., 2010).

1.3.5 FR0s, extension of FR classification

Recently, a new class of FR galaxies has been established, FR0 (Baldi et al.,
2015). The FR0 are sources that do not have any extended radio morphological
structures. The FR0s just appear as radio point sources. Compared to the FRIs,
the FR0’s core-to-total luminosity ratio is about 30× larger (Baldi et al., 2015,
Garofalo and Singh, 2019). As FRIs, they are also preferentially found in elliptical
galaxies. Baldi et al., 2018 created the first catalog of FR0 galaxies, finding that
FR0s are 5× more common than FRIs in their search radius of z ≤ 0.05.

Several scenarios have been proposed to explain the origin of the FR0. Intu-
itively, one could assume that these sources are FRIs seen directly in the line
of sight of their jet. However, based on the FR0CAT study (Baldi et al., 2018),
the authors estimated the abundance of the galaxies according to their FR clas-
sifications in the same volume of the local Universe defined by the criteria of
the FR0CAT. They found that there were only 21 FRIs and only 1 FRII in this
volume, so the 108FR0 completely dominated the population. This ruled out the
hypothesis that the FR0 could just be FRIs viewed directly in the axis of their
jets. A different scenario suggests that the FR0 have jets of lower Lorentz factors
and thus lower jet bulk speeds than that of FRI, possibly due to lower SMBH
spin. This could explain why FR0 does not form larger jets because slower jets
are more likely to become disrupted by interacting with the surrounding medium
before having a chance to launch into the galactic gaseous envelope and beyond.

1.3.6 Type I and Type II AGNs

The classification of Type I and Type II AGNs is based on the width of their
spectral lines.

The Type I AGNs exhibit broad lines corresponding to velocities of 1 000 –
10 000 km s−1. They are further classified into subgroups based on the relative
intensity of their broad and narrow spectral lines of the Balmer series.

The Type II AGNs have narrow lines corresponding to gas speed ranging from
a few hundred up to 1 000 km s−1. The spectral lines are present at near-infrared,
optical, or ultraviolet wavelengths.

According to the unified AGN model, this distinction in the spectra character-
istics is due to a different angle at which we observe the radio galaxy. The broad
line emission originates from gas very close to the central supermassive black
hole (SMBH), while the narrow line emission is produced by gas that resides
at orders of magnitude larger distances. The observed differences in the broad
emission lines are then explained as due to the angle at which we observe the
AGN. There are angles at which the central region producing the broad emission
lines is completely obscured by the torus, in this scenario, we do not see broad
emission lines and we observe a Type II AGN. If we observe at angles closer to
the axis of the AGN’s jet, we have a direct view of the central part of the AGN,
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the accretion disk and the broad emission lines. These objects are classified as
Type I AGNs.

This classification is also associated with the classes of Seyfert galaxies and
Quasars, which are described in the following sections.

1.3.7 Quasars

The first quasars were discovered thanks to the optical follow-up analysis of radio
sources. Their optical spectral features initially looked peculiar, as it was not
expected to find an optical point source at a high redshift. Schmidt (1963) found
that the spectrum consists of well-known features shifted to redder wavelengths
implying a very high intrinsic luminosity.

Based on the presence or absence of the broad emission lines in their spectra,
quasars are classified into Type I and Type II categories. According to the unified
AGN model, this depends on the presence or absence of the obscuring clumpy
torus in the line of sight.

Quasars have been classified as radio-quiet6 or radio-loud based on the ratio
of their radio flux density at 5 GHz and optical flux density at 4 400 Å (Keller-
mann et al., 1989). This classification was later refined by Falcke et al. (1996),
who proposed a separate dividing threshold for steep spectrum quasars and flat-
spectrum quasars. Radio-quiet quasars are associated mainly with galaxies of
lower masses compared to radio-loud quasars (Peacock et al., 1986).

Strittmatter et al. (1980) suggested that two distinct populations could ex-
plain the observational characteristics of the radio-loud and radio-quiet quasars.
Baloković et al. (2012) investigated this quasar dichotomy. They based their
study on 8 307 radio-detected quasars from an SDSS DR7 Quasar Catalog (Schnei-
der et al., 2010) matched with the FIRST survey (Becker et al., 1995). Their
best-fit model for this quasar population was a bimodal distribution with a sig-
nificant overlap that did not describe the data ideally. They thus concluded that
the bimodal population is not a suitable description of the quasar population
they studied, further stating that the radio properties of quasars are most likely
also luminosity and redshift dependent.

1.3.8 Blazars

Blazars are characterized by rapid continuum variability at all frequencies from
radio to gamma rays, extreme luminosities, and a high linear polarization at
optical wavelengths and continuum spectrum of weak or even absent emission
and absorption lines, making their redshift classification very challenging (e.g.,
Urry and Padovani, 1995). When first of these objects were discovered, they were
initially classified as stars residing in our Galaxy and only later identified as ex-
tragalactic sources of tremendous luminosity. The unified AGN model describes
these sources as AGNs which we observe at angles that are very closely aligned
to their jet axis. Blazars are subdivided into two main categories: BL Lacertae
objects (BL Lac) and Flat Spectrum Radio Quasars (FSRQ). Blazar’s radio up
to soft X-ray emission is produced by relativistic jet’s plasma via synchrotron
radiation, while the continuum at higher energies is most likely due to the in-

6 Initially known as radio-weak
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verse Compton scattering of photons originating either inside of the jet, from
the accretion disk or from the dense gas clouds responsible for the BLR (e.g.,
Ghisellini and Madau, 1996).

BL Lac Blazars are named after the BL Lacertae, receding in the northern con-
stellation of Lacerta. BL Lacs have a rapid variability, with luminosity changes
up to 30 % of their brightness in a time scale of only 24 hours. Over a longer
period, their luminosities may change by a few orders of magnitude.

FSRQs are characterized by larger equivalent widths of their optical emission
lines (≳ 5 Å) compared to BL Lacs and higher bolometric luminosities (e.g.,
Smith et al., 1986). FSRQs thus can exhibit BLR, while BL Lacs have a mostly
featureless continuum.

Mondal and Mukhopadhyay (2019) proposed a unified blazar classification
model based on two parameters: the strength of the magnetic field and the
mass accretion rate. They suggest that BL Lacs are much more magnetically
dominated and optically thin than the FSRQs in the jet launching region. To
explain the spectral characteristics of blazars, their model describes HSP-BL
Lacs as the most optically thin and, thus, with the lowest accretion rate of
the blazars classes. The accretion rate is larger for each subsequent class, the
ISP and LSP-Blazars until FSRQs which are blazars of the largest accretion
rate according to their model. To explain the observed γ-ray luminosities, their
model suggests that BL Lacs have a much stronger magnetic field than FSRQs
and that the intermediate classes of BL Lacs, the HSP, ISP, and LSP BL Lacs
are all objects starting firstly with the strongest magnetic field (HSP-BL Lacs)
and gradually as the magnetic field weakens transition through ISP and LSP BL
Lacs until reaching FSRQ state.

1.3.9 Seyfert galaxies

Seyfert galaxies, despite being low-power radio-quiet AGNs, mainly without the
presence of the jet, are still significantly more active than normal galaxies. Seyfert
galaxies can be imagined as not-so-bright Quasars, where only the Seyfert’s
nuclei look more like Quasars, but compared to Quasars, we can still see the
Seyfert galaxy in the optical wavelengths and not just a point source as is the
case of the Quasars. Seyfert Galaxie’s nuclei have bolometric luminosities up to
∼ 1040 erg s−1, which is the threshold I used in my work to distinguish between
these two, described in the following chapters.

Nowadays, we know that most Seyfert galaxies are spiral galaxies (Adams,
1977; Heckman, 1978). We classify Seyfert galaxies into Type I and Type II,
the same as Quasars, based on the same principle according to the unified AGN
model: the presence or absence of the broad emission lines in their spectra.

The unified AGN model’s conception that the different spectral characteristics
of Seyferts are due to the angle at which they are observed has been recently
challenged by Chen and Hwang, 2017, who found that Seyfert Type I are mainly
residing in bulge dominant spiral galaxies compared to Seyfert Type II who live
in spirals with less prominent bulges. They propose that the difference in Type
I and Type II spirals thus has to account also for the different morphology of
their host galaxies and should not be solely due to the observed angle of the
same type of sources.
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1.4 the questions i aimed to address in my research

In my first paper (Chapter 2), I address the task of galaxy cluster detection. Even
though X-ray-selected galaxy cluster catalogs suffer from much fewer projection
effects compared to optically selected clusters, construction of an X-ray-selected
catalog is a tedious job where a serendipitous manual inspection of thousands of
automatically selected cluster candidates is a necessary step. There are automatic
algorithms for cluster detection. However, the XAmin cluster detection pipeline
the X-CLASS collaboration had been using at the time I joined this effort had
huge contamination with nearby galaxy clusters and X-ray point sources 7. The
contamination with nearby galaxies is not surprising because the XAmin works
only with X-ray images, and nearby galaxies with X-ray atmospheres are often
indistinguishable from galaxy clusters when considering only X-ray images. Hu-
man inspection comparing the optical counterparts can solve this problem, but
this process does not scale with modern all-sky surveys (e.g., recent eROSITA
data release). My task was thus to create a convolutional neural network cluster
detection pipeline that would simultaneously combine information from both,
X-ray and optical wavelengths to increase the precision of automatic cluster
detection.

In my second paper (Chapter 3), I worked on the development of a new method
for cosmological analysis based on purely observable characteristics of galaxy
clusters, the X-ray count rate (CR), hardness ratio (HR) coupled with spectro-
scopic redshift information. The goal was to bypass the need for the use of scaling
relations in cosmological analysis with galaxy clusters.

In my third paper (Chapter 4), I analyzed the population of hard X-ray sources
provided in the 3PBC catalog. This project aimed to get a complete understand-
ing of the entire hard X-ray source population so we would better understand
the nature of the cosmic X-ray background.

In my fourth paper (Chapter 5), I continued working on characterizing the hard
X-ray source population. This project aimed to find soft energy counterparts for
the yet unidentified hard X-ray sources we catalogized in our previous analysis.
We aimed to search for these in the Swift-XRT soft X-ray archival data.

7 This issue was later resolved and luckily did not affect the catalog of XXL collaboration that
also uses XAmin pipeline.
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Madrid, Spain
3Centre for Astronomy and Particle Theory, University of Nottingham, UK
4IRAP, Université de Toulouse, CNRS, CNES, UPS, (Toulouse), France
5AIM, CEA, CNRS, Université Paris-Saclay, Université Paris Diderot, Sorbonne
Paris Cite, F-91191 Gif-sur-Yvette, France
6European Space Agency, Space Telescope Science Institute, 3700 San Martin
Drive, Baltimore MD 21218, USA
7Telespazio Vega UK for ESA, European Space Astronomy Centre, Operations
Department, 28691 Villanueva de la Cañada, Spain
8Ulugh Beg Astronomical Institute of Uzbekistan Academy of Science, 33 As-
tronomicheskaya str., Tashkent, UZ-100052, Uzbekistan
9MTA-Eötvös University Lendület Hot Universe Research Group, Pázmány Péter
sétány 1/A, Budapest, 1117, Hungary
10School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima
739-8526, Japan
11Faculty of Information Technology, Brno University of Technology, Božetě-
chova 2, Brno, 612 00, Czech Republic
12Institute for Astronomy & Astrophysics, Space Applications & Remote Sens-
ing, National Observatory of Athens, GR-15236 Palaia
Penteli, Greece
13National Research Institute of Astronomy and Geophysics (NRIAG), 11421
Helwan, Egypt
14Max-Planck Institut für extraterrestrische Physik, Postfach 1312, 85741 Garch-
ing bei München, Germany

Published in Monthly Notices of the Royal Astronomical Society, Volume 496,
Issue 4, August 2020, Pages 4141–4153,
https://doi.org/10.1093/mnras/staa1723

27



28 cnn classification of galaxy cluster candidates

2.1 abstract

Galaxy clusters appear as extended sources in XMM-Newton images, but not all
extended sources are clusters. So, their proper classification requires visual in-
spection with optical images, which is a slow process with biases that are almost
impossible to model. We tackle this problem with a novel approach, using con-
volutional neural networks (CNNs), a state-of-the-art image classification tool,
for automatic classification of galaxy cluster candidates. We train the networks
on combined XMM-Newton X-ray observations with their optical counterparts
from the all-sky Digitized Sky Survey. Our data set originates from the X-CLASS
survey sample of galaxy cluster candidates, selected by a specially developed
pipeline, the XAmin, tailored for extended source detection and characterisation.
Our data set contains 1 707 galaxy cluster candidates classified by experts. Ad-
ditionally, we create an official Zooniverse citizen science project, The Hunt for
Galaxy Clusters, to probe whether citizen volunteers could help in a challenging
task of galaxy cluster visual confirmation. The project contained 1 600 galaxy
cluster candidates in total of which 404 overlap with the expert’s sample. The
networks were trained on expert and Zooniverse data separately. The CNN test
sample contains 85 spectroscopically confirmed clusters and 85 non-clusters that
appear in both data sets. Our custom network achieved the best performance
in the binary classification of clusters and non-clusters, acquiring accuracy of 90
%, averaged after 10 runs. The results of using CNNs on combined X-ray and
optical data for galaxy cluster candidate classification are encouraging and there
is a lot of potential for future usage and improvements.

2.2 introduction

Galaxy clusters are massive systems at the peaks of the cosmic web. Their com-
position, rich in dark matter and hot baryonic gas makes them a potentially
powerful tool to constrain cosmological parameters, growth of structure, neu-
trino mass and sterile neutrinos through cluster number counts, the cluster mass
function and the baryon fraction (Allen et al., 2011; Böhringer and Chon, 2016;
Mantz et al., 2015).

In recent years, large cluster surveys such as XXL (Pacaud et al., 2016; Pierre
et al., 2016), XCS (Mehrtens et al., 2012), X-CLASS (Clerc et al., 2012a; Ridl
et al., 2017), Planck (Bartlett et al., 2008), redMaPPer (Rykoff et al., 2014), or
the SPT-SZ survey (Bleem et al., 2015) have made it possible to statistically
improve constraints on cosmology. However one of the challenges in using galaxy
clusters for cosmology is understanding and modelling of the cluster selection
function (e.g. Pacaud et al., 2006). The selection function has to be modelled
in terms of observable parameters (like flux and apparent size), which can then
be converted into galaxy cluster mass for a given cosmology and galaxy cluster
physics evolution. The selection function of galaxy clusters is not trivial to model
and often oversimplified. A selection function should not only take into account
the volume and redshift of the survey but also the choice of clusters, which is
often more complicated than a cut in flux. In X-ray wavelengths, whilst extended
emission is generally a robust indicator of a galaxy cluster, the emission can also
be attributed to nearby galaxies, saturated AGN and unresolved double point-
sources. For this reason, galaxy cluster candidates are still visually examined
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together with optical data, prior to any spectroscopic confirmation (Adami et
al., 2018). This process is tedious and out-dated with uncertainties impossible
to model. With large X-ray sky surveys such as e-ROSITA (Merloni et al., 2012)
expecting to discover tens of thousands of new galaxy clusters, combined with
large optical surveys including LSST (Ivezic et al., 2008) and EUCLID (Racca
et al., 2016), the old techniques will become obsolete. We need to prepare for
the future with new methods that are able to deal with big data and improved
accuracy.

Citizen science projects proved to be a great asset for scientific problems where
human classifications are required for large amounts of data (e.g. Lintott et al.,
2008; Willett et al., 2013). In the first version of the most well known of all
citizen science projects, the Galaxy Zoo (Lintott et al., 2008), citizen volunteers
managed to achieve more than 90 % agreement with experts in a task of morpho-
logical classification of galaxies. While citizen projects are intended to provide
huge manpower in the assessment of large astronomical data sets, the question
whether this is an advantage over a limited number of evaluations by experts
in the case of the confirmation of galaxy cluster candidates remains to be ad-
dressed. This paper scrutinizes this issue by evaluating the citizen volunteers
success rate.

Machine learning offers a more constructive approach to the problem. The
power of Machine learning has been demonstrated in astronomy for more than
two decades, with applications including star-galaxy discrimination (Bertin, 1993;
Odewahn et al., 1992), classification of galaxy spectra (Folkes et al., 1996), pho-
tometric redshift estimation (Collister and Lahav, 2004) or anomaly detection
in X-ray spectra (Ichinohe and Yamada, 2019), to name a few. With the intro-
duction of Convolutional Neural Networks (CNNs, LeCun et al., 1999) and deep
learning (E Hinton, 2007), it has been possible to automate human vision tasks
such as image recognition (see e.g. Ackermann et al., 2018; Goodfellow et al.,
2014; Lieu et al., 2018; Schawinski et al., 2017).

Supervised learning with convolutional neural networks (CNNs) was designed
specifically for image classification tasks. If the true labels (classification classes)
of the images are known, they can be used to train CNNs. The current way galaxy
clusters are classified are liable to false positives and false negatives. Galaxy clus-
ter candidates picked by an automated pipeline are visually analysed by several
experts to create an initial catalogue of galaxy clusters, that are later verified
with a spectroscopic confirmation. This process will not scale with large data
volumes. Citizen science allows us to harness a large number of opinions on each
object classification on a short timescale, speeding up the process significantly
yet having a reasonable agreement with experts (see e.g. Dieleman et al., 2015;
Willett et al., 2013). CNNs can be then trained on classifications made by ei-
ther experts or citizen volunteers or both, to automate the final classification of
galaxy cluster candidates, or even skipping the first step of the pipeline pick-
ing the candidate clusters. Applying CNN selection on simulations will enable
modelling the selection function.

In this paper, we introduce a citizen science project we created to obtain large
numbers of classified objects. We compare the performance of citizen volunteers
with experts. We train CNNs on classifications of citizen volunteers and ex-
perts and compare their results. CNNs are tested on spectroscopically confirmed
galaxy clusters and objects classified as non-clusters by experts.
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The structure of the paper is as follows: in Section 2.3 we present our citizen
science project and its development together with a description of the observa-
tions and the construction of their classifications by the experts, in Section 2.4
we introduce the machine learning methods we use, Section 2.5 presents mea-
surements used to evaluate classification or detection performance, Section 2.6
presents the results of the citizen science campaign as well as the results and
discussion of neural networks analysis. Finally, we conclude in Section 2.7.

2.3 the hunt for galaxy clusters

Our citizen science project, The Hunt for Galaxy Clusters1, was launched online
as an official Zooniverse project on the 24th of October 2018. There were 1 600
galaxy cluster candidates in the project that have been detected as extended
X-ray sources by the XAmin wavelet-based pipeline (Pacaud et al., 2006). Each
object was classified by at least 30 different volunteers and this was completed by
the 29th of April 2019. 1 227 volunteers participated in the project. Classifications
of not logged in volunteers, as well as classifications which have been done on
each object multiple times by the same volunteer, were not considered.

The project starts with a short tutorial briefly explaining how to navigate in
the project’s page and how to classify candidate clusters. Each object comes with
four images, covering the exact same area of the sky (7×7 arcmin2): two X-ray
and two optical images. Figure 2.1 shows all four images of a galaxy cluster
candidate as shown to the volunteers in The Hunt for Galaxy Clusters.

Our project uses six questions to help determine the class of a galaxy cluster
candidate. Each question has two or three possible answers, and due to the
structure of the decision tree (Figure 2.2), only a subset of the questions are
answered. Those questions come with help notes, example images, as well as
descriptions to each answer. We selected example images very carefully to cover
a broad range of objects and/or instrument effects, in order to avoid biases. The
Zooniverse volunteer’s answers were then used to create a binary classification
scheme of cluster and non-cluster.

2.3.1 Data

The data in this work originates from the XMM CLuster Archive Super Survey
(X-CLASS) (Clerc et al., 2012b), an X-ray galaxy cluster search in the archival
data of the European Space Agency’s X-ray observatory XMM-Newton, com-
bined with corresponding optical counterparts from the Digitized Sky Survey
POSS-II (DSS2). We used XMM-Newton data obtained between 2000 and 2015,
employing selection criteria described in (Clerc et al., 2012b), and excluding the
data used by the XXL survey (Pierre et al., 2016).

2.3.2 X-ray pipeline

Our sample of galaxy cluster candidates has been constructed using the inter-
mediate XAmin 3.5 version (new source models added: double point-source and
point+ extended source). This version, after the processing of the X-CLASS sur-

1 https://www.zooniverse.org/projects/matej-dot-kosiba/the-hunt-for-galaxy-clusters
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Figure 2.1: Top left: raw X-ray image with contours showing the areas of constant X-
ray brightness and a cyan cross marking the object selected for classification.
Bottom left: raw X-ray image without contours and markings. Right: corre-
sponding optical images.
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Figure 2.2: The decision tree of The Hunt for Galaxy Clusters Zooniverse citizen science
project. Blue cells represent questions, red are answers leading to the cluster
class and yellow are answers leading to the non-cluster class.
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vey, appeared to suffer from a miss-centering problem randomly affecting a tiny
fraction of the point-source population, that led to classify them as extended.
In order to remove miss-classified sources, experts then performed an in-depth
screening of the putative cluster candidate lists. The screening dealt as well with
usual nearby galaxies and saturated AGNs, that both appear extended in the
X-ray images

The pipeline is briefly described below. Firstly, a combined MOS1+MOS2+PN
image of an XMM-Newton (Jansen, 1999) observation is smoothed with a ded-
icated wavelet smoothing program called mr_filter, described by Starck et al.,
1998 and shown in Starck and Pierre, 1998 to effectively recover structures in
X-ray images characterised by low numbers of photons.

Secondly, the wavelet smoothed image is analysed by the source extraction
software SExtractor (Bertin and Arnouts, 1996). It creates a list of candidate
sources for further analysis, returning an estimate of their position and their
flux.

Note that, since SExtractor was developed for optical images which contain
many more photons than the X-ray ones, smoothing the X-ray image is a neces-
sity as SExtractor would not be able to work with raw data. This smoothing
can be performed in several ways; the wavelet smoothing used by XAmin is one
of the possible ways of smoothing the image and was shown by Valtchanov et
al., 2001 to give the best results for X-ray images of diffuse sources like galaxy
clusters.

Finally, we characterise the candidate sources found by SExtractor. This is
done by fitting both a point source model given the XMM-Newton PSF computed
at the source position and an extended β model (Cavaliere and Fusco-Femiano,
1976) which better describes galaxy clusters. A source is declared to be a point
source (AGN or an extended source too faint to be characterised as extended)
or an extended source (galaxy cluster) depending on which of these two models
best fits the candidates source. The details, including the relevant formulas and
the selection criteria for defining an (almost) pure sample of galaxy clusters, are
given in Pacaud et al., 2006.

Coordinates of the galaxy cluster candidates picked by XAmin are then used
to produce normalised images (2.8) with and without X-ray contours to show
lines of constant X-ray brightness. These contours are superimposed onto the
optical counterpart image, together with a cyan cross mark and are used only
for human screening to help visualise the X-ray emission.

2.3.3 Weighting volunteers classifications

Since each object is classified by 30 volunteers, we may end up with different
classifications for the same galaxy cluster candidate. Each person’s classification
ability may vary according to the class and the question asked, and there may
even be volunteers who purposely create malicious classifications. To mitigate
those effects, we weight classifications of each user question-wise. Weighting is
done according to the agreement of the majority, so each user has an accuracy
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determining a portion of his/her classifications being in agreement with the ma-
jority of votes, which is done question-wise,

Gi =
Ci

Qi
, i ∈ 1, ..., 6 (2.1)

where Gi is the weight applied for an individual on question i, Ci is the number
of answers to question i given by the individual that were in agreement with
the majority and Qi is the total number of answers the individual has made for
question i. Gi essentially describes the ability of an individual to classify as the
majority of volunteers would. Every classification in the project is then weighted
according to the classifying volunteer’s accuracy for the specific question. The
bottom red leafs of the decision tree (Figure 2.2) are classification ending answers
corresponds to the final answers stating that the classified object is a galaxy clus-
ter. Similarly, all yellow leafs corresponds to the final answers stating that the
object is not a galaxy cluster. Each galaxy cluster candidate gets 30 votes, each
vote is an accuracy of the voting user for the question of his/her classification
ending answer (one of bottom red leafs or any yellow leaf). Those 30 weighted
scores are summed to galaxy cluster (bottom red leafs) and non-galaxy clus-
ter (yellow leafs) categories. The higher score determines the final Zooniverse
weighted classification for the galaxy cluster candidate.

2.3.4 Classifications of experts

The galaxy cluster candidates generated by the XAmin pipeline are manually
classified by the X-CLASS collaboration. Each galaxy cluster candidate is clas-
sified by two experts and three moderators make the final classification on con-
flicting decisions. Figure 2.3 shows how a galaxy cluster candidate is presented
to the experts. The images are provided without redshift or sky coordinate in-
formation, and the experts make decisions without consulting with each other
to avoid any bias. The experts were given the opportunity to classify objects
as a low redshift cluster (0 < z < 0.3), high redshift cluster (z > 0.3), nearby
galaxy, point source, star or AGN, double source, artefact, edge, fossil group,
high background image, no optical image or dubious source. We create a binary
classification scheme where the last four categories in the list are not used, low
and high redshift clusters are collectively referred to as clusters and the remain-
ing classes are collectively referred to as non-clusters.

