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Foreword

This document contains lecture notes on the course MNFFY X1/H98 “Stjerneatmosfeerer”
(Stellar atmospheres) read in the fall semester 1998 at the Physics Institute of NTNU, Trondheim.
The course follows the classical text-book “Stellar atmospheres” by D. Mihalas, [3]. Only com-
ments and additions to chapters (listed according to the 2nd edition) included into the program of
the course will be explicitly written in the present document. Some more topics connected mainly
with the observational practice (spectroscopy and photometry) and with the cases of extended
atmospheres and atmospheres of binaries are added by the lecturer. The course could be con-
tinued on a summer practice at Ondfejov observatory close to Prague (at the 2-m spectroscopic
telescope) and there are different possibilities for master or PhD. thesis in both theoretical as well
as observational branch of the field.

The Chapter 5 has been added for the purpose of the course SIF4086 “Stjernefysikk” (Physics
of stars) read in the fall semester 2000 following the text-book “The physics of stars” by A.C.
Phillips, [5].



Chapter 1

Introduction

1.1 Goals of the stellar-atmosphere studies

Theory of stellar atmospheres is important for manifold reasons. First, by their definition, stellar
atmospheres are the surface layers of stars where the observable spectrum is formed. The detailed
understanding of the physical processes influencing the formation of outgoing light in this region
is thus crucial for its quantitative analysis and gaining an information from the observations. This
facilitates our knowledge of basic stellar parameters and the inner structure of stars. In this way,
the theory of stellar atmospheres contributes to the progress of many other branches of astrophysics
up to cosmology.

Another importance of the subject in question consists in its physical background. The basic
feature of stellar atmospheres is their thermodynamic non-equilibrium which is dominated by the
strong anisotropic radiation field. Stellar atmospheres can thus be used as laboratories of plasma
physics, in which the atomic parameters (probabilities of quantum transitions) can be tested.

Also the mathematical methods developed in stellar atmospheres can be widely used in many
other problems.

1.2 Basic concepts

Taking the atmosphere of the Sun as the best known example, we find its thickness of the order of
several hundreds of km (cf. [3, chap. 7-7]), which is well negligible in comparison with the solar
radius. This explains why we can see the sharp edge of the limb of solar disk and also why in the
standard models we mostly approximate stellar atmospheres by planeparallel slabs. From the H-R
diagram we can estimate the range of effective temperatures (~ 3 x 10® — 5 x 10*K) and gravity
accelerations (~ 10 — 10°g/cm? for main sequence stars and ~ 1 — 3 x 10%g/cm? for supergiants),
which are the main characteristic parameters of any atmosphere. It follows from here, that for hot
supergiants the thickness of their atmospheres is not negligible and spherical models give better
approximation. The solar observations do not in fact justify the second part of the standard
assumption, i.e., the homogeneity in the plains of symmetry of stellar atmospheres. Spots with
different effective temperatures (and sometimes also chemical composition and magnetic field) are
observed in even larger extend in some other stars. Homogeneity of atmospheres is violated also
by gravity darkening in rotating stars or binary components. These effects are usually neglected
or, in the better case, modelled by a mosaic composed of locally homogeneous models with varying
parameters. There are also other effects mostly ignored in the standard planeparallel model, like



the anisotropy caused by either the magnetic field or by the motion of the plasma due to the stellar
wind or some oscillations.

Taking into account the typical mass of stellar atmospheres, which is of the order of g/cm? and
consequently it is even more negligible with respect to the rest of star than its volume, the problem
of modelling the atmospheres may seem to be childish compared to the models of stellar interiors.
This impression may be strengthened by the facts that the energy radiated by stars is released
by thermonuclear reactions in stellar interiors, while in the atmospheres it is only reradiated, and
that the interiors are modelled in sequences of the time evolution, while for the atmospheres is
calculated their instantaneous picture only. However, the fact of thermodynamic non-equilibrium
mentioned in the previous Section makes the physics and especially the numerical modelling of
atmospheres more complicated. For modelling of the instantaneous radial structure of stellar
interiors we solve a set of ordinary differential equations and the evolution in the time-coordinate
is simply integrated as causal consequence of the last previous model. However, for the model
atmosphere (even with the above mentioned simplifying assumptions) we need to solve a set (in
frequencies) of two-dimensional integro-differential equations for the intensity of light as a function
of depth and angle. These equations are mutually coupled with other equations of the structure
of atmosphere.

The thermodynamic non-equilibrium of the radiation in stellar atmospheres can be in fact
verified by the simple observation with naked eye — the fact that we can see stars shining on
the background of the sky implies the existence of macroscopic flows, which should disappear
in an exact equilibrium. While the same radiative energy flow in the interiors is only a small
perturbation of the very dense radiation field, in the atmospheres we meet at one point outflowing
radiation with distribution corresponding approximately to the effective temperature of the star
and almost no radiation in the opposite direction. There is thus great discrepancy between the
colour temperature of the radiation and the temperature which corresponds to the mean (in all
directions) of the density of light. Different radiative processes in the plasma which tend to establish
thermodynamic equilibrium between the inner degrees of freedom (kinetic, ionization or excitation
energy levels) and the radiation thus pull the relative temperatures! of different couples of states to
different values. This source of non-equilibrium is partly compensated by non-radiative (collisional)
transitions which tend to establish the equilibrium of the inner states. The competition of these two
processes leads to a statistical equilibrium, which is close to thermodynamic equilibrium between
states for which the collisions prevail, while for states strongly interacting with the radiation there
can be significant deviations from the equilibrium distribution (corresponding to the temperature
of other states).

ILet us remind that the temperature can be exactly defined only for states which are at thermodynamic equi-
librium, i.e., which obey an equilibrium distribution law (e.g., Boltzmann distribution for classical particles or
Bose-Einstein or Fermi-Dirac for quantum particles) with the corresponding temperature. For two energy levels
we can find a temperature describing the ratio of their population. This temperature may be even negative, which
facilitates a laser effect.



Chapter 2

Radiative transfer

This chapter corresponds to chapters 1, 2, 3 and 6 of [3].

2.1 Equation of radiative transfer

In classical approximation (i.e., not quantum-field view), the radiation field can be described
either phenomenologically using the specific intensity, or in the kinetic approximation as a gas
of photons, or as a superposition of electromagnetic waves.! Unlike the Mihalas’ Eq. (1-2), it is
more advantageous in the kinetic description to use the distribution function f normalized per unit

2 d3:td3p
quantum state” =3, where the momentum of photon
hv
p=—1i 2.1
p=—i, (2.1)
and hence
Ry 3 2
d*p = —Svidvd'w, d°z = cdtd”S . (2.2)
c
The specific intensity I is thus related to f as
2hv?
I= — f, (2.3)

where the factor 2 corresponds to possible polarization states of photons. Polarization is usually
neglected in models of stellar atmospheres, despite it is known that it can cause an error of several
percents of the intensity even in planeparallel atmosphere dominated by Thomson scattering. A

LCf. [3, pp. 7-9] — The choice of units (SI, CGSE or CGSM) influences the coefficients in equations of elec-
tromagnetic field and must be carefully watched if the effects of electromagnetic field on the radiating plasma are
investigated (e.g., the magnetohydrodynamics of the atmosphere or the Zeeman effect in line profiles). However,
the present aim is simply to demonstrate the consistency of the description of radiative field and its stress-energy
tensor in both the particle- and field- approach.

2The main advantage of the normalization per unit element of phase-space volume consists in the Lorentz-
invariance of the phase-space element and thus also of f. It can be proved in relativistic kinetic theory, however,
intuitively it is obvious from the Lorentz contraction of the space-volume, which is inversely proportional to rela-
tivistic transformation of momentum. Unlike f, the specific intensity I, which includes the energy of photons and
which is normalized per element of spherical coordinates d?wdv, is thus influenced by Doppler-shift and aberration
in treatment of radiative transfer in differentially moving media. The choice of quantum state as the unit of phase-
space makes simpler the expressions for probabilities of quantum transitions and also the quantum statistics; the
Planck’s black-body radiation is described by the simple Bose-Einstein distribution f = (exp(,?—'q’.) — 1)~



more sophisticated formulation of radiative transfer can be done in terms of Stoke’s parameters
describing the partial linear as well as circular polarization of the light.

If the distribution function f of photons or the specific intensity I are known, the basic prop-
erties of the radiation field can be calculated. The most important are the first three moments
of the distribution, which are the components of the stress-energy tensor, i.e., the density of the

energy of radiation

Pp 1 2
Er = Q/hl/f? = E/L,dl/d Q, (24)

the density of momentum 7' or the density of the flow of radiative energy
F! =l = 2/hl/n’cfﬁ = /n’[,,dl/d2Q , (2.5)

and the stress tensor (pressure) of the radiation

g Y & 1 P
Ti =2 / hun’n]f% - / n'ni I, dvd>S . (2.6)

In the kinetic view of the radiation field, the equation of radiative transfer is the Boltzmann
equation for the gas of photons

S RY YU o

a on! T oy 5t

which is, generally, a consequence of the Liouville theorem, i.e., the conservation of phase-space
volume. This is valid for any Hamiltonian motion. The phase-space density f of particles is then
constant for collision-free particles, or its change is proportional to the collisional term (%)C on the
right-hand side of the Boltzmann equation (2.7). This term gives the number of particles which
will appear in the unit phasse-space volume per unit time due to the collisions (minus the number
of particles which will disappear). Changing the parametrization to the length s = ¢t measured
along the ray and substituting for f from Eq. (2.3) in terms of the specific intensity I, the equation

of radiative transfer reads®

d
slbony) =i+ et el & e

0 dz' 0 dn® 8 dv 4 0 sy _ (5[) 2.8)

In the case of photons in Cartesian coordinates in a non-refractive medium, the momentum (i.e.,
both the direction 7 and the frequency v) is constant and % = n'. Usually we deal with a
time-independent problem only, so that the term with the time-derivative also vanishes and the
equation of radiative transfer thus reduces to its standard form

d L0 (3l
g.[(t,l’,n,l/) =N %I— <£>C . (29)

However, in curvilinear coordinates (e.g., spherical) or in the case of refraction or gravitational
bending of light, the change of n’ must also be included. In the case of the change of v, e.g., due
to the Doppler shift in a differentially moving medium or due to the gravitational redshift, the
term with a% must also be included (but it can not be commuted with the multiplicator v from
Eq. (2.3)).

3Note, that only two components of the unit vector 7 are algebraically independent. This is why the angles of
spherical coordinates in the p-space are often used instead of the components.




The collisional term on the right-hand side of Eq. (2.8) gives now the amount of energy radiated
into the beam of light per its unit length (into its unit cross-section in unit solid angle and unit
frequency interval). We can suppose that it is a sum of two terms

oI
<g>c =e—al, (2.10)

the emission (¢) and the absorption? (—al). The later is negative and proportional to the intensity
of light. The absorption coefficient (or opacity) « is thus the probability that a photon from the
beam will be absorbed in a unit length and it is proportional to the volume density of the absorbers
multiplied by their effective cross-section. We usually replace the emission coefficient (emisivity) e
by the source function S defined by the relation

c=as. (2.11)

The equation of radiative transfer thus reads

diSI(t,a:,n, v)y=a(S-1I). (2.12)

There exists also the stimulated (induced) emission, which is positive and proportional to the
intensity. For the purpose of solution of the equation of radiative transfer (2.12), we use to include
it into the linear absorption term as a negative absorption. As it will be explained in Chapter 3, the
stimulated emission is a consequence of the boson nature of photons, and it thus takes place in all
radiative processes including both the true absorption/emission as well as all kinds of scattering.®

2.2 Formal solution of radiative transfer

The equation of radiative transfer along the ray (in terms of the optical depth 7, where dr = ads),

i[ =S-1T, (2.13)
dr

has the formal solution N
I(r) = / S(He= Nt , (2.14)

which can be interpreted as the superposition of exponentially damped contributions S of light
radiated at depths ¢ < 7 of the ray (7 is increasing in direction of the ray in this case).

For the radiation field in a plane-parallel geometry the individual rays are parametrized by
direction cosine p and the formal solution of the equation of radiative transfer (with 7 measured
in the direction p = —1)

,ugl =1-5 (2.15)
or
thus reads
7o (1) t—r 1
I = [ St F i (2.16)

4Note that [3] uses the letters n instead of € and x instead of a.
5The notice in [3, p. 24] about its existence for a definit upper state only is thus wrong. In the opposite case it
would lead to violation of the 3™d law of thermodynamics.



Figure 2.1: Modified exponential integral.

where the boundary optical depth 7, (i) = oo for outgoing rays, u > 0, and 7,() = 0 for in-going
rays, i < 0 (cf. [3, Egs. (2-50,51)]). The source function S is usually supposed to be isotropic
(% = 0). However, it need not be the case, e.g., if there is an anisotropic scattering. Let us
thus suppose that it can be expressed in the form of power-law series, S = Y% Sypt. The formal
solutions (cf. [3, Egs. (2-57,59,60)]) for moments J = My, H = M, K = M, (i.e., up to the
coefficients 47 or 4mc the components of the stress-energy tensor — cf. Egs. (2.4), (2.5) and (2.6)),
and generally any moment can thus be generalized and simplified as

1
d
UACEERN IR G B (2.17)
1 7o () P
= Z/ / SiltyrHe T al B -
1 —1J7 14 2
0 1 T
- Z/ Sl(t)/ uk+l—1signk+’*1(t—r)e*‘u‘%‘dt:
1 o] 0
1 _
= 25(51*Ek+z+1); (2.18)

l

if we define S;(7) = 0 for 7 < 0 to hold the convolution * in the variable 7 defined in the standard
range of integration (—oo,00). Here we have introduced a modified exponential integral

Ey (1) = sign* =1 (=7)Ey(|7]) , (2.19)

which is defined in the whole range of real numbers and which differs from the standard exponential



integral

Ei(z) = 2" Tl -k, ) (2.20)
= /Oluk72exp <—§> dup (2.21)
= [my‘kexp(—wy)dy (2.22)

(defined for positive numbers) by the sign-convention only. It is obvious that the convolution with
functions By, E» and FEj3 gives the kernels of integral operators A, ® and X, resp. (cf. [3, Eqs.
(2-58,61,62)]). The discontinuity of Esj at zero results in d-function in its derivative,

%Ek(T) = E'k_l(T) —

1+ (=1)k

1 (). (2.23)

Applying this relation between operators to the source function one arrives at an infite set of
differential equations for the moments

d

—(—1)k+!
EM’“(T) = My_1(7) — Z &
1

e S, (2.24)

which can also be obtained as moments of the transfer equation (2.15) (i.e., multiplying it by p*~!

and integrating by du), and which in the special case of isotropic S reduces Egs. (2-71) and (2-79)
of [3]

d

—H = — 2.2
dr J=95, (2.25)
Ay - m (2.26)
dr o ' )

These equations can also be obtained by the integration of Eq. (2.15) with du or udu, resp. They
describe the conservation of radiative energy and momentum, which is important for the vertical
structure of the atmosphere. For the total balance of energy and momentum in all frequencies these
equations must be expressed in a frequency independent radial coordinate, e.g., z, and integrated

in frequencies
d
— [ Hd
dz / v

diz/KdV = —/aHdl/. (2.28)

The first one states that the divergence of the radiative flux is the difference between the density of
energy emitted and absorbed. In radiative equilibrium we suppose this difference to be zero. The
second one gives the gradient of the pressure of radiation as the density of momentum transferred
from the radiative flux to the matter by the absorption.

The formula (2.23) rewritten in the form

/a(S —J)dv (2.27)

- - _(_1\k
Ek(T) = iEk+1(7') + 71 (k‘ 1)

e o(r) , (2.29)



can be usefull for practical calculations. For instance, in the case of a polynomial source function
S(7, 1) = h(T)SimplT™ (h being the Heaviside function), we find®

1 m n 1+ (_1)k+l m 1 m\! , T
M, = §Slm(hT ) * Egyiy = mSzth + §Slm(h7_ )" % Epyi42(7) =
14 (=1)k+ 1 - 1 _ -
- ﬁszthm + §Slm66nEk+l+2 (T) + §Slm(mh7'm 1) * Ek+l+2 (T) =
_ 1 1+ (_1)k+l m 1- (_1)k+l m—1
B §S’mh< k+i+1 | krlvz Tt
1 - e
+§Slm (66nEk+l+2 (T) + m66” lEk+l+3 (7') + ) . (230)

In the special case of isotropic S linear in 7 we thus arrive at Eqs. (2-63,64,65) of [3]. Recurrently,
one can obtain from Eq. (2.29) also the expression for the modified exponential integrals as series
of derivatives of §-functions”

o0

~ 1— (_1)k+n dn

E = ———(7) . 2.31

() =Y () (231)
n=0

Applying this relation to the source function, we can express all moments as combinations of its

derivatives

Z 1+(_1)k+l+n dn

My(r)=S -/ ¢
k(7) Sh+l4nt D

(2.32)

nl

i.e., in the special case of isotropic S we obtain Eqs. (2-89a,b,c) of [3]. and for the linear S also
Eqs. (2-63,64,65) of [3].