2.4 machine learning approach

Now, we turn our attention to a machine learning approach, which allows us
to automatically process astronomical data on much larger scales than what is
possible to achieve by human annotations. We use neural networks – a para-
metric model, that is able to learn to approximate a complex function from
training examples of inputs and the corresponding outputs. In our case, each
training example consists of combined X-ray and optical image as the input and
the corresponding output class label obtained from a human annotator. In our
experiments, we consider binary classification, where the class labels are galaxy
cluster and non-cluster, but also multi-class classification with subcategories that
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Figure 2.3: Images of a galaxy cluster candidate classified by experts. Top left: an X-ray
raw image overplotted with contours showing areas of constant X-ray bright-
ness, and marks produced by the XAmin pipeline. Top right and bottom
left images are smoothed versions of the X-ray images, wavelet and Gaus-
sian smoothing produced by the XAmin pipeline, respectively. The Gaussian
smoothed image is overplotted with Gaussian contours, the sigma is chosen
to be 3 pixels (with a pixel size of 2.5 arc seconds so the sigma is 7.5 arc
seconds). Bottom right: the optical counterpart of the X-ray image with su-
perimposed marks and wavelet X-ray contours. All images cover the exact
same area of the sky, 7×7 arcmin2, except for the bottom panel, where we
focus in the central region (4×4 arcmin2) of the optical image, because with
the contours and the symbols it is not easy to see the central cluster bright-
est galaxy and overdensity of faint galaxies.
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will be discussed in Section 2.6.5. From the training examples, our neural net-
works learn to predict posterior probabilities of all classes given an input image.
In our experiments, we evaluate the performance of the neural networks using
measures discussed in Section 2.5. For some of the measures, we need to make a
hard classification decision for each input image from our evaluation set. In such
a case, we simply select the most probable class.

In this work, we use Convolutional Neural Networks (CNN), which is cur-
rently the most popular and very effective neural network architecture for image
processing (Ciresan et al., 2012; Krizhevsky et al., 2012; Lecun et al., 1989). A
deeper knowledge of CNNs is not necessary for interpreting our results and un-
derstanding the presented analyses. It is only necessary for understanding some
of the technical details. This paper also can not give a complete tutorial to CNNs,
therefore, we do not provide a further introduction to CNNs and we kindly refer
the interested reader to the relevant textbooks (Bishop, 2006; Goodfellow et al.,
2016) or the numerous tutorials available online. We use two CNNs architectures
for our experiments: Using the Keras toolkit (Chollet et al., 2015), we build and
train our custom network, which uses a conventional CNN architecture with in-
terleaving convolutional and pooling layers and final dense layers. The second
architecture is MobileNet (Howard et al., 2017). We take these networks as pro-
vided by its authors pre-trained on the ImageNet (Deng et al., 2009) data, which
is a large data set of millions of real-word images categorised into thousands of
classes. We assume that such pre-training can serve as a good initialisation of
the CNN parameters, which are further retrained on our training data for galaxy
cluster classification.

2.4.1 Data preprocessing

For training neural networks, we use images without contours and marks. For
each candidate cluster, a pair of X-ray and optical PNG images were merged into
a single PNG image. As well as our custom network, we use existing architectures,
that were designed to take input images with 3 colour channels. In order to
achieve this, we grayscale the X-ray and optical images and stack them together
as individual channels, leaving one channel empty (zero-filled) to create a single
RGB image. Although training of our custom network can be done with any
number of input channels, we use the same 3-channel images as the input to
the network unless stated otherwise. By default, we construct the input images
as follows: the blue channel contains the grayscaled optical image, the green
contains the grayscaled X-ray image and the red is filled with a matrix of zeros
(Figure 2.4).

2.4.2 Data augmentation

With smaller data sets, the risk of over-fitting increases, resulting in poor gen-
eralisation to data outside of the training set. To prevent overfitting, we use
data augmentation to reduce the probability that the network will see exactly
the same image twice and to essentially increase our training sample size. At
each training step, the input image is randomly scaled to a uniform value be-
tween 1/1.3 and 1.3, rotated by a random uniform angle between 0 and 360◦
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Figure 2.4: Left is the 356×356 pixel X-ray rgb .PNG image, middle is its 356×356 pixel
optical .PNG counterpart and right is an rgb .PNG image made by stacking
grayscaled optical image as blue channel, grayscaled X-ray image as green
channel and the red channel was filled with zeros.

and translated in x and y directions by a random uniform value between −4 and
4 pixels.

2.5 performance measurements

This section describes the measurement methods we chose to evaluate our neural
networks compared to a baseline.

Accuracy is the most intuitive performance measurement. It is the ratio of
correct predictions to all predictions and is defined as

A =
TP + TN

TP + TN + FP + FN
, (2.2)

where TP refers to the number of true positives, in our case the number of
clusters correctly classified as clusters, TN is a number of true negatives (number
of non-clusters correctly classified as non-clusters), FP is a number of false
positives (number of non-cluster incorrectly classified as clusters) and FN states
for a number of false negatives (number of clusters incorrectly classified as non-
clusters).

Precision is the ratio of the correctly classified positives (i.e. clusters) and all
objects classified as positives. This is defined as

P =
TP

TP + FP
. (2.3)

Recall is the ratio of the correctly classified positives and all positives examples
in the test data. It is defined as

R =
TP

TP + FN
. (2.4)
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The receiver operating characteristic (ROC) is a performance measurement
of detection problems plotted as a true positive rate (recall) against the false
positive rate, defined as2

FPR =
FP

FP + TN
(2.5)

at various thresholds. The area under the curve (AUC) describes the model’s
capability to distinguish between two classification classes and is independent of
the choice of the threshold. When reporting detection performance for a class
(from the CNN output) in terms of ROC curve, we compare the posterior prob-
ability of the class to a varying detection threshold.

2.6 results and discussion

2.6.1 The Hunt for Galaxy Clusters results

The data set of 1 600 galaxy cluster candidates in The Hunt for Galaxy Clusters
contained 404 objects previously classified by experts.

Table 1 displays a comparison of the unweighted and weighted classifications
of the Zooniverse volunteers (Section 2.3.3) based on the agreement with the ex-
perts. Figure 2.5 shows ROC curves computed for the whole crossmatch sample
of 404 objects classified by both the Zooniverse volunteers and experts and the
ROC computed on a subsample of 170 objects, 85 spectroscopically confirmed
galaxy clusters and 85 objects classified as non-clusters by experts. This subsam-
ple is also used for the testing of the CNNs. The Zooniverse volunteers performed
better on the subsample of 170 objects than on the whole crossmatch sample of
404 objects. This could be an indication of a bias towards correctly classifying
easier objects since spectroscopically confirmed galaxy clusters tend to be larger.

Figure 2.6 shows the fraction of the Zooniverse volunteer’s individual answers
in agreement with experts to all Zooniverse answers for classification ending an-
swers, except for not a nearby cluster and not a distant cluster, which do not
have a direct counterpart in the classification of experts. Assuming that the
expert classifications are the ground truth, the biggest difficulty for the volun-
teers seems to be distinguishing extended from point-like X-ray emission. Also,
the volunteers inconsistently classified a large fraction of no emission classes,
suggesting that they struggled to interpret the X-ray images. The huge discrep-
ancy between volunteer’s individual classifications and classifications of experts
were in the edge category, used for galaxy cluster candidates close to the edge
of XMM-Newton’s chips and its field of view. Based upon discussions within
the online forum, we assume that this bias could emerge from XMM-Newton’s
grid-like pattern created by small gaps between its individual detectors, which
volunteers often mistaken for the edge of the chips. The nearby galaxy category
was also a difficult question for the volunteers. Again based on the forum dis-
cussion we find that volunteers often classified nearby galaxy clusters with a
prominent brightest central galaxy as a nearby galaxy class, which could lead

2 I made a typo in the original publication in the FPR equation in which I accidentally wrote
T N to numerator instead of the correct F P as is written here
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to many nearby galaxy clusters missed. In general, the Zooniverse volunteers
preferentially classified objects as non − clusters.

Some of the biases could be mitigated in possible future versions of the project
if explanations were clearer and more focus was put on example images in the
help notes. Possibly the most important biases were often a classification of an
X-ray emission as no emission and misclassification of an extended X-ray emis-
sion as a point-like X-ray emission. This are the main reasons why clusters were
missed by the Zooniverse volunteers. We tried to keep in mind the possibility of
low scientific knowledge of the volunteers and not to overwhelm the volunteers
with huge amounts of information, which could discourage them, but we were
still able to provide a detailed explanation of the X-ray emission in the tuto-
rial and the help notes, with nice example images and diagrams to help with
the X-ray contours. Small interviews with our beta testers revealed that around
20 % of them did not read the supporting texts. It might be possible that clas-
sifications with a lot of disagreement in the interpretation of the X-ray emission
preferentially came from volunteers who did not adequately read the support-
ing material. A questionnaire would be needed to further probe this possibility.
These biases could be cut down with simpler and shorter explanations of the
X-ray properties, so it would be easier to understand and less information to
digest. Another common tendency was the misclassification of nearby clusters
that contain prominent BCGs (brightest cluster galaxies), with that of nearby
galaxies. This could be reduced with a dedicated pair of images for the two
situations in the help notes.

We have to note that even the classifications of experts could be biased towards
low-z clusters, since we use DSS optical images, which are limited to z ∼ 0.3.

Another possible bias may come from the fact that spectroscopically confirmed
clusters are biased to big clusters, which might affect our interpretation.

To explore if the Zooniverse volunteers were biased finding preferentially most
prominent galaxy clusters, we made extent – extension likelihood plane plots (see
Appendix:Extent – extent likelihood plots). We found that the galaxy clusters
found by the Zooniverse volunteers populate all of the space, not showing bias
and their sample of galaxy clusters also can not be recreated by a simple cut in
this space.

Even though the Zooniverse volunteers did not show a high accuracy compared
to experts, misclassifying many galaxy clusters as other options, the sample
of galaxy clusters they selected is pure. This makes us conclude that, via the
Zooniverse project, the general public can help scientific research where a very
pure sample of galaxy clusters is required, but it did not prove to be helpful in
a case where a sample of galaxy clusters should be complete.

2.6.2 CNN training

We use two different data sets, one classified by experts and one by the Zooniverse
volunteers. We use balanced training batches, containing the same number of
classification classes, randomly sampled from the training data. This is to prevent
the network from being biased towards the class that occurs most frequently in
the training sample.

Regardless of the training data, all the networks were tested on the same data
set of 85 spectroscopically confirmed galaxy clusters and 85 objects classified
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Figure 2.5: The receiver operating characteristic (ROC) curves for the classifications
by Zooniverse volunteers, taking the classifications of experts as the ground
truth. Closer the curve copies the left vertical and top horizontal axis, better
the classifier. The dashed line shows how would the results be if the people
guessed totally randomly.

Figure 2.6: A quantification of the Zooniverse classifications for a) no emission, b) edge,
c) point, d) nearby galaxy, e) no optical image, f) nearby galaxy cluster,
g) distant galaxy cluster, assuming the ground truth is the expert classifi-
cation.
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Table 2: The number of objects in the training, validation and test data sets classified
by Zooniverse and experts.

Class Zooniverse Experts
Train Validate Train Validate Test

cluster 320 130 845 200 85
non-cluster 880 100 388 104 85
total 1200 230 1233 304 170

as non-clusters by the experts, the 170 test objects. Table 2 and Figure 2.7
describe the numbers of objects used in the training, validation and test data
sets, classified by experts and the Zooniverse volunteers for testing on the 170
object test sample. All the networks were trained on grayscaled and combined
X-ray and optical images as described in Section 2.4.1 if not stated otherwise.

We experimented with both a custom network (Table 3) and using 3 dif-
ferent state of the art CNN architectures: VGG19 (Simonyan and Zisserman,
2014), InceptionV3 (Szegedy et al., 2015) and MobileNet (Howard et al., 2017).
We used those networks with their pre-trained weights, using a large learning
rate and unfreezing all the layers. Of the 3 models, MobileNet, pre-trained on
the ImageNet (Deng et al., 2009), achieved the best performance and therefore
we only discuss this architecture. Similarly, Lieu et al. (2018) found MobileNet
to be the superior architecture for classifying solar system objects. The hyper-
parameters for our custom network and the MobileNet network are given in
Table 4. We used Keras (Chollet et al., 2015) with TensorFlow (Abadi et al.,
2015) backend. The lr. red. patience and lr. red. factor are parameters
of the ReduceLROnPlateau Keras callback. The parameter lr. red. patience
defines how many epochs without improvement of the validation accuracy (differ-
ent proxy can be chosen to monitor) have to pass to change the current learning
rate by multiplying it with the lr. red. factor.

The batches used to train the networks were randomly generated during train-
ing, always from the whole training sample. Validation started once a satisfying
number of generated batches was presented to the network, this is the training
data set size divided by the batch size. This was done to maximise the use of our
data while keeping balanced numbers of classes in the yielded training batches,
in order to avoid biasing the network.

2.6.3 CNN results

We demonstrate that convolutional neural networks are capable of high accu-
racy, automated galaxy cluster candidate classification. We trained each of our
networks 10 times with the exact same hyperparameters, differing only in the
seed for generation of random numbers during network’s initialisation, the order
of random image selection into balanced mini-batches during training and the
random sampling of augmentation values applied during training but keeping the
same objects in the training, validation and test data sets. The results of indi-
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Figure 2.7: A Venn diagram presenting the data sets.

Table 3: The architecture of our custom network which achieved the best performance.
Each of the convolutional and dense layers is followed by a ReLU non-linearity
with the exception of the final output dense layer which has the softmax for
classification.

Layer Layer type filter shape / stride input shape
1 conv 3×3×64/(1, 1) 356×356×3
2 max pool 2×2/(2, 2) 356×356×64
3 conv 3×3×32/(1, 1) 178×178×64
4 max pool 2×2/(2, 2) 178×178×32
5 conv 3×3×32/(1, 1) 89×89×32
6 max pool 2×2/(2, 2) 89×89×32
7 conv 3×3×32/(1, 1) 45×45×32
8 max pool 2×2/(2, 2) 45×45×32
9 conv 3×3×32/(1, 1) 23×23×32
10 max pool 2×2/(2, 2) 23×23×32
11 conv 3×3×32/(1, 1) 12×12×32
12 max pool 2×2/(2, 2) 12×12×32
13 flatten - 6×6×32
14 dense 256 1152
15 dense 2 256
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Table 4: Hyperparameters of our custom network and the MobileNet network. The num-
ber of iterations, batches yielded during training, is shown for training on the
data set classified by experts.

Hyperparameters Custom net MobileNet
Batch size 10 20
Iterations 153 000 3 825
Optimizer SGD Adadelta

Nest. Momentum 0.90 -
Rho - 0.95

Initial lr. 0.0001 1.0
lr. decay 10−6 0.95

Minimal lr. 10−4 0.01
lr. red. patience 14 4
lr. red. factor 0.75 0.85

Dense dropout 0.65 0.65
Output activation softmax softmax

Loss function cat. crossentropy cat. crossentropy
Input image size 356×356 224×224

vidual runs are averaged and presented together with their standard deviations
in Table 5 and Figure 2.8, helping to compare various networks.

To report accuracy (A), precision (P) and recall (R) in Table 5), we need to
make hard classification decision for each example image from our test set. Our
neural networks are trained to output the probability that the input image is
a galaxy cluster. Therefore, we classify input images as galaxy cluster if this
probability is higher than 0.5.

Our best-performing custom network (CN-E), trained on the expert classified
data set, achieved an average accuracy of (90 ± 3) %. We also explored training
on concatenated PNG images, without the grayscaling, so having six channels
instead of three, but this did not change the performance significantly.

The MobileNet architecture trained on the data classified by experts achieved
an average accuracy of (88 ± 2) %. Perhaps MobileNet has slightly different sen-
sitivity for individual colour channels due to the potential bias in its original
training sample. We explored this possibility by training it on two additional
channel configurations, X-ray green, optical red, empty blue and X-ray red, op-
tical green, empty blue, but its performance did not change significantly.

Training using the labels obtained in the Zooniverse project resulted in lower
performance for both, our custom network (CN-Z) and the MobileNet (MN-Z),
achieving average accuracies (82 ± 1) % and (79 ± 2) %, respectively.

Lastly, we also explored the training of neural networks on single wavelength
PNG images. Our custom network using expert labels trained only on the X-
ray images without their optical counterparts (CN-E solo X-ray) achieved an
average accuracy of (81 ± 1) %. Our custom network using expert labels trained
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Table 5: Averaged galaxy cluster candidate classification results of the networks each
trained 10 times with the exact same hyperparameters, only with a different
seed for generation of random numbers during its initialisation.

network A ± std P ± std R ± std AUC ± std
CN-E 0.90 ± 0.03 0.89 ± 0.05 0.91 ± 0.03 0.96 ± 0.01
MN-E 0.88 ± 0.02 0.87 ± 0.03 0.91 ± 0.03 0.94 ± 0.01

CN-E solo optical 0.68 ± 0.02 0.64 ± 0.02 0.85 ± 0.04 0.77 ± 0.02
CN-E solo x-ray 0.81 ± 0.01 0.78 ± 0.03 0.86 ± 0.04 0.89 ± 0.01

CN-Z 0.82 ± 0.01 0.96 ± 0.01 0.67 ± 0.02 0.91 ± 0.01
MN-Z 0.79 ± 0.02 0.96 ± 0.03 0.62 ± 0.03 0.86 ± 0.02

CN-E no augm. 0.75 ± 0.02 0.70 ± 0.02 0.87 ± 0.03 0.87 ± 0.01
MN-E no augm. 0.81 ± 0.01 0.75 ± 0.02 0.91 ± 0.01 0.90 ± 0.02

only on the optical images (CN-E solo optical) performed the worse, achieving
an accuracy of only 68 ± 2) %. This is rather easily understandable knowing that
the XMM-Newton data are much deeper than the POSS-II images used for the
current analysis: while XMM-Newton can detect galaxy clusters as extended
sources out to z = 1 at least, the POSS sensitivity strongly drops beyond z ∼ 0.3
rendering galaxies are hardly identifiable.

Using augmentation (Section 2.4.2) was critical to achieving good perfor-
mance, the accuracy of the network CN grayscale would drop from (90 ± 3) %
to (75 ± 2) % without the augmentation and from (88 ± 2) % to (81 ± 1) % for
MobileNet.

2.6.4 Interpreting the results

We further investigate the results of the best training run of our custom network
(CN-E), which can classify even faint clusters and those close to the edge of
XMM-Newton’s field of view. Figure 2.9 shows some of these randomly selected
correctly classified galaxy clusters.

Figure 2.10 shows two objects classified as non-clusters by the experts, but as
clusters by our custom network. The top object raised a concern that it was actu-
ally a galaxy cluster. We assume that it was classified as a galaxy cluster by our
custom network because of the presence of the faint X-ray emission in the centre
and that it is a promising candidate for further investigation and spectroscopic
redshift confirmation. Figure 2.11 displays images of spectroscopically confirmed
galaxy clusters which have been incorrectly classified by our custom network as a
non-cluster class. The first object from the top is a non-centered galaxy cluster.
The second contains a group of nearby galaxies with faint extended X-ray emis-
sion, which might have fooled our network. The third is a cluster that falls on
a chip gap. The fourth is a galaxy cluster with three prominent nearby galaxies
along the line of sight which is probably what fooled our network, and the last
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Figure 2.8: ROC curves for the best-performing networks when trained on different data
formats. Closer the curve copies the left vertical and top horizontal axis,
better the classifier. The dashed line represents how would an untrained,
randomly guessing classifier score. Training on optical data only ended up
with the poorest results, using only X-ray data achieved much better re-
sults, however, the combination of optical and X-ray data resulted in the
best performance. CN refers to our custom network, MN to the MobileNet
architecture, E to the data set classified by experts, Z to the data set clas-
sified by the Zooniverse volunteers.
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Figure 2.9: Spectroscopically confirmed galaxy clusters correctly classified by our custom
network randomly selected from the test sample (TP). Left: optical, middle:
X-ray, right: combined.

object appears like a nearby galaxy, which can be hard to classify even for the
experts.

Figure 2.12 shows outputs of the selected filters of our custom network for
a spectroscopically confirmed nearby galaxy cluster. We can see how the net-
work learned to search for edges and colour patches of X-ray or optical light.
Some filters learned to search primarily for X-ray emission and others for optical
emission. Most of the filters detected both of the emission components simul-
taneously. Multiple filters in the same layer usually learned to search for X-ray
emission, but their sensitivity is different. There are filters which get activated
only by stronger emission, while other filters are more sensitive to X-ray emis-
sion. The network uses the filters to probe the presence and extent of the X-ray
emission in the input image. Note that the filter output size decreases deeper
within the network because of the max-pooling operation applied in the pooling
layer after each convolutional layer.
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Figure 2.10: Non-galaxy clusters incorrectly classified as galaxy clusters (FP) by our
custom network. Left: optical, middle: X-ray, right: combined.

Table 6: Results from the multi-class classification networks.

class A P R AUC
MN grayscale
Low-z cluster 0.77 0.62 0.94 0.93
High-z cluster 0.87 0.56 0.22 0.91
Point source 0.87 0.88 0.36 0.89

Nearby galaxy 0.90 0.70 0.73 0.92
Other 0.91 0.65 0.68 0.92

CN grayscale
Low-z cluster 0.79 0.68 0.81 0.89
High-z cluster 0.84 0.44 0.65 0.89
Point source 0.84 0.75 0.27 0.88

Nearby galaxy 0.89 0.74 0.57 0.85
Other 0.87 0.52 0.64 0.88
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Figure 2.11: Galaxy clusters incorrectly classified as non-galaxy clusters (FN) by our
custom network. Left: optical, middle: X-ray, right: combined.
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Figure 2.12: Top: Input image to the trained network. Each row from second to last
shows outputs (activation maps) of 3 selected filters from 2nd, 4th and 6th
convolutional layer of our custom network, respectively.
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Table 7: The number of objects in the training, validation and test data sets in a single
fold of the 10 fold cross-validation.

Class Experts
Train Validate Test

cluster 904 113 113
non-cluster 399 57 114

2.6.5 Multi-class classification

We also trained neural networks for multi-class classification using the labels of
the experts. We segregated objects into 5 classification classes - low z cluster,
high z cluster, nearby galaxy, point source (point, star or AGN, double source)
and other (artefact, edge). The ROC curves and performance measurements were
calculated as one versus all problem.

In this regime, the MobileNet architecture and our custom network achieved
an AUC and accuracy, averaged over all classes, within 1 sigma. The MobileNet
achieved an AUC score of (91 ± 2) % and accuracy of (86 ± 6) % , and our custom
network obtained an AUC of (88 ± 2) % and (85 ± 4) % accuracy (Table 6).

In the case of multi-class classification problems, ROC and AUC are plotted
for each of the classes separately as one versus all, reducing the problem to the
binary case. From the ROC curves (Figure 2.13), we see that the point source
and high-z galaxy cluster were the hardest classes to detect, and in the custom
network, the nearby galaxy class was the easiest to distinguish. We interpret this
as a consequence of nearby galaxies being very distinct from the other classes
in the optical. Interestingly, this category did not achieve the best performance
for the MobileNet network, however, it still placed among the top-performing
classes.

We note that since we have trained the neural networks on a sample of galaxy
cluster candidates picked by the XAmin pipeline, our sample of point sources
is biased towards objects with some spatially extended emission. Thus we can
not consider the networks trained for multi-class classification as a reliable point
source classifiers since they are not representative of the population and do not
reflect the typical appearance of an X-ray point source. If one would like to use
our neural networks for point source detection, re-training or fine-tuning of our
models on a representative sample of X-ray point sources would be required.

2.6.6 Cross-validation

We perform 10-fold cross-validation of CN-E to explore, if the test data set,
having all of its galaxy clusters spectroscopically confirmed, shows significant
bias compared to the galaxy cluster sample in the training data set. Table 7
contains the number of example images in each data set for a single fold of the
cross-validation. The cross-validation accuracy scores between 87 % and 92 %
(Table 8, Figure 2.14) and our CN-E achieved accuracy 90 % on average (Table 5,
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Figure 2.13: ROC curves for multi-class classification performed by the MobileNet ar-
chitecture (left) and our custom network (right).
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Figure 2.14: ROC curves for 10 fold cross-validation of our custom network trained on
expert classifications.

Table 8: Classification results of our custom networks for a 10 fold cross-validation on
classifications done by experts.

Fold A P R
1 0.89 0.89 0.88
2 0.92 0.91 0.93
3 0.90 0.90 0.91
4 0.88 0.91 0.83
5 0.87 0.88 0.86
6 0.87 0.87 0.88
7 0.88 0.90 0.86
8 0.92 0.89 0.95
9 0.88 0.84 0.94
10 0.89 0.92 0.87
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Figure 2.8). Those results are consistent and the test sample we used does not
seem to have any significant bias on the network’s performance.

2.7 summary

In this paper, we have presented convolutional neural networks to classify ex-
tended X-ray sources detected by the XAmin pipeline. This automated method
can be used to replace the traditional manual screening confirmation task of the
XAmin galaxy cluster candidates, which is often tedious and slow.

Firstly, we built a crowd-sourcing Zooniverse project - The Hunt for Galaxy
Clusters, to obtain a classification of a large number (1 600) of galaxy cluster can-
didates in a short time frame (6 months). Our volunteers obtained 62% agreement
with experts for identifying clusters and non-clusters in an overlapping sample
of 404 objects. We found that the volunteers were often incorrectly classifying
objects as point sources or no emission. Out of 254 objects classified as galaxy
clusters by experts in the overlapping sample, volunteers agreed on 104 of those
(66/146 low-z and 38/108 high-z galaxy clusters), which is only about 40 %, but
they inconsistently classified only 1 non-cluster as a galaxy cluster. In total, the
volunteers found 506 clusters from 1 600 candidates. We suspect the reason be-
hind this low performance of the Zooniverse volunteers in The Hunt for Galaxy
Cluster, if compared to e.g. Galaxy Zoo, to be the complexity of combined X-ray
and optical data of galaxy cluster candidates, burdened by multiple projection
and instrumental effects (see Section 2.6.1 for discussion of biases the Zooniverse
volunteers exhibited). We also tested a hypothesis, that the Zooniverse volun-
teers would preferentially find prominent galaxy clusters and that their sample
could be easily recreated by a cut in the extent – extension likelihood plane
(Pacaud et al., 2006), however, the Zooniverse volunteers found galaxy clusters
across the entire extent – extension likelihood space (Appendix:Extent – extent
likelihood plots), pointing out that their help could be used for a galaxy cluster
science.

Next, we trained CNNs on XMM-Newton X-ray images combined with their
optical counterparts from DSS2, to distinguish galaxy clusters from non-clusters.
The cross-validation of our custom network shows consistent results (Table 8,
Figure 2.14) with accuracy scoring between 87 % and 92 %. We further developed
networks on a fixed training, validation and test samples, the networks trained
on Zooniverse classified data having a different training and validation samples
than those trained on data classified by experts, but both having the same test
sample. Our best network (CN-E) obtained an average accuracy of 90 % (Sec-
tion 2.6.3). This network used our custom architecture and was trained on labels
made by experts. The test sample of 170 objects is composed of 85 spectroscop-
ically confirmed galaxy clusters (62 low-z and 23 high-z), and 85 galaxy cluster
candidates classified as non-clusters by experts. For comparison, a similar net-
work using the MobileNet architecture (MN-E) obtained an average accuracy
of 88 % and using the custom architecture with the Zooniverse classifications
(CN-Z) gave an average accuracy of 82 % at best.

In this work, we show that CNNs trained using either X-ray only or optical
only images had significantly lower performance in reliably identifying galaxy
clusters in comparison to using the combined data. While in the X-rays XMM-
Newton detects galaxy clusters as extended sources to z = 1 at least, the optical
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POSS-II data sensitivity strongly drops beyond z ∼ 0.3, making galaxies hardly
identifiable. This is evident from the high number of false-positive detections
of galaxy clusters (low precision) using the optical only data. The X-ray only
network achieved higher accuracy (81 %) than the optical only network (68 %).

Additionally we train our networks for multi-class classification using expert
classified labels: low-z galaxy cluster, high-z galaxy cluster, point source, nearby
galaxy and other. In this case, the MobileNet architecture performed slightly,
but not significantly, better than our custom network (Table 5).

This project is a pilot study to determine the potential of CNNs for the detec-
tion of galaxy clusters. In the future, we intend to apply our methods to large
sky surveys such as the new eROSITA or LSST and Euclid. Their enormous data
sets are expected to contain tens of thousands of new galaxy clusters, which will
require automated, fast and reliable methods to identify, as human screening of
such large data volumes will be impossible. Our methods can also be applied to
simulated data. Our custom network can be easily fine-tuned to, e.g., eROSITA
simulations and deliver an automated search tool for galaxy clusters from X-ray
images. Applying our CNN on simulations will also enable modelling of the clus-
ter selection function, important for cosmological studies, which cannot be done
with clusters selected by human inspection due to their inconsistent biases.
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Table 9: Threshold values used by the XAmin pipeline, std and median are the standard
deviation and the median of the image data.

X-ray Optical
min cut 0 median - std
max cut median × 14 median + 5 × std

Table 10: PNG image channel values as constructed by the XAmin pipeline. pix refers
to the pixel value after cutting.

Channel Pixel value Normalised pixel value

R pix >= 176 255
pix < 176 pix × 255 / 176

G pix >= 120 (pix - 120) × 255 / (255 - 120)
pix. < 120 0

B pix >= 190 (pix - 190) × 255 / (255 - 190)
pix < 190 0

Collaboration et al., 2018) Python3 (Van Rossum and Drake, 2009a) packages.
Our codes are open source3.
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2.8 appendix: image preprocessing

The output of the XAmin pipeline is an image with the following normalisation:
if a pixel value is lower than min cut, it is attributed a value of 255; if a pixel
is greater than max cut it is attributed a value of 0; and 255 × (1 - (data - min
cut) / (max cut - min cut)) otherwise Table 9. To produce the .png images used
in the neural networks, XAmin applies the normalisation separately to each of
the channels according to Table 10.

2.9 appendix: extent – extension likelihood plane plots

The extent – extension likelihood plane plots (Figure 2.15, Figure 2.16) of our C1
sample of galaxy cluster candidates as described in (Pacaud et al., 2006), were
used to analyse the Zooniverse sample of galaxy clusters and investigate our
initial hypothesis, that the Zooniverse volunteers will preferentially find most

3 https://github.com/matej-kosiba/CNN-multiwavelength
-classification-of-X-ray-selected-galaxy-cluster-candidates
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Figure 2.15: Extent – extension likelihood plane for objects of the 170 test sample clas-
sified by experts and the Zooniverse volunteers.

prominent galaxy clusters. We find that the sample of the Zooniverse galaxy
clusters span the entire extent – extension likelihood plane and can not be recre-
ated by a simple cut in this space. Please note however that the XAmin v3.5 we
used to make the C1 sample had an issue fitting the point source peak, resulting
in many non-clusters in the C1 region on the plots and that it is not the same
pipeline as the XXL collaboration used before.
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Figure 2.16: Extent – extension likelihood plane for objects of the experts train sample
and the Zooniverse train sample.
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3.1 introduction

Galaxy clusters are the largest virialized systems in the Universe, sitting on the
peaks of the primordial density fluctuation field (e.g. Bahcall, 1988). The mass
distribution and number density of galaxy clusters across space and redshift are
governed by the cosmological parameters of the Universe, making them poten-
tially powerful cosmological probes e.g. Eke et al., 1996. Clusters in X-rays are
less prone to projection effects than galaxy over-densities in the optical (e.g.
Bhatiani et al., 2022) and provide key physical information on the intra-cluster
medium (ICM), which is a good tracer of the underlying dark matter distribution
(e.g. Fischer et al., 2023; Holland et al., 2015).

However, cluster cosmology is usually considered a delicate enterprise, given
that the cluster mass, a key parameter that enters the cosmological analysis, is
not a directly observable parameter. Rather than using mass proxies, like the X-
ray temperature, luminosity, or gas mass, our approach is to forward model a set
of observed properties. More specifically, we consider the distribution of the count
rates (CR) and hardness ratios (HR) observed by the XMM-Newton satellite
in several redshift bins (X-ray Observable Diagrams, XOD). The main idea is
that the CR and HR values are analogous quantities to the X-ray fluxes and
the temperatures of the galaxy clusters. Together with the redshift information,
these quantities thus carry both physical and cosmological information. This
method, ASpiX, has proven an efficient way of performing cluster cosmological

59
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analyses (Clerc et al., 2012b). It enables easy modelling of the cluster selection
function and has the merit of cleaning several potential systematic uncertainties
that are otherwise cosmology-dependent. Moreover, it enables the inclusion of all
detected clusters in the analysis because HR measurements require much fewer
photons than measuring a temperature.

To date, the method has been tested on simulations (Pierre et al., 2017; Valotti
et al., 2018) and used to extract the cosmological constraints from the XMM-
XXL cluster sample (Garrel et al., 2022, Garrel et al. (2024), submitted). All
these applications used a Markov Chain Monte Carlo (MCMC) algorithm to in-
fer the cosmological parameters and related uncertainties. Moreover, cosmology-
dependent priors derived from the same cluster sample were imposed on the
cluster scaling relations, linking the mass with the cluster luminosity, tempera-
ture, size, and associated scatter values.

The present paper is the sixth of the series investigating the potential of the
ASpiX concept. Our goal here is to use a deep learning approach to explore to
what extent we can infer cosmology without any prior knowledge of the cluster
evolutionary physics, i.e., on the coefficients of the scaling relations. We start
by creating XODs for a wide range of Ωm and σ8 values, assuming random
values for the scaling relation coefficients, which will be handled as nuisance
parameters: this allows us to produce an unbiased simulated XOD sample. We
then train a sequential neural posterior estimation (SNPE) (Papamakarios and
Murray, 2016) network, a novel machine learning (ML)-based technique of the
simulation-based inference family (SBI), to infer the cosmological parameters
Ωm and σ8 from the XODs. We consider several survey sizes independently to
estimate the effect of the shot noise on cluster counts, thus on the representation
of the XODs and subsequently on the inferred cosmological parameters.

This paper is structured as follows: Section 3.2 describes the formalism used
to create the XOD sample. Section 3.3 describes the SNPE method. We present
our main results in Section 3.4. In Section 3.5, we discuss the impact of various
factors on our cosmological predictions: the size of the training set for the neural
networks, the effect of imposing a prior on the cluster redshift distribution, and
of decreasing the number of free parameters by assuming self-similar evolution.
We discuss here also what steps would need to be taken when using this method
on a real observed XOD of our Universe. We conclude in Section 3.6.

In this paper, we shall consider uniform XMM-Newton extragalactic surveys
of various sizes, all performed with an exposure time of 10 ks at any sky position.
We take WMAP9 (Hinshaw et al., 2013) as our fiducial cosmology.

3.2 creating the set of x-ray observable diagrams

Given an XMM-Newton extragalactic survey area, size, and exposure time, the
XOD is a summary statistic of the entire detected cluster population. Namely,
a 3D representation of the HR, CR, and z observed parameters. CR is the to-
tal (MOS1+MOS2+pn) count rate in the [0.5-2] keV band, HR is the ratio of
the number of counts in the [1.0-2.0]/[0.5-1.0] bands; while measurement errors
can be attributed to CR and HR, we consider that spectroscopic redshifts are
available with negligible uncertainty.
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3.2.1 Cosmological model and galaxy cluster mass function

To simulate the X-ray cluster population, we assume a flat ΛCDM cosmology
(w = −1) and the Tinker et al., 2008 halo mass function (HMF). This provides us
with the number of galaxy clusters (dn) formed per unit mass (dM) per redshift
bin (dz) per unit solid angle (dΩ). The ranges of considered Ωm and σ8 values
are given in Table 11.

3.2.2 Scaling relation formalism

The next step is to attribute to each halo an X-ray luminosity and a temperature;
this is done through scaling relations. We adopt the formalism described by
Pacaud et al., 2018:

M500
M0 × 1013M⊙h−1 =

T300kpc

1keV

αMT

E(z)γMT (3.1)

L500
L0 × 1041ergs−1 =

T300kpc

1keV

αLT

E(z)γLT (3.2)

where L500 is the rest-frame luminosity in the [0.5-2] keV band, within R500;
T300kpc stands for a generic measure of the temperature within a radius of 300
kpc. The ranges adopted for the six free parameters (normalization, slope, evo-
lution) are given in Tab. 11. Following Pacaud et al., 2018, we encapsulate all
the scatter in the L-T relation, i.e. σLT = 0.67, and σMT = 0.

Table 11: Sampling range for parameters used to simulate the CR-HR-z diagrams. The
first two are the cosmological parameters of interest for the present study; the
latter six define the scaling relations. For all sets of simulated XOD, the eight
parameters are drawn at random, assuming a uniform probability within the
given ranges. The adopted ranges are ±50% of the fiducial values; except for
γLT for which the current uncertainties are much larger.

coefficients central value min value max value

Ωm 0.279 0.1395 0.4185
σ8 0.821 0.4195 1.2315
M0 2.6 1.3 3.9

αMT 1.67 0.835 2.505
γMT -1.0 -1.5 -0.5
L0 8.24 4.12 12.36

αLT 3.17 1.585 4.755
γLT 0.47 0 1.2

3.2.3 X-ray observable properties

After each (M , z) halo is assigned a luminosity and a temperature, we derive
the corresponding observed total XMM-Newton count rates in the three [0.5-2],
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[1-2], and [0.5-1] keV bands of interest; this is done using the APEC plasma
model folded with the XMM-Newton responses for the three EPIC detectors as
described e.g. in Garrel et al., 2022.

3.2.4 XMM-Newton survey design and selection function

In the present study, we consider several (hypothetic) survey sizes ranging from
1 000 deg2 to infinity (see Sec. 3.2.6 and Sec. 3.5.3). This allows us to study the
impact of the shot noise in the XODs: the larger the survey, the larger the
number of clusters in the dCR/dHR/dz bins, hence the smaller the statistical
fluctuations in each bin.

To simulate the survey selection function, we assume a simple CR cut. This
allows us to significantly simplify the modeling of the selection process, which
in reality depends on both the CR and the cluster apparent size (Pacaud et al.,
2006). This hypothesis has no incidence for the purpose of the present study. We
set the cut to CR = 0.02 c/s, which corresponds to ∼ 200 counts for a 10 ks
XMM-Newton exposure; this is a safe limit inspired by the XXL survey statistics
(Adami et al., 2018) and yields for the fiducial cosmology and the Pacaud et al.,
2018 scaling relations around 4 clusters / deg2.

3.2.5 Construction of the XOD sample and the dn/dz selection

The CR-HR-z XODs are defined as 64×64×10 arrays for the CR, HR, and z

dimensions, respectively (Fig. 3.1) and are later compressed to a 16×16×10 res-
olution used for the SNPE ML model (Fig. 3.2). To create an XOD, firstly, a
set of two cosmological and six scaling relation parameters are drawn from the
allowed parameter space (Tab. 11) based on random-uniform prior distributions.
We then compute the number of halos in the survey volume for a 1 000 deg2 area,
derive the CR for each halo, and apply the CR selection, to include or not the
halo in our simulated detected sample. Because the analytical derivation of the
dn/dM/dz distribution is computer-time demanding, we apply an intermediate
test to exclude a priori unphysical combinations of the eight free parameters -
this has a high probability of occurring given that the parameters are drawn
independently at random. For this, we use the fiducial XOD based on the ob-
served cluster’s distribution in our Universe. We calculate the number of clusters
that pass the CR cut in the second redshift bin (i.e. the most populated one).
If this number is incompatible within 3σ with the real-life value (i.e. that of our
fiducial diagram), the combination is discarded and we consider another set of
eight parameters. If this number is compatible with the observed cluster counts,
we compute the number of clusters that pass the CR cut in the fourth redshift
bin; we perform the same comparison as for the second bin and, similarly, decide
whether to keep the set of eight parameters. We perform this test every two
redshift bins to validate a parameter combination as plausible quickly. We stop
when we have identified 70 000 combinations of the eight parameters that verify
the dn/dz constraint for every two bins over the full redshift range. We find that
this only occurs for 1.7% of the random combinations. The entire process takes
about 12 hours to simulate, running in parallel on ∼ 110 cores. The sample size
of 70 000 was arbitrarily chosen and later proved to be a sufficiently large number
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to ensure good performance (Sec. 3.5.1). Fig. 3.3 (left) shows the distribution of
the Ωm and σ8 values of the 70 000 dn/dz accepted XODs.

Figure 3.1: Left: Fiducial XOD for a 1 000 deg2 survey area (simulated for central val-
ues of Table 11), integrated over the redshift dimension. The XOD has a
64×64×10 resolution. Right: a particular Poisson realization of the left-hand-
side image.

Figure 3.2: Left: Fiducial XOD for a 1 000 deg2 survey area (simulated for central values
of Table 11), integrated over the redshift dimension. The XOD has been
downsampled to a 16×16×10 resolution, the shape used for the ML model.
Right: a particular Poisson realization of the left-hand-side image.

3.2.6 Modelling the impact of survey area and of stochastic noise

In average, the number of detected clusters scales proportionally to the survey
area, but the true number of clusters in each XOD pixel is affected by shot noise.
(In all this study, we neglect the effect of sample variance on the cluster number
counts). We describe below, how noise is implemented in the diagrams.

The XODs are first simulated for a 1 000 deg2 survey area with a 64×64×10
resolution, for a given set of cosmological + cluster physics parameters. The
dn/dz 3σ test is applied on this realisation. If the XOD passes the test, the pixel
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Figure 3.3: Comparison of the Ωm and σ8 distribution for XODs from the D1 and D3
datasets Left: D1 with 8 free parameters. Right: D3 with 6 free parameters,
having fixed cluster evolution to be self-similar. Both datasets verify the
dn/dz test. Each dataset contains 70 000 XODs. The white zones show the
regions excluded by each selection. Fixing cluster evolution does not signifi-
cantly restrict the a priori range of possible cosmological values.

values are multiplied 10, to obtain the XOD for 10 000 deg2. After that, the
XODs are downsampled to the 16×16×10 resolution used for the ML model and
we apply a Poisson noise model on every XOD pixel with the Numpy (Harris
et al., 2020) Python (Van Rossum and Drake, 2009b) library. Fig. 3.2 shows an
XOD before noising (left) and after the noise (right) at a 16×16×10 resolution.

In addition, for the purpose of investigating the limits and possible biases of
our modelling, we consider two other - unrealistic - survey sizes : 100 000 deg2

and ’infinite’. The infinite realisation is not affected by noise, while the noising
of 100 000 deg2 follows that of 10 000. We note that since the dn/dz test is
applied on the 1 000 realisation only, it is more permissive for the parameter
sets compatible with the 10 000 and 100 000 surveys.

3.2.7 Datasets

In addition to the main dataset described previously, we also created three other
datasets of XODs (Tab. 12) to examine how the dn/dz selection and how de-
creasing the number of free parameters by fixing cluster evolution parameters at
fiducial values impacts the final accuracy of the cosmological predictions.

The main dataset for this work is the 70 000 dn/dz accepted XODs created by
the steps described previously (D1 dataset). The distribution of its parameters is
shown in Fig. 3.4. The distribution of the parameter values in the dataset shows
some forbidden regions in the parameter space, because of the dn/dz selection.

The second XOD dataset inhibits the dn/dz subselection (D2 dataset). We do
not show the corresponding parameter distribution as it is just the input random
uniform one.

The third XOD dataset uses the dn/dz subselection and, in addition, assumes
that cluster evolution is self-similar (i.e. γLT and γMT are fixed at their central
fiducial values). this is the D3 dataset (Tab. 11). Fig. 3.5 shows the distribution
of this dataset’s dn/dz accepted XOD parameters.
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Figure 3.4: Prior distribution of the two cosmological and six scaling relations parame-
ters after dn/dz subselection for D1 dataset. The blue dots represent param-
eters of XODs that were accepted by the dn/dz selection on this dataset.
We can see that the dn/dz selection flags forbidden regions compared to the
initial random uniform selection from this parameter space.

The last data set (D4) inhibits the dn/dz subselection and assumes cluster
self-similar evolution.

Thanks to these four data sets, we can investigate the effect of restricting
the possible ranges of XOD, by applying well-justified constraints on the cluster
scaling relation coefficients, otherwis totally random : (i) the XOD must verify
the the observed detected-cluster redshifty distribution and (ii) clusters evolve
self-similarly.

The datasets are listed in Tab. 12. They all contain 70 000 XODs.
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Figure 3.5: Prior distribution having two cosmological and four scaling relations param-
eters after dn/dz subselection for the ResNet4 training dataset with fixed
γMT and γLT scaling relation parameters (D3 dataset). The data points
represent XODs accepted in this dataset by the dn/dz selection. There are
no new forbidden regions compared to the distribution of the D1 dataset
(Fig. 3.4).

3.3 sequential neural posterior estimation

Simulation-based inference (SBI) is a broad domain encompassing various mod-
els. We use the Sequential Neural Posterior Estimation model, SNPE (Papa-
makarios and Murray, 2016), from the Python sbi package (Tejero-Cantero et
al., 2020). This model uses neural density estimation techniques (Magdon-Ismail
and Atiya, 1998) to conduct likelihood-free inference. In this section, we give a
non-exhausting basic overview of the SNPE method, and we kindly refer inter-
ested readers for more in-depth details to (Papamakarios and Murray, 2016).

The SNPE and SBI methods, in general, usually work with a compressed
version of the data. This is done to preserve a significant amount of relevant
information about the data while reducing the dimensionality of the data as
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Table 12: The four datasets used for training the networks. Column 2 indicates whether
the coefficients of the cluster scaling relations were selected such as to match
the observed redshift distribution. Column 3 shows whether cluster evolution
was fixed to self-similar. Each dataset contains 70 000 XODs.

Acronym dn/dz γMT & γLT

D1 Yes Free
D2 No Free
D3 Yes Fixed
D4 No Fixed

much as possible. Compressing the data also keeps the data size for the inference
manageable.

We compress our XODs by training a small ResNet model with two resolution
levels and two ResNet blocks per level trained under mean square error regression
loss as a regressor to estimate the Ωm and σ8 from the XODs. These estimates
are our new parameter space. The XODs enter the SNPE method, which is
represented as their compressed version provided by our trained ResNet model.

We aim to estimate the posterior probability distribution of the Ωm and σ8 for
a given XOD. We want to get the posterior probability distribution p(θ | x = x0),
where x0 corresponds to our target XOD diagram. The posterior probability
distribution is proportional as

p(θ | x = x0) ∝ p(x = x0 | θ)p(θ) (3.3)

where p(θ) is our prior and p(x = x0 | θ) is the likelihood of our simulator
model. In this sense, the simulator model is the pipeline simulating XODs plus
the regressor neural network compressing them into the new parameter space.
The data, x, in our work, represents the compressed version of the XOD.

With the simulation-based approach of the SNPE, we avoid the explicit com-
putation of the likelihood and its necessary assumptions. The SNPE implements
a Mixture Density Network (MDN) (Bishop, 1994) trained to output a poste-
rior probability distribution as a mixture of 10 Gaussian components. The MDN
consists of feed-forward neural networks trained to compute the components’
mixing coefficients, means, and covariance matrices. In this work, we use the
SNPE-a (Papamakarios and Murray, 2016), after the training procedure, the
MDN models the posterior distribution.

Our XOD simulations are not sampled from a simple prior. We estimate the
empirical proposal prior distribution of the simulations and account for it in the
SNPE procedure to be able to set our desired prior.

3.4 results

In this section, we present the main results of this work as an estimation of
cosmological parameters, Ωm and σ8 for a target XOD for a survey size of 1 000
deg2. The dataset used for this experiment is the D1 (see Sec. 3.2.7). Fig. 3.6
shows the SNPE’s cosmological prediction based on this data for a target test
XOD. We compare the SNPE’s prediction with a well-established method, a
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Fisher analysis, focusing on the same setting as the D1 dataset, with dn/dz, and
including evolution parameters. We compute the Fisher information matrix on
the fiducial model parameters. Here, we note an XOD as a set of bins λi(θ), with
i running over z–CR–HR bins, and its likelihood L can be expressed, assuming
that the bins are independent and follow a Poisson distribution, as:

Fαβ =
∑

i

1
λi

∂λi

∂θα

∂λi

∂θβ
. (3.4)

The derivatives are numerically computed following the methodology pre-
sented in Cerardi et al., 2023, ensuring the output’s stability. As the Fisher
matrix is computed around a particular point in the parameter space, it does
not take account of any proposal distribution. Thus, to represent the effect of
the dn/dz selection, we compute the covariance matrix of the dn/dz training
sample and invert it to obtain the Fisher Proposal matrix. Naturally, this in-
duces a loss of information as it only keeps the multi-variate Gaussian signal in
the proposal distribution, but it is sufficient for the test we intend to perform
here. The Fisher matrices can be added together and then inverted to recover
the constraints on Ωm and σ8. We show the corresponding ellipse in Fig.3.6 and
an estimated posterior from the SNPE for an XOD with its Ωm and σ8 near
the fiducial model. The contours agree well, although the Fisher contours are
slightly broader. This could be caused by (i) the prior information drawn from
the proposal information being degraded and (ii) the Fisher computation only
reflecting the properties of the local derivatives. While the Fisher prediction is
anchored to the fiducial model and then well-centered, it is normal that the noisy
realization of the target diagram offsets the SBI contours. The general agreement
between the two constraining methods allows us to increase our confidence in
the main results of this paper.

3.5 discussion

In this section, we first discuss the impact of the size of the training sample on
the neural network performances. Next, we show what levels of accuracy can be
expected as a function of the survey area. We discuss the effect of the dn/dz

selection and of the self-similar evolution assumption. Lastly, we discuss which
steps would be taken when using this method on a real observed XOD instead
of a simulated one.

3.5.1 Training data size

In deep learning studies, the larger the training set, the better in principle. How-
ever, simulating XOD is expensive, we thus investigate the trade-off between the
size of the training samples and the returned cosmological accuracy. Our neural
network training consists of two steps (ResNet and SNPE) and we thus have
to validate the training-data size for each of them. First, the ResNet regressor
compresses the XODs in a new parameter space and second, the SNPE MDN
estimates the posterior probability distribution of Ωm and σ8 for a given ResNet-
compressed XOD. For doing this, we fix the training size of one network on a
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Figure 3.6: Left: Comparison of the SNPE’s cosmological prediction with Fisher predic-
tion on the same target XOD corresponding to 1 000 deg2 survey area. Right:
Comparison of the SNPE’s cosmological results for four different survey ar-
eas. The SNPE was trained on our D1 dataset, with dn/dz selection and
free γ parameters. The y-axis in the 1D posterior probability distribution
plots indicates the probability density at each parameter value shown on the
x-axis. Each 1D probability density function is normalized in a way that the
total area under its curve equals 1.

larger volume while varying the size of the other. The results are presented in
the next two figures.

Fig. 3.7 shows how the accuracy on the final prediction varies with the ResNet’s
training dataset size while keeping the SNPE training size set as 10 000 XODs.
The quality of the final prediction does not significantly improve beyond 10 000
training samples.

Fig. 3.8 shows how the error on the final prediction varies with the SNPE’s
training dataset size while keeping the ResNet training size set to 40 960 XODs.

The quality of the final prediction is more sensitive to the ResNet’s training
size, while the SNPE can already perform well even with a few hundred training
examples. This is expected because Papamakarios and Murray (2016) designed
the SNPE to perform well even with a few hundred training samples. Based on
these results, we concluded that our initial guess of creating 70 000 XODs per
dataset is enough and that we do not need to enlarge the sample. We set as
default values 20 480 for the ReNet4’s training size and 10 000 XODs for the
SNPE’s training size. If not stated otherwise, the results presented in this paper
are always produced with these training sizes.

3.5.2 Testing the SNPE’s calibration

To test whether the SNPE density estimator is well-trained and calibrated, we
re-train it eight times with the same settings of all hyperparameters, and let it
make predictions for the same target XOD. This is done for all four survey areas.
In these tests, its training data size is set at 10 000, and the XODs are always
compressed with the same ResNet of the corresponding survey size that is not re-
trained. The only difference between these tests is the seed used to draw random
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Figure 3.7: Amplitude of the 1 σ errors as a function of the ResNet’s training size, for
a training size of the SNPE set fixed at 10 000 XODs. We can see that the
precision does not significantly improve after 20 000 training XODs.

Figure 3.8: Amplitude of the 1 σ errors as a function of the SNPE’s training size, for
a fixed training size of the ResNet set at 40 960 XODs. We can see that
the SNPE already performs well with a few hundred XODs as a training
size. This was to be expected as it was intentionally developed to work
in this way. Even though working already with smaller training XODs, we
conservatively decided to use 10 000 XODs as our final training sample, given
that we already simulated 70 000 XODs.

numbers from distributions when initializing the SNPE’s network’s layers. If the
ML model is adequately trained, it will not have any significant deviations from
its predictions when re-trained in this fashion. Fig. 3.9 shows four calibration
tests for four different models, each trained for a different noise level represented
as a survey size. We can see that the results are very consistent.