Exercise 1 (a) Find the behavior of Ey(z) at z — 0 and x — +oo, (b) prove Egs. (2.23) and
(2.31), (c) prove the algebraic recurrent formula for Ey(z),

Epi(z) = % (signk(—m)eflzl + 2By (a:)) .

Exercise 2 Derive the equation of radiative transfer and the corresponding moment equations for
the case of spherical symmetry.

2.3 Problems of scattering and grey atmosphere

In the formal solutions (2.16) or (2.18) of the transfer equation (2.15) we supposed the source
function S(7, 1) to be given (for each frequency) independently on the solution of radiation field.
However, the emissivity of a coherent scattering is proportional to the specific intensity of the light,

SHere we use the property (A.4) of the convolution and the relation (h7™)" = 67*6(7) + mhr™ L.
"The convergent expansion of Ej, reads

k-1 0
7 (7$)k71 1 (7m)m
Ey(zx) = 1) <1H$7+2:1E> Z (m—k+1)m!’

m=0,m#k—1

where the Euler’s constant v ~ 0.5772156649.

10



e.g., for the isotropic scattering e; = ¢J. If the emissivity of standard absorption and emission
€, = kB (cf. [3, Sec. 2-1]), the total source function

kB +oJ
=—=(1-¢)B 2.
S s (1-¢)B+¢J, (2.33)

where ¢ = 7 is the so-called single scattering albedo. Eqg. (2.15) of radiative transfer is thus
differential in 7 and integral in p

0 bLdp

The formal solution (2.18) for the moments of radiation field, which in the present simplified case
of isotropic source function reads for the mean intensity J = M,

1 _
J = 5(5’ x F1) =A(S) =A[(1—<)B] + AlsJ], (2.35)
is thus an operator equation®

J—A[cJ] = A[(1-¢)B], (2.36)

for J. This equation can be formally solved as

J=[1-A¢]™'A[(1 —¢)B], (2.37)
however, to find the inverse operator [I — Ag]~! is not, generally, a simple task. In the case of
small relative values ¢ of the scattering, the emissivity of scattering can be treated as a small
perturbation, for which the correction can be found iteratively by the so called A-iteration

Joy = Al(1—<)B], Jint1) = Jo) + ATy (2.38)

which is equivalent to the expression

o0

(1A h =D [Ad", (2.39)

n=0

for the function of the operator A¢ in terms of the sum of geometric series. Unfortunately, in
practice, the value of ¢ is close to 1, for which values the A-iteration converges very slowly.

Approximate A-iterations. The problem of convergence of A-iterations can be overcome (or
at least decreased) in numerical calculations by the following method. If we denote the right-hand
side of Eq. (2.36) as R and we split the A-operator into two parts

Ac=A+(Ac—4), (2.40)

Eq. (2.36) reads
(1—A)J - (As— A)J =R, (2.41)

8This equation is the Fredholm equation of the second kind. It can be alternatively written for unknown functions
SorJ-B,

S—cA(S)=(1-9)B, [1-Aq(J—B)=AB-B.

11



The operator A is chosen to approximate Ag, however, at the same time to be sufficiently simple
so that 1 — A could be easily inverted. The equation for J can then be rewritten into the form

J-(1-A) 1 Ac—-A)J=(1-4)""'R, (2.42)

which again is formally similar to Eq. (2.36), but the operator (1 — A)~*(A¢ — A) is now smaller
and the iteration process of the type (2.39) converges much faster and in a wider region of ¢. This
is why the abbreviation ‘ALI’ of the method is also interpreted as ‘accelerated Lambda-iteration’.
The simplest choice of A is A = ¢ x 1, i.e., the first term in the expression (2.29) for i, however,
the method is much more efficient for a three-diagonal matrix A in the representation in discrete
values of optical depth.

Grey atmosphere. In the respect of the above discussed problems with convergence in a scat-
tering atmosphere, the extreme case is that of a grey atmosphere in radiative equilibrium. The
assumption of greyness consists in frequency independence of the total (absorption plus scattering)
opacity a. The transfer equation (2.15) can thus be integrated in frequency and it has the same
form for the bolometric intensity and also its moments (2.27), (2.28) etc. are identical with (2.25),
(2.26) resp. Due to the additional assumption of radiative equilibrium we thus have

d

—H=J-5=0 2.43

dr ( )
for the bolometric quantities, which thus behave as a pure scattering ¢ = 1 (despite the emission
need not balance the absorption in individual frequencies). The equation of radiative transfer thus
is the linear homogeneous equation

0 L dp

and its (nontrivial) solutions must be parameterized by the required value of the radiative flux
(which is constant due to the radiative equilibrium). An approximate or exact solution of this
equation can be found by different methods (cf. [3, Sec. 3-3, 3-4]). A simple but useful approxi-
mation is the Milne - Eddington approximation, which can be found by the following procedure.
According to Eq. (2.26), the radiation pressure is exactly

K=Hr+c (2.45)
in the radiative equilibrium. We can define the Eddington factor

K _ [p*ldu

1= = T

(2.46)

Due to its definition, f € (0,1); f can be close to 0 if there prevails the radiation in the direction
of the plain of symmetry. This could happen in a finite slab (which can model, e.g., an accretion
disk). However, in a stellar atmosphere we expect almost isotropic radiation in deep layers, in
which case f = % Close to the surface the radiation should be more concentrated in directions
with higher u, because the corresponding beams are coming from deeper and hotter regions. f is
thus higher than % here. It could approach the value of 1 for the outward peaking of radiation
I(u) ~ 6(p — 1) at large distances of spherical stars, however, for a planeparallel atmosphere only
a moderate concentration to u ~ 1 can be expected. Note, that for a known dependence f(7)

(and S(7)), Egs. (2.25) and (2.26) form a close set of equations for J and H, which is used in

12



some numerical methods, because f is of the order of 1 and it can thus be estimated without a
large error. To fit properly the asymptotic behaviour at 7 — oo, we choose f = % in the Milne —
Eddington approximation, and we thus have

S=J=3K=3H(t+¢), (2.47)
where ¢ is any real integration constant. Following the formal solution (2.16),
I(t,u) =3H(t+p+c) (2.48)

for p > 0, and for u < O the intensity approaches this behaviour at large 7, where the missing
radiation from above the surface is not perceivable. In fact, for any value of ¢, this is an exact
solution of Eq. (2.44), however, it does not satisfy the required boundary conditions at the surface
(which corresponds to the wrong values of f close to the surface). To minimize this disadvantage
of the solution, we can fix ¢ to the value, for which the source function (2.47) will give the correct
value H (7 = 0) integrated with the proper boundary conditions, i.e., according to (2.18). Owing
to the linear dependence of S on 7, we can use Eq. (2.30) and we find ¢ = % The exact solution
of the grey atmosphere reads

S =3H(t+q(1)), (2.49)

where the Hopf function ¢ increases monotonically from ¢(0) ~ 0.577 to g(co) ~ 0.710, which
agrees with the Milne — Eddington approximation quite well, at least in limits of applicability of
the grey model to real atmospheres.

13



Chapter 3

Formation of the spectrum

This chapter corresponds to chapters 4 and 5 of [3].

3.1 Einstein coefficients

For practical calculations of radiative transfer one needs to know absorption, emission and scat-
tering coefficients, i.e., the probabilities of radiative processes and the abundances of particles in
states required for these processes. These abundances are influenced not only by the investigated
radiative processes, but, generally, by all possible processes between the particles. These processes
can be treated as some chemical reactions

Xi+Xo+.. X1 +X 5+ ... (31)

From the phenomenological point of view, the rates of reactions per unit time and unit volume of
space in each direction of the reaction are proportional (with constants characterizing the prob-
ability of the reaction) to the product of densities ninz... and nyna.... However, the balance
of the reaction can be described also on a more detailed level of transitions between particular
elementary quantum states of both ingoing and outgoing particles (including, e.g. their kinetic
degrees of freedom). In this case the product of densities should be replaced by the product of the
distribution functions normalized per quantum state (i.e. the occupation numbers). If we assume
the distributions into the states of the participating particles to be known, the macroscopic rates
can be then obtained by the averaging of the elementary probabilities over the distribution of initial
states and by summation over the final states of particles participating in the reaction. Hereafter,
wee shall thus investigated the reaction (3.1) as a transition between particular quantum states.
In the detailed equilibrium, the numbers of reactions in both directions are balanced,

fifeePaa. vy = fufoPaar a2, - (3.2)

For example, in the case of decay of a particle in an upper excited state X, into a lower state X;
with simultaneous emission of another particle p,

X, & X +p, (3.3)

the detailed balance
fuPul - flfp-Plu (34)

14



(where Py, Py, stand for the probabilities normalized per single states of u, [ and p of the reaction
in its corresponding directions), will occur, if the distribution of the particle p will be

— fuPul
flf)lu ’

If the populations of both states X, ; are in thermodynamic equilibrium, i.e., if they satisfy the
Boltzmann distribution f,; ~ exp(—Ey,/kT), we thus find that the particle p carrying the dif-
ference between energies of both states, E, = E, — E;, must obey the Boltzmann distribution
corresponding to the same temperature,

o (3.5)

_ kT /) _ E,
Puexp(—Lh) P, exp( kT) . (3.6)
It is thus obvious that this description is inappropriate just in the desired case of radiative processes,
because the equilibrium distribution of photons is given by the Planck distribution instead of the
Boltzmann one.

The difference between the behaviour of photons and the above described behaviour of the
non-quantum particle p consists in their bosonic nature, which makes the rates of their reactions
dependent not only on the densities of particles incoming to the reaction, but also on the densities
(occupation numbers of final states) of the outgoing bosons (and fermions, if they also participate
in the reaction). Consequently, if the particle p in the process (3.3) should be a photon, the above
given classical description (3.4) of the statistical equilibrium must be modified by enhancing the
left hand side for the contribution of the so called ‘induced emission’ (to distinguish it from the
simple ‘spontaneous emission’), i.e., a process in which another photon (in the same state as the
emitted one) participates. Let us denote the probability of spontaneous emission by one atom in
the state u per unit time' into the chosen states [ of the atom and p of the photon

, ¢
In addition to this spontaneous emission, the upper state can emit the photon by spontaneous
emission with probability proportional to the occupation number of the emitted photon (due to
its interaction with the already existing photon in this state),
ind. ¢

foPul™ = 7 1Bu - (3.8)
The process in opposite direction can occur only if the absorbed atom yields the energy needed for
the excitation of the atom. Consequently, the probability of absorption (during a unit of time per
atom in the [-state in a given radiation field) is proportional to the occupation number of photons,

Cc

P, =
fp lu hy

1By, . (3.9)
The equation of statistical balance of radiative processes, which should replace the non-quantum

equation (3.4), thus reads
quul + ful Bu = fil Byy - (310)

INote that according to Eqs. (4-2) — (4-4), or their use in (4-10), in [3, p. 78] the Einstein coefficients A,;, By
and By, are introduced as probabilities per light-travel time of unit length, not per the unit time, and they give
the energy, not the number of emitted photons. The corresponding multiplicator given by the speed and energy of
photons cancels from the rate equations, however it must be included or skipped self-consistently in the treatment
of radiative transfer as well as of the statistical equilibrium.
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The detailed equilibrium of this reaction thus takes place if the distribution of photons given in
terms of the specific intensity satisfies

quul Aul 1

I = =
_ f1Biu
fiBiu — fuBu  Bu #pe -1

(3.11)

In thermodynamic equilibrium the states of the atom should be populated according to the
Boltzmann distribution
fi E, - FE, hv
N i i)

o xp( LT )= eXp(k_T) )
where we have used the relation F, — E; = hv of conservation of the energy, and the intensity

A 1
e (3.13)
Bu _g:; exp(2L) — 1

(3.12)

should be equal to the Planck’s black-body radiation

2hv?

1
¢ exp(gf) =1

B,(T) = (3.14)

with the same temperature T'. Tt is possible only if the Einstein coefficients (up to now treated as
characteristics of three independent quantum processes) will satisfy the Milne — Einstein relations

2h1?
Aw = = Bu (3.15)
Bu = Bi,. (3.16)

In practice, we often denote as one atomic level not a single quantum state (e.g. I, u) but the
so-called ‘gross-state’; i.e. a set of sub-states with (approximately) equal energies (e.g. L, U). The
probability of transitions between these gross-states depends generally on the inner distribution of
population of the initial states, e.g.

Pyp, = % . (3.17)

However, in thermodynamic equilibrium, the populations f, are equal in the whole set U of states
u, i.e. the population of the gross-state is

fUEqu:gUfu; (318)
u
where gy is the statistical weight of the level, and hence

1
Py =— E Py . (3.19)
gu =

To calculate the contribution of the process (3.3) to the collisional term (2.10) on the right-hand
side of equation of radiative transfer, we must re-normalize the number of individual processes from
the single atom to the unit of volume

ol
<g> =Z=e—al =nyAwy +nuIBy — 1By, , (320)
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where n,; are the volume densities of the atom in the corresponding state. The terms here
correspond to the spontaneous emission, induced emission and the true absorption. Comparing
the absolute term and the term linear in I, we find (taking into account also the Milne — Einstein
relations) the emissivity

2hv3
€ =nylAu = C—2n“B“l , (3_21)
and the opacity
a =By, —n,By = nlBul(l - E) , (322)
n

in which the true absorption is reduced for the negative absorption, i.e. the induced emission.
The term in brackets is equal to (1 — exp(—]’;—;)) in thermodynamic equation. However, if the
thermodynamic equilibrium between the population of the upper and the lower level is violated,
the populations must be substituted explicitly. In the case of ‘negative temperature’, i.e. the
inversion m, > n; the absorption coefficient is negative and the radiative transfer leads to the

laser-effect, i.e. an exponential grow of the intensity.

Exercise 3 Derive the relations between the overall Einstein coefficients for gross-states of degen-
erated atomic levels and those corresponding to individual sub-levels. Derive the Milne — FEinstein
relations (3.15), (3.16) for them. Hint: Sum the rate equation (3.10) for all sublevels and require
the same form of the overall equation.

3.2 Interaction of quantum systems with radiation field

Let us investigate a particle (atom, ion or molecule) described by its Hamiltonian Hp with quantum

eigenstates |a),
Hpla) = Ep,la) , (3.23)

cf. e.g., [1, Chap. X]. The eigenvalues Ep, may be either in a discrete or in a continuous spectrum
of the energy (the later case corresponds in fact to a system of particles, e.g., ion + electron).
The state of one photon is described by the momentum " and polarization € and will be denoted
by the ket-vector |p'€). However, the radiation field has a variable number of photons, and its state
must be thus described in the representation of the second quantization, i.e., by the eigenstates

INy, Na,...) = (N1 INo!..) 2NV o) (3.24)

of operators of number of particles

in the states |ﬁ}é})|§i1 Here n;, 7j; and Nj are the creation operator, annihilation operator and
the occupation number in the j-th state, resp., and |0} is the vacuum state. The Hamiltonian of a
free radiation field reads

Hp =) Er;N;, (3.26)

J

where
Erj = hvj = c|pj| (3.27)

is the energy of a photon in the j-th state.
The whole system of the particle plus the radiation field can be described by the ket-vectors

|(1,N1,N2,...> = |a)|N1,N2,...) (328)
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in the product space, and its Hamiltonian is
H:HP+HQ+HR, (329)

where Hg is the interaction Hamiltonian intermediating the mutual influence between the particle
and the radiation field. We can treat it as a small perturbation of the unperturbed Hamiltonian
Hp+ Hp, of a noninteracting particle and field, which has the eigenvectors (3.28). This perturbation
will thus cause a transition from an initial state |¢) to a final state | f) with the probability per unit

time of
47 12
Pig = —=I{flHol0)["0(E: — Ej) (3.30)

(E;, Ef being the energies of the whole system). If the interaction Hamiltonian is expanded into a
series in operators n;, 7;,

Hgo =Vo+ > (WUim; + Usny) + > _(Ujknjiie + Viknyme + Visiile) + .- (3.31)
i ik

where Vp,U;, Uk, Vi, etc. are some operators in the space of states of the particle (i.e., of kets
lay; U;, Vji etc. are the corresponding complex conjugates), the individual terms of this expansion
can be interpreted as perturbations causing the transition of the particle only (V4), transition
with simultaneous emission or absorption of one photon at the state j (U; or Uj), transition with
simultaneous absorption of photon at the state k¥ and emission of another one at the state j (Ujs),
transition with simultaneous emission of two photons (V}x) and so on.