3.5.3 Survey area

As described in Sec 3.2.6, we are working with four different survey sizes, i.e.,
noise levels in the XOD pixels: namely 1 000 deg2, 10 000 deg2, 100 000 deg2, and
an infinite survey area (no noising at all). Even though the last two settings
are ’thought experiments’, they are potentially useful in understanding possible
biases in our methodology. We perform these tests to see what levels of accuracy
we can expect for a different survey area and to probe the effect of noise on the
accuracy of our cosmological predictions.
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Figure 3.9: Calibration tests of the density estimator on four different survey areas. Each
contour represents an output of a newly re-trained SNPE with the same
training parameters. The only difference is in the seeds used for generating
random numbers, e.g., initialization of weights in the neural network. The
tests are done for the same testing XOD. We can see that the SNPE is well-
trained in that regard it produces consistent results and does not show large
deviations only due to small differences in the initialization of its neural
networks.

Fig. 3.6 (right) shows how, within our framework, the accuracy of the cos-
mological parameters depends on the survey size. Tab. 14 summarises the cos-
mological constraints. Considering the first three columns, it appears that the
cosmological accuracy roughly scales as the square root of the area, that is, as
the square root of the number of clusters, which is sound. We observe that no
noise at all in the XOD (infinite area) still results in non-zero errors. We may
interpret this as a possible limitation of the numerical accuracy when construct-
ing the XODs. Alternatively, it could also be due to keeping the same 16×16×10
resolution for all noise levels. Decreasing the resolution in the case of an infinite
survey area should lead to smaller errors in this regime. We tested this hypothesis
by re-training the ML models for a 32×32×10 XOD resolution. Fig. 3.10 shows
the final posterior probability cosmological predictions for ML models trained on
32×32×10 XOD resolution (blue) and the standard 16×16×10 XOD resolution
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(yellow) for two target XODs (left and right figures). Fig. 3.11 shows the same
but for a setting with no Poisson noise (infinite deg2). Tab. 13 shows the relative
1 σ accuracy of these predictions. We can see that increasing the resolution does
not significantly change the accuracy of our cosmological predictions. For the
T1 XOD, the relative 1 σ has a bit better accuracy for the 16×16×10 resolution
in the case of 100 000deg2 survey area and only for Ωm. However, we observe
an opposite trend for the T2 target XOD, which had a bit better accuracy on
the Ωm but for the case of 32×32×10 resolution of 100 000 deg2 survey area. For
the T2 target XOD, there was also a small improvement in the accuracy of our
cosmological prediction for the 16×1610 resolution in the case of no noise at all
(infinite deg2 survey area). Based on these results, we conclude that increasing
the resolution to 32×32×10 does not play a significant role in the accuracy of our
cosmological predictions, when shot noise becomes negligible. The plausible in-
terpretation is that, given that we work at the CR level, cluster spectral features
(in particular emission lines) are somewhat erased by the rather low XMM-EPIC
spectral resolution, containing itself sharp discontinuities1. This may cause the
observed remaining weak degeneracy.

Table 13: This table shows the relative 1 σ errors of our resolution tests for two target
XODs T1 and T2 for two different XOD resolutions, 32×32×10 and 16×16×10
(the standard resolution) in a case of two different levels of Poissonian noise,
corresponding to 100 000 deg2 and an infinite deg2 survey areas.

105 deg2 infinite deg2

32×32×10 16×16×10 32×32×10 16×16×10
Ωm σ8 Ωm σ8 Ωm σ8 Ωm σ8

T1 3.7 1.9 3.2 2.0 0.7 0.3 0.7 0.4
T2 4.2 2.2 4.8 2.1 1.1 0.6 0.9 0.4

Table 14: Relative 1 σ errors (in %) from SNPE for a single target diagram. Separate
SNPE and regressor are trained for each dataset (D1-D4) and each survey
area. The results are computed for the same XOD test target, always of the
appropriate survey size, simulated with the γ evolution parameters fixed at
the fiducial values and with the dn/dz selection. This choice allowed us to use
it fairly for the ML model trained on each of our four datasets.

103 deg2 104 deg2 105 deg2 infinite deg2

Ωm σ8 Ωm σ8 Ωm σ8 Ωm σ8

D1 15.2 10.0 9.6 5.6 4.1 2.1 0.8 0.5
D2 17.6 13.4 11.2 7.2 7.9 5.0 4.1 2.1
D3 12.2 5.5 5.3 2.1 2.0 0.8 0.4 0.2
D4 15.0 10.5 7.6 4.7 4.0 2.3 2.4 0.9

1 https://xmm-tools.cosmos.esa.int/external/
xmm_user_support/documentation/uhb/effareaonaxis.html
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Figure 3.10: Tests of the accuracy of our cosmological predictions based on the resolution
of the XODs in the case of 100 000 deg2 survey area for two target testing
XODs T1 (left) and T2 (right). The XOD resolution is color-coded.

Figure 3.11: Tests of the accuracy of our cosmological predictions based on the resolution
of the XODs in the case of no Poisson noise (infinite deg2 survey area) for
two target testing XODs T1 (left) and T2 (right). The XOD resolution is
color-coded.

3.5.4 dn/dz subselection

In this section, we explore how the dn/dz selection improves the accuracy of
our cosmological predictions. This selection effectively excludes all XODs whose
redshift distribution is incompatible with the observations (i.e., here, with the
dn/dz of our fiducial model) at the 3σ level. However, the test is rather permis-
sive, so XODs that pass the dn/dz test can show very different combinations of
the eight free parameters due to the high level of degeneracy for such a large
number of free parameters. Compared to a normal uniform prior distribution,
the dn/dz restricts the range of possible parameter combinations (Fig. 3.4), in-
troducing forbidden areas in the parameter space.
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Figure 3.12: Posterior probability distribution, trained on the D1 dataset (dn/dz selec-
tion, left) and on the D2 dataset (no dn/dz selection, right) (Tab. 12). These
datasets have fixed γ cluster evolution parameters. Four MDNs are trained
per dataset each on a different survey area. These results are computed for
the same target testing XOD, always of the appropriate survey size, that
was produced letting all 8 parameters free and verifying the dn/dz selec-
tion.

To understand how the dn/dz selection improves the final predictions, we com-
pare the ResNet and the SNPE trained on the D1 and D2 sets. (see Sec. 3.2.7).
A separate density estimator must be trained on the corresponding dataset for
each survey area. The predictions are made for the same target XOD modulated
by the noise level pertaining to the survey area. The results are displayed in
Fig. 3.12. The relative errors are reported in Tab. 14. We can see that plugging
the dn/dz selection decreases the size of the error bars on cosmological parame-
ters. This difference is most prominent for smaller noise levels corresponding to
larger survey areas. Hence, filtering out unrealistic distributions at the dn/dz

level is a quick and efficient method to improve the constraining power of this
technique.

3.5.5 Constraining scaling relations - fixing gammas

In this section, we investigate how the performance of our cosmological predic-
tions improves when reducing the number of free parameters to six, assuming
cluster self-similar evolution (i.e. γMT and γLT are fixed to their fiducial values).
By doing this, the potential degeneracy between cluster physics and cosmology
is lowered. The test uses data sets D3 and D4. Fig. 3.13 and Fig. 3.14 show the
outcome, compared with the 8-parameter realizations, including or excluding
the dn/dz selection, respectively. Tab. 14 shows the relative 1 σ errors. Clearly,
as expected, fixing cluster evolution improves the accuracy of our cosmological
predictions. We also note a change in the direction of the degeneracy.
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Figure 3.13: Posterior probability distribution estimated trained on D1 dataset (left)
and training on D3 dataset (right) (Tab. 12). These datasets both have
the dn/dz selection but differ in the choice of fixing the cluster evolution γ

parameters on their fiducial values. Four MDNs are trained per dataset each
on a different survey area. These results are computed for the same target
testing XOD, always of the appropriate survey size, that was produced
having all 8 parameters free and with the dn/dz selection. We can see that
fixing the γ parameters improves the accuracy of the SNPE’s cosmological
predictions.

Figure 3.14: Posterior probability distribution estimated trained on D2 dataset (left)
and training on D4 dataset (right) (Tab. 12). These datasets both come with
no dn/dz selection but differ in the choice of fixing the γ parameters. Four
MDNs are trained per dataset each on a different survey area. These results
are computed for the same target testing XOD, always of the appropriate
survey size, that was produced having all 8 parameters free and with the
dn/dz selection. We can again observe that using the dn/dz selection and
fixing the γ parameters improves the accuracy of the SNPE’s cosmological
predictions.

3.5.6 Applying the method to real observations

Now, the question is: what steps would be necessary to apply our method to a
real observed XOD? So far in the paper, we showcased the method performance
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on testing XODs which have been inside the parameter range used to create
the training simulations (Tab. 11). When used on an XOD composed from an
observed galaxy cluster sample, with the underlying true Ωm and σ8 being well
within the range of the training simulations parameters, we would see results
similar to those demonstrated in this work. Given the current constraints on Ωm

and σ8 from various probes, we can confidently expect a real XOD to lie well
within the boundaries of our study. However, in principle, we have to address
the case where the true cosmological parameters would be located outside of the
simulation training range. Since neural regression models are known to extrap-
olate badly, the posterior estimation would probably fail in this situation. This
could result in a final estimated posterior being placed towards the edges of the
training sample distribution in the direction of the true underlying cosmological
parameters. If we obtained results like this on a real observed XOD, we would
need to create a second training sample, now centred on the central values of
the estimated posterior probability distribution, and to retrain the neural net-
works involved, the ResNet regressor as well as the MDN density estimator on
this new dataset. These newly trained networks would give us a new estimate
of the cosmological parameter posterior probability distribution. We would need
to repeat this process until the final estimated posterior would be well-centered
within the training sample range. We show such a situation in Fig.3.15 where
the true Ωm and σ8 cosmological parameters used to simulate this testing XOD
are close to the borders of our simulation box.

Figure 3.15: This figure shows the SNPE’s cosmological results for four different survey
areas computed for a target XOD with its Ωm and σ8 values close to the
borders of our simulation box. The regressor and density estimator neural
networks were trained on our D1 dataset, with dn/dz selection and free γ

parameters.

Other effects will have to be considered when applying this method to a real
sample. Firstly, using a CR cut to mimic the selection function is very simplistic
and does not correctly render the detection probability within an X-ray survey,
which is two-dimensional (flux vs apparent size) (Clerc et al., 2024; Pacaud et
al., 2006). However, the high flexibility of the ResNet regression models should
make the training just as efficient on more complex selection functions. Secondly,
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measurement errors will have to be included. For X-ray surveys, the number of
photons for individual clusters can be as low as a few tens of counts, and hence,
the observed CR and HR are noisy estimates of the true quantities. Implementing
an error model is not a showstopper for the inference method: basically, this can
be modeled by two-dimensional filtering of the XOD (Clerc et al., 2012b).

3.6 conclusions

This paper is a proof of concept investigating the cosmological constraining power
of an X-ray cluster survey using only three observed parameters: the X-ray flux
in a given band (XMM-Newton count rate, CR), an X-ray colour (XMM-Newton
hardness ratio, HR), and the redshift. The cosmological inference is based on a
neural network trained on all possible realizations of the CR-HR-z distribution
of the detected cluster population (XOD diagrams). We have no knowledge of
cluster masses or X-ray temperatures. This means we discard any a priori knowl-
edge of the cluster scaling relations. Practically, to set up the training sample for
the network, we compute several tens of thousands of combinations of the cos-
mological parameters (Ωm and σ8), with ad hoc scaling relations for which the
coefficients are drawn at random. This formalism allows us to compute CR(M , z)
and HR(M , z) values of a cluster sample for any cosmology. We note that CR and
HR, being purely instrumental measures, we need this intermediate analytical
step based on scaling relations to compute the desired quantities. Since the cos-
mological parameters and the scaling relation coefficients are independently and
randomly drawn, we can say that our modeling is scaling-relation free, that it
covers a very large parameter space and, consequently, encompasses all possible
effects of cluster physics (e.g., cool-cores or feedback).

The performances of our approach are sensible: cosmological constraints scale
roughly as the square root of the surveyed area, imposing that the simulated
XODs verify the observed dn/dz cluster distribution, and fixing the cluster evo-
lutionary parameters leads to better constraints.

The absolute constraining power of our method can be compared to the recent
eROSITA cosmological results (Ghirardini et al., 2024). Their cosmological sam-
ple has 5 259 massive clusters over 12 791 deg2; our 1 000 deg2 realization yields
about 4 000 clusters. Our predicted uncertainties on Ωm and σ8 are ∼ 2.2 and
∼ 4.3 times larger, respectively. This is not surprising because (i) the eROSITA
clusters are more massive compared to our 1 000 deg2 because our sample has
a flux cut based on the XXL analysis, thus having a similar cluster mass dis-
tribution, also having ∼ 4 000 clusters on a 1 000 deg2 compared to the similar
5 259 eROSITA clusters over 12 791 deg2 and (ii) several assumptions are made
on the eROSITA cluster scaling relations (from optical data sets) to calibrate
the individual cluster masses (Ghirardini et al., 2024).

Applying our method to real data would require implementing a two-dimensional
selection function in the CR vs cluster-apparent-size plane. Practically, this
means that we need to introduce a supplementary scaling relation (M500-Rc)
in the formalism that produces the XODs; this is not a problem as long as the
coefficients of this new relation would be drawn at random, the same way we do
with the scaling relations in this study. Modeling the measurement errors would
also be needed.
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The present study treats the scaling relation coefficients as nuisance parame-
ters; this is a fair approach, but because these parameters amount to six, and we
exclude any a priori knowledge on them, there remains a significant degeneracy
with the cosmological parameters. This explains why our predicted errors on the
cosmological parameters appear rather large. A much more efficient approach is
to create the XOD training sample from numerical simulations spanning a large
range of cosmologies and for various feedback assumptions (e.g., the CAMELS
simulations, Villaescusa-Navarro et al., 2021). In this case, the number of pa-
rameters ruling the cluster’s physical properties is drastically reduced (two AGN
feedback parameters) and, moreover, these parameters should not be considered
as nuisance parameters. In the end, the SBI, relying on such a training sam-
ple, faces much less degeneracy and delivers the cosmological parameters plus
the feedback parameters, which are the truly relevant physics parameters (paper
VII, Cerardi et al. in prep).
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4.1 abstract

Nowadays we know that the origin of the Cosmic X-ray Background (CXB) is
due to the integrated emission of nearby active galactic nuclei. Thus to obtain a
precise estimate of the contribution of different source classes to the CXB it is
crucial to have a full characterization of the hard X-ray sky.

We present a multifrequency analysis of all sources listed in the 3rd release of
the Palermo Swift-BAT hard X-ray catalog (3PBC) with the goal of (i) iden-
tifying and classifying the largest number of sources adopting multifrequency
criteria, with particular emphasis on extragalactic populations and (ii) extract-
ing sources belonging to the class of Seyfert galaxies to present here the release
of the 2nd version of the Turin-SyCAT.

We outline a classification scheme based on radio, infrared and optical criteria
that allows us to distinguish between unidentified and unclassified hard X-ray
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sources, as well as to classify those sources belonging to the Galactic and the
extragalactic populations.

Our revised version of the 3PBC lists 1176 classified, 820 extragalactic and
356 Galactic ones, 199 unclassified and 218 unidentified sources. According to
our analysis, the hard X-ray sky is mainly populated by Seyfert galaxies and
blazars. For the blazar population, we report trends between the hard X-ray and
the gamma-ray emissions since a large fraction of them have also a counterpart
detected by the Fermi satellite. These trends are all in agreement with the
expectations of inverse Compton models widely adopted to explain the blazar
broadband emission. For the Seyfert galaxies, we present the 2nd version of the
Turin-SyCAT including a total of 633 Seyfert galaxies, with 282 new sources
corresponding to an increase by ∼80 % with respect to the previous release.
Comparing the hard X-ray and the infrared emissions of Seyfert galaxies we
confirm previous statistical results in the literature.

Finally, we highlight that the SWIFT archive has already extensive soft X-
ray data available to search for potential counterparts of unidentified hard X-ray
sources. All these datasets will be reduced and analyzed in a forthcoming analysis
to determine the precise position of low energy counterparts in the 0.5 – 10 keV
energy range for 3PBC sources that can be targets of future optical spectroscopic
campaigns, necessary to obtain their precise classification.

4.2 introduction

The Cosmic X-ray background (CXB) was discovered when the earliest X-ray as-
tronomical rocket experiments were carried out (see e.g. Giacconi et al., 1962). It
appeared as a diffuse component of X-ray radiation distributed in all directions.
In the last decades, after its discovery, several different scenarios were proposed
to interpret its origin, such as considering spanning new types of faint discrete
X-ray sources whose integrated emission could have been responsible for the
CXB (e.g. (Gilli et al., 1999), Gilli et al., 2001) up to diffuse radiative processes
occurring in the intergalactic space, as for example exotic emission from dark
matter particle decay (see e.g. Abazajian et al., 2001). However, the solution
to this puzzle arose thanks to deep images obtained first with the ROentgen
SATellite ROSAT (Hasinger et al., 1999), collected in the early ninety’s, and
more recently with Chandra (Weisskopf et al., 2000), all revealing that about
80 % of CXB is resolved (Hasinger et al., 1998), between 0.5 keV and 2 keV, as
suggested by Cavaliere and Fusco-Femiano, 1976. At hard X-ray energies the
fraction of resolved CXB by Swift and INTEGRAL is of 2% (Bottacini et al.,
2012) and by NuSTAR is of 35% (Harrison et al., 2016). Thus, the origin of the
CXB is nowadays established to be mainly due to the high energy emission of the
extragalactic discrete sources, whose large fraction belongs to different classes of
active galactic nuclei (AGNs) (Gilli et al., 2007).

The first survey in the hard X-ray band was carried by the UHURU satellite
(a.k.a SAS-1 Giacconi et al., 1971). Since the discovery of the CXB, many surveys
were performed in the soft and hard X-ray bands, including Forman et al. (1978)
who produced a catalogue of 339 X-ray sources observed by the UHURU satellite
in the 2–20 keV energy band. Levine et al. (1984), using the X-ray and Gamma-
ray detector HEAO-A4 on board the HEAO 1 satellite (Rothschild et al., 1979)
presented an all-sky survey in 13–180 keV range detecting 77 new sources. The
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hard X-ray component of the CXB radiation, observable between 3 keV and
up to 300 keV, shows a distinct peak at ∼ 30 keV (Gruber et al., 1999) being
extremely uniform across the sky with the only exception of an overdensity along
the Galactic plane (Krivonos et al., 2007a; Revnivtsev et al., 2006; Valinia and
Marshall, 1998) and it is again strictly connected with AGN population emitting
in the hard X-rays (Frontera et al., 2007).

Measurements carried out in the hard X-rays thanks to recent satellites, as
the INTErnational Gamma-Ray Astrophysics Laboratory INTEGRAL (Winkler
et al., 2003), with its Imager on Board the INTEGRAL Satellite IBIS (Ubertini
et al., 2003) and Neil Gehrels Swift Observatory (Gehrels et al., 2004) with its
Burst Alert Telescope (BAT Barthelmy, 2004) on board, significantly improved
our understanding of the origin of the CXB and refined its measurement. This
has been also possible thanks to improvements achieved in the preparation of
hard X-ray source catalogues (see e.g. Beckmann et al., 2006; Bird et al., 2010;
Bottacini et al., 2012; Cusumano et al., 2010; Krivonos et al., 2007a; Krivonos
et al., 2022; Markwardt et al., 2005; Oh et al., 2018; Sazonov et al., 2007; Tueller
et al., 2008) and the association of hard X-ray sources with their low energy
counterparts (Bär et al., 2019; Koss et al., 2019; Malizia et al., 2010; Smith et
al., 2020, e.g.) and their optical spectroscopy follow-ups (e.g. Marchesini et al.,
2019a; Masetti et al., 2008, 2006b, 2012, 2013; Parisi et al., 2014; Rojas et al.,
2017).

There are three major catalogues built on observations collected in the last
decade with two major space missions still active: (i) the Palermo Swift-BAT
hard X-ray catalogue (Cusumano et al., 2010) based on 54 months of the Swift-
BAT operation, currently updated to its 3rd release and with a 4th release ongo-
ing1, (ii) the Swift-BAT all-sky hard X-ray survey, that published the 105 month
Swift-BAT catalogue (see e.g. Oh et al., 2018), and (iii) the INTEGRAL IBIS
catalogue in the energy range 17-100 keV (Bird et al., 2016), performed using
the INTEGRAL Soft γ-ray Imager (ISGRI) (Lebrun et al., 2003), the low energy
CdTe γ-ray detector on (IBIS) telescope (Winkler et al., 2003).

Here we focus on the investigation of the 3rd release of the Palermo Swift-
BAT hard X-ray catalogue (hereinafter 3PBC), with particular emphasis on
extragalactic sources, since the release of the next version is currently ongo-
ing. The 3PBC is based on the data reduction and detection algorithms of the
first Palermo Swift-BAT Catalog hard X-ray catalogue (Cusumano et al., 2010;
Segreto et al., 2010). The 3PBC is available only online2 thus we point for the
reference the publication of its 2nd release, the 2PBC (Cusumano et al., 2010).
On the other hand, the 2PBC provides data in three energy bands, namely: 15
– 30 keV, 15 – 70 keV, 15 – 150 keV for a total of 1256 sources above 4.8 σ level
of significance, where 1079 hard X-ray sources have an assigned soft X-ray coun-
terpart, while the remaining 177 are still unassociated. The total source number
increased in 3PBC to 1593 when considering a signal to noise ratio above 3.8,
which is the catalogue release we analysed here. Please note, that only three
3PBC sources are detected at signal to noise ratio lower than 5 and that all
Turin-SyCAT sources with a 3PBC counterpart are detected in the 3PBC at
signal to noise ratio above 6. The 3PBC catalogue covers 90 % of the sky down

1 https://www.ssdc.asi.it/bat54/
2 http://bat.ifc.inaf.it/bat_catalog_web/66m_bat_catalog.html

https://www.ssdc.asi.it/bat54/
http://bat.ifc.inaf.it/bat_catalog_web/66m_bat_catalog.html
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to a flux limit of 1.1 × 10−11 erg cm−2 s−1, decreasing to ∼ň,50 % when decreasing
the flux limit to 0.9 × 10−11 erg cm−2 s−1.

First, we verified source classification for all associated counterparts, adopting
a multifrequency approach. This analysis was corroborated by checking if ad-
ditional studies, available in the literature and carried out after the last 3PBC
release, allowed us to obtain a more complete overview of source populations
emitting in the hard X-rays. Then, our final goal was to explore in detail those
extragalactic sources being identified as Seyfert galaxies (Antonucci and Miller,
1985) to (i) release the 2nd version of the Turin-SyCAT (Peña-Herazo et al., 2022)
and thus (ii) refine our statistical analysis on the correlation found between the
infrared (IR) and the hard X-ray fluxes for this extragalactic population. Ad-
ditionally we also aim at investigating possible connections between the hard
X-ray and the gamma-ray emission in those blazars detected by Fermi-LAT. It
is worth noting that given our final goal, the classification task performed on the
Galactic sources is mainly devoted to exclude them from the final sample of new
Seyfert galaxies.

The present work will be also relevant for the association of hard X-ray sources
with their low energy counterpart, which will be included in the next releases of
hard X-ray catalogues. In addition, we highlight that the proposed investigation
will also provide a more complete overview of those sources, that lack an assigned
low energy counterpart as still unidentified.

Finally, we remark that the reason underlying the choice of working with the
3PBC rather than subsequent versions of hard X-ray catalogues is mainly mo-
tivated by the opportunity of having more multifrequency information available
in the literature. However a comparison with other recent catalogues as: the 105
month Swift-BAT catalog3 (Oh et al., 2018) and the INTEGRAL hard X-ray
catalogue (Bird et al., 2016) are also included in the present analysis.

The structure of the paper is outlined as follows: in Section 4.3 , we described
various catalogues and surveys used to search for multifrequency information
related to high and low energy counterparts of hard X-ray sources; in Section 4.4
, we present our multifrequency classification scheme adopted to label source
counterparts. Then Section 4.5 focuses on the main results on the characteriza-
tion of the extragalactic hard X-ray sources while Section 4.6 is entirely devoted
to the second release of the Turin-SyCAT catalogue and the statistical analysis
for the IR – hard X-ray connection. Finally, our summary, conclusions and future
perspectives are given in Section 4.7.

We used cgs units unless stated otherwise. We adopted ΛCDM cosmology
with ΩM = 0.286, and Hubble constant H0 = 69.6 km s−1 Mpc−1 (Bennett et
al., 2014) to compute cosmological corrections, the same used for the 1sth release
of the Turin-SyCAT (Peña-Herazo et al., 2022). WISE magnitudes are in the
Vega system and are not corrected for the Galactic extinction, as it would not
change the magnitude. As shown in our previous analyses (D’Abrusco et al.,
2014; D’Abrusco et al., 2019; Massaro and D’Abrusco, 2016), such correction
affects mainly the magnitude at 3.4 µ m for sources lying at low Galactic lati-
tudes (i.e., |b| < 20◦ ), and it ranges between 2 % and 5 % of their magnitude
values, thus not significantly affect our results. We indicate the WISE magni-
tudes at 3.4, 4.6, 12, and 22 µ m as W1, W2, W3, W4, respectively. For all WISE

3 https://heasarc.gsfc.nasa.gov/W3Browse/swift/swbat105m.html

https://heasarc.gsfc.nasa.gov/W3Browse/swift/swbat105m.html
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magnitudes of sources flagged as extended in the AllWISE catalogue (i.e., ex-
tended flag “ext_flg” greater than 0) we used values measured in the elliptical
aperture. Sloan Digital Sky Survey (SDSS) (Abdurro’uf et al., 2021; Blanton
et al., 2017) and Panoramic Survey Telescope & Rapid Response System (Pan-
STARRS) (Chambers et al., 2016) magnitudes are in the AB system. Given the
large number of acronyms used here, mostly due to different classifications and
telescopes used, we summarized them in Table 15.

Table 15: Table of Acronyms used in the text.

Acronym Meaning

ATNF australian telescope national facility
CXB cosmic X-ray background
AGN active galactic nuclei
BLL BL-Lac object
BZG Galaxy Dominated Blazars
BZU blazar of uncertain type
CV cataclysmic variable

FSRQ flat spectrum radio quasar
HERG high excitation radio galaxy
LERG low excitation radio galaxy
LINER Low-ionization nuclear

emission-line region galaxy
NOV novae
PN planetary nebulae
PSR pulsar
QSO quasi stellar objects
RDG radio galaxy
SNR supernovae remnant
WD white dwarf

XBONG X-ray bright optically normal galaxy

4.3 hunting counterparts of hard x-ray sources: catalogues
and surveys

This section provides a basic overview of all major catalogues used to carry
out cross-matching analysis across the whole electromagnetic spectrum. Here we
considered several (i) low energy and multifrequency catalogues, listing sources
detected in radio, infrared and optical surveys and or based on literature analyses
and (ii) high energy catalogues, based on hard X-rays and γ-ray surveys.

It is worth noting that the 3PBC catalogue is based on a moderate shallow sur-
vey thus we expect relatively bright sources in the hard X rays to be also bright
at lower energies, at least for the extragalactic population of 3PBC sources, being
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mainly constituted by AGNs. This limits the number of catalogues used to per-
form the cross-matching analysis and we used the same adopted in the original
3PBC analysis. Our analysis has been also augmented by using NED4 and SIM-
BAD5 databases, where we queried all sources having a low energy counterpart
listed in the 3PBC before providing a final classification to verify the presence
of updated literature information that is not reported in the catalogues adopted
for the cross-matching analysis. All catalogues used in the current analysis are
listed in Table 21.

4.3.1 Low energy catalogues for cross-matching analysis

At low frequencies, from radio to X-ray energies below 10 keV, we mainly con-
sidered:

1. The Revised Third Cambridge catalog6 (3CR, (Spinrad et al., 1985)). This
catalogue provides radio and optical data for 298 extragalactic sources,
being the most powerful at low radio frequencies. It includes their posi-
tions, magnitudes, classification and redshifts with only 25 sources being
still unidentified (Maselli et al., 2016; Massaro et al., 2013b; Missaglia
et al., 2021). A vast suite of multifrequency observations at radio, in-
frared, optical and X-ray energies are also available for more than 90 %
of the whole 3CR (see e.g. Maselli et al., 2016; Massaro et al., 2015c;
Stuardi et al., 2018). The 3CR catalogue was create with a flux density
limit S178 ≥ 2 × 10−26 W m (Hz)−1 at 178 MHz, spanning across the north-
ern hemisphere with declination above -5 degrees. The 3CR catalogue has
been also augmented by a vast suite of multifrequency observations carried
out in the last decades that provides all information necessary to have a
completed overview of the source classification (Balmaverde et al., 2021,
2019; Hilbert et al., 2016; Kotyla et al., 2016; Madrid et al., 2006; Massaro
et al., 2015c; Missaglia et al., 2021; Privon et al., 2008; Stuardi et al., 2018).

2. The Fourth Cambridge Survey catalog (4C) 7 is based on the radio survey
which used the large Cambridge interferometric telescope at the Mullard
Radio Astronomy Observatory at frequency 178 Mc s−1, detecting sources
which have flux density S178 ≥ 2 × 10−26 W m (Hz)−1. It is published in two
papers, the first one listing 1219 sources at declination between + 20◦ and+ 40◦

(Pilkington and Scott, 1965), while the second one includes 3624 sources in
two declination ranges, − 07◦ to + 20◦ and + 40◦ to + 80◦ (Gower et al.,
1967).

3. The Australia Telescope National Facility (ATNF) 8 Pulsar catalog (Manch-
ester et al., 2005) is a complete catalog listing more than 1500 pulsars
(PSR). Accretion powered X-ray PSRs are not included in this catalogue,
because they have different periods, unstable on short timescales. The cat-
alogue is based on the PSR database of 558 PSRs (Taylor et al., 1993)

4 https://ned.ipac.caltech.edu/
5 http://simbad.cds.unistra.fr/simbad/
6 https://ned.ipac.caltech.edu/uri/NED::InRefcode/1985PASP...97..932S
7 http://astro.vaporia.com/start/fourc.html
8 https://heasarc.gsfc.nasa.gov/W3Browse/all/atnfpulsar.html

https://ned.ipac.caltech.edu/
http://simbad.cds.unistra.fr/simbad/
https://ned.ipac.caltech.edu/uri/NED::InRefcode/1985PASP...97..932S
http://astro.vaporia.com/start/fourc.html
https://heasarc.gsfc.nasa.gov/W3Browse/all/atnfpulsar.html
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which was further supplemented by more recent PSR databases (Edwards
et al., 2001; Manchester et al., 2001) to establish the ATNF PSR catalogue.

4. The Catalog of Galactic Supernovae Remnants (SNRs) 9 (Green, 2017),
which is an updated version of the original catalogue of galactic SNRs
(Green, 1984), currently listing 295 SNRs built on the available results
published in literature updated to 2016.

5. The 4th edition of the catalogue of High mass X-ray binaries in the Galaxy
10 (Liu et al., 2006) provides 114 sources, updated with 35 new sources
detected, most of them being X-ray binaries having a Be type star or a
supergiant star as an optical companion.

6. The 7th edition 11 of the catalogue of cataclysmic variables (CVs), low mass
X-ray binaries and related objects (original paper, (Ritter and Kolb, 2003))
lists 1166 cataclysmic variables, 105 low-mass X-ray binaries, and 500 re-
lated objects. For a total of 1771 sources. The sources are provided with
coordinates, apparent magnitudes, orbital parameters, stellar parameters
and other characteristics. The entire catalogue is split into three tables
provided online.

7. The 4th edition of the catalogue of Low mass X-ray binaries in the Galaxy
and Magellanic Clouds12 (Liu et al., 2007) contains 187 sources, updated
by 44 newly discovered sources. The companion star of a Low mass X-ray
binary is typically a K or M type dwarf star. Small percentages of the
companion stars are G type, red giants, or white dwarfs, and even smaller
percentages of companions are A and F type stars. Sources are provided
with their optical counterparts, spectra, X-ray luminosities, system param-
eters, stellar parameters of the components and other parameters.

8. The Catalog and Atlas of Cataclysmic Variables13 (CVcat, (Downes et
al., 2005)) presented its final release in January 2006 listing 1600 sources.
The catalogue provides all types of cataclysmic variables like novae, dwarf-
novae, nova-like variables, sources classified only as CVs, interacting binary
WDs and possible supernovae. This catalogue contains also all objects that
have been classified as CVs at some point in the past and are no longer con-
sidered being CVs. Those stars are labelled as NON-CV and are provided
also with relevant references.

9. To cross-match the sources with galaxy clusters we used only the Abell
catalogue of rich galaxy clusters14 (Abell et al., 1989). This catalogue was
conducted by a manual all-sky search for overdensities of galaxies on pho-
tographic plates. The catalogue contains 4073 rich galaxy clusters, with at
least 30 galaxies in magnitude range between m3 and m3 + 2, where m3 is
the magnitude of the third brightest cluster galaxy.

9 https://heasarc.gsfc.nasa.gov/W3Browse/all/snrgreen.html
10 https://heasarc.gsfc.nasa.gov/w3browse/all/hmxbcat.html
11 https://heasarc.gsfc.nasa.gov/W3Browse/all/ritterlmxb.html
12 https://heasarc.gsfc.nasa.gov/W3Browse/all/lmxbcat.html
13 https://heasarc.gsfc.nasa.gov/W3Browse/all/cvcat.html
14 https://heasarc.gsfc.nasa.gov/W3Browse/all/abell.html

https://heasarc.gsfc.nasa.gov/W3Browse/all/snrgreen.html
https://heasarc.gsfc.nasa.gov/w3browse/all/hmxbcat.html
https://heasarc.gsfc.nasa.gov/W3Browse/all/ritterlmxb.html
https://heasarc.gsfc.nasa.gov/w3browse/all/hmxbcat.html
https://heasarc.gsfc.nasa.gov/W3Browse/all/cvcat.html
https://heasarc.gsfc.nasa.gov/W3Browse/all/abell.html
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4.3.2 High energy surveys for cross-matching analysis

We also compared our analysis and classification of 3PBC sources with those of
two hard X-ray catalogues (energies larger than 10 keV) and one of the latest
releases of the Fermi catalogue of γ-ray sources. The former comparison allows
us also to obtain more information about the source classification in particular
for the Galactic population, while the latter one allows us to look for any trend
between the hard X-ray and the γ-ray emission for the class of blazars.

1. The 105 month Swift-BAT catalog15 (Oh et al., 2018) is created from data
of a uniform hard X-ray all-sky survey in 14-195 keV band. It was de-
veloped using the same detector as the 3PBC catalogue, but implement-
ing different source algorithms to build X-ray images, data reduction and
source detection. Over 90 % of the sky is covered down to a flux limit of
8.40 × 10−12 erg cm−2 s−1 and over 50 % of the sky is covered down to a
flux limit of 7.24 × 10−12 erg cm−2 s−1. The catalogue provides 1632 hard
X-ray sources detected above the 4.8 σ level, presenting 422 new detections
compared to the previous version of 70 month Swift-BAT catalogue (Baum-
gartner et al., 2013). The catalogue contains 1132 extragalactic sources, out
of which 379 are Seyfert I and 448 Seyfert II type galaxies, 361 are Galactic
sources and 139 are unidentified sources. Objects in the 105 month Swift-
BAT catalogue are identified together with their optical counterparts by
searching the NED and SIMBAD databases and archival X-ray data (e.g.,
Swift-XRT, Chandra, ASCA, ROSAT, XMM-Newton, and NuSTAR).

2. The INTEGRAL IBIS survey hard X-ray catalogue16, (Bird et al., 2016)17

consists of 939 sources detected above a 4.5 σ significance threshold in
energy band 17 – 100, using the (IBIS) hard X-ray telescope (Winkler et
al., 2003). The catalogue showed 120 previously undiscovered soft γ-ray
emitters.

3. The second release of the fourth Fermi-LAT catalog of γ-ray sources18

(4FGL-DR2, (Ballet et al., 2020), using the Large Area Telescope (LAT)
on the Fermi Gamma-ray space telescope mission (Atwood et al., 2009),
reports 723 new sources, increasing up to 5064 γ-ray sources. The cata-
logue processed the first 10 years of the data in the energy range between
50 MeV to 1 TeV. The largest class of Galactic sources in the 4FGL-DR2
is constituted by PSRs listing 292 sources, while in the extragalactic sam-
ple is dominated by blazars with 2226 identified and/or associated BL
Lac objects and Flat spectrum radio quasars, and 1517 additional blazar
candidates of uncertain type.

4.3.3 Multifrequency catalogues for low energy associations

1. The current 5th edition of Roma-BZCAT catalogue of blazars based on
multi-frequency surveys and extensive review of literature19 (Massaro et

15 https://heasarc.gsfc.nasa.gov/W3Browse/swift/swbat105m.html
16 https://heasarc.gsfc.nasa.gov/W3Browse/all/ibiscat.html
17 https://heasarc.gsfc.nasa.gov/W3Browse/integral/intibisass.html
18 https://heasarc.gsfc.nasa.gov/W3Browse/fermi/fermilpsc.html
19 http://www.ssdc.asi.it/bzcat

https://heasarc.gsfc.nasa.gov/W3Browse/swift/swbat105m.html
https://heasarc.gsfc.nasa.gov/W3Browse/all/ibiscat.html
https://heasarc.gsfc.nasa.gov/W3Browse/integral/intibisass.html
https://heasarc.gsfc.nasa.gov/W3Browse/fermi/fermilpsc.html
http://www.ssdc.asi.it/bzcat
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al., 2015a) lists coordinates and multifrequency data for 3561 sources which
are either confirmed blazars or sources exhibiting blazar-like behaviour. All
sources included in the Roma-BZCAT are detected at radio frequencies.
According to the Unified AGN model (Antonucci, 1993; Urry and Padovani,
1995) blazars are AGNs whose jet happens to be closely aligned with our
line of sight, exhibiting strong variations, apparent superluminal motion
and emission extending across all electromagnetic spectrum.

2. The Turin-SyCAT (Peña-Herazo et al., 2022) multifrequency catalogue of
Seyfert galaxies was built using optical, infrared and radio selection cri-
teria. Seyfert galaxies are AGNs, which are distinguished as a type 1 and
type 2 based on the observer’s angle (Antonucci and Miller, 1985). All ob-
jects included in its 1st release have an optical spectroscopic classification,
allowing us to establish precisely their redshifts and class. The catalogue
presents 351 Seyfert galaxies, out of which 233 are type 1 and 118 are type
2. The analysis presented here, the 2nd release of the Turin-SyCAT, in-
creased their number substantially by 80% to 633 Seyfert galaxies. Details
can be find in Section 5.

4.4 classification

For classifying the sources considered in the presented analysis, we adopted the
following step-by-step analysis, as shown in Figure 4.1 and according to the
criteria outlined below.

4.4.1 Scheme

We start inspecting the 3PBC (Cusumano et al., 2010) catalogue. If a 3PBC
source has an assigned counterpart we just adopted the multifrequency criteria
reported below in this section to classify it. Then, for sources belonging to the
extragalactic population, we also verified its redshift estimate. In particular,
for all extragalactic sources, being the main focus of the current analysis, the
presence of the optical spectrum or a description of it published in the literature
is mandatory to consider it as classified.

For all sources lacking an assigned low energy counterpart in the original
3PBC, thus being unassociated, we perform the cross-matching analysis with all
catalogues reported in section 4.3 and we also checked updated information in
NED and SIMBAD databases, if any. If no reliable X-ray counterpart, is found
within the BAT positional uncertainty region, we flagged the 3PBC source as
unidentified. On the other hand, if a potential counterpart is found, as in the
previous step, we adopted the multifrequency criteria to classify it and eventu-
ally provide a redshift estimate, and, when successful, the associated source is
indicated as classified.

Moreover, all associated sources that do not have optical spectrum available
for their low energy counterpart and/or lack relevant information to determine
their classification were labelled as unclassified.

All classified sources were then split into two main samples distinguishing
between Galactic and extragalactic populations. Populations of the main clas-
sification categories are visualised in Figure 4.2 and compared in Figure 4.5.
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Figure 4.1: The decision tree adopted in our analysis to distinguish between classified,
unclassified and unidentified hard X-ray sources (see Section 3.1 for a com-
plete description)
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Figure 4.2: Flowchart of the classification classes. Red cells represent categories leading
to extragalactic sources, yellow are categories ending in non-extragalactic
sources. Details about the numbers of sources in each class and subclass are
described in Tab. 16 and Tab. 17. Note that classes and subclasses with only
a few members are not included for clarity reasons.

We identified 9 classes and a few sub-classes for both the extragalactic and the
Galactic sources discussed in detail in the following subsections, see Table 16
and Table 17.

4.4.2 Criteria, classes & distributions

4.4.2.1 Extragalactic sources

The largest fraction of sources identified in the extragalactic hard X-ray sky
belongs mainly to the two classes of Seyfert galaxies and blazars (Oh et al.,
2018, Paliya et al., 2019, Ajello et al., 2009), of which the latter account for
10% - 20% of the entire survey population (Diana et al., 2022). Thus, given the
possibility to use both the Roma-BZCAT and the Turin-SyCAT (Peña-Herazo
et al., 2022), built on the basis of multifrequency criteria, for all 3PBC classified
sources that belongs to these two catalogues we adopted the same classification
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reported therein. Moreover, we also used their classification schemes to identify
new blazars and Seyfert galaxies, to help future releases.

Blazars (class symbol: blz) are the largest known population of γ-ray sources
(Massaro et al., 2012a), dominated by non-thermal radiation over the whole
electromagnetic spectrum (Massaro et al., 2009; Urry and Padovani, 1995). Their
observational features also include high and variable polarization, superluminal
motions, very high observed luminosities coupled with a flat radio spectrum
(Healey et al., 2007; Hovatta et al., 2012) peculiar infrared colours (D’Abrusco
et al., 2012a; Massaro et al., 2011) and a rapid variability from the radio to X-ray
bands with weak or absent emission lines (Stickel et al., 1991). Blandford and
Rees, 1978 suggested that radiation of blazars could be interpreted as arising
from a relativistic jet closely aligned with the line of sight. Blazars were thus
classified into 4 categories: BL Lac objects (subclass symbol: bll), with featureless
optical spectra or presenting only relatively weak and narrow emission lines
mainly due to their host galaxies. BL Lacs with their optical-UV spectral energy
distribution dominated by the emission of their host galaxy have a subclass
symbol: bzg. Flat spectrum radio quasars (subclass symbol: fsrq) show typical
broad emission lines over a blue continuum. Sources exhibiting blazar-like broad-
band features, but lacking and optical spectroscopic classification are classified as
blazars of uncertain type (subclass symbol: bzu). According to the nomenclature
of the Roma-BZCAT BL Lacs and FSRQs are labelled as BZBs and BZQs,
respectively, while, to avoid confusion here they are marked with the classification
symbols bll and fsrq. This choice was adopted because, given the recent optical
spectroscopic campaigns devoted to the search for γ-ray blazars (Landoni et al.,
2015; Massaro et al., 2014; Peña-Herazo et al., 2017, 2019) a few more blazars,
not yet listed in the Roma-BZCAT, were found as low energy counterparts of
3PBC sources and thus, to avoid confusion, we did not use the Roma-BZCAT
nomenclature. No further BZGs and/or BZUs were discovered in our analysis
and thus no different classification symbols with respect to those of the Roma-
BZCAT were used in these cases.

Names for blazar-like counterparts of 3PBC sources were collected from the
Roma-BZCAT if the source is listed therein otherwise in the final table the name
reported in one of the major radio surveys as NVSS (Condon et al., 1998) and/or
SUMSS (Bock et al., 1999; Mauch et al., 2003), taken from the NED database.

Seyfert galaxies (class symbol: sey) were originally defined mainly by their
morphology (Seyfert, 1943) as galaxies with high surface brightness nuclei. Nowa-
days, they are identified spectroscopically as (mostly spiral) galaxies with strong,
highly ionized emission lines. Seyfert galaxies come in two flavours distinguished
by the presence (or absence) of broad lines emission in their optical spectra
(Khachikian and Weedman, 1974; Khachikian and Weedman, 1971). Type 1
Seyfert galaxies (subclass symbol: sy1 ) have both narrow and broad emission
lines superimposed to their optical continuum. The former lines originate from
a low density ionised gas with density ranging between ∼103 and 106 cm−3 and
line widths corresponding to velocities of several hundred kilometres per sec-
ond (e.g. (Vaona et al., 2012)), while broad lines are located only in permitted
transitions, correspondent to electron densities of ∼109 cm−3 and velocities of
104 km s−1 (e.g. Kollatschny and Zetzl, 2013). Type 2 Seyfert galaxies (subclass
symbol: sy2 ) show only narrow lines in their optical spectra (e.g. Capetti et al.,
1999; Miyaji et al., 1992; Weedman, 1977).
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To classify Seyfert galaxies we adopted all the same criteria reported in the
Turin-SyCAT (Peña-Herazo et al., 2022) in terms of (i) presence of the optical
spectrum in the literature, (ii) radio, infrared and optical luminosities, (iii) radio
morphology. This was chosen because we include the new Seyfert galaxies dis-
covered here in the 2nd release of the Turin-SyCAT as described in the following
sections.

Names for Seyfert-like counterparts of 3PBC sources were collected from the
1st edition of the Turin-SyCAT if the source is listed therein otherwise, are
reported in the main table with a NED name taken mainly out of one of the
following catalogues: 1RXS (Voges et al., 1999), 2MASSS (Skrutskie et al., 2006),
2MASX (Jarrett et al., 2000) and BAT105 (Oh et al., 2018). All Seyfert galaxies
were then renamed according to the Turin-SyCAT nomenclature.

All extragalactic sources that did not fall into the blazar and Seyfert classes
mainly belong to other two major classes: quasars and radio galaxies.

Quasars (QSOs), (class symbol: qso) are AGNs with bolometric luminosities
above ∼ 1040 erg s−1. They have broad spectral energy distribution and are
emitting from radio up to hard X-ray energies, having variable flux densities
almost at all frequencies, mid-IR emission due to the dusty torus and broad
emission lines superimposed to an optical blue continuum Schmidt, 1969. For
this extragalactic source class, we also distinguished type 1 and type 2 QSOs on
the basis of the presence of broad emission lines in their optical spectra according
to the same criteria adopted for the Seyfert galaxies (Khachikian and Weedman,
1974). Then to distinguish a Seyfert galaxy from a QSO we also considered the
same thresholds used to create the Turin-SyCAT (Peña-Herazo et al., 2022),
indicating QSOs as sources with both (i) radio luminosity above 1040 erg s−1

and (ii) mid-IR luminosity estimate at 3.4µ m above 1011L⊙. Names for the
QSOs counterparts of 3PBC sources were collected from is reported in the final
table Tab. 18 and Tab. 19 with a NED name taken mainly from the following
catalogues: 1RXS (Voges et al., 1999), 2MASSS (Skrutskie et al., 2006), 2MASX
(Jarrett et al., 2000) and 1SXPS (Evans et al., 2014a).

Radio galaxies (RDGs), (class symbol: rdg) are radio-loud AGNs whose ra-
dio emission is at least 100 times that of normal elliptical galaxies and extends
beyond tens of kpc scale(Moffet, 1966; Urry and Padovani, 1995), thus being
neatly distinct from the Seyfert galaxies. On the other hand, to distinguish be-
tween QSO and RDG we adopted a radio morphological criterion where the latter
ones clearly present diffuse radio emission at a large scale when radio maps are
available to check it. We used the same criteria and classification scheme re-
cently adopted by (Capetti et al., 2017a,b). If the source was not listed with
those names, we took the NED name mainly from 3C (Spinrad et al., 1985),
4C (Gower et al., 1967; Pilkington and Scott, 1965) or 7C (Hales et al., 2007)
catalogues.

We firstly classified RDGs on the basis of their radio morphologies at 1.4
GHz distinguishing between classical FR I and FR II sources (Fanaroff and Ri-
ley, 1974). On the other hand, we also considered the two subclasses of radio
galaxies defined on the basis of their optical emission lines, distinguishing be-
tween high excitation radio galaxies (HERGs), (subclass symbol: herg) and low
excitation radio galaxies (LERGs), (subclass symbol: lerg) (Hine and Longair,
1979). HERGs are almost always FRIIs, while LERGs can be either FRIs or
FRIIs (Buttiglione et al., 2010).
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We also considered as extragalactic sources of hard X-rays the: galaxy clusters
(class symbol: clu), the largest gravity bounded structures in the Universe, com-
posed primarily of dark matter, highly ionised and extremely hot intra-cluster
gas of low density and galaxies (Giodini et al., 2009). Their X-ray emission is
mainly due to bremsstrahlung radiation of relatively hot particles in their intra-
cluster medium in the soft X-rays (i.e., between 0.5 and 10 keV Nevalainen et
al., 2003), although a tail of this emission is also detectable at higher energies
(Ajello et al., 2010). Since it is well known that some galaxy clusters were also
detected by the BAT instrument on board of SWIFT (Ajello et al., 2010) we
reported 3PBC sources associated with them mainly when the cross-match with
the Abell catalogue indicated the possible presence of a galaxy cluster within
the hard X-ray positional uncertainty region.

Finally, we highlight that a handful of extragalactic sources, not belonging
to the five major classes listed above, fall into the following categories, being
classified as starburst galaxies (class symbol: sbg), (Searle et al., 1973; Weedman
et al., 1981), galaxies forming stars at unusually fast rates (103 times faster
than in an average galaxy), X-ray bright optically normal galaxies (class symbol:
xbong), which are normal galaxies, not hosting an AGN, but having substantial
X-ray luminosity (Comastri et al., 2002; Elvis et al., 1981; Yuan and Narayan,
2004), low-ionization nuclear emission-line region galaxies (class symbol: liner)
(Singh et al., 2013) and normal galaxies (class symbol: gal), the latter not hosting
an AGN but in a few cases interacting with nearby companions. Names of the
3PBC counterparts for those sources were collected mainly from 2MASX (Jarrett
et al., 2000) and 2MASS (Skrutskie et al., 2006) catalogues.

We list a preview of the first 10 sources included in the main table, our re-
vised version of the 3PBC catalogue in Tab. 18 and Tab. 19 where we provide
3PBC catalogue name, coordinates, counterpart name, counterpart coordinates,
spectroscopic redshifts, the classification in our class and subclass system and
the WISE counterpart name. We show examples of spectra of a few objects in
Figure4.3 and Figure4.3.

4.4.2.2 Galactic sources

In our Milky Way, most of the sources emitting in the hard X-rays are X-ray
binaries (Grimm et al., 2002), while the second dominant class of hard X-ray
sources are the cataclysmic variables (Revnivtsev et al., 2008).

X-ray binaries (BINs) (class symbol: bin) are systems of double stars contain-
ing compact stellar remnants, such as neutron stars, pulsars or black holes and
a normal star which can range a variety of masses (e.g. Charles and Coe, 2003;
Knigge et al., 2011). The compact stellar remnant accretes material from its
companion, creating continual or transient X-ray emission. X-ray binaries are
classified based on their companion star distinguishing between low mass X-ray
binaries (subclass symbol: lmxb) having the companion star of mass ≲ 1 M⊙
and high mass X-ray binaries (subclass symbol: hmxb) usually accompanied by
a star of mass ≳ 10 M⊙, where the accretion happens directly from a stellar
wind of the companion star. Names for the BINs counterparts of 3PBC sources
were collected mainly from the following catalogues: IGR (Bird et al., 2004), 1H,
SWIFT (Ajello et al., 2010) and (RX+XTE+SAX) (Bade et al., 1992; Frontera
et al., 2009; Voges et al., 1999).
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Figure 4.3: Example images of the spectra of objects in our revised analysis of the 3PBC.
Top left: Type I Seyfert galaxy 3PBCJ1201.2-0340. Top right: Type II Seyfert
galaxy 3PBCJ0325.4-0606. Middle left: Flat spectrum radio quasar (fsrq)
3PBCJ0948.8+0021. Middle right: BL Lac Blazar 3PBCJ1031.1+5053 (BZB
in Roma-BZCAT (Massaro et al., 2009) nomenclature). The redshift of the
BZB is not collected from the spectrum, since it is featurless, but was taken
from literature as reported in the Roma-BZCAT.