For instance, the probability of the absorption of a photon at state |p'é) by transition of the
particle from the lower state |I) to the upper state |u) can be evaluated according to Eq. (3.30) if
we choose

|Z> = |l)N> and |f> = |U7N - ]-> ) (332)

where N is the occupation number of the state |[pé) and the occupation numbers of other states
are skipped for brevity. Following the expansion (3.31),

(f|Hgli) = (|UIIY(N = 1[7|N) = VN{|Uu) , (3.33)
and hence according to (3.30) the probability of the absorption is

42
TN

P = == N[V PS(Er + by = E) (334

In a similar way, to evaluate the probability of emission of a photon by the transition from the
upper state |u) to the lower state |I) of the particle, we must choose

i) =|u,N) and |f)=|,N+1). (3.35)
Consequently, we find from (3.31),
(fIHgli) = (IUu)(N + 1|N) = VN + L(U|U|u) , (3.36)
and the final probability of the emission

2
Pu = T (N + DU PO(E + hw — B, (3.37)
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The polarization of a photon can have two possible values only, while its momentum fills the whole
3-dimensional space. The number N of photons in the state |p'é) is thus equal to the distribution
function f of photons, i.e., according to Eq. (2.3), proportional to the specific intensity of the
radiation field. Following Eq. (3.34), the probability of the absorption is thus proportional to the
intensity of the radiation, which is in agreement with our assumption in the phenomenological
description of radiative transfer (cf. Eq. (2.10)), as well as its treatment using Einstein coefficients
(cf. Eq. (3.20)). However, the probability of the emission is, following Eq. (3.37), a sum of two
terms, one being also linear in the intensity (the induced emission) and the other (the spontaneous
emission) being constant. Values of all these terms are determined by the same matrix element
(I|U|u), which is the quantum-field reason for the validity of Milne — Einstein relations (3.15) and
(3.16) justified originally by the thermodynamic reasoning.

For practical calculations of the transition probabilities we must know (in addition to the
eigenstates of the atom itself) the interaction Hamiltonian Hg. For an electron (i.e., a charged
particle with a magnetic moment associated with its spin) in an electromagnetic field the interaction
Hamiltonian can be expressed as

e? o

(AA) — w(eH), (3.38)

Ho = — (A
Q mc(p )+2m02

2k s the
Bohr magneton. A is the vector potential of the electromagnetic field, which is the superposition
of contributions of individual harmonic modes

where p'is the momentum, e the charge, m the mass and & the spin of the particle, u =

hc?
Z Tty &1 (13 exp (ik2) + 1y exp (—ikyz) (3.39)

where k; is the wave 4-vector, i.e., kjz = %’T(ﬁ]a—:’— E;t). The magnetic field can thus be expressed

as
2

. hc o ] _
i zj: 3y [k; x €] (7; exp (ikjx) — n; exp (—ik;z)) . (3.40)

— -

H=VxA=

Substituting (3.39) and (3.40) into (3.38) and comparing the result with (3.31), we find the operator
corresponding to the one-photon emission and/or absorption to be

hc?
27V

U; = ( (p€;) +ip(d.[k; x e]])) exp (—ik;z) . (3.41)

Following Eq. (3.37), the probability of the spontaneous emission thus reads

2rc?
Psp. —
ul Vv J

(U1 (== 7)) + i@ [k x &))) exp (=iksa)u)Po(hw + B = By) . (3.42)
Expanding the exponential into the Taylor series (exp (—ik;x) = 1 — ik;jz + ...) we get the matrix

element of the transition as a sum of dipole, quadrupole and higher-order multipole terms of the
electric (the terms with (pe;)) and magnetic (the terms with (&.[k; x €;])) radiation.

3.3 Thermodynamic equilibrium

It is well known from thermodynamics that the distribution function of any system determines
its entropy (related to the amount of information contained in the distribution function), which,
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according to the third law of thermodynamics, is non-decreasing function of time. An isolated
system thus relaxes to the state of thermodynamic equilibrium for which the corresponding equi-
librium distribution function is the maximum of the entropy and is dependent only on the values
of conserved quantities of the system (like its energy, momentum, number of particles etc.). Some
of them can be eliminated (like the momentum by the choice of the system rest-frame), to others
there correspond some ‘intensity’-quantities (like the temperature to the energy or chemical poten-
tial to the number of particles), which must have the same value for each (mutually interacting)
subsystems of the system in the thermodynamic equilibrium.

An example, which will be of primary importance for our opacity calculations, is the case of
non-quantum particles (i.e., particles for which their bosonic or fermionic nature can be neglected,
e.g., owing to their small density), for which the thermodynamic equilibrium is described by the
Boltzmann distribution

E
— = 3.43
f fU exp( kT ) ’ ( )
where FE is the energy of the state of the particle. The special cases of this distribution are, e.g., the
Maxwell distribution of particles velocities (for which E = %mv2), the excitation (of electron levels

or vibration and rotation modes of molecules), ionization equilibria, or the barometric formula for
density of particles in a potential (e.g., the gravity) field (£ = m®).

Stellar atmosphere is not an isolated system and it is not in thermodynamic equilibrium. How-
ever, the relaxation times for reaching the equilibrium are so short for some subsystems of the
atmosphere that these subsystem are nearly in equilibrium with some values of the temperature
and the other parameters, which are determined by the balance with other subsystems. We thus
use to approximate the inner distribution of such subsystems by a state of thermodynamic equilib-
rium (TE), with corresponding (mutually different) temperatures. This TE is often (nearly) valid
for the above mentioned kinetic degrees of freedom in small parts of volume of the atmosphere. In
principle, the kinetic temperatures in the same volume element of the atmosphere can be different
for different kinds of particles, if they are heated or cooled in a different rate and the exchange of
the energy between them is slower than their own Maxwellization (what is the case between the
light electrons and heavy ions). However, these differences are mostly negligible. Due to the fast
interaction between most (first of all the higher) excitation states of ions with the kinetic degrees
of freedom, the distribution of the former tends to the TE with the same temperature and it is thus
used to denote the corresponding kinetic temperature as the local temperature of the atmosphere
(which is a function of position). If this equilibrium (with the same temperature) is reached by all
degrees of freedom, or if we simplify the problem by this assumption, the corresponding state of
the atmosphere is denoted as the local thermodynamic equilibrium (LTE). If at least some of the
degrees of freedom have different population, their state (and the state of the whole atmosphere)
is denoted as non-LTE.

A simple example of LTE is the Boltzmann distribution of electron excitation levels, in which
the numerical density of ions at excitation level k is

e = Ik exp(_ﬂ g _Ek_EO)
RAUY kT U(T) kT 77
where n is the total numerical density of the ion (in any level), g is the statistical weight of the
level k£ and

(3.44)

)=n exp(

U(T) = Z(T)exp(2) = 3 gr exp(— =20
k

kT i) (343)

is the so called partition function.? Let us note, that the partition function diverges for the
infinite number of levels. In practice, in the limited volume available for a single atom, only a

20bviously, U corresponds to populations expressed in terms of the excitation energy Ey — Eo, where Ep is the
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finite number of electron orbits can exist due to their dimensions increasing with the excitation
energy. Nonetheless, the estimate of the maximum number of levels can non-negligibly influence
the calculations of their populations in the case of smaller densities.

Another example of the Boltzmann distribution is the Maxwell distribution of particles into
their kinetic degrees of freedom, for which the population of elementary quantum state reads

2

p
2mkT

f(z,p) = foexp(— ) - (3.46)

The normalizing constant fy has to be found from the condition for the total number N particles
in a reference volume V,

d3pd3 p»  dPp 2rmkT *
N = [ 1™ = [ew-E T =vi (TRE) L ea)

We thus see, that its inverse is proportional to the partition function Zy;, for the kinetic degrees
of freedom,

mkT\ #
Ziw(T) = % - <2%> . (3.48)

If a particle has both the inner and the kinetic degrees of freedom (or some other in addition),
its energy is the sum of the corresponding energies (E = E™™ + EX® 4+ ) and the equilibrium
distribution as well as its overall partition function are products of the corresponding terms for
each degree of freedom (f = fin fkin--, Z = ZinZkin.--)-

Another important consequence of the Boltzmann distribution in thermodynamic equilibrium
is the ionization equilibrium, which is a special case of thermal equilibrium of any chemical reaction

ZViXi < Zl/’jX’j (349)
i J

between particles X; and X; (cf. Eq. (3.1); here v, v/ are the stechiometric coefficients giving
the number of particles of the same kind). The left- and the right- hand side of this equation
can be treated as two possible composite states of the same physical system. In thermodynamic
equilibrium their abundances

’

nr = Hi(ni)"i and nr = Hj(n'j)" i (350)

(in any possible energetic state of each side of Eq. (3.49)) will thus be proportional to their partition

functions

ZL ZR

np =n—_: and ngp= n— > (3.51)
where n =ny, +ngr, Z = Z, + Zpg,
1 N n
7y = ;exp(_k_:p ZEk) —IL(Z)% and  Zg=TI1,(Z';)" (3.52)

(k; denotes possible energetic states of the particle X;). Each particle has the kinetic degree of
freedom with the partition function Zy, given by Eq. (3.48), and it can have also inner degrees

energy of the ground level, while Z is referred to any choice of zero energy.
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of freedom with Zi, given by Eq. (3.45). The equilibrium abundances of individual particles
participating in the reaction (3.49) thus satisfy the equation

I (n; ) II;(Z;)¥ IL; (U exp(— Zia) (2nh~2m;kT) % )¥i
RV T 3 (3.53)
I(n'5)"s ILi(Z'5)Y5 T0;(U; exp(— )(27rh 2mkT)2 )"
In the special case of the ionization® of j-times ionized atom X to the ion X1,
X;je X +e, (3.54)
We find the Saha equation
; Uje Ejo
i XI:E i) S =K, (3.55)
Tj+1Me 2U]+1 exp(— J+ Y(2rh—2m' kT)%
where m'. = memji1/m; is the reduced mass of the electron. If we know the total density

nx of atoms X (in any ionization state) and the electron density n., we can solve (for a given
temperature) the set of J linear equations (j =0, 1,...J — 1) and the normalization condition

J
> nj=nx, (3.56)
j=0

for J + 1 unknown variables n;. If n. is also unknown and it has to be determined from the
ionization equilibrium at the fixed temperature either for given densities nx, of all kinds (labeled
by k) of atoms (i.e., when the density of the plasma is fixed in addition to its chemical composition)
or for a given numerical density n of all free particles

Ne + Z nx, =n (3.57)
k

(i-e., for fixed pressure P = nkT of the gas) we must solve the sets of Saha equations (3.55) and
their normalization conditions (3.56) for all k¥ simultaneously with the condition of quasineutrality
(the balance of charge)

ne =Y jng, (3.58)
—

either for fixed nx, in the former case or fixed only the relative abundances z = nx, /(n —n.) in
the later case. For instance, in a pure hydrogen plasma including also the negative ion (n_1 = ng-)
at fixed pressure the set of equations reads

n_, = noneK_l 5 (359)
Ng = nlnng 5 (360)
ne = ni—n_q, (3.61)
n = nNe+ni+ng+n_q, (3.62)
which yields a quadratic equation
n2Ko(1+nK_1)+2n.—n=0, (3.63)

3The same results can be obtained both from the set of these subsequent ionizations or from the set of direct
ionizations of the neutral atom, Xo — X + je. It is obvious, that a set of equations of the type (3.49) can be
handled as a set of (homogeneous, also negative v; are allowed) linear algebraic equations.
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with two solutions (one of which is unphysical)

o :t\/l +TLKO(1 +TLK_1) -1
o Kg(1+nK,1)

Tie

(3.64)

For a mixture of hydrogen and helium the corresponding equation for n, is of the 5th degree (or
the 4th if H™ is neglected) and its degree increases with the number of ions included. In practice
it is thus solved numerically either by straightforward iterations of n. or by linearization in its
perturbations.

Exercise 4 Investigate the ionization equilibrium of hydrogen plasma with constant density. Find
the general equation for n., its solution neglecting H- and its perturbation due to H™.
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Chapter 4

Model atmospheres and their
applications

This chapter contains some selected topics from chapters 7 to 15 of [3] and some additional com-
ments and examples.

4.1 Hydrostatic equilibrium and hydrodynamics

Classical plane-parallel model atmospheres are assumed to be in hydrostatic equilibrium. This
assumption is inconsistent for spherical atmospheres. Some observations also confirm that the
atmospheres of real stars often continue by a less or more dense outflow of gas called a stellar wind.
The hydrostatic equilibrium is a limiting case of the hydrodynamics which has many applications
in other fields of astrophysics and physics as well as its technical applications. We will thus derive
first the equations of hydrodynamics (starting from a phenomenological insight as well as from the
kinetic description of the gas), next we will simplify them for the hydrostatic limit, and finally we
will apply them for a spherical stellar wind.

Phenomenological hydrodynamics. The hydrodynamic description of liquids and gasses is
usually based on the phenomenological view of a continuum, the physical characteristics of which
(like the density p, the velocity ¥ etc.) are some functions of time ¢ and spatial position described
by a chosen ‘Eulerian’ coordinates z (i-e., f = f(t,z)). The evolution of the continuum is described
by a partial differential equations for these quantities. It is possible to identify individual parts of
the continuum and to follow their motion = = x(¢, ), where xo are the ‘co-moving’ ‘Lagrangian’
coordinates. The velocity field is given by

0
v = am(t,wg) ) (4.1)

and the time-derivatives of all quantities can be rewritten from the Eulerian to the Lagrangian
form introducing the ‘flow-’ time derivative

0
i = e + (vV). (4.2)

24



Choosing some region )y of Lagrangian coordinates we can find its volume V' at the time ¢ as
0= L=
Qo

Its flow- time derivative reads
d 0 |0z(t ox(t
EV(t) :/ T m( %) Zo —/ Z 9z ‘7332’%)
Qp Qo p X o
9 oz _ v’ 9zt

61‘0
(where we have used the relation Ot pad = B2 07
last equality is valid for an infinitesimally small region ).
Let us suppose now, that the total mass M = pV of the region is conserved. We thus arrive at

the equation of continuity which reads

dp
dt

in the Lagrangian or the Eulerian form, resp.

Similarly, if we suppose that the time- derivative of the momentum of contained in the region is
given by the total force acting on the element of continuum (i.e., the pressure acting on its surface
as well as the density of force acting in its volume), we arrive at the ‘Navier — Stokes equation’ of
motion

0x(t, zo)

3
8.’1}0 :L’() . (43)

o = /(Vv)d3a: ~V.(Vv) (4.4)
Q

in each term of the derivated determinant; the

Ly V(pv) =0, (4.5)

+p(Vo) = (a?t

dv ov
P = <8t + (vV)v > =f-VP, (4.6)
where f is the volume density of the force (e.g., —pV® in the case of a scalar potential) and P is
the pressure (which can be replaced by an anisotropic stress-tensor for a viscose continuum). The
value of the pressure is usually assumed to be determined by an equation of state (e.g., for an ideal
gas)

P=P(p,T)~nkT . (4.7)
The temperature T', which corresponds to the density of the inner energy (e.g. & ~ %nkT for
the ideal gas), is either given by the thermodynamic equilibrium with some other physical system
(e.g., with the radiation field), or it must be solved from the equation of continuity of the energy.
Constructing this equation, it must be taken into account that the change of the inner energy of
the element of gas is influenced (in addition to other processes With the efﬁciency E) also by the

work exerted by the change of the volume against its pressure, = (EV) PdV For instance,
in the case of an ideal gas, this equation reads

d 5

T + 6(VU) =£, (4.8)

where on the right-hand side is the volume-density of the other processes like the efficiency of the
thermonuclear reactions, the energy absorbed from the radiation (which can be found from the
solution of the equation of radiative transfer), or the divergency of the conductive flow of thermal
energy.

Exercise 5 (1) Prove by an explicit calculation in two dimensions that
9 [0(='2*)| _ (dv" N W\ |9(z", z?)
ot |8(xd,z2)| ~ \ o' ' 822 ) |8(xd, x2)

(2) Prove the same relation splitting the transform zo — x(t) into two steps xy — z(t') — x(t)
and fizing t' = t. (8) Generalize the proof to higher dimensions.