Cataclysmic variables (CVs), (class symbol: cv) are binary systems composed
of a main-sequence companion star and a compact stellar remnant which is
a white dwarf (WD) (Revnivtsev et al., 2008). The accretion happens almost
always via filling the Roche-lobe of the companion star and subsequent formation
of an accretion disk around the WD (Warner, 1995). Their X-ray emission can
originate from a variety of processes depending on the type of the CV. CVs
which do not have strong magnetic fields accrete matter closer to the surface of
the WD and produce sporadic eruptions. They are categorised in 3 subclasses,
based on their accretion rate and explosions. For 4 sources belonging to the CV
class we also indicated if they are symbiotic stars or novae, however, given their
relative low number with respect to all CVs identified we did not labelled these as
subclasses and we only report the source class. Names for the CVs counterparts of
3PBC sources were collected mainly from the following catalogues: CV (Downes
et al., 2005), IGR (Bird et al., 2004), 1RXS (Voges et al., 1999) and 2MASS
(Skrutskie et al., 2006).
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Figure 4.4: Bottom left: High excitation radio galaxy (HERG) 3PBCJ0840.0+2948. Bot-
tom right: The images of the HERG galaxy. Radio contours are drawn at
level of 0.0005 mJy/beam increasing by a factor of 2. Here background im-
age is PANSTARRS R band while radio contours are at 3 GHz from the
VLASS survey extending beyond the galaxy. The main spectral emission
and/or absorption lines are marked at each figure.

The hard X-ray sky is also populated by isolated X-ray pulsars (PSR), (class
symbol: psr), not being hosted in X-ray binaries. Since they can be indeed hosted
in pulsar wind nebulae (subclass symbol: pwne) or supernova remnants we high-
light the presence of this extended emission around the PSR in the subclass
column. On the other hand, if the hard X-ray emission is indeed due to a su-
pernova remnant not hosting a neutron star then we adopted a different class
(subclass symbol: snr), in these cases, their hard X-ray emission is due to the
thermal radiation of plasma heated in shocks, coupled with non-thermal syn-
chrotron radiation (see e.g., Vink, 2012). Names for the PSRs counterparts of
3PBC sources were collected mainly from the ATNF PSR catalogue or other
radio surveys.

As occurred for the extragalactic hard X-ray population a handful of sources
were also identified belonging to normal stars (class symbol: str), (coming with
a subclass: yso for young stellar objects) and star clusters (class symbol: scl). X-
ray emission from main sequence stars of masses > 10 M⊙ can be due to discrete
ionized metal lines in their spectrum. Young stellar objects, protostars and T
Tauri stars also exhibit X-ray radiation, predominantly emerging from magnetic
coronae accreting material where shocks occur (Güdel and Nazé, 2009). On the
other hand, star clusters can appear as an amalgamation of point-like sources and
extended X-ray emission. Their point-like component can be produced by hot
stars and/or SNR, lasting a few thousand years while their extended component
is produced by star cluster wind, formed by the interaction of stellar winds of
massive O or B type stars, Wolf-Rayet stars and supernovae explosions (e.g.
Cantó et al., 2000, Law and Yusef-Zadeh, 2004, Oskinova, 2005). In addition
to them we also reported the classification for one microquasar (class symbol:
mqso), namely: 3PBC J0804.7-2748. Microquasars are similar to quasars, but on
a much smaller case. Their radiation comes from a stellar mass black hole or a
neutron star accreting matter from a normal star (Mirabel, 2010). In addition, we
report one planetary nebula (class symbol: pn): 3PBC J1701.5-4306. Planetary
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Table 16: Extragalactic classes and subclasses.

Class Class Subclass Subclass
symbol number symbol number

blz 129 bll 30
bzg 7
bzu 24
fsrq 68

gal 10 interacting 3
- 7

clu 27
liner 1
qso 26 type 1 18

type 2 1
? 7

rdg 25 herg 21
lerg 3

? 1
sey 593 sy1 325

sy2 268
sbg 5

xbong 4

nebulae are the ejected red giant’s atmosphere ionized by the leftover star’s
core, forming at the end of life of stars with initial masses in range ∼ 1 to 8 solar
masses. Lastly we also labelled the Galactic centre Sgr A∗ with the symbol:
galcent.

4.4.2.3 Sky distributions

Starting from the total number of 1593 sources listed in the 3PBC catalogue
(Cusumano et al., 2010) we found that according to our analysis there are
218 unidentified hard X-ray sources (∼13.7 %) and 199 unclassified sources (
∼12.5 %), see Figure 4.5. The classified sources are distinguished into two main
groups: Galactic objects including 356 sources (∼22.2 %) and extragalactic ob-
jects having 820 sources (∼51.5 %).

We show the sky distribution of 3PBC sources via the Hammer-Aitoff projec-
tion for both unclassified and unidentified cases in Figure 4.6 and for classified
sources, distinguishing between Galactic and extragalactic ones in Figure 4.7.
Given the source distributions for both unidentified and unclassified sources that
appear to be quite uniform over the whole sky, we could expect that a large frac-
tion of them could have extragalactic origin. This could imply that the lack of
classified counterparts is mainly due to missing follow up spectroscopic observa-
tions, thus strengthening the need to complete optical campaigns carried out to
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Table 17: Galactic classes and subclasses. Please note that classes: galcent, mqso and
pn were ommited due to small member count (1 each).

Class Class Subclass Subclass
symbol number symbol number

bin 231 hmxb 117
lmxb 108

? 6
cv 87
psr 21 bin 1

- 5
snr 12
pwn 3

str 12 - 6
yso 1
? 1

scl 2
snr 4

date (references). Then fractions of other classes for extragalactic sources are
shown in Figure 4.9 and for galactic classes in Figure 4.8.

4.5 characterizing the extragalactic hard x-ray sky

Our revised analysis of the 3PBC lists 735 extragalactic sources, classified into
9 classes: 129 blazars (blz), 10 galaxies (gal), 27 galaxy clusters (clu), 1 low-
ionization nuclear emission-line region galaxy (liner), 26 quasars (qso), 25 radio
galaxies (rdg), 593 seyfert galaxies (sey), 5 star-burst galaxies (sbg) and 1 X-ray
bright optically normal galaxy (xbong). Table 16 reports those numbers together
with the number of sources in their associated subclasses.

The most abundant class of extragalactic sources are Seyfert galaxies (Fig-
ure 4.9), while the second largest population of extragalactic sources emitting
in the hard X-rays is constituted by blazars. The hard X-ray luminosity, K-
corrected, is shown in Figure 4.10 as a function of the redshift with particular
emphasis to the two classes of Seyfert galaxies and blazars. We used the measured
spectral index reported in the 3PBC for K-correlation computation.

Once we assigned the coordinates of each counterpart we also crossmatched the
3PBC catalogue with the AllWISE survey20 (Cutri et al., 2021a) and we found
that adopting an association radius of 3.3, as typically used in other analyses
(D’Abrusco et al., 2019; Massaro et al., 2012b) we found 1279 mid-IR cout-
nerparts in the 1593 3PBC sources. It is worth noting that associating sources
within this angular separation corresponds to a chance probability of having a
spurious match lower than ∼2 % (Massaro et al., 2015b, 2013a).

20 https://wise2.ipac.caltech.edu/docs/release/allwise/

https://wise2.ipac.caltech.edu/docs/release/allwise/
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Table 18: Preview of the first four columns of the main catalog table of our revised
3PBC catalog, showing the first 10 sources. Column description: (1) Name in
3PBC catalogue, (2) right ascension as reported in 3PBC, (3) declination as
reported in 3PBC, (4) counterpart name. The last six columns are described
in Tab. 19.

3PBC ra3PBC dec3PBC counterpart

3PBC J0000.9-0708 0.228 -7.134 2MASS J00004877-0709115
3PBC J0001.7-7659 0.429 -76.986 2MASX J00014596-7657144
3PBC J0002.5+0322 0.636 3.367 SY1 J0002+0322
3PBC J0002.5+0322 0.853 27.638 2MASX J00032742+2739173
3PBC J0002.5+0322 1.009 70.312 SY2 J0004+7020
3PBC J0006.3+2012 1.584 20.205 SY1 J0006+2013
3PBC J0010.4+1058 2.624 10.976 5BZQ J0010+1058
3PBC J0016.7-2611 4.194 -26.2
3PBC J0017.4+0519 4.37 5.326 HS 0014+0504
3PBC J0017.8+8135 4.454 81.591 5BZQ J0017+8135

Table 19: Preview of the last six columns of the main catalog table of our revised 3PBC
catalog, showing the first 10 sources. Column description: (5) right ascension of
the counterpart, (6) declination of the counterpart, (7) redshift, (8) associated
class, (9) associated subclass, (10) name in WISE catalog.

ractp decctp zctp class subclass WISE

0.203216 -7.153221 0.03748 sey sy2 J000048.77-070911.6
0.441917 -76.953972 0.05839 sey sy1 J000146.08-765714.2
0.610046 3.351961 0.025518 sey sy1 J000226.42+032106.8
0.864283 27.654828 0.03969 sey sy2 J000327.41+273917.0
1.008228 70.32175 0.096 sey sy2 J000401.97+701918.3
1.581389 20.202968 0.025785 sey sy1 J000619.53+201210.6
2.629166 10.974888 0.089100 blz fsrq J001031.00+105829.5

0. 0. 0. uhx
4.344167 5.352778 0.11 sey sy1 J001722.71+052111.4
4.28525 81.58561 3.387000 blz fsrq J001708.50+813508.1
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We also used the counterpart coordinates to carry out a crossmatch between all
blazars listed in the 3PBC and those associated in the 4FGL catalogue. There
are 92 out of 129 blazars with a Fermi counterpart and with known redshift,
with 25 of them belonging to the BL Lac class and 52 to that of FSRQs. For all
these γ-ray emitting blazars we also found two neat trends/correlations between
their hard X-ray and γ-ray emissions as highlighted in Figure 4.11. The first
trend is between their hard X-ray and γ-ray fluxes, where a mild correlation is
also reported: 0.52 is the measured value for the correlation coefficient for the
whole blazar sample. The p-chance for all correlations are below 10−5 level of
significance due to the high numbers of sources used to compute the correlation
coefficients. Then a second trend was indeed found between the photon indices
of blazars measured in the 3PBC and in the 4FGL catalogues.

Both trends highlighted for the blazar population emitting in the hard X-rays
are expected given the nature of their emission (e.g. Acharyya et al., 2021). For
BL Lac objects the steep hard X-ray spectra could be due to emission arising
from the tail of their synchrotron (Maraschi et al., 1992) component, and the flat
γ-ray spectra are related to the peak of their inverse Compton bump at γ-ray
energies (Dermer, 1995; Maraschi et al., 1999; Marscher and Gear, 1985). On
the other hand for the FSRQs both the hard X-ray and the γ-ray emission is
due to their inverce Compton component peaking in the γ-ray band (Acharyya
et al., 2021). Then we also note that even if the broadband spectral energy
distributions (SEDs) of BL Lacs is mainly interpreted as due Synchrotron Self
Compton emission while that of FSQRs to external Compton radiation (Abdo
et al., 2010), relativistic particles responsible for both SED bumps are the same
and thus we could expect that fluxes in the hard X-rays and in the γ-rays are,
on average, connected (e.g., Wolter et al., 2008).

4.6 second release of the turin-sycat

We found 282 new Seyfert galaxies resulting from our analysis of the extragalactic
hard X-ray sky presented in the previous sections. Including new sources in the
Turin-SyCAT 1st release, we list 633 Seyfert galaxies: 351 type 1 and 282 type
2 for the 2nd release of the Turin-SyCAT presented here. We added 118 type 1
and 164 type 2 Seyfert galaxies and we also present here an updated analysis of
the infrared - hard X-ray connection including all new sources.

Sources added in the 2nd release of the Turin-SyCAT were selected according
to the same procedure as in Peña-Herazo et al. (2022). These strict selection
criteria allow us to have a negligible fraction of contaminants since we selected
only extragalactic sources with a Seyfert-like optical spectrum and having:

1. a published optical spectrum;

2. a luminosity in Radio lower than <1040 erg s−1 if a counterpart is listed in
the two major radio surveys i.e., NVSS and SUMSS Condon et al., 1998;
Mauch et al., 2003, respectively;

3. a counterpart in the AllWISE Source catalog with a mid-IR luminosity at
3.4µ m less than 3 × 1011 L. This was mainly adopted to avoid selection of
QSOs.
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In Figure 4.12 we present the redshift distribution of Turin-SyCAT 2nd release.
The source number for both classes drastically drops after z > 0.2 as occurs
for those listed in the first release, and the source with the highest redshift is
SY2 J0304-3026 at 0.436. We compare the redshift distribution of all Seyfert
galaxies (Figure 4.13, only Type 1 Seyfert galaxies (Figure 4.14) and only Type
2 Seyfert galaxies (Figure 4.15) between the 1st release of the Turin-Sycat and
it’s presented 2nd release.

With respect to the previous Turin-SyCAT 1st release, we modified the name of
SY2 J2328+0330 in SY2 J2329+0331 having a WISE counterpart J232903.90+033159.9
and since a new Seyfert type 2 galaxy was associated with its mid-IR counterpart
J232846.65+033041.1 thus being named as SY2 J2328+0330.

We list all sources included in the Turin-SyCAT 2nd release in Table 20 where
we provide SyCAT name, coordinates, spectroscopic redshifts, WISE counterpart
and 3PBC counterpart names, a flag to indicate if the source is also associated
in BAT105 catalogue, and a flag to point out those added in this 2nd release.

On the basis of the new Seyfert galaxies discovered here, we revisited the
connection between their hard X-ray and the mid-IR emission (Assef et al.,
2013). This connection is related to the reprocessed radiation from the dust of
all energy absorbed from the optical and UV wavelengths in the central engine
of Seyfert galaxies (e.g. Elvis et al., 2009). The high-energy emission measures
an intrinsic radiated luminosity above ∼10 keV, while WISE 12 µm and 22 µm
is related to the reprocessed radiation from the dust of all energy absorbed from
the optical and UV wavelengths.

Mid-IR fluxes show a significant correlation with the hard X-ray fluxes, similar
to those highlighted using Seyfert galaxies listed in the Turin-SyCAT 1st release,
as shown in Figure 4.16. Comparing integrated fluxes as F12 and FHX we found
a linear correlation coefficient of 0.54 (correspondent to a slope of 1.09 ± 0.10
given the measured dispersion) for Seyfert 1 and 0.45 (slope of 1.20 ± 0.16) for
Seyfert 2 galaxies, respectively. This is in agreement with results presented on
the statistical analysis of Seyfert galaxies listed in the Turin-SyCAT 2nd release
where we measured a correlation coefficient of 0.57, with a slope of 1.02 ± 0.10
and a coefficient of 0.52 (slope of 0.93 ± 0.16), for Seyfert 1 and 2 galaxies,
respectively. On the other hand, also comparing mid-IR at lower frequencies
with the hard X-ray flux (i.e., F22 vs FHX) we found a correlation coefficient of
0.55 (with a slope of 1.11 ± 0.10) for type 1 Seyfert galaxies and 0.46 (slope of
1.08 ± 0.17) for type 2 Seyfert galaxies.

Considering both classes together, since they show similar mid-IR to hard X-
ray ratios, we found a correlation coefficient of 0.51 and a slope of 1.1 ± 0.08 for
both hard X-ray flux FHX correlation with F12 and F22, all in agreement with
previous results based on the Turin-SyCAT 1st release.

We also cross-matched sources listed in Turin-SyCAT 2nd release with the
Point Source catalogue of the Infrared Astronomical Satellite (IRAS)21, using
the positional uncertainties reported therein. We obtained 67 new matches for a
total of 216 Seyfert galaxies with an IRAS counterpart, being 89 type 1 and 127
type 2 counterparts at both 60 µm and 100 µm, respectively. Then, as occurred
in our previous analysis (Peña-Herazo et al., 2022), we also tested possible trends
between the infrared fluxes, at 60 µm and at 100 µm, and the hard X-ray one.

21 https://heasarc.gsfc.nasa.gov/W3Browse/iras/iraspsc.html

https://heasarc.gsfc.nasa.gov/W3Browse/iras/iraspsc.html
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We found no clear correlation as evident in Figure 4.17 and again these results
are in agreement with our previous findings based on Turin-SyCAT 1st release.
Moreover, we did not expect any correlation while inspecting trends between
infrared and hard X-ray fluxes since the cold dust, mainly responsible for the
emission at 60 µm and 100 µm is not significantly affected by the behaviour
of the central AGN but it is mainly linked to the star formation occurring in
Seyfert galaxies (Rodriguez Espinosa et al., 1987).

The strict multi-frequency selection criteria that we used to select Turin-
SyCAT sources allowed us to minimise the possible contamination of other source
classes, thus strengthening our results. Thus we remind that we visually inspected
all Turin-SyCAT galaxies’ optical spectra, allowing us to measure their redshifts
and establish their proper optical classification.

4.7 summary, conclusions and future perspectives

The CXB is nowadays established to constitute mainly of an integrated emission
of discrete sources, primarily arising from AGNs (Gilli et al., 2007). Having a
precise knowledge of the population and properties of various types of AGNs is
thus crucial to improve our knowledge of the CXB.

In this work, we focus on the analysis of the 3PBC catalogue (Cusumano et
al., 2010), which provides data in three energy bands, namely: 15 – 30 keV, 15 –
70 keV, 15 – 150 keV, in particular focusing on extragalactic source population,
aiming also at discovering new Seyfert galaxies that can be included in the
presented Turin-SyCAT 2nd release. The 3PBC provides 1593 sources above
signal to noise ration 3.8, approximately 57 % sources appear to have a clear
extragalactic origin while 19 % belong to our Milky Way and the remaining 24 %
are yet unknown. Results of our multifrequency investigation are also based on
those recently found for the 105 month Swift-BAT catalogue (Oh et al., 2018)
and the INTEGRAL IBIS hard X-ray survey in energy range 17-100 keV (Bird et
al., 2016). The 3PBC catalogue presented 861 extragalactic sources, 269 galactic,
230 uncertain and 233 unclassified according to our nomenclature. In our revision
of the 3PBC catalogue, we reduced the uncertain sources to 55 (reduction by
∼ 76%) and unclassified to 196 (reduction by ∼ 16%).

Thanks to our analysis we (i) developed a multifrequency classification scheme
for hard X-ray sources, that can be later adopted also to investigate different
high energy surveys, (ii) investigate the main properties of sources populating
the extragalactic hard X-ray sky and finally, extract other Seyfert galaxies now
included in the 2nd release of the Turin-SyCAT catalogue presented here.

We started with the 1593 sources of the 3PBC catalogue, comparing them with
various other catalogues mentioned in the paper and adopting the following clas-
sification scheme criteria. Firstly, we checked if the 3BC source has an assigned
counterpart, if not, we performed the multifrequency crossmatching analyses
across the available literature to search for counterparts. Sources without coun-
terparts were assigned with unidentified category. Those which were found with
counterparts, together with sources already having a counterpart in the 3PBC
catalogue, were further inspected with multifrequency analyses. Sources lacking
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sufficient information to assign their class were put to unclassified category, the
rest to classified category. We further distinguish the classified sources to Galac-
tic and extragalactic and we purely focus on the extragalactic sources in this
work.

Results obtained from our analysis can be outlined as follows.

1. The final revised 3PBC catalogue we present in this study lists 1176 clas-
sified, 820 extragalactic and 356 Galactic ones, 218 unidentified and 199
unclassified sources, respectively. Compared to the original 3PBC, which
has 233 unidentified and 300 unclassified sources, we decreased this fraction
from ∼33 % (533 sources) to ∼26 % (417 sources).

2. The hard X-ray sky is mainly populated by nearby AGNs, where the two
largest known populations of associated AGNs are: Seyfert galaxies (∼
79%) and blazars (∼ 17%).

3. We report the trends between the hard X-ray and the gamma-ray emissions
of those blazars that are also listed in the 4FGL as expected by the models
widely adopted to explain their broadband SED.

4. In the presented 2nd release of the Turin-SyCAT we list 633 Seyfert galax-
ies, 282 new ones added here thus correspondent to increase their number
by ∼80 % with respect to its 1st release.

5. We updated the statistical analysis carried out comparing the hard X-ray
and the IR emissions of Seyfert galaxies. All results obtained are in agree-
ment with those previously found even if now the analysis appears more
robust since it was performed with a sample of Seyfert galaxies increased
by ∼80 % with respect to the 1st release of the Turin-SyCAT.

Finally, we already checked the presence of SWIFT observations carried out
using the X-ray telescope on board for the sample of unidentified hard X-ray
sources and we found that more than 95 % of them have at least a few ksec ex-
posure time available. Thus the next step of the present analysis will be to search
for the potential soft X-ray counterpart of these 3PBC unidentified sources to ob-
tain their precise position necessary to carry out optical spectroscopic campaigns
aimed at identifying the whole sky seen between 15 and 150 keV.
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Table 21: Table of catalogues used in the cross-matching analysis.

Acronym Catalogue Name Reference

4FGL-DR2 The second release of the fourth Fermi-LAT catalog
of γ-ray sources 1

3PBC The 3rd Swift-Bat Hard X-ray catalog 2
BAT105 The 105-month Palermo SwiftBAT catalog 3

INTEGRAL The IBIS soft gamma-ray sky after 1000 INTEGRAL orbits 4
Homa-BZCAT 5th edition of Roma-BZCAT catalog of blazars 5

3CR The Revised Third Cambridge catalog 6
4C The Fourth Cambridge Survey 7, 8

SyCAT The Turin-SyCAT catalog 9
CVcat The Catalog and Atlas of Cataclysmic Variables 10

SNRcat The Catalog of Galactic Supernovae Remnants 11
hmxb The 4th edition of the catalog of High mass X-ray binaries

in the Galaxy 12
lmxb The 4th edition of the catalog of Low mass X-ray binaries

in the Galaxy and Magellanic Clouds 13
Rlmxb The 7th edition of the catalog of cataclysmic binaries,

low mass X-ray binaries and related objects 14
ANTF The Australian Telescope National Facility Pulsar Catalog 15
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Figure 4.5: Pie-chart showing the fractions of the main classification categories derived
thanks to our revised analysis of the 3PBC. The representation of the cat-
egories is following: Unidentified (218), Unclassified (199), Galactic (356),
Extragalactic (820).

Figure 4.6: Hammer-Aitoff projection derived thanks to our revised analysis of the
3PBC, showing unidentified and unclassified sources.
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Figure 4.7: Hammer-Aitoff projection based on our revised analysis of the 3PBC, show-
ing galactic and extragalactic sources.

Figure 4.8: Pie-chart showing the fractions of galactic classes derived thanks to our
revised analysis of the 3PBC. The classes are represented as follows: bin
(231), cv (87), psr (21), str (8). Note, that classes galcent, mqso and pn are
omitted for a small contribution (1 member each).
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Figure 4.9: Pie-chart showing the fractions of extragalactic classes derived thanks to our
revised analysis of the 3PBC. Individual classes have following representa-
tion: blz (129), gal (10), clu (27), qso (26), rdg (25), sey (593). Note that the
liner subclass is omitted for a small contribution (1 member).

Figure 4.10: K-corrected hard X-ray luminosity computed using the 10-150 keV flux
reported in the 3PBC. Given the high numbers of sources used to compute
the correlation coefficients, the p-chance for all correlations are below 10−5

level of significance. Seyfert galaxies are reported as red squares, blazars
as blue circles while all other extragalactic sources are marked as green
triangles.
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Figure 4.11: Top: Hard X-ray vs γ-ray and vs photon indices (bottom) correlation of
all blazars in our sample. We can see, that BL Lacs are steeper in hard
X-rays and flatter in γ-rays (bottom), however, their Hard X-ray vs γ-ray
flux distribution (top) appears similar.
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Figure 4.12: Redshift distribution of Turin-SyCAT Seyfert galaxies. Type 1 in black,
type 2 in yellow.

Figure 4.13: Redshift distribution of all Seyfert galaxies from 1st release of the Turin-
SyCAT compared to those listed in the 2nd release.

Figure 4.14: Redshift distribution of Type 1 Seyfert galaxies from 1st release of the
Turin-SyCAT compared to the presented 2nd release.
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Figure 4.15: Redshift distribution of Type 2 Seyfert galaxies from 1st release of the
Turin-SyCAT compared to the presented 2nd release.

Figure 4.16: Mid-IR fluxes at 12 µm (Left panel) and 22 µm (Right panel) as a function
of hard X-rays flux. The different lines are the correlations found between
the W3 integrated flux and that in the hard X-ray band from the 3PBC,
for both Seyfert 1 and 2 galaxies, marked in black and yellow, respectively.
The dashed black line corresponds to the regression line computed for the
whole sample while the straight black and yellow lines mark that for type
1 and type 2 Seyfert galaxies, respectively. The correlation coefficients are
reported in Section 4.6.

Figure 4.17: Fluxes at 60 µm (left panel) and 100 µm (right panel) as a function of
hard X-rays flux. Seyfert 1 and 2 galaxies marked in black and yellow,
respectively. No neat trend is evident between the two emissions.