25



Hydrodynamic approximation from moments of Boltzmann equation. If we write down
Boltzmann equations (2.7) for all kinds of particles of the gas (these particles are generally non-
relativistic — unlike the photons treated in Section 2.1) and we calculate their moments in the
momentum space, we arrive at partial differential equations for the moments of the distribution
functions f. The first three moments are just the quantities: numerical density of particles

1
n=op= [ 1d. (49)
m
density of their momentum
m=pv = /pifd3p, (4.10)
and the stress tensor
mTY = m(pv'v! + 7)) = /pipifd3p (4.11)

(r is the proper stress tensor with respect to the comoving frame, while T corresponds to the
coordinate frame), i.e., the quantities we want to solve from the equations of hydrodynamics. Let
us show in the simple case of particles moving in a scalar potential field ®(z) that the moment
equations are equivalent to the above given equations of continuity, motion etc.
The Hamiltonian of one particle reads
p?
H=_—+4+md 4.12
L s md(a), (412)

and the Hamiltonian equations of motion

de’ _OH _pi  dpi _ 0H _ 0% (4.13)
dt — 0p; m’ dt Ozt oz’ )
obviously satisfy the Liouville theorem (g;l + apl = 0). The Boltzmann equation can thus be

written in the explicit form

of p; Of o® of  (6f
ot T mox  awop  \ ot (4.14)
The zero-order moment (i.e., [ d®p) of this equation is
on 1 0nt on
St = = <E>C , (4.15)

where on the right-hand side is the moment of the collisional term, which gives the number density
of particles of the particular type created by the collisions (chemical reactions). The integral of
the third term on the left-hand side is zero because it is an integral of the derivative of f, which
must vanish at infinite p. Substituting here n and pi from Eqs. (4.9) and (4.10), we arrive, after
multiplication by m and summation for all kinds of particles, at the equation of continuity (4.5).
The first moments of Eq. (4.14) can be obtained multiplying it by p’ and integrating it in p,

oni  oTI 0P omd
: _ (o 4.16
ot " ow T Pom (&) (4.16)
where we have used the integration ‘per partes’ [ p/ if = - J f- The collisional term on the

right-hand side gives the momentum transferred to the partlcles in collission. It must vanish for a
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closed system of particles, but it can give also the force exerted by the radiation pressure, if the
radiative processes are included. Using Eq. (4.15), a more common form of the equation of motion
of a one-component gas can be obtained (cf. Eq. (4.6))

o’ Ol orit 0P ol . (bp
T —_— = _— - ]
p(@t +v8mi>+ ort +p6xj (5t>c Y <6t>c ' (417)

In a similar way, the second moments of Eq. (4.14) can be obtained (integrating [ d>pp’p*/m)

ik ijk ik
oT oQ o 0® <6T > , (4.18)

ot T oni T Tank T Tem — ot

where on the right-hand side there are contributions of the collisional term to the stress tensor,
and Q%* is the moment of the third order.

In a close correspondence with the moment equations of the radiative transfer, each moment of
the Boltzmann equation for the particles of gas contains higher order moments of the distribution
function. To get a closed set of equations, it is necessary to estimate them as some functions of
lower-order moments (as it is done for moments of radiation field by means of the Eddington factor).
This is a matter of different versions of the hydrodynamic approximation. One of the simplest
possibilities is to assume the relaxation processes (caused by the collisions between the particles of
gas) so effective, that the distribution function f is the equilibrium Maxwellian distribution

_ 2
f= n(27rka)*% exp (—%) , (4.19)

where the height and the position of the maximum of the Gaussian curve are according to (4.9)
and (4.10) given by p and v, which must satisfy Eqs. (4.15) and (4.17). Following Eq. (4.11), the
stress tensor for the equilibrium distribution (4.19) in the comoving system of the gas and it is
proportional to the temperature T' of the gas,

7l = §ii p = §iipkT = i 38 , (4.20)

where P is the pressure and € is the density of thermal energy. The temperature can be either
fixed (e.g., due to the equilibrium with the radiation), or it (or €) can be found as a solution of
the equation of continuity of energy,

o .0 5 ovi (oe

which can be obtained from the trace (ie., > ,_;) of Eq. (4.18), if @ and T are expressed from
(4.19) in terms of n,v,T. The second term on the left-hand side gives the above mentioned change
of the inner energy due to the work exerted by the change of volume against the pressure of the gas.
The collisional term on the right-hand side is either zero for an adiabatic motion of one-component
gas, or it can give the exchange of the energy with the other components of gas or the radiation
(the later being dominant in the case of the radiative equilibrium). The other components of
Eq. (4.18) as well as the higher order moments of the equation yield the criteria of reasonability
of the assumption (4.19). If the collisions are not enough efficient to damp the perturbations of
the equilibrium distribution arising due to the diffusion of particles in the non-homogeneous or
differenetially moving gas, the non-diagonal components of the stress-tensor, the heat conduction
etc. must be also solved from the higher moment equations including the appropriate expressions
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Figure 4.1: Spherically symmetric flow of gas.
for the collisional term. A simple semi-empirical model of the collisional terms can be obtained
if the assumption of the exact Maxwellian distribution (4.19) is replaced by the ‘BGK’- model

(Bhatnagar, Gross, Krook)
of f—Jo
= | =- 4.22

<6t>c At (422)

where fy is the equilibrium distribution with the values of n, v (and facultatively also T') corre-
sponding to the the local distribution f and At is a relaxation time. Because the moments of
this collisional term are proportional to the difference between the actual moments of f and the
moments of fy, the former can be expressed as a sum of the later plus a perturbation propor-
tional to the left-hand side of the moment equation. Being the coefficient of the proportionality,
the relaxation time At thus gives the viscosity, thermal conductivity etc. The main weak point
of the approximation (4.22) is that in reality the relaxation is not uniform in the p- space and
consequently it can not to fit all these coefficients simultaneously.

Exercise 6 Derive the moment equations for a gas of charged particles in external electromagnetic

field.

Stellar wind. Let us apply the hydrodynamic equations to a stationary spherically symmetric
outflow of gas, which is a model of the so called stellar wind. If we suppose the velocity field to be
vt = v(r)rt/r, we can find the Eulerian equation of continuity (4.5) in the form

r dr

0=V" (Mr’> = 7“_21 (p(r)v(r)r?) , (4.23)

which can be integrated as
p(ryo(r)r® = h, (4.24)

where the constant h = —M/47r is the mass flowing per unit time into a unit solid angle (it is
positive for the wind outflow or negative in the case of spherically symmetric accretion). The
vector equation of motion (4.6) or (4.17) has the only non-zero component in the radial direction

dv d
— =—pg— —(P+P,), 4.2
p(r) o Py dr( + Pr) (4.25)
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where g = %‘b is the gravity acceleration and P, is the radial component of the stress tensor of
radiation field (2.6), the gradient of which can be — using the moment (2.28) of the equation of
radiative transfer — expressed also by means of the radial flow of the radiation.

According to the equation of state (4.7), the pressure P of the gas is linked to the density p and
temperature T'. If the behavior of the temperature is known, e.g., if it is fixed by the interaction
with the radiation field as nearly isothermic, or if it is an adiabatic cooling etc., then the pressure
P is determined by the density p, which can be, according to (4.24), expressed as a function of v,
for which we thus arrived at an ordinary differential equation

kT 1\ dv o, d (kT R
S R 6 i —F, . 4.2
<U m v) dr I 4 (mr2> + c " (426)

By its integration we find an implicit algebraic equation for v in the form
F(v) = @ — @p(r) , (4.27)
where the function F'(v) on the left-hand side reads, e.g., in the isothermic case,

. kT

1 v
F(v) = 5(1;2 — i) — Eln

(4.28)
Vg

and it has a minimum equal to zero at a critical point

o = \/g . (4.29)

On the right-hand side of Eq. (4.27) there is a modified potential ®,,(r), which has in the isotermic
case (and for a constant effective opacity per unit mass &k = a/p = [ aF,dv/(p [ F,dv)) the form

B,,(r) = / (g _ ok _ fﬂ) dr= - GM ok Ty ¢ R (4.30)
mr ¢ T m 4dmer

where G is the gravity constant, M the mass of the star and L = 4xr?F, its luminosity. This
potential also has a minimum in a critical point

m EL

To ensure the existence of a smooth solution of v(r) for all r, the integration constants must satisfy
the inequality ®; > ®,,(rg). If & > ®,,(rr), there exist two solutions, one with a subcritical
velocity and the other with supercritical velocity (cf. the dashed lines in Fig. 4.1). In the case
&), = @,,(r1;) these solutions are joined in the critical point, and they can be combined into a
solution corresponding either to the stellar wind, which is asymptotically static for » — 0 and
dynamical for r — oo, or to the radial accretion, for which it is vice versa and the velocity is
negative (cf. full lines in Fig. 4.1). There must be satisfied the condition that the luminosity of
the star is below the Eddington limit, i.e. L < %GM ), and hence the attractive gravity potential
prevails above the repulsive pressure of the radiation.
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Chapter 5

Gravitoacoustic waves

5.1 Sound waves in the atmosphere

In this Section, we shall study local behaviour of radial waves, i.e. of small periodic perturbations of
hydrostatic equilibrium of a plane-parallel atmosphere. The condition of hydrostatic equilibrium
can be obtained from the Navier — Stokes equation (4.6) for a unit volume of fluid in a scalar

(gravitational) potential ®,
dv

Pt
if the the velocity v is set equal to zero. The equation of hydrostatic equilibrium thus reads

= —pVd - VP, (5.1)

pVd +VP=0. (5.2)

Assuming the atmosphere to be an ideal gas, for which the equation of state (4.7) can be written
as

k
P==Tp, (5.3)
m

where m is the mean mass of a free particle (atom, ion, electron), we arrive at a differential
equation for the density p, if the potential ® and temperature T are known functions of the radial
coordinate r. In particular, for an isothermal atmosphere, T' = constant, in homogeneous gravity
field, ® = gr, where the gravity acceleration g = constant, this equation reads

1 mg
- = _ < 5.4
pr =T (5.4)
and its solution is the barometric formula
_ _mg o
p = poexp(—1757) = poexp(—4) (5.5)

where H = fn—j; is the characteristic height scale of the atmosphere.
Let us now investigate a (dynamic) perturbation of the atmosphere, in which a gas element
changes its coordinates
r—2 =x+0r=x+&1t), (5.6)
with velocity

&(z,t), (5.7)



and simultaneously, due to its expansion or compression, it changes also its density and pressure!

p = p=p+dp, (5.8)
P — P =P+6P. (5.9)

The Lagrangian perturbation of the Lagrangian equation of continuity (4.5)

dp _
< tp(Vo) =0 (5.10)
reads @
=L+ p(VE) =0, (5.11)

and hence, integrating with time, the perturbation of density is determined by the divergence of
the displacement?