5

Swift-XRT follow-up analysis of unidentified hard X-ray
sources

M. Kosiba,1,2 F. Massaro,2,3,4 A. Paggi,2,3,4 H. A. Peña-Herazo,5 N. Masetti,6,7

V. Chavushyan,8 E. Bottacini,9,10 and N. Werner1

1Department of Theoretical Physics and Astrophysics, Faculty of Science, Masaryk
University, Kotlářská 2, Brno, 611 37, Czech Republic
2Dipartimento di Fisica, Università degli Studi di Torino, via Pietro Giuria 1,
I-10125 Torino, Italy.
3Istituto Nazionale di Fisica Nucleare, Sezione di Torino, I-10125 Torino, Italy
4INAF–Osservatorio Astrofisico di Torino, via Osservatorio 20, I-10025 Pino
Torinese, Italy
5East Asian Observatory, 660 North A’ohōkū Place, Hilo, Hawaii 96720, USA.
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5.1 abstract

It is currently established that the sources contributing to the cosmic X-ray
background (CXB) emission are mainly nearby active galactic nuclei (AGN),
in particular those that are obscured. Thus, it is important to fully identify
the hard X-ray sky source population to accurately characterize the individual
contribution of different AGNs to the overall CXB emission.

We present a follow-up analysis of all the 218 sources marked as unidentified in
our previous revision of the third release of the Palermo Swift-BAT hard X-ray
catalog (3PBC) based on our multifrequency classification scheme. These 218
sources were classified as unidentified in our previous analyses because they lack
an assigned low-energy counterpart.

We searched for soft X-ray counterparts of these 218 3PBC sources in archival
Swift-XRT observations obtained between 2005 January 1st and 2018 August
1st. In particular, we found 1213 archival Swift-XRT observations for 192 of the
218 unidentified sources.

111
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We found 93 possible Swift-XRT counterparts inside of the Swift-BAT posi-
tional uncertainty regions. These correspond to 73 3PBC sources, where 60 have
only a single Swift-XRT detection, and 13 sources have multiple detections. We
present a catalog of all the detected possible counterparts of the yet unidenti-
fied hard X-ray sources to the community as a catalog for future spectroscopic
follow-up targets, together with a short catalog of our classification of the ten
sources for which we found available spectra.

5.2 introduction

The hard X-ray sky, at energies greater than ∼10 keV, was systematically ob-
served by several telescopes in the past decades. Uhuru was the first X-ray satel-
lite (Giacconi et al., 1971), launched in 1970, which delivered an all-sky hard
X-ray survey (Forman et al., 1978) in 2 – 20 keV band listing 339 sources. Sub-
sequently, Levine et al. (1984), thanks to the X-ray and Gamma-ray detector
HEAO-A4 on board the HEAO 1 satellite (Rothschild et al., 1979) conducted
an all-sky survey in 13–180 keV range providing 77 newly detected sources. The
INTErnational Gamma-Ray Astrophysics Laboratory INTEGRAL (Winkler et
al., 2003) with its Imager on Board the INTEGRAL Satellite IBIS (Ubertini
et al., 2003) was launched in 2002, observing in energy range from 15 keV up
to 10 MeV. Finally, the Neil Gehrels Swift Observatory (Gehrels et al., 2004),
launched in 2004, carried an all-sky hard X-ray survey at 14 – 195 keV using
the Burst Alert Telescope (BAT) (Barthelmy, 2004). Significant improvements
in the soft X-ray background were possible mainly thanks to NASA’s HEAO-2
Einstein observatory (Giacconi et al., 1979b), the German-US-UK X-ray obser-
vatory ROSAT (Röntgen Satellite) (Hasinger et al., 1999), the Chandra X-ray
observatory (Weisskopf et al., 2000) and the XMM-Newton observatory (Jansen
et al., 2001).

The INTEGRAL and Swift have allowed for the creation of many catalogs fo-
cusing on the hard X-ray sky (see, e.g., Beckmann et al., 2006; Bird et al., 2016;
Bottacini et al., 2012; Churazov et al., 2007; Cusumano et al., 2010; Krivonos et
al., 2007b; Krivonos et al., 2021, 2022, 2017; Markwardt et al., 2005; Mereminskiy
et al., 2016; Oh et al., 2018; Sazonov et al., 2007; Tueller et al., 2008) and catalogs
providing the association of hard X-ray sources with their low-energy counter-
parts (e.g., Bär et al., 2019; Koss et al., 2019; Malizia et al., 2010; Smith et al.,
2020). They were also necessary for the optical spectroscopy follow-up observa-
tions (e.g., Marchesini et al., 2019a; Masetti et al., 2006a, 2008, 2006c, 2012,
2013; Parisi et al., 2014; Rojas et al., 2017). These missions are still operational
nowadays and deliver new scientific results, e.g., the INTEGRAL-IBIS 17-yr
hard X-ray all-sky survey (Krivonos et al., 2022), the AGN catalog and optical
spectroscopy for the second data release of the Swift-BAT AGN Spectroscopic
Survey (BASS DR2) (Koss et al., 2022) and the upcoming catalog based on the
Swift-BAT 157-month survey (Lien et al., 2023).

Multiple catalogs based on the Burst Alert Telescope (BAT) on board the
Swift observatory exist. Koss et al. (2022) constructed the AGN catalog and
optical spectroscopy for the second data release of the Swift-BAT AGN Spectro-
scopic Survey (BASS DR2). They provide 1449 optical spectra corresponding to
858 hard-X-ray-selected AGNs in the Swift-BAT 70-month observations. Their
AGN sample is spectroscopically complete, with 857/858 AGNs reported with
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redshifts. Oh et al. (2018) created the 105-month Swift-BAT catalog of hard
X-ray sources. This catalog covers over 90 % of the sky with a sensitivity of
8.40 × 10−12 erg s−1 cm−2 and 7.24 × 10−12 erg s−1 cm−2 over 50 % of the sky in
the 14 – 195 keV band providing 1632 hard X-ray detections above 4.8 σ signif-
icance threshold. Cusumano et al. (2010) created the Palermo Swift-BAT Hard
X-ray catalog. This work links to the 2PBC a catalog release after 54 months
of sky survey. The 3rd release of the Palermo Swift-BAT hard X-ray catalog
(3PBC) is currently ongoing and is available only online1. This is the catalog
version we analyze in this study. The 3PBC lists 1256 sources detected above 4.8
σ level of significance in the 15 – 150 keV energy range. Their number increases
to 1593 total sources when considering a threshold on the signal-to-noise ratio
above 3.8. The catalog covers nearly 90 % of the sky to a flux limit of 1.1 ×
10−11 erg cm−2 s−1, decreasing to ∼50 % when decreasing this flux threshold to
0.9 × 10−11 erg cm−2 s−1.

We recently conducted a refined analysis (Kosiba et al., 2023, hereinafter pa-
per I) of all sources listed in the 3PBC catalog. Our refined analysis is based
on the multifrequency classification scheme we developed to analyze hard X-
ray sources, mainly focusing on extragalactic source populations (Peña-Herazo
et al., 2022). Findings of our refined analysis of the 3PBC were also based on
results reported in the 105-month Swift-BAT catalog (Oh et al., 2018) and the
INTEGRAL hard X-ray survey above 100 keV with its 11-year release (Krivonos
et al., 2015), which we used to cross-match the 3PBC sources for counterparts
to obtain luminosities and spectra if available.

We found that approximately 57 % of the sources listed in the 3PBC have an
extragalactic origin, while 19 % belong to our Milky Way. The remaining 24 %
are yet unknown. In particular, our final revised version of the 3PBC catalog
lists 1176 classified sources, 218 unidentified, and 199 unclassified. Of the 1176
classified sources, 820 have an extragalactic origin, and 356 have a Galactic
origin. Compared to the original 3PBC, which has 233 unidentified and 300
unclassified sources, we decreased these fractions from ∼33% (533 sources) to
∼26% (417 sources).

Our study also allowed us to discover new Seyfert galaxies included in the
Turin-SyCAT 2nd release (paper I). In the 2nd release of the Turin-SyCAT, there
are 633 Seyfert galaxies, 282 new ones added thanks to our refined analysis
and corresponding to an increase of ∼80% with respect to the Turin-SyCAT 1st

release (Peña-Herazo et al., 2022).
Moreover, trends between the hard X-ray and the gamma-ray emissions of

those blazars listed in the 3PBC with a counterpart in the second release of the
fourth Fermi-LAT catalog (4FGL-DR2) were also found (paper I), as expected
from emission models widely adopted to explain their broadband SED (e.g.,
Marscher and Gear, 1985; Marscher and Travis, 1996; Massaro et al., 2006).

In this work, we examine the population of the 218 unidentified hard X-ray
sources listed in our revised version of the 3PBC, i.e., those lacking an assigned
counterpart at lower energies than the BAT energy range. We analyzed all soft
X-ray observations (between 0.5 and 10 keV) available in the archive of the X-ray
telescope (XRT) (Burrows et al., 2005) on board the Swift Observatory and found
available data for 192 of the 218 3PBC sources, which is the sample we further

1 http://bat.ifc.inaf.it/bat_catalog_web/66m_bat_catalog.html

http://bat.ifc.inaf.it/bat_catalog_web/66m_bat_catalog.html
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analyze in this study. This analysis aims to search for potential counterparts in
the soft X-ray data of the Swift-XRT for the 192 yet unidentified 3PBC sources.
The final goal of the present analysis is to provide a catalog of all unidentified
hard X-ray sources having at least one candidate counterpart if detected in the
soft X-ray band, that could be targeted with follow-up spectroscopic observations
to obtain its final classification, as successfully carried out in the last decades
(e.g., Koss et al., 2017; Landi et al., 2017; Marchesini et al., 2019a; Masetti et al.,
2006a, 2008, 2006c, 2012, 2013; Parisi et al., 2014; Rojas et al., 2017; Tomsick
et al., 2020).

The paper is organized as follows. Section 5.3 describes the Swift-XRT data
reduction and data analysis procedure. Then Section 5.4 is devoted to our re-
sults while details on the multifrequency comparison are illustrated in Section
5.5. Finally, Section 5.6 is dedicated to our summary, conclusions, and future
perspectives. X-ray images for all analyzed BAT sources are reported in the
Appendix.

As previously adopted in the paper I, we used cgs units unless stated other-
wise. We also adopted ΛCDM cosmology with ΩM = 0.286, and Hubble con-
stant H0 = 69.6 km s−1 Mpc−1 (Bennett et al., 2014) to compute cosmological
corrections through the whole manuscript.

5.3 swift -xrt observations

5.3.1 Sample selection

The 3PBC catalog lists 1 593 hard X-ray sources, all detected with a signal-
to-noise ratio (S/N) above 3.8 in the 15–150 keV energy range. Our analysis,
presented in paper I, identified 218 3PBC sources lacking an assigned counterpart
at lower energies.

In this work, we searched the Swift-XRT archive, and we found that 192 out of
these 218 hard X-ray sources have at least one X-ray observation with exposure
time larger than 250 sec in the 0.5–10 keV energy range. We found a total of 1213
such observations that have been reduced and analyzed here according to the
standard procedures described below. In Fig. 5.1, we report the distribution of
the exposure time for all selected observations. The 1213 Swift-XRT observations
have a mean of 1462 s and variance ∼ 6 × 106 s with a total exposure time of
1.77 × 106 s.

All observations we reduced and analyzed in this study were performed be-
tween April 2005 and December 2022.

5.3.2 Data Reduction

Data reduction procedures applied here for all Swift-XRT observations are the
same previously adopted for similar analyses (see e.g. Marchesini et al., 2020,
2019b; Massaro et al., 2008a,b, 2023a; Paggi et al., 2013) and procedures of
the Swift-XRT X-Ray point source catalogs (D’Elia et al., 2013; Evans et al.,
2014b, 2020). Thus, we only describe the basic information and refer to the above
references for a more detailed description.
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Figure 5.1: Distribution of Texp of the 1213 Swift-XRT observations analyzed in this
work, with mean 1462 s (left panel) and the total Texp per source of the 192
sources for which we found the Swift-XRT observations with mean 8864 s
(right panel).

We downloaded raw Swift-XRT data from the archive2. Then we run the
xrtpipeline task, developed as part of the Swift X-Ray Telescope Data Anal-
ysis Software (XRTDAS) and distributed within the HEAsoft package (ver-
sion 6.30.1) (Nasa High Energy Astrophysics Science Archive Research Center
(Heasarc), 2014). This allowed us to obtain clean event files for all Swift-XRT
observations. The entire analysis and all X-ray images shown in the present
manuscript are restricted to the 0.5-10 keV energy range unless stated otherwise.

We subsequently calibrated these cleaned event files with the usual filtering
criteria and using calibration files provided in the High Energy Astrophysics
Science Archive Research Center (HEASARC) calibration database (CALDB)
version (v.20220907)3. Using the xselect task we excluded all time intervals
with count rates higher than 40 photons/sec as well as those with CCD tem-
perature exceeding -50◦C, in regions located at the edges of the XRT detector
(D’Elia et al., 2013). Then, the xselect task was also used to merge all cleaned
and filtered event files for those sources with multiple observations. Finally, it is
worth mentioning that the entire analysis was carried out using the XIMAGE
software4 to merge the corresponding exposure maps (Giommi et al., 1992a).

5.3.3 Data Analysis

To detect sources, we used the sliding cell DETECT (det) algorithm available
in the XIMAGE software package (Giommi et al., 1992b) on all merged event
files as well as on the single event files for sources with only one observation. We
set a threshold on the S/N equal to 3 for claiming detection of an X-ray source
in the 0.5-10 keV energy range, as recently performed in the analysis of Massaro
et al., 2023b.

Then, to identify and characterize the 3PBC sources, we labeled them using
three different X-ray detection flags (XDF) on the basis of the following criteria.

2 https://heasarc.gsfc.nasa.gov/docs/archive.html
3 https://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/caldb_supported_missions.html
4 https://heasarc.gsfc.nasa.gov/xanadu/ximage/ximage.html
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• x flag: is used for 3PBC sources that have a single soft X-ray source
within their BAT positional uncertainty region (see, e.g., 3PBC J1039.4-
4903 shown in the left panel of Figure 5.2)

• m flag: indicates 3PBC sources with more than one soft X-ray source (mul-
tiple detections) within their BAT positional uncertainty region (see, e.g.,
3PBC J0819.2-2509 shown in the central panel of Figure 5.2)

• u flag: is adopted for 3PBC sources with no soft X-ray counterparts de-
tected in their merged event files within their BAT positional uncertainty
region (see, e.g., 3PBC J1834.7-0345 shown in the right panel of Figure 5.2).

We measured several parameters for all detected possible X-ray counterparts
of the 3PBC hard X-ray sources in merged event files. In particular, we obtained
coordinates of the distributions of X-ray photons from each source using the
xrtcentroid task. We also measured n90, the number of photons within a
circular region centered on the X-ray coordinates with radius 120,207 arcsec (51
pixels), which is enclosing 90% of the Swift-XRT point spread function (PSF).

5.4 a soft x-ray perspective of the hard x-ray sky

5.4.1 Outline of the main goal

The main goal of this analysis is to search for possible counterparts to the sample
of yet unidentified hard X-ray sources identified in our previous work (Kosiba et
al., 2023). We search for the counterparts in soft X-ray wavelengths of the Swift-
XRT data. The final product of this analysis is to create and provide a catalog of
soft X-ray counterparts we found in the Swift-XRT data for the yet unidentified
hard X-ray sources. We release this catalog along with this publication. In this
paper, we also describe the sources we analyze in this study.

5.4.2 Overview of results

We analyzed all available Swift-XRT data, selected according to the criteria
previously described, for a total of 1213 observations corresponding to 192 3PBC
sources with a total exposure time 1.77 × 106 s. Considering only the Swift-XRT
detections inside the BAT positional uncertainty region above the S/N = 3 we
adopted, we found 93 soft X-ray sources. These 93 soft X-ray sources correspond
to 73 unique 3PBC sources. From those, 13 3PBC sources are associated with
multiple soft X-ray detected sources (m flag), and the remaining 60 3PBC sources
are associated with a single soft X-ray detected source (x flag). Those are the
final results presented in this analysis.

We note that all 3PBC sources with at least one soft X-ray counterpart de-
tected within their positional uncertainty region have an integrated exposure
time above 975 seconds, about four times longer than the minimum selected
value. The distribution of X-ray count rates and that of their positional uncer-
tainty in the 0.5–10 keV energy range computed using the xrtcentroid task
for the 93 Swift-XRT detected sources are shown in Fig. 5.3 (left) and Fig. 5.3
(right), respectively.
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Figure 5.2: Each figure in this image depicts an example of our XDF flags that label
the 3PBC sources. These figures are the XRT merged event files with the
red circle indicating BAT positional uncertainty region and the black circles
highlighting the position of a soft X-ray source detected in the Swift-XRT
archive. The top panel is an example of a 3PBC source with a single Swift-
XRT source found within the BAT positional uncertainty region (red circle),
flag x. The center panel is the case of multiple detected Swift-XRT coun-
terparts inside of the BAT positional uncertainty, flag m. The bottom panel
is an example of no Swift-XRT counterparts detected within the BAT posi-
tional uncertainty region, flag u.
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For calculating the BAT positional uncertainty region (red circles in Fig. 5.2),
we took the values reported in the 3PBC catalog (Cusumano et al., 2010).

In this section, we are focusing on the m XDF flagged sources (Fig. 5.4 and
Fig. 5.5). We discuss these 13 3PBC sources separately to detail their potential
soft X-ray counterparts.

Figure 5.3: Distribution of the count rate in logarithmic scale, with mean 0.028 photon-
s/s (left panel) and the XRT positional uncertainty (ϑXRT ) with mean value
4.5 arcsec (right panel). Both are in the 0.5-10 keV energy range for all 93
Swift-XRT detected counterparts.

In Appendix 5.7.1, we report the first five columns of our final table for the first
ten sources. Those are the 3PBC name, the XRT counterpart name, the XDF
flag, the right ascension and declination of the centroid, and the uncertainty on
the centroid’s position. The remaining seven columns of our final table are also
reported in the Appendix 5.7.1, listing the angular separation between XRT and
BAT, count rate, uncertainty on the count rate, S/N, number of observations,
integrated exposure time (Texp) and counterpart’s name in WISE.

Finally, Appendix 5.7.2 includes all X-ray images obtained from cleaned and
merged event files with a red dashed circle showing the BAT positional uncer-
tainty and, when present, black circles indicating all soft X-ray counterparts
detected in our Swift-XRT analysis. The green cross marks soft X-ray detections
with a WISE counterpart. The WISE counterparts have been searched within a
circular region corresponding to the positional uncertainty of the Swift-XRT.

5.4.3 3PBC sources with multiple candidate counterparts

This section shows images of 3PBC sources with a brief discussion for which we
find multiple XRT PC counterparts consistent within the positional uncertainties
(m flag).

Three more sources deserve a more detailed description: 3PBC J1430.3+2303
(m flag), 3PBC J1620.1-5001 (x flag), and 3PBC J1730.0-3436 (x flag). All these
sources appear to have extended X-ray sources close to the BAT positional un-
certainty region. Thus, we adopted the following approach to consider potential
X-ray counterparts and avoid spurious detected objects.

For 3PBC J1620.1-5001 and 3PBC J1730.0-3436 (Appendix 5.7.2), we only
indicate in the main table the X-ray detected source having the highest signal-
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to-noise ratio among those automatically detected. In particular, both sources
lie close to the Galactic plane and close to star-forming regions and could be
unknown supernova remnants deserving further investigation. However, in the
case of 3PBC J1730.0-3436, artifacts in the merged event file prevented us from
conducting a detailed analysis. On the other hand, we noticed that for 3PBC
J1620.1-5001, the BAT positional uncertainty region is not centered on the ex-
tended X-ray source, thus suggesting that it is not the soft X-ray counterpart
of the hard X-ray object. A forthcoming paper will present a multifrequency
analysis of 3PBC J1620.1-5001 (Kosiba et al., 2023).

Finally, we considered the case of 3PBC1430.3+2303, for which, given the
diffuse X-ray emission clearly detected, we only selected as potential counterparts
those targets detected as described in the previous section but also having a
mid-infrared counterpart, marked with the green cross in Fig. 5.4 and Fig. 5.5.
It is worth noting that among them, SWXRTJ143016.094+230343.862 seems
to be associated with the galaxy cluster MSPM 05080, thus indicating that the
possible origin of this extended X-ray emission is that arising from its intracluster
medium.

5.4.3.1 3PBC J0022.2+2539

This source has three XRT PC counterparts Fig. 5.4. While sources s1 and s3
are faint with S/Ns of 4.7 and 3.1, respectively, source s2 is much brighter with
a S/N of 37 and a count rate of 0.158 ± 0.004 s−1. In addition, source s2 is also
detected by WISE (J002203.09+254003.2) and in SDSS (J002203.09+254003.1)
with magnitude r = 17.0.

5.4.3.2 3PBC J0218.5-5005

This source has three XRT PC counterparts Fig. 5.4. The brightest of these is
s1 with an S/N of 5.9, while the faintest is s2 with an S/N of 3.8, also detected
by WISE (J021822.70-500557.5).

5.4.3.3 3PBC J0536.1-3205

This source has two XRT PC counterparts Fig. 5.4. The brightest being s1 with
an S/N of 4.1, also detected by WISE (J053618.88-320533.0).

5.4.3.4 3PBC J0709.5-3538

This source has two XRT PC counterparts Fig. 5.4, with s1 being by far the
brightest, with a S/N of 28.6 and a countrate of 0.176 ± 0.006 s−1, also detected
by WISE (J070932.05-353746.5) with a spectrum reported in Rojas et al., 2017.

5.4.3.5 3PBC J0800.7-4308

This source also has two XRT PC counterparts Fig. 5.4. The source s1 is the
faintest, with a S/N of 5.8 and a countrate 0f 0.0036 ± 0.0006 s−1, while s2 has
a S/N of 27.6 and a countrate 0f 0.065 ± 0.002 s−1. Both sources have a WISE
counterpart, J080045.83-430939.3, and J080039.96-431107.2, respectively.
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Figure 5.4: Images of the first 8 of the 13 3PBC sources with more than one soft Swift-
XRT source (XDF flag m) detected inside of the BAT positional uncertainty
region (red dashed circle). The soft X-ray detections are indicated with a
black circle. The black circle indicates the position of the soft X-ray source,
not its positional uncertainty. If the soft X-ray detection is also marked with
a green cross, it indicates that it has a WISE counterpart.

5.4.3.6 3PBC J0819.2-2509

This source has two XRT PC counterparts Fig. 5.4, with the brightest being s1
with an S/N of 14.0 and the faintest being s2 with an S/N of 7.4. Both sources
have a WISE counterpart, J081914.73-251116.6, and J081916.20-250706.4, re-
spectively, with s1 having a redshift of 0.00557 with a spectrum reported in
(Strauss et al., 1992).
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Figure 5.5: Images of the last 5 of the 13 3PBC sources with more than one soft Swift-
XRT source (XDF flag m) detected inside of the BAT positional uncertainty
region (red dashed circle). The soft X-ray detections are indicated with a
black circle. The black circle indicates the position of the soft X-ray source,
not its positional uncertainty. If the soft X-ray detection is also marked with
a green cross, it indicates that it has a WISE counterpart.

5.4.3.7 3PBC J0857.2+6703

For this source Fig. 5.4, we find two XRT PC counterparts: the brightest being
s1 with an S/N of 17.6 and the faintest being s2 with an S/N of 3.1. The source
s1 has a WISE counterpart, namely J085656.49+670257.3.

5.4.3.8 3PBC J0905.4-1502

This source Fig. 5.4 has two XRT PC counterparts s1 and s2, with similar S/Ns,
3.8 and 3.9, respectively. Both are detected by WISE (J090522.48-150344.6 and
J090533.64-145956.2, respectively), with s2 reported in NED with a redshift of
0.088.
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5.4.3.9 3PBC J1430.3+2303

For the 3PBCJ1430.3+2303 (Fig. 5.5), given the presence of diffuse X-ray emis-
sion, the automatic algorithm described in the previous section detected many
spurious sources. We thus selected as potential soft X-ray counterparts only
the sources with a mid-infrared counterpart, marked with the green cross. It is
worth noting that among them, SWXRTJ143016.094+230343.862 seems to be
associated with the galaxy cluster MSPM 05080, thus indicating that the pos-
sible origin of this extended X-ray emission is that arising from its intracluster
medium.

5.4.3.10 3PBCJ1732.0-3439

This source Fig. 5.5 has two XRT PC counterparts, s3 and s4, with S/Ns of 3.3
and 4.7, respectively, and count rates of 0.0044 ± 0.0013 and 0.0087 ± 0.0018
ct s−1, respectively.

5.4.3.11 3PBCJ1846.1-0226

This source Fig. 5.5 has three XRT PC counterparts, s7, s13 and s15, with similar
S/Ns of 4.2, 4.5 and 4.9, respectively. The source s13 is also detected in SDSS
(J184617.13-022753.4) with a magnitude r = 17.6.

5.4.3.12 3PBCJ1856.5+2836

This source Fig. 5.5 has three XRT PC counterparts, s1, s2 and s4, with S/Ns of
3.6, 3.5 and 9.9, respectively. The sources are all detected by WISE (J185626.89+283809.3,
J185632.13+283628.8, and J185634.58+283531.3), although the faintest s2 only
has an upper limit of 8.3 mag in W4 band.

5.4.3.13 3PBCJ2313.3-3402

This source Fig. 5.5 has two XRT PC counterparts, s7, and s9, with the bright-
est being the former, with an S/N of 8.4. Both sources are detected by WISE
(J231313.21-340056.2 and J231337.01-340302.1), although the fainter s9 only has
an upper limit in W3 and W4 bands.

5.4.4 Comparison with 2SXPS

Finally, we compared our results with those that can be obtained by simply
crossmatching all 218 hard X-ray sources listed in the 3PBC with the latest
release of the Second Swift-XRT Point Source Catalog5 (2SXPS Evans et al.,
2020). The 2SXPS catalog has a sky coverage of 3, 790 deg2, listing 206,335
point sources detected by XRT in the 0.3 − 10 keV energy range. Here, we briefly
summarize the procedure used to build the 2SXPS.