ép = —p(V¢) . (5.12)

For fast perturbations, we can assume that the pressure varies according to the adiabatic law
P~p7 (5.13)

where v = % for an ideal gas. Consequently, the perturbation of the pressure is related to the
perturbation of the density by

0P = 'ygép , (5.14)

hence, substituting (5.12), we find
dP = —yP(V¢) . (5.15)

The Lagrangian perturbation of the Navier — Stokes equation (5.1) reads
pé = —gép—6VP. (5.16)
Substituting here from (5.12), (5.1), (5.15) and the barometric formula (5.5) for P, we find

pE = gp(VE) —0pVP — (VPP = —(VEVP - VépP — (VPP =
= —V(6gP +¢VP) = —-V(6P) =yV(PV¢) =

1
= YP(VE- 7V (5.17)

This is the wave-equation for &,

E= (Ve V), (5.15)

IThe perturbation § of any physical quantity f is here the Lagrangian perturbation (i.e. that percieved by the
element of fluid), §f = f'(z + &) — f(z). There can also be introduced an Eulerian perturbation (i.e. that measured
at a fixed point z), dgf = f'(z) — f(z). Obviously, 6f = f'(z) + VS — f(z) = dgf + €V S (apart from terms
of higher orders of the perturbation) and only the Eulerian perturbation commutes with the partial time or space
derivatives. Both perturbations are identical for quantities constant in the unperturbed state (in particular for £
and v, which are zero in the unperturbed atmospheres and hence 6§ = ¢ and dv = v). Note that in literature (e.g.
[7]) the Eulerian perturbation is often denoted by § and the Lagrangian perturbation by A, which is consistent
with their mathematical equivalence with the synchronous and asynchronous variation, resp. However, [9] and their
followers use prime ( ’) for the Eulerian and § for the Lagrangian perturbation.

2 Alternatively, we can start from an Eulerian perturbation of the Eulerian form of the equation of continuity,
% + V(pv) = 0, and find the solution dgp = —V(p€). Note that Egs. (7.3) and (7.4) of [5] are thus incorrect.
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where the speed of sound is

[P kT
C—HT—\/W. (5.19)

Unlike the case of a homogeneous gas, the second term on the right-hand side of Eq. (5.18) causes
a change of the amplitude of £. Because the density of energy (e.g. kinetic energy) of the wave is
proportional to péz, let us rescale the amplitude to another variable { — X = ,/p¢, the square of
which will be directly proportional to the energy density independently of the local value of the
density. Substituting this new variable into Eq. (5.18), we find

.. 1 _ 1 _ 1 _
X = cQﬁ(V—E)V(Xp 1/2)202\/ﬁ(v—ﬁ)(VXp 1/2+ﬁXp 12y =

N TR %Vprl/Z n mX/f1/2 _ %VXp’lﬂ _ Wprl/Z) _
= (VX - éX) . (5.20)
Using the Fourier transform
X(x,t) = A(k,w)el@t=ko) (5.21)
Eq. (5.20) turns into an algebraic equation for the amplitude A
2
(W? — Pk? — m)A(k,w) =0. (5.22)

This linear homogeneous equation has a non-trivial solution for A, if the frequency satisfies the
dispersion relation
w==+vc2k> +w?, (5.23)

c g [ym
¢ _g [xm 24
Ye=om T o\ kT (5.24)

where the cut-off frequency

5.2 Gravity waves

In the previous Section, we assumed that the whole horizontal plane in the atmosphere oscillates
simultaneously up and down, i.e. the wave-vector has a horizontal component equal to zero. Here,
we shall study the opposite limit, in which only individual blobs of gas with small horizontal
size will oscilate up and down in their environment, which is in the mean in the hydrostatic
equilibrium. The blob can thus expand horizontally to hold its inner pressure in equlibrium with
the unperturbed atmosphere. It means that the Eulerian perturbation of pressure is zero and the
Lagrangian perturbation reads

0P =¢VP. (5.25)

We assume that the expansion of the blob is again adiabatic, i.e. Eq. (5.14) is still valid and it
determines the variation of density®

- P
o = JHEVP. (5.26)

3Note that Eq. (5.12) is still valid for the vector ¢, and it determines its total divergence both in vertical and
horizontal direction.
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Generally, the total gravity and buoyancy force acting on the blob of mass M reads
1
f= M(—;VP —-Ve), (5.27)

and it is equal to zero in the equilibrium. The perturbation of this force caused by the displacement
of the blob* reads

0 1
5f = M(p—g’vp —0VP). (5.28)
Consequently, the blob will move with acceleration
. Of 1 dp 1 g
E=—=—=—-(—VP—-46VP)==(—gdp—90gVP — (EV)VP) =—=(dp — (£EV)p) , 5.29
Mp(p )p(pE())p(p()p) (5.29)

where we have used twice Eq. (5.2) and the fact that 6gVP = VdgP = 0. Substituting here from
Eq. (5.26), we arrive at the equation of motion for £

F_ 9P
{=-=(5VP-Vp), (5.30)
p P
which is the standard equation of a harmonic oscillator with the circular frequency (so called Brunt
- Viiséla frequency) N, which can be expressed (using Eq. (5.3)) as

1 1 v—1 1
N?=g(—VP-= = —g(+—VP - =VT). 31
g(va pr) g( 7PV TV) (5.31)

A negative value of N2 (i.e. an imaginary value of IV) in a case of large (negative) gradient of T'
would indicate a convection instability. In the case of the isothermal atmosphere

y—1g y—1m 2v/y -1
\/ S H g\/ SR 5 we ~ 0.979796w, (5.32)

for an ideal gas.

In the case of a general wave in the atmosphere, both effects (i.e. the dilution of density and
the buyoancy) influence its propagation depending on the horizontal k; and the radial (vertical)
k, component of the wave-vector. The dispersion relation for these general gravito-acoustic waves
then reads

(W? —Ww? — (ki + k2w + k. N? =0 . (5.33)

Cc

For kj, = 0 this equation reduces to Eq. (5.23). For a general value of k;, = 0, there are two regions
of w, for which a non-negative value of k2 may exist. One is the region of high-frequency pressure
waves, and the other is of low-frequency gravity waves.

Exercise 7 Find the commutation relations between the Lagrangian perturbation and partial deriva-

tives (with respect to time or coordinate) for a general quantity f(x). Prove that the Lagrangian

perturbation commutes with the Lagrangian time derivative % = % + (vV). Cf. [7], Chapter 6.2.

4In a planeparallel atmosphere g = V® = constant, so that its variation is zero. However, for a perturbation of
a spherical star the corresponding additional term may appear.
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Appendix A

(Generalised functions

Mathematical theory of generalised functions (distributions) can be found in mathematical text-
books. Here we will remind that they can be introduced as limits of continuous differentiable
functions (going sufficiently fast to zero at +oo to guarantee the existence of needed integrals),

e.g.,

§(z) = lim 7 *nexp(—(nz)?).

n—o0

The convolution f * g of the functions f, g is defined

(f *0)x / f(z — y)g(y)dy

Using the substitution z = z — y, it can be verified that
frg=gxf.
It can be found for derivatives that
(fxg)=fxg=fxg",

or generally
(f >kg)(ner) — f(n) % g(m) .
For the Fourier transform
FA = [ sy,
it can be verified that
F(f=g)=F()F(9)

and vice versa.
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