The 2SXPS was built based on all XRT observations taken between 2005,
January 1st, and 2018, August 1st, with an exposure of at least 100 s in PC
(photon-counting) mode. Source detection was performed with the sliding-cell
technique with a S/N threshold set to 1.5, in comparison to our choice of S/N = 3,

5 https://heasarc.gsfc.nasa.gov/W3Browse/swift/swift2sxps.html
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yielding the final catalog of 206, 335 XRT PC sources listed in the 2SXPS. The
catalog contains a “clean" subsample, listing 146, 768 sources without analysis
flags (see (Evans et al., 2020) for more details). In the following, we will consider
this “clean" subsample.

Due to the different dataset and analysis procedures used in the present work
and in Evans et al. (2020), we expect differences in the XRT PC source detec-
tions. In fact, cross-matching the 2SXPS “clean" sample with the 3PBC sources
considered here (see Sect. 5.3.1), taking into account both BAT and 2SXPS po-
sitional uncertainties, we find 126 2SXPS counterparts to 90 3PBC sources, 68
3PBC sources with a single 2SXPS match and 22 3PBC sources with multiple
2SXPS matches. In the left panel of Fig. 5.6, we compare the exposures of the
XRT PC observations used in the present analysis (blue distribution) and in the
2SXPS observations for which we find the 126 2SXPS counterparts to the 3PBC
sources considered in this work. We see that 2SXPS datasets and the dataset
used in our analysis span a similar exposure range.

In addition, we find XRT PC counterparts to 7 3PBC sources without 2SXPS
counterparts, while in the 2SXPS catalog, there are counterparts to 22 3PBC
sources for which we did not find XRT PC counterparts. However, we note
that the S/Ns for these 22 sources are less than 2.5, below the S/N threshold
of 3 that we adopted for the present analysis. In addition, we find 78 sources
positionally compatible between our sample of 93 XRT PC sources and the 126
2SXPS counterparts to the 3PBC sources.

In the right panel of Fig. 5.6, we compare the count rate evaluated in the
present analysis with the count rate reported in the 2SXPS catalog for these 78
common sources. We stress that to account for the different energy bands adopted
in the present analysis (0.5 − 10 keV) and in the 2SXPS catalog (0.3 − 10 keV),
we rescaled the count rate of the 2SXPS catalog by a factor 0.86 evaluated via
PIMMS6 tool assuming a power-law spectrum with a 1.8 slope. We see that the
two estimates are in good agreement at low count rate values (< 10−3 cps). In
contrast, above 10−2 cps, the 2SXPS count rates appear systematically larger
than those evaluated in the present analysis. The two-count rate estimates, how-
ever, are compatible at 2 σ level.

5.5 multifrequency comparison

To search for additional information regarding all detected soft X-ray candidate
counterparts we crossmatched their position, derived with the xrtcentroid
task - taking into account their positional uncertainties - with three main cat-
alogs/surveys: (i) the NASA Extragalactic Database (NED)7; (ii) the SIMBAD
Astronomical Database8 as well as (iii) the ALLWISE catalog (Cutri et al.,
2021b) based on the all-sky survey performed with WISE telescope (Wright et
al., 2010) and (iv) the spectroscopic catalog of the Sloan Digital Sky Survey
(SDSS) data release 16 (DR16) (Blanton et al., 2017). We used the positional
uncertainty region of the Swift-XRT for all soft X-ray detected sources to search
and claim an association with its wise counterpart.

6 https://cxc.harvard.edu/toolkit/pimms.jsp
7 http://ned.ipac.caltech.edu
8 http://simbad.u-strasbg.fr/simbad/
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Figure 5.6: Left panel: the comparison between the exposure of the dataset used in the
present work (blue distribution) and in the 2SXPS catalog (red distribution).
Right panel: XRT PC count rates as reported in the 2SXPS catalog versus
those evaluated in the present work for the 78 sources in common between
the two analyses (see Sect. 5.4.4). The 2SXPS count rate has been rescaled to
match the energy band used in the present analysis. The blue line indicates
the linear regression to the logarithmic data, while the light blue shaded
area represents the 1 − σ uncertainty around the best-fit relation. The black
dashed line indicates the y = x relation. See Sect.5.4.4 for more details.

Our crossmatching analysis revealed that 84 of 93 soft X-ray potential coun-
terparts have an identification reported in NED. In addition, 74 of the 93 have
photometry available in WISE. We found that 10 out of the 93 have spectra in
the SDSS DR16. We classified them according to their spectral characteristics
and we report the results in Tab. 24.

5.5.1 A mid-infrared perspective

From the 93 detected soft X-ray possible counterparts corresponding to the 73
unique 3PBC sources, 74 sources have been detected in at least one WISE band.
There are 74 sources detected in both the W1 and W2 bands, 66 in W3, and
52 in W4. Fig. 5.7 shows the distribution of the angular separation between the
Swift-XRT centroid and the WISE centroid of the 74 counterparts that have
the WISE detection. We took all sources that are detected in the W1, W2, and
W3 bands, so 66 sources, and plotted them on a color-color diagram (Fig. 5.8).
The gray background sources in Fig. 5.8 are 3 000 WISE sources in the mid-IR
sky selected randomly in a region of 0.5 deg radius around Galactic coordinates
(50.411113,-45.668864) and (50.411113,45.668864). The black dots correspond to
the 66 Swift-XRT detected sources with reported luminosities in the first three
WISE bands. The mid-IR colors of this sample of 66 sources are not in good
agreement with the mid-IR colors of stars but are more consistent with AGNs,
mainly Seyfert galaxies and QSOs.
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Figure 5.7: Distribution of the angular separation between the Swift-XRT centroid and
the WISE centroid (θXRT −W ISE) of the 74 soft X-ray detections with the
WISE counterpart.

Figure 5.8: This figure shows the [3.4]-[4.6]-[12] µm color-color diagram of WISE ther-
mal sources and blazars. The gray dots represent a sample of 3 000 randomly
selected mid-IR sources in a region of 0.5 deg radius around Galactic coordi-
nates (50.411113,-45.668864) and (50.411113,45.668864). The 66 Swift-XRT
detected sources with available luminosities in the first three WISE bands
are marked as black dots. The mid-IR colors of this sample of 66 sources do
not agree with the mid-IR colors of stars. Instead, they are more consistent
with AGNs, mainly Seyfert galaxies and QSOs. The sources with [4.6]-[12]
mag > 2 are AGNs and QSOs, while the concentration of sources around 0
[4.6]-[12] mag are mostly normal elliptical galaxies and stars.

5.5.2 Archival optical spectra

According to previous analyses carried out during past follow-up spectroscopic
campaigns (see, e.g., Kosiba et al., 2023; Massaro and D’Abrusco, 2016; Peña-
Herazo et al., 2020, 2022), we adopted a conservative criterion to provide spec-
troscopic identification of selected X-ray counterparts. We adopted the same
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classification scheme described in paper I, and we only considered reliable red-
shift measurements, those for which we could verify the presence of a published
image of the optical spectrum or a description of the published spectrum with
emission and/or absorption lines clearly reported in a table format or the publi-
cation manuscript. We found spectra in the SDSS DR16 archive for 10 soft X-ray
sources. We show the spectra in Fig. 5.9 and the classification of those sources
in Appendix 5.7.1. The most prominent spectral lines among their spectra were
the Hα + [N II], [O III], and [O II]. We classified four sources as AGN Type
2, one as AGN Type 1, four as QSOs and one as a star-forming galaxy, which
agrees with the WISE colors of all sources and previous results.

Additionally, we compute the Baldwin, Phillips & Terlevich (BPT) diagrams
(Baldwin et al., 1981) for sources with narrow lines with the objective of clas-
sifying them as either Seyfert 2 or star-forming galaxies. We present the BPT
diagram in Figure 5.10. Our findings indicate that all narrow-line sources, ex-
cept for SDSS J143010.96+230134.7, fall outside the region corresponding to
star-forming galaxies on the plot. This region is delineated by the theoretical
line of (Kewley et al., 2001; Kewley et al., 2013). Consequently, we classify
these sources as Seyfert 2 galaxies. For 3PBCJ1504.1-6019 and 3PBCJ0800.7-
4308, the analysis we carried out is in agreement with that of Landi et al.,
2017, since we found the same soft X-ray sources lying within the positional
uncertainty of these BAT unidentified objects. Inspecting NED and SIMBAD
databases, we found the spectra for the soft X-ray counterparts of the UHXs
3PBCJ1329.7-1052 and 3PBCJ1854.4-3436. These are MCG -02-34-058 and ESO
396- G 007, lying at z=0.021648 and z=0.019483 (Jones et al., 2009), respectively.
The Swift-XRT counterparts we assigned for the sources 3PBCJ2136.1+2002,
3PBCJ2155.3+6204, and 3PBCJ2238.8+4050 are the same as previously as-
signed in the literature at which optical spectroscopic follow-up observations
revealed these to be three active galaxies lying at z=0.081 (Sy1), z=0.058 (Sy1)
and z=0.055 (LINER), respectively, as reported in (Rojas et al., 2017). The
yet unidentified source 3PBCJ0024.1-6823 having the Swift-XRT counterpart
SWXRTJ002406.457-682052.549 could also be associated with the radio source
PKS 0021-686, a gamma-ray blazar candidate selected based on its mid-IR colors
(D’Abrusco et al., 2012b, 2014; D’Abrusco et al., 2019).

5.6 summary and conclusions

The main goal of the present analysis is to prepare a catalog of candidate soft
X-ray Swift-XRT counterparts detected in the 0.5–10 keV energy range to list
potential targets for the optical spectroscopic campaign, aiming at the classifi-
cation of the yet unknown sources in the hard X-ray sky so we could obtain a
more complete overview of it. We found archival Swift-XRT observations for 192
of the 218 3PBC sources marked as unidentified in our previous analyses. Those
were the hard X-ray sources lacking an assigned low-energy counterpart. In this
work, we searched for possible counterparts at soft X-ray energies for those 192
3PBC sources. If found, we carried out the literature search and multiwavelength
analyses as done in the paper I.

We found that only in 172 out of 192 sources, there is at least one soft X-
ray detected source above our S/N threshold of 3 present in the cleaned and
merged event file, and only in 73 of the 3PBC sources we find at least one soft
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X-ray candidate counterpart detected within the BAT positional uncertainty
region. In particular, for 13 3PBC sources, there are multiple detected soft X-
ray objects, while all remaining 60 3PBC sources have only a single Swift-XRT
detected object. Thus, including multiple matches, the total number of Swift-
XRT detected possible counterparts inside the BAT positional uncertainty, listed
in our final catalog, is 93, sampling 73 3PBC hard X-ray sources.

Our X-ray results are in agreement with those achieved simply crossmatching
the catalog of 3PBC unidentified sources with the 2SXPS, with only marginal
differences, as reported in Section 5.4 mainly due to (i) longer exposure times and
new observations collected after its release that were considered in our analysis
and (ii) a small difference in the detection threshold chosen between the two
analyses.

We found available spectra in the literature for 10 detected counterparts. For
those, we carried the same multifrequency analyses as in paper I. We found
four sources to be quasars, four sources to be Type 2 AGN, and one source
to be Type 1 AGN, and one star-forming galaxy. The present analyses thus
decreased the 218 3PBC unidentified hard X-ray sources sample to 143, which
remain unidentified, lacking any low-frequency counterpart. This corresponds
to a decrease by a factor of ∼ 34 %. From the 73 3PBC sources for which we
found at least one assigned candidate counterpart, 10 were classified according
to our multifrequency criteria, becoming identified. The remaining 65 sources are
left as unclassified, indicating that they lack spectroscopic information for their
classification and are thus excellent candidates for future spectroscopic follow-up
observations.

Along with this publication, we provide a catalog table of all 93 soft X-ray de-
tections and a short table with our classification of the sources with spectra. The
soft X-ray sources we found in this analysis can be targets of future spectroscopic
campaigns aimed at classifying them to obtain redshift values and confirm that
most of those having mid-IR detection are AGNs, as expected by the mid-IR
plot.
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5.7 appendix

5.7.1 Appendix: Catalog of soft Swift-XRT candidate counterparts of the UHXs

Here we report the first 10 lines of the two main tables, showing parameters
derived from our analysis, for soft X-ray sources detected by Swift-XRT that
could be candidate counterparts of the sample of unidentified 3PBC hard X-ray
sources, namely: Tab. 22 and Tab. 23.

Complementary to the Fig. 5.9 and Sec. 5.5.2 we provide here a table of our
spectral classification of the 10 sources for which we found available spectra in
the SDSS archive (Tab. 24).

5.7.2 Appendix: Images of all x flagged 3PBC sources

This section shows images of all the 3PBC sources with exactly one soft Swift-
XRT detection inside the BAT positional uncertainty region (red dashed circle).
The green cross, if present, indicated that the source has a WISE counterpart.
The black circle only highlights the position of the Swift-XRT detection, not its
positional uncertainty region. One exception is 3PBCJ1730.0-3436, which has a
cyan circle instead of black because the black would not be visible on top of the
source’s emission.
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Figure 5.9: This figure shows the ten spectra we collected from the SDSS archive for the
soft X-ray Swift-XRT sources detected in the BAT positional uncertainty
region of the 3PBC sources. The upper left spectrum (J0040.5+2542) corre-
sponds to a quasar. The upper middle spectrum (J0838.7+2613) is a quasar
spectrum as well. We classified the upper right spectrum (J1041.2+0451) as
a Type 2 AGN. The second row shows spectra of Type 2 AGN (left and
middle) and quasar (right). The third row shows the spectra of a quasar
(left), Type 2 AGN (middle), and Type 1 AGN (right). The last spectrum
image on the bottom corresponds to a star-forming galaxy. The main spec-
tral emission and/or absorption features are marked in each figure. We are
reporting the Sloan spectra with the same redshift precision since none of
the fitting they performed had warnings.
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Figure 5.10: The BPT Diagram for distinguishing Type 2 and Star-Forming Galaxies.
Error bars are all less than 0.009 and not visible in the plot. Note that all
sources, except for SDSS J143010.96+230134.7, are above the theoretical
line of Kewley et al., 2013 (right part of the graph separated by the blue
line), which serves to discriminate between starburst regions and harder
ionization sources.
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Table 24: Multiwavelength classification of the ten counterparts with available spectra
in the SDSS. There are three sources with the same 3PBC name, each corre-
sponding to a different Swift-XRT soft X-ray detection.

3PBC name SDSS name z Class
3PBC J0040.5+2542 J004024.39+254303.4 1.0015 QSO
3PBC J0838.7+2613 J083850.15+261105.4 1.6139 QSO
3PBC J1041.2+0451 J104115.61+045313.8 0.0683 Sy 2
3PBC J1126.8+1851 J112655.08+184957.4 0.0188 Sy 2
3PBC J1140.8+3611 J114054.58+360957.0 0.0701 Sy 2
3PBC J1158.4+5704 J115843.32+570536.6 1.1202 QSO
3PBC J1236.2+2216 J123622.60+221834.8 1.8559 QSO
3PBC J1430.3+2303 J143016.05+230344.4 0.0811 Sy 2
3PBC J1430.3+2303 J143008.64+230621.5 0.0791 Sy 1
3PBC J1430.3+2303 J143010.96+230134.7 0.0173 Sy 2
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Figure 5.11: Images of 3PBC sources with exactly one soft Swift-XRT source (XDF flag
x) detected inside of the BAT positional uncertainty region (red dashed
circle). The soft X-ray detections are indicated with a black circle. The black
circle indicates the position. It does not show the positional uncertainty of
the source. If the soft X-ray detection is also marked with a green cross, it
indicates that it has a WISE counterpart.
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Figure 5.12: Images of 3PBC sources with exactly one soft Swift-XRT source (XDF flag
x) detected inside of the BAT positional uncertainty region (red dashed
circle). The soft X-ray detections are indicated with a black circle. The black
circle indicates the position. It does not show the positional uncertainty of
the source. If the soft X-ray detection is also marked with a green cross, it
indicates that it has a WISE counterpart.
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Figure 5.13: Images of 3PBC sources with exactly one soft Swift-XRT source (XDF flag
x) detected inside of the BAT positional uncertainty region (red dashed
circle). The soft X-ray detections are indicated with a black circle. The black
circle indicates the position. It does not show the positional uncertainty of
the source. If the soft X-ray detection is also marked with a green cross, it
indicates that it has a WISE counterpart.
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Figure 5.14: Images of 3PBC sources with exactly one soft Swift-XRT source (XDF flag
x) detected inside of the BAT positional uncertainty region (red dashed
circle). The soft X-ray detections are indicated with a black circle. The black
circle indicates the position. It does not show the positional uncertainty of
the source. If the soft X-ray detection is also marked with a green cross, it
indicates that it has a WISE counterpart.
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Figure 5.15: Images of 3PBC sources with exactly one soft Swift-XRT source (XDF flag
x) detected inside of the BAT positional uncertainty region (red dashed
circle). The soft X-ray detections are indicated with a black circle. The black
circle indicates the position. It does not show the positional uncertainty of
the source. If the soft X-ray detection is also marked with a green cross, it
indicates that it has a WISE counterpart.
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Figure 5.16: Images of 3PBC sources with exactly one soft Swift-XRT source (XDF flag
x) detected inside of the BAT positional uncertainty region (red dashed
circle). The soft X-ray detections are indicated with a black circle. The black
circle indicates the position. It does not show the positional uncertainty of
the source. If the soft X-ray detection is also marked with a green cross, it
indicates that it has a WISE counterpart.
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Summary & Future Perspective

6.1 multiwavelength classification of x-ray-selected galaxy
cluster candidates using convolutional neural networks

The aim of my Multiwavelength classification of X-ray-selected galaxy cluster
candidates using convolutional neural networks project (Kosiba et al., 2020) was
to create a galaxy cluster detection method that could replace the serendipitous
manual classification of galaxy cluster candidates. I have developed a custom
convolutional neural network architecture to classify galaxy cluster candidates
in combined X-ray and optical wavelengths. This combination was especially
complementary because cluster selection based on any of the two wavelengths
alone has its own intrinsic biases.

• I trained my custom convolutional neural network on images of 1 100 cluster
candidates and tested on a sample of 85 spectroscopically confirmed galaxy
clusters and 85 sources classified as non-cluster detections by X-CLASS
collaboration. It achieved 90 % averaged accuracy over ten runs.

• I trained this network also in a multi-class classification regime, classifying
candidate clusters to categories nearby cluster, distant cluster, point source,
nearby galaxy and other. My custom network achieved ∼ 85 % overall ac-
curacy in this mode.

• I also used state-of-the-art architectures available during this research (e.g.,
MobileNet, ResNet, VGG19) in a transfer learning regime. The MobileNet
CNN performed slightly better in this regime than our custom network,
achieving ∼ 86 % overall accuracy. This result was within 1 σ with our
custom network.

• I also created a Zooniverse citizen science project, The Hunt for Galaxy
Clusters to acquire a large sample of classified galaxy cluster candidates
that could potentially enhance our CNNs.

• Regarding the Zooniverse project, I communicated with the general pub-
lic on social media platforms, working on public outreach promotion of
the project and the forum discussion with the volunteers (more than 1 400
individuals and more than 3 000 comments). Once finished, I coded and
developed a statistical analysis to analyze the metadata provided by the
Zooniverse platform and created a metric to evaluate the citizen classifi-
cations. I compared them with the expert classifications of the X-CLASS
collaboration on an overlap sample of 404 sources. The Zooniverse volun-
teers achieved only 62 % agreement with the X-CLASS experts. However,
they provided a very clean sample of galaxy clusters, incorrectly classifying
only 1 non-cluster as a galaxy cluster. Their bias was mainly in preferential
classification towards point source or no emission Zooniverse categories.

141

https://www.zooniverse.org/projects/matej-dot-kosiba/the-hunt-for-galaxy-clusters
https://www.zooniverse.org/projects/matej-dot-kosiba/the-hunt-for-galaxy-clusters


142 summary & future perspective

I have created a convolutional neural network achieving 90 % accuracy for the
classification of galaxy cluster candidates. This alone, even though providing
good results, would not be sufficient for automatically creating a galaxy cluster
catalog aimed at cosmological studies because these require even higher purity
of the cluster sample. Retraining my network on a larger sample, possibly using
simulations to cover some peculiar types of sources and XMM artifacts in greater
detail, could also be a beneficial step forward in achieving better performance.
Using spectroscopic information on the galaxies in the optical images would also
help the training. I would also like to point out that my neural network was
tested on a sample of 85 spectroscopically confirmed clusters but also on 85
objects that were classified as non-clusters by us in the X-CLASS collaboration,
and we can not be 100 % sure that these X-CLASS classifications are actually
correct due to the nature of the problem. This is especially a place where the
simulations would be useful.
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6.2 the cosmological analysis of x-ray cluster surveys: vi.
inference based on analytically simulated observable
diagrams

The goal of my study; The cosmological analysis of X-ray cluster surveys: VI.
Inference based on analytically simulated observable diagrams (Kosiba et al.,
2024, submitted) was to develop a novel method for cosmological analysis. A
method that could predict the Ωm and σ8 cosmological parameter based purely
on galaxy cluster’s observable characteristics, the X-ray count rate, hardness
ratio, and spectroscopic redshift information independently of scaling relations.

• I have developed a scaling-relations-free method of cosmological analysis
based on observable characteristics of galaxy clusters (CR, HR, z) employ-
ing simulation-based inference tasked to predict the posterior probability
distribution of Ωm and σ8.

• For this task, I used analytically simulated X-ray observable diagrams
(XOD) of galaxy cluster’s distribution in a CR, HR, z space provided
by colleagues. Next, I trained a ResNet-based model as a regressor to com-
press the XOD diagrams. I used the SNPE-A simulation-based inference
method to train a mixture density neural network that models the posterior
probability distribution of the Ωm and σ8 for a target diagram.

• Finally, this method is independent of scaling relations of galaxy clusters
because these were drawn from a random uniform distribution during sim-
ulations and are used only to get the desired observable cluster quantities
of the analytically simulated halos. The scaling relations never enter the
ML-based model at any step. The method thus makes predictions inde-
pendently of any apriori knowledge of scaling relations.

• I used this method to estimate the posterior probability distribution of
the Ωm and σ8 for a target simulated XOD in a case of a 1 000 deg2 and
10 000 deg2. The XODs have a flux cut as a selection function designed to
resemble the cluster number count of the XXL survey statistics.

• Following relative 1 σ errors were achieved on one of the target testing
simulations: 1 000 deg2: 15.2% for Ωm and 10.0% for σ8; 10 000 deg2: 9.6%
for Ωm and 5.6% for σ8.

The aim to create a novel approach for cosmological analysis that would be
independent of the use of scaling relations and mass measurements was achieved.
So far, I tested this method on simulated XODs for a scenario of 1 000 deg2 and
10 000 deg2 survey area. In the follow-up analysis, we plan to use this method to
measure the Ωm and σ8 from a real XOD. To do this, we will need to implement
some additional features, e.g., our selection function based on a simple flux-cut
designed to mimic the cluster number count of the XXL survey is satisfactory for
the present analysis, but it will need to be refined for a more realistic selection
function that will need to be two dimensional (flux vs apparent size). Next, we
will have to consider measurement errors in the simulation process of our XODs.
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6.3 a multifrequency characterization of the extragalac-
tic hard x-ray sky, presenting the second release of
the turin-sycat

The goal of my project, multifrequency characterization of the extragalactic hard
X-ray sky, presenting the second release of the Turin-SyCAT (Kosiba et al.,
2023), was to get a full characterization of the hard X-ray background. To do
this, I aimed to complete soft energetic counterparts for all hard X-ray 3PBC
sources and provide their classification based on our multifrequency criteria (e.g.,
spectral features, luminosities).

• The main results of this work are two catalogs, the revised version of the
3PBC and the second release of the Turin-SyCAT catalog of Seyfert galax-
ies.

• The revised version of the 3PBC catalog is a stand-alone catalog that
reports 1 176 classified sources, from which 820 were of extragalactic origin
and 356 were Galactic sources. Considering the remaining 417 sources, 218
were classified as unidentified (lacking low-energy counterpart) and 199 as
unclassified (not meeting the classification criteria of our multi-wavelength
analysis, e.g., due to missing spectra in the literature). This corresponds
to a decrease of the fraction of 3PBC classified uncertain sources by 76 %
and of the 3PBC unclassified category by 16 %.

• Concerning the first Turin-SyCAT, I found 282 new Seyfert galaxies. I
published them together with the former sources in the second release of
the Turin-SyCAT that are presented in this publication, now containing
633 Seyfert galaxies, an increase of 80 % with respect to the first version.

I managed to find some new low-energy counterparts and mainly to provide
detailed classification based on spectral characteristics (the width of spectral
lines) and luminosities for sources that lacked this information in the original
3PBC catalog. However, in the revised 3PBC catalog, 218 unidentified and 199
unclassified sources remained. These were the objects of study for my last project.
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6.4 swift -xrt follow-up analysis of unidentified hard x-
ray sources

The last project of my PhD research is the Swift-XRT follow-up analysis of
unidentified hard X-ray sources (Kosiba et. al., submitted 2023). This is a follow-
up analysis of the previous project with the same main aim: to provide a complete
overview of the cosmic X-ray background. This project aimed to search for low-
energy counterparts in the Swift-XRT archival soft X-ray data of the 218 yet
unidentified sources we provided in the revised 3PBC catalog of the previous
project.

• A total of 1213 archival Swift-XRT observations have been found for 192
of the 218 unidentified sources obtained between 2005, January 1st, and
2018, August 1st.

• From these 93 possible Swift-XRT counterparts were detected inside of the
Swift-BAT positional uncertainty regions. These correspond to 73 3PBC
sources, where 60 have only a single Swift-XRT detection, and 13 sources
have multiple detections.

• The main result of this work is a catalog of these low-energy counterparts,
which I present to the scientific community as potential candidates for
future spectroscopic follow-up targets.

• I also provide a short catalog of 10 of these counterparts for which I found
available spectra in the literature, and I present them together with corre-
sponding classifications.

In this follow-up study, we managed to find candidates for low-energy coun-
terparts for 73 of the 218 yet unidentified sources. There are also the 199 yet
unclassified sources, which are identified with a counterpart, but we are missing
some information (e.g., spectra or luminosities) to identify these based on our
multifrequency criteria. My contribution to this field was to decrease the num-
ber of unknown hard X-ray sources, but there are still some left that need to be
analyzed in future work.
